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Abstract

Current supervised parsers are limited by the
size of their labelled training data, making
improving them with unlabelled data an im-
portant goal. We show how a state-of-the-
art CCG parser can be enhanced, by pre-
dicting lexical categories using unsupervised
vector-space embeddings of words. The use
of word embeddings enables our model to
better generalize from the labelled data, and
allows us to accurately assign lexical cate-
gories without depending on a POS-tagger.
Our approach leads to substantial improve-
ments in dependency parsing results over the
standard supervised CCG parser when evalu-
ated on Wall Street Journal (0.8%), Wikipedia
(1.8%) and biomedical (3.4%) text. We com-
pare the performance of two recently proposed
approaches for classification using a wide va-
riety of word embeddings. We also give a de-
tailed error analysis demonstrating where us-
ing embeddings outperforms traditional fea-
ture sets, and showing how including POS fea-
tures can decrease accuracy.

1 Introduction

Combinatory Categorial Grammar (CCG) is widely
used in natural language semantics (Bos, 2008;
Kwiatkowski et al., 2010; Krishnamurthy and
Mitchell, 2012; Lewis and Steedman, 2013a; Lewis
and Steedman, 2013b; Kwiatkowski et al., 2013),
largely because of its direct linkage of syntax and
semantics. However, this connection means that
performance on semantic applications is highly de-
pendent on the quality of the syntactic parse. Al-
though CCG parsers perform at state-of-the-art lev-
els (Rimell et al., 2009; Nivre et al., 2010), full-

sentence accuracy is just 25.6% on Wikipedia text,
which gives a low upper bound on logical inference
approaches to question-answering and textual entail-
ment.

Supertags are rich lexical categories that go be-
yond POS tags by encoding information about
predicate-argument structure. Supertagging is “al-
most parsing”, and is used by parsers based on
strongly lexicalized formalisms such as CCG and
TAG to improve accuracy and efficiency, by dele-
gating many of the parsing decisions to finite-state
models (Bangalore and Joshi, 1999). A disadvan-
tage of this approach is that larger sets of lexical
categories mean increased sparsity, decreasing tag-
ging accuracy. As large amounts of labelled data are
unlikely to be made available, recent work has ex-
plored using unlabelled data to improve parser lex-
icons (Thomforde and Steedman, 2011; Deoskar et
al., 2011; Deoskar et al., 2014). However, existing
work has failed to improve the overall accuracy of
state-of-the-art supervised parsers in-domain.

Another strand of recent work has explored us-
ing unsupervised word embeddings as features in
supervised models (Turian et al., 2010; Collobert et
al., 2011b), largely motivated as a simpler and more
general alternative to standard feature sets. We apply
similar techniques to CCG supertagging, hypothe-
sising that words which are close in the embedding
space will have similar supertags. Most existing
work has focused on flat tagging tasks, and has not
produced state-of-the-art results on structured pre-
diction tasks like parsing (Collobert, 2011; Andreas
and Klein, 2014). CCG’s lexicalized nature provides
a simple and elegant solution to treating parsing as
a flat tagging task, as the lexical categories encode
information about hierarchical structure.
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As well as improving parsing accuracy, our model
has a number of advantages over current CCG pars-
ing work. Our supertagger does not make use of a
POS-tagger, a fact which simplifies the model archi-
tecture, reduces the number of parameters, and elim-
inates errors caused by a pipeline approach. Also,
learning word embeddings is an active area of re-
search, and future developments may directly lead
to better parsing accuracy, with no change required
to our model.

2 Background

2.1 CCG Parsing

The widely-used C&C parser (Clark and Curran,
2007) for CCG takes a pipeline approach, where
first sentences are POS-tagged, then supertagged,
and then parsed. The supertagger outputs a distri-
bution over tags for each word, and a beam is used
to aggressively prune supertags to reduce the parser
search space. If the parser is unable to find a parse
with a given set of supertags, the beam is relaxed.
This approach is known as adaptive supertagging.

The pipeline approach has two major drawbacks.
Firstly, the use of a POS-tagger can overly prune
the search space for the supertagger. Whilst POS-
taggers have an accuracy of around 97% in domain,
this drops to just 93.4% on biomedical text (Rimell
and Clark, 2009), meaning that most sentences
will contain an erroneous POS-tag. The supertag-
ger model is overly dependent on POS-features—in
Section 4.6 we show that supertagger performance
drops dramatically on words which have been as-
signed an incorrect POS-tag.

Secondly, both the POS-tagger and supertagger
are highly reliant on lexical features, meaning that
performance drops both on unknown words, and
words used differently from the training data. Many
common words do not appear at all in the train-
ing data of the Penn Treebank, such as ten, mili-
tants, insight, and teenager. Many others are not
seen with all their possible uses—for example Eu-
ropean only occurs as an adjective, never a noun,
meaning that the C&C parser is unable to analyse
simple sentences like The director of the IMF is tra-
ditionally a European. These problems are particu-
larly acute when parsing other domains (Rimell and
Clark, 2009).

2.2 Semi Supervised NLP using Word
Embeddings

Recent work has explored using vector space em-
beddings for words as features in supervised mod-
els for a variety of tasks, such as POS-tagging,
chunking, named-entity recognition, semantic role
labelling, and phrase structure parsing (Turian et
al., 2010; Collobert et al., 2011b; Collobert, 2011;
Socher et al., 2013). The major motivation for us-
ing these techniques has been to minimize the level
of task-specific feature engineering required, as the
same feature set can lead to good results on a variety
of tasks. Performance varies between tasks, but any
gains over state-of-the-art traditional features have
been small. A variety of techniques have been used
for learning such embeddings from large unlabelled
corpora, such as neural-network language models.

3 Models

We introduce models for predicting CCG lexi-
cal categories based on vector-space embeddings.
The models can then be used to replace the POS-
tagging and supertagging stages used by existing
CCG parsers. We experiment with the neural net-
work model proposed by Collobert et al. (2011b),
and conditional random field (CRF) model used by
Turian et al. (2010). We only use features that can be
expected to work well out-of-domain—in particular,
we use no lexical or POS features.

3.1 Features

Our features are similar to those used by Collobert
et al. (2011b) for POS-tagging. For every word in a
context window, we add features for the embedding
of the word, its 2-character suffix, and whether or
not it is capitalised. We expect such features to gen-
eralize well to other domains—and in Section 4.5
we show that adding traditional POS-tag and lexical
features does not help.

To further reduce sparsity, we apply some simple
preprocessing techniques. Words are lower-cased1,
and all digits are replaced with 0. If an unknown
word is hyphenated, we first try backing-off to the
substring after the hyphen.
1For embeddings that include separate entries for the same word
with different capitalization, we take the most frequently occur-
ring version in the unlabelled corpus.
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Figure 1: Collobert et al. (2011b)’s Window approach network, applied to CCG supertagging. Each context
word Ci is connected to one hidden node per dimension of the embedding Eij with weight Wij , and ad-
ditional hidden nodes representing capitalization and suffix features. The weights Wij are initialized using
pre-trained word embeddings, but can be modified during supervised training. The additional hidden layer
uses a hard-tanh activation function, and the output layer uses a softmax activation function.

Words which do not have an entry in the word em-
beddings share an ‘unknown’ embedding. Different
‘unknown’ vectors are used for capitalized and un-
capitalized words, and non-alphabetic symbols. We
also add entries for context words which are before
the start and after the end of the sentence. All of
these were initialized to the ‘unknown’ vector in the
pre-trained embeddings (or with Gaussian noise if
not available).

3.2 Neural Network Model

We predict word supertags with the neural network
classifier used by Collobert et al. (2011b) for POS-
tagging, as shown in Figure 1. Each feature is imple-
mented as a lookup table, which maps context words
onto vectors. The same lookup table parameters are
used wherever a word appears in the context win-
dow.

Word embeddings are implemented with a lookup
table W ∈ RV×D, where V is the size of the vo-
cabulary, and D is the dimension of the word em-
beddings. The parameters of the lookup table are
initialized using unsupervised embeddings, but are
modified during supervised training.

As in Collobert et al. (2011b), non-embedding

features (2-character suffixes and capitalization) are
also each represented with lookup tables, which map
each feature onto aK dimensional vector (as in Col-
lobert et al. (2011b), we use K = 5). Lookup table
parameters for non-embeddings features are initial-
ized with Gaussian noise.

The first hidden layer therefore containsC×(D+
KF ) nodes, where F is the number of discrete fea-
tures and C is the size of the context window. We
also experimented adding an additional hidden layer,
with a hard-tanh activation function, which makes
the classifier non-linear. Finally, a logistic softmax
layer is used for classifying output categories.

The model is trained using stochastic gradient de-
scent, with a learning rate of 0.01, optimizing for
cross-entropy. We use early-stopping as an alterna-
tive to regularization—after each iteration the model
is evaluated for accuracy on held-out data, and we
use the best performing model. Training was run
until performance decreased on held-out data.

3.3 CRF Model

The neural network model treats the probability of
each supertag as being conditionally independent.
However, conditioning on surrounding supertags
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Embeddings Model Dimensionality Training Words Training Domain
Collobert&Weston NNLM 50 660M Wikipedia
Skip-Gram Skip Gram 300 100B Google News
Turian NNLM 25, 50, 100, 200 37M Newswire
HLBL HLBL 50, 100 37M Newswire
Mikolov RNNLM 80, 640 320M Broadcast News

Table 1: Embeddings used in our experiments. Dimensionality is the set of dimensions of the word em-
bedding space that we experimented with, and Training Words refers to the size of the unlabelled corpus the
embeddings were trained on.

may be very useful—for example, a noun is much
more likely to follow an adjective than a verb. Cur-
ran et al. (2006) report a large improvement using a
maximum-entropy Markov model for supertagging,
conditioned on the surrounding supertags.

We follow Turian et al. (2010) in using a linear
chain CRF model for sequence classification using
embeddings as features. This model does not al-
low supervised training to fine-tune the embeddings,
though it would be possible to build a CRF/NN hy-
brid that enabled this. We use the same feature set
as with the neural network model—so the probabil-
ity of a category depends on embeddings, capital-
ization and suffix features—as well as the previous
category. The model is trained using the averaged-
perceptron algorithm (Collins, 2002), again using
early-stopping based on development data accuracy.

4 Experiments

4.1 Domains

We experiment with three domains:

• CCGBank (Hockenmaier and Steedman,
2007), which is a conversion of the Penn Tree-
bank (Marcus et al., 1993) to CCG. Section 23
is used for evaluation.

• Wikipedia, using the corpus of 200 sentences
annotated with CCG derivations by Honnibal et
al. (2009). As the text is out-of-domain, parsing
accuracy drops substantially on this corpus.

• Biomedical text, which is even less related to
the newswire text than Wikipedia, due to large
numbers of unseen words and different writ-
ing styles, causing low parsing accuracy. For

parsing experiments, we use the Bioinfer cor-
pus (Pyysalo et al., 2007) as a test set. For
measuring supertagging accuracy, we use the
CCG annotation produced by Rimell and Clark
(2008).

4.2 Neural Network Model Parameters

In this section, we explore how adjusting the pa-
rameters of our neural network model2 affects 1-best
lexical category accuracy on the Section 00 of CCG-
Bank (all development was done on this data). The
C&C supertagger achieves 91.5% accuracy on this
task. The models were trained on Sections 02-21
of CCGBank, and the reported numbers are the best
accuracy achieved on Section 00. As in Clark and
Curran (2007), all models use only the 425 most fre-
quent categories in CCGBank.

4.2.1 Embeddings
A number of word embeddings have recently been

released, aiming to capture a variety of syntactic and
semantic phenomena, based on neural network lan-
guage models (NNLMs) (Turian et al., 2010; Col-
lobert et al., 2011b), recurrent neural network lan-
guage models (Mikolov, 2012), the hierarchical log
bilinear model (HLBL) (Mnih and Hinton, 2008),
and Mikolov et al. (2013)’s Skip Gram model. How-
ever, there has been a lack of experiments comparing
which embeddings provide the most effective fea-
tures for downstream tasks.

First, we investigated the performance of several
publicly available embeddings, to find which was
most effective for supertagging. The embeddings
we used are summarized in Table 1. For efficiency,
we used our simplest architecture, with no additional

2Implemented using the Torch7 library (Collobert et al., 2011a)
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Embeddings Category
Accuracy
(window=5)

Category
Accuracy
(window=7)

Collobert&Weston 90.0% 89.6%
Skip Gram 90.9% 91.0%
Turian-25 91.0% 91.1%
Turian-50 91.1% 91.3%
Turian-100 91.0% 91.1%
Turian-200 90.8% 90.7%
HLBL-50 90.9% 91.2%
HLBL-100 91.1% 91.3%
Mikolov-80 87.2% 88.1%
Mikolov-640 87.9% 88.4%

Table 2: Comparison of different embeddings and
context windows on Section 00 of CCGBank. Ab-
breviations such as Turian-50 refer to the Turian em-
beddings with a 50-dimensional embedding space.

hidden layer. We also investigate which size context
window is most effective.

Results are shown in Table 2, and show that the
choice of embeddings is crucial to performance on
this task. The performance of the Turian and HLBL
embeddings is surprisingly high given the relatively
small amount of unlabelled data, suggesting that pa-
rameters other than the size of the corpus are more
important. Of course, we have not performed a grid-
search of the parameter space, and it is possible that
other embeddings would perform better with differ-
ent training data, dimensionality, or model architec-
tures. The Mikolov embeddings may suffer from be-
ing trained on broadcast news, which has no punc-
tuation and different language use. Using a context
window of 7 words generally outperformed using a
window of 5 words (we also experimented with a
9 word window, but found performance decreased
slightly to 91.2% for the Turian-50 embeddings).
There is no clear trend on the optimal dimension of
the embedding space, and it is likely to vary with
training methods and corpus size.

Next, we experimented with the size of the addi-
tional hidden layer—for efficiency, using the Turian-
50 embeddings with a 5-word context window. Re-
sults are shown in Table 3, and suggest that a hid-
den layer is not useful for this task—possibly due to
over-fitting.

Embeddings Additional Hidden
Layer Size

Accuracy

Turian-50 0 91.1%
Turian-50 100 90.9%
Turian-50 300 90.6%
Turian-50 500 90.9%
Turian-50 1000 90.5%

Table 3: Comparison of different model architec-
tures, using the Turian embeddings and a 5-word
context window. A size of 0 means no additional
hidden layer was used.

In all subsequent experiments we used a context
window of 7 words, no additional hidden layer, and
the Turian-50 embeddings.

4.3 CRF Model

We also experimented with the CRF model for
supertagging3. Training these models took far
longer than our neural-network model, due to the
need to use the forward-backward algorithm with
a 425×425-dimensional transition matrix during
training (rather than considering each word’s cate-
gory independently). Consequently, we only exper-
imented with the Turian-50 embeddings with a 7-
word context window, which attained the best per-
formance using the neural network.

We found that using the Turian-50 embeddings
gave a surprisingly weak performance of just 90.3%
(compared to 91.3% for the neural network model).
We hypothesised that one reason for this result
could be that the model is unable to modify the
embeddings during supervised training (in contrast
to the neural-network model). Consequently, we
built a new set of embeddings, using the weight-
matrix learned by our best neural network model.
A new CRF model was then trained using the tuned
embeddings. Performance then improved dramati-
cally to 91.5%, and slightly outperformed the neu-
ral network—showing that while there is a small
advantage to using sequence information, it is cru-
cial to allow supervised training to modify the em-
beddings. These results help explain why Collobert
et al. (2011b)’s neural network models outperform
Turian et al. (2010)’s sequence models—but greater

3Implemented using CRFSuite (Okazaki, )
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improvements may be possible with the combined
approach we introduce here, which allows the model
to both tune the embeddings and exploit sequence
information. However, tagging with this model was
considerably slower than the neural network (again,
due to the cost of decoding), so we used the neural
network architecture in the remaining experiments.

4.4 Multitagging Accuracy
The C&C parser takes a set of supertags per word
as input, which is used to prune the search space. If
no parse is found, the sentence is supertagged again
with a wider beam. The effectiveness of the pruning
therefore depends on the accuracy of the supertagger
at a given level of ambiguity.

We experimented with the accuracy of different
supertaggers at different levels of ambiguity. For the
C&C supertagger, we vary the number of categories
per word using the same back-off beam settings re-
ported in Clark and Curran (2007). For our supertag-
ger, we vary recall by adjusting the a variable-width
beam, which removes tags whose probability is less
than β times that of the most likely tag.

Results are shown in Figure 2. The supertag-
gers based on embeddings consistently match or out-
perform the C&C supertagger at all levels of recall
across all domains. While performance is similar
with a small number of tags per word, our supertag-
gers perform better with a more relaxed beam—
perhaps representing cases which are challenging
for the C&C model, such as POS-tag errors.

4.5 Parsing Accuracy
We investigate whether our supertagger improves
the performance of the C&C parser, by replacing
the standard C&C supertagger with our model. This
evaluation is somewhat indirect, as the parser does
not make use of the supertagger probabilities for cat-
egories, but instead simply uses it to prune the search
space. However, we show that better pruning leads
directly to better parsing accuracies.

C&C parser results on CCGBank and Wikipedia
are reported using Clark and Curran (2007)’s best
performing hybrid model4 (trained on Sections 02-
21), with automatic POS-tags, and the parameters
4This model is not publicly available, so we re-trained it follow-
ing the instructions at http://aclweb.org/aclwiki/
index.php?title=Training_the_C&C_Parser
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Figure 2: Ambiguity vs. Accuracy for different su-
pertaggers across different domains. Datapoints for
the C&C parser use its standard back-off parameters.
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Supertagger CCGBank Wikipedia Bioinfer
F1 COV F1 F1 COV F1 F1 COV F1
(cov) (all) (cov) (all) (cov) (all)

C&C 85.47 99.6 85.30 81.19 99.0 80.64 76.08 97.2 74.88
Honnibal et al. (2009) 85.19 99.8 - 81.75 99.4 - - - -
Brown Clusters 85.27 99.9 85.21 80.89 100.0 80.89 76.06 100.0 76.06
Turian-50 Embeddings 86.11 100.0 86.11 82.30 100.0 82.30 78.41 99.8 78.28
Turian-50 + POS tags 85.62 99.9 85.55 81.77 100.0 81.77 77.05 100.0 77.05
Turian-50 + Frequent words 86.04 100.0 86.04 82.44 100.0 82.44 78.10 100.0 78.10

Table 4: Parsing F1-scores for labelled dependencies across a range of domains, using the C&C parser with
different supertaggers. Embeddings models used a context window of 7 words, and no additional hidden
layer. Following previous CCG parsing work, we report F1-scores on the subset of sentences where the
parser is able to produce a parse (F1-cov), and the parser’s coverage (COV). Where available we also report
overall scores (F1-all), including parser failures, which we believe gives a more realistic assessment.

used in the published results. Biomedical results
use the publicly available parsing model, setting the
‘parser beam ratio’ parameter to 10−4, which im-
proved results on development data. To achieve full
coverage on the Wikipedia corpus, we increased the
‘max supercats’ parameter to 107. C&C accuracies
differ very slightly from previously reported results,
due to differences in the retrained models.

As in Clark and Curran (2007), we use a variable-
width beam β that prunes categories whose prob-
ability is less than β times that of the most likely
category. For simplicity, our supertaggers use the
same β back-off parameters as are used by the C&C
parser, though it is possible that further improve-
ments could be gained by carefully tuning these pa-
rameters.5 In contrast to the C&C supertaggers, we
do not make use a tag-dictionaries.

Results are shown in Table 4, and our supertag-
gers consistently lead to improvements over the
baseline parser across all domains, with larger im-
provements out-of-domain. Our best model also
outperforms Honnibal et al. (2009)’s self-training
approach to domain adaptation on Wikipedia (which
lowers performance on CCGBank).

Our results show that word embeddings are an ef-
fective way of adding distributional information into
CCG supertagging. A popular alternative approach
5We briefly experimented setting the β parameters to match the
ambiguity of the C&C supertagger on Section 00 of CCGBank,
which caused the F1-score using the Turian-50 embeddings to
drop slightly from 86.11 to 85.95.

for semi-supervised learning is to use Brown clus-
ters (Brown et al., 1992). To ensure a fair com-
parison with the Turian embeddings, we use clus-
ters trained on the same corpus, and use a com-
parable feature set (clusters, capitalization, and 2-
character suffixes—all implemented as sparse bi-
nary features). Brown clusters are hierarchical, and
following Koo et al. (2008), we incorporate Brown
clusters features at multiple levels of granularity—
using 64 coarse clusters (loosely analogous to POS-
tags) and 1000 fine-grained clusters. Results show
slightly lower performance than C&C in domain, but
higher performance out of domain. However, they
are substantially lower than results using the Turian-
50 embeddings.

We also experimented with adding traditional
word and POS features, which were implemented
as sparse vectors for each word in the context win-
dow. We found that including POS features (de-
rived from the C&C POS-tagger) reduced accuracy
across all domains. One reason is that POS tags are
highly discriminative features, therefore errors can
be hard to recover from. Adding lexical features for
the most frequent 250 words had little impact on re-
sults, showing that the embeddings already represent
this information.

For infrequent words, the C&C parser uses a hard
constraint that only certain POS-tag/supertag com-
binations are allowed. This constraint means that
the parser may be particularly vulnerable to POS-
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Figure 3: Ambiguity vs. Accuracy for different su-
pertaggers, on words with incorrect POS tags.

tag errors, as the model cannot override the hard-
constraint. We therefore also ran the model allowing
any POS-tag/supertag combination. We found that
parsing accuracy was 0.02 higher on development
data (and much slower), suggesting that the model
itself is overly reliant on POS-features.

4.6 Error Analysis

We have demonstrated that word embeddings are
highly effective for CCG supertagging. In this sec-
tion, we investigate several cases in which they
are particularly helpful—by measuring supertagger
performance when the POS tagger made mistakes,
when words were unseen in the labelled data, and
when the labelled data only contains the word with
a different category. Our supertaggers show substan-
tial improvements over more complex existing mod-
els.

Figure 3 shows performance when the POS-
tagger assigns the wrong tag to a word. Both sys-
tems show dramatically lower performance on these
cases—the embeddings supertagger does not use
POS features, but POS errors are likely to represent
generally difficult examples. However, the embed-
dings supertagger is almost 15% more accurate on
this subset than the C&C supertagger, and with a re-
laxed beam reaches 96% accuracy, showing the ad-
vantages of avoiding a pipeline approach. In con-
trast, the C&C tagger is not robust to POS tag-

Words only seen with other categories (2%)
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Figure 4: Ambiguity vs. Accuracy for different su-
pertaggers, on words that do occur in the training
data, but not with the category required in the test
data.

ger errors, and asymptotes at just 82% accuracy.
An alternative way of mitigating POS errors is to
use a distribution over POS tags as features in the
supertagger—Curran et al. (2006) show that this
technique improves supertagging accuracy by 0.4%
over the C&C baseline, but do not report the impact
on parsing.

Figure 4 shows performance when the a word has
been seen in the training data, but only with a dif-
ferent category from the instance in the test data (for
example, European only occurs as a adjective in the
training data, but it may occur as a noun in the test
data). Performance is even worse on these cases,
which appear to be extremely difficult for existing
models. The accuracy of the embeddings supertag-
ger converges at just 80%, suggesting that our model
has overfit the labelled data. However, it still out-
performs the C&C supertagger by 22% with a beam
allowing 2 tags per word. The large jump in C&C
supertagger performance for the final back-off level
is due to a change in the word frequency threshold at
which the C&C parser only considers word/category
pairs that occur in the labelled data.

Figure 5 gives results for cases where the word
is unseen in the labelled data. The C&C supertag-
ger performance is surprisingly good on such cases,
suggesting that the morphological and context used
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Figure 5: Ambiguity vs. Accuracy for different
supertaggers, on words which are unseen in the la-
belled data.

is normally sufficient for inferring categories for un-
seen words. However, our supertagger still clearly
outperforms the C&C supertagger, suggesting that
the large vocabulary of the unsupervised embed-
dings helps it to generalize from the labelled data.

We also investigated supertagging accuracy on
different types of word—Table 5 shows several in-
teresting cases. While performance on nouns is sim-
ilar, our supertagger is substantially better on verbs.
Verbs can have many different CCG categories, de-
pending on the number of arguments and tense, and
not all valid word/category combinations will be
seen in the labelled data. Our embeddings allow
the supertagger to learn generalizations, such as that
transitive verbs can also often have intransitive uses.
Similarly, wh-words can have many possible cate-
gories in complex constructions like relative clauses
and pied-piping—and our embeddings may help the
model generalize from having seen a category for
which to one for whom. On the other hand, the C&C
supertagger performs much better on prepositions.
Prepositions have different categories when appear-
ing as arguments or adjuncts, and the distinction in
the gold-standard was made using somewhat arbi-
trary heuristics (Hockenmaier and Steedman, 2007).
It seems our embeddings have failed to capture these
subtleties. Future work should explore methods for
combining the strengths of each model.

Word Type C&C
Accuracy

Turian-50
Embeddings
Accuracy

Verbs 93.9% 94.8%
Nouns 97.7% 97.3%
WH-words 90.1% 93.4%
Prepositions 94.8% 91.2%

Table 5: Supertagging accuracy on different types
of words, with an ambiguity of 1.27 tags per word
(corresponding to the C&C’s initial beam setting).
Overall performance with this beam is almost iden-
tical. Words types were identified using gold POS
tags, using IN for prepositions.

4.7 Discussion
With a narrow supertagger beam, our method gives
similar results to the C&C supertagger. However,
it gains by being more accurate on difficult cases,
due to not relying on lexical or POS features. These
improvements lead directly to parser improvements.
We identify two cases where our supertagger greatly
outperforms the C&C parser: where the POS-tag is
incorrect, and where the word-category pair is un-
seen in the labelled data. Our approach achieves
larger improvements out-of-domain than in-domain,
suggesting that the large vocabulary of embeddings
built by the unsupervised pre-training allows it to
better generalize from the labelled data.

Interestingly, the best-performing Turian-50 em-
beddings were trained on just 37M words of text
(compared to 100B words for the Skip-gram embed-
dings), suggesting that further improvements may
well be possible using larger unlabelled corpora. Fu-
ture work should investigate whether the models and
embeddings that work well for supertagging gener-
alize to other tasks.

5 Related Work

Many methods have recently been proposed for im-
proving supervised parsers with unlabelled data.
Most of these are orthogonal to our work, and larger
improvements may be possible by combining them.

Thomforde and Steedman (2011) extends a CCG
lexicon by inferring categories for unseen words,
based on the likely categories of surrounding words.
Unlike our method, this approach is able to learn
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categories which were unseen in the labelled data,
which is shown to be useful for parsing a corpus
of questions. Deoskar et al. (2011) and Deoskar et
al. (2014) use Viterbi-EM to learn new lexical en-
tries by running a generative parser over a large un-
labelled corpus. They show good improvements in
accuracy on unseen words, but not overall parsing
improvements in-domain. Their parsing model aims
to capture non-local information about word usage,
which would not be possible for the local context
windows used to learn our embeddings.

Self-training is another popular method for do-
main adaptation, and was used successfully by Hon-
nibal et al. (2009) to improve CCG parser perfor-
mance on Wikipedia. However, it caused a decrease
in performance on the in-domain data, and our
method achieves better performance across all do-
mains. McClosky et al. (2006) improve a Penn Tree-
bank parser in-domain using self-training, but other
work has failed to improve performance out-of-
domain using self training (Dredze et al., 2007). In a
similar spirit to our work, Koo et al. (2008) improve
parsing accuracy using unsupervised word clus-
ter features—we have shown that word-embeddings
outperform Brown clusters for CCG supertagging.

An alternative approach to domain adaptation is
to annotate a small corpus of out-of-domain text.
Rimell and Clark (2008) argue that this annotation
is simpler for lexicalized formalisms such as CCG,
as large improvements can be gained from annotat-
ing lexical categories, rather than full syntax trees.
They achieve higher parsing accuracies than us on
biomedical text, but our unsupervised method re-
quires no annotation. It seems likely that our method
could be further improved by incorporating out-of-
domain labelled data (where available).

The best reported CCG parsing results have been
achieved with a model that integrates supertagging
and parsing (Auli and Lopez, 2011a; Auli and
Lopez, 2011b). This work still uses the same fea-
ture set as the C&C parser, suggesting further im-
provements may be possible by using our embed-
dings features. Auli and Lopez POS-tag the sentence
before parsing, but using our features would allow
us to fully eliminate the current pipeline approach to
CCG parsing.

Our work also builds on approaches to semi-
supervised NLP using neural embeddings (Turian et

al., 2010; Collobert et al., 2011b). Existing work
has mainly focused on ‘flat’ tagging problems, with-
out hierarchical structure. Collobert (2011) gives
a model for parsing using embeddings features, by
treating each level of the parse tree as a sequence
classification problem. Socher et al. (2013) in-
troduce a model in which context-free grammar
parses are reranked based on compositional distri-
butional representations for each node. Andreas
and Klein (2014) experiment with a number of ap-
proaches to improving the Berkeley parser with
word embeddings. Such work has not improved over
state-of-the-art existing feature sets for constituency
parsing—although Bansal et al. (2014) achieve good
results for dependency parsing using embeddings.
CCG categories contain much of the hierarchical
structure needed for parsing, giving a simpler way
to improve a parser using embeddings.

6 Conclusions

We have shown that CCG parsing can be signif-
icantly improved by predicting lexical categories
based on unsupervised word embeddings. The re-
sulting parsing pipeline is simpler, and has improved
performance both in and out of domain. We ex-
pect further improvements to follow as better word
embeddings are developed, without other changes
to our model. Our approach reduces the problem
of sparsity caused by the large number of CCG
categories, suggesting that finer-grained categories
could be created for CCGBank (in the spirit of Hon-
nibal et al. (2010)), which lead to improved perfor-
mance in downstream semantic parsers. Future work
should also explore domain-adaptation, either using
unsupervised embeddings trained on out-of-domain
text, or using supervised training on out-of-domain
corpora. Our results also have implications for other
NLP tasks—suggesting that using word embeddings
features may be particularly useful out-of-domain,
in pipelines that currently rely on POS taggers, and
in tasks which suffer from sparsity in the labelled
data.

Code for our supertagger is released as part
of the EASYCCG parser (Lewis and Steedman,
2014), available from: https://github.com/
mikelewis0/easyccg
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