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Abstract

Greedy transition-based parsers are very fast
but tend to suffer from error propagation. This
problem is aggravated by the fact that they are
normally trained using oracles that are deter-
ministic and incomplete in the sense that they
assume a unique canonical path through the
transition system and are only valid as long as
the parser does not stray from this path. In
this paper, we give a general characterization
of oracles that are nondeterministic and com-
plete, present a method for deriving such ora-
cles for transition systems that satisfy a prop-
erty we call arc decomposition, and instanti-
ate this method for three well-known transi-
tion systems from the literature. We say that
these oracles are dynamic, because they allow
us to dynamically explore alternative and non-
optimal paths during training – in contrast to
oracles that statically assume a unique optimal
path. Experimental evaluation on a wide range
of data sets clearly shows that using dynamic
oracles to train greedy parsers gives substan-
tial improvements in accuracy. Moreover, this
improvement comes at no cost in terms of
efficiency, unlike other techniques like beam
search.

1 Introduction

Greedy transition-based parsers are easy to imple-
ment and are very efficient, but they are generally
not as accurate as parsers that are based on global
search (McDonald et al., 2005; Koo and Collins,
2010) or as transition-based parsers that use beam
search (Zhang and Clark, 2008) or dynamic pro-
gramming (Huang and Sagae, 2010; Kuhlmann et

al., 2011). This work is part of a line of research
trying to push the boundaries of greedy parsing and
narrow the accuracy gap of 2–3% between search-
based and greedy parsers, while maintaining the ef-
ficiency and incremental nature of greedy parsers.

One reason for the lower accuracy of greedy
parsers is error propagation: once the parser makes
an error in decoding, more errors are likely to fol-
low. This behavior is closely related to the way in
which greedy parsers are normally trained. Given
a treebank oracle, a gold sequence of transitions is
derived, and a predictor is trained to predict transi-
tions along this gold sequence, without considering
any parser state outside this sequence. Thus, once
the parser strays from the golden path at test time,
it ventures into unknown territory and is forced to
react to situations it has never been trained for.

In recent work (Goldberg and Nivre, 2012), we
introduced the concept of a dynamic oracle, which
is non-deterministic and not restricted to a single
golden path, but instead provides optimal predic-
tions for any possible state the parser might be in.
Dynamic oracles are non-deterministic in the sense
that they return a set of valid transitions for a given
parser state and gold tree. Moreover, they are well-
defined and optimal also for states from which the
gold tree cannot be derived, in the sense that they
return the set of transitions leading to the best tree
derivable from each state. We showed experimen-
tally that, using a dynamic oracle for the arc-eager
transition system (Nivre, 2003), a greedy parser can
be trained to perform well also after incurring a mis-
take, thus alleviating the effect of error propagation
and resulting in consistently better parsing accuracy.
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In this paper, we extend the work of Goldberg
and Nivre (2012) by giving a general characteri-
zation of dynamic oracles as oracles that are non-
deterministic, in that they return sets of transitions,
and complete, in that they are defined for all possible
states. We then define a formal property of transition
systems which we call arc decomposition, and in-
troduce a framework for deriving dynamic oracles
for arc-decomposable systems. Using this frame-
work, we derive novel dynamic oracles for the hy-
brid (Kuhlmann et al., 2011) and easy-first (Gold-
berg and Elhadad, 2010) transition systems, which
are arc-decomposable (as is the arc-eager system).
We also show that the popular arc-standard system
(Nivre, 2004) is not arc-decomposable, and so deriv-
ing a dynamic oracle for it remains an open research
question. Finally, we perform a set of experiments
on the CoNLL 2007 data sets, validating that the use
of dynamic oracles for exploring states that result
from parsing mistakes during training is beneficial
across transition systems.

2 Transition-Based Dependency Parsing

We begin with a quick review of transition-based
dependency parsing, presenting the arc-eager, arc-
standard, hybrid and easy-first transitions systems
in a common notation. The transition-based pars-
ing framework (Nivre, 2008) assumes a transition
system, an abstract machine that processes sentences
and produces parse trees. The transition system has
a set of configurations and a set of transitions which
are applied to configurations. When parsing a sen-
tence, the system is initialized to an initial configu-
ration based on the input sentence, and transitions
are repeatedly applied to this configuration. After
a finite number of transitions, the system arrives at
a terminal configuration, and a parse tree is read off
the terminal configuration. In a greedy parser, a clas-
sifier is used to choose the transition to take in each
configuration, based on features extracted from the
configuration itself. Transition systems differ by the
way they define configurations, and by the particular
set of transitions available.

2.1 Dependency Trees

We define a dependency tree for a sentence W =
w1, . . . , wn to be a labeled directed tree T = (V,A),

where V = {w1, . . . , wn} is a set of nodes given by
the tokens of the input sentence, andA ⊆ V ×L×V
(for some dependency label set L) is a set of labeled
directed arcs of the form (h, lb, d), where h ∈ V is
said to be the head, d ∈ V the dependent, and lb ∈ L
the dependency label.

When dealing with unlabeled parsing, or when the
label identity is irrelevant, we take A ⊆ V × V to
be a set of ordinary directed arcs of the form (h, d).
Note that, since the nodes of the tree are given by the
input sentence, a dependency tree T = (V,A) for
a sentence W is uniquely defined by the arc set A.
For convenience, we will therefore equate the tree
with the arc set and and use the symbol T for the
latter, reserving the symbol A for arc sets that are
not necessarily trees. In the context of this work it is
assumed that all the dependency trees are projective.

Although the general definition of a dependency
tree does not make any assumptions about which
node is the root of the tree, it is common practice
in dependency parsing to add a dummy node ROOT,
which is prefixed or suffixed to the sentence and
which always acts as the root of the tree. We will
follow this practice in our description of different
transition systems below.

2.2 Transition Systems
Arc-Eager In the arc-eager system (Nivre, 2003),
a configuration c = (σ, β,A) consists of a stack
σ, a buffer β, and a set A of dependency arcs.1

Given a sentence W = w1, . . . , wn, the system
is initialized with an empty stack, an empty arc
set, and β = w1, . . . , wn, ROOT, where ROOT is
the special root node. Any configuration c with an
empty stack and a buffer containing only ROOT is
terminal, and the parse tree is given by the arc set
Ac of c.2 The system has 4 transitions: RIGHTlb,
LEFTlb, SHIFT, REDUCE, defined as follows:

SHIFT[(σ, b|β, A)] = (σ|b, β, A)
RIGHTlb[(σ|s, b|β, A)] = (σ|s|b, β, A ∪ {(s, lb, b)})
LEFTlb[(σ|s, b|β, A)] = (σ, b|β, A ∪ {(b, lb, s)})
REDUCE[(σ|s, β, A)] = (σ, β, A)

1We use σ|x to denote a stack with top element x and re-
mainder σ, and x|β to denote a buffer with a head x followed
by the elements in β.

2This definition of a terminal configuration differs from that
in Nivre (2003) but guarantees that the set Ac is a dependency
tree rooted in ROOT.
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There is a precondition on the RIGHT and SHIFT

transitions to be legal only when b 6= ROOT, and for
LEFT, RIGHT and REDUCE to be legal only when
the stack is non-empty. Moreover, LEFT is only le-
gal when s does not have a parent inA, and REDUCE

when s does have a parent in A. In general, we use
LEGAL(c) to refer to the set of transitions that are le-
gal in a configuration c. The arc-eager system builds
trees eagerly in the sense that arcs are added at the
earliest time possible. In addition, each word will
collect all of its left dependents before collecting its
right dependents.

Arc-Standard The arc-standard system (Nivre,
2004) has configurations of the same form c =
(σ, β,A) as the arc-eager system. The initial con-
figuration for a sentence W = w1, . . . , wn has an
empty stack and arc set and β = ROOT, w1, . . . , wn.
A configuration c is terminal if it has an empty buffer
and a stack containing the single node ROOT; the
parse tree is given by Ac. The system has 3 transi-
tions: RIGHTlb, LEFTlb, SHIFT, defined as follows:

SHIFT[(σ, b|β, A)] = (σ|b, β, A)
RIGHTlb[(σ|s1|s0, β, A)] = (σ|s1, β, A ∪ {(s1, lb, s0)})
LEFTlb[(σ|s1|s0, β, A)] = (σ|s0, β, A ∪ {(s0, lb, s1)})

There is a precondition on the LEFT transition to
be legal only when s1 6= ROOT, and for LEFT and
RIGHT to be legal only when the stack has at least
two elements. The arc-standard system builds trees
in a bottom-up fashion: each word must collect all
its dependents before being attached to its head. The
system does not pose any restriction with regard to
the order of collecting left and right dependents.

Hybrid The hybrid system (Kuhlmann et al.,
2011) has the same configurations and the same
initialization and termination conditions as the arc-
standard system. The system has 3 transitions:
RIGHTlb, LEFTlb, SHIFT, defined as follows:

SHIFT[(σ, b|β, A)] = (σ|b, β, A)
RIGHTlb[(σ|s1|s0, β, A)] = (σ|s1, β, A ∪ {(s1, lb, s0)})
LEFTlb[(σ|s, b|β, A)] = (σ, b|β, A ∪ {(b, lb, s)})

There is a precondition on RIGHT to be legal only
when the stack has at least two elements, and on
LEFT to be legal only when the stack is non-empty
and s 6= ROOT. The hybrid system can be seen
as a combination of the arc-standard and arc-eager

Algorithm 1 Greedy transition-based parsing
1: Input: sentence W , parameter-vector w
2: c← INITIAL(W )
3: while not TERMINAL(c) do
4: tp ← argmaxt∈LEGAL(c)w · φ(c, t)
5: c← tp(c)

6: return Ac

systems, using the LEFT action of arc-eager and the
RIGHT action of arc-standard. Like arc-standard, it
builds trees in a bottom-up fashion. But like arc-
eager, it requires a word to collect all its left depen-
dents before collecting any right dependent.

Easy-First In the easy-first system (Goldberg and
Elhadad, 2010), a configuration c = (λ,A) consists
of a list λ and a set A of dependency arcs. We use
li to denote the ith member of λ and write |λ| for
the length of λ. Given a sentence W = w1, . . . , wn,
the system is initialized with an empty arc set and
λ = ROOT, w1, . . . , wn. A configuration c is ter-
minal with parse tree Ac if λ = ROOT. The set of
transitions for a given configuration c = (λ,A) is:

{LEFTi
lb|1 < i ≤ |λ|} ∪ {RIGHTi

lb|1 ≤ i < |λ|}, where:
LEFTi

lb[(λ,A)] = (λ \ {li−1}, A ∪ {(li, lb, li−1)})
RIGHTi

lb[(λ,A)] = (λ \ {li+1}, A ∪ {(li, lb, li+1)})

There is a precondition on LEFTi transitions to only
trigger if li−1 6= ROOT. Unlike the arc-eager, arc-
standard and hybrid transition systems that work
in a left-to-right order and access the sentence in-
crementally, the easy-first system is non-directional
and has access to the entire sentence at each step.
Like the arc-standard and hybrid systems, it builds
trees bottom-up.

2.3 Greedy Transition-Based Parsing

Assuming that we have a feature-extraction function
φ(c, t) over configurations c and transitions t and a
weight-vector w assigning weights to each feature,
greedy transition-based parsing is very simple and
efficient using Algorithm 1. Starting in the initial
configuration for a given sentence, we repeatedly
choose the highest-scoring transition according to
our model and apply it, until we reach a terminal
configuration, at which point we stop and return the
parse tree accumulated in the configuration.
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Algorithm 2 Online training of greedy transition-
based parsers (ith iteration)

1: for sentence W with gold tree T in corpus do
2: c← INITIAL(W )
3: while not TERMINAL(c) do
4: CORRECT(c)← {t | o(t; c, T ) = true}
5: tp ← argmaxt∈LEGAL(c)w · φ(c, t)
6: to ← argmaxt∈CORRECT(c)w · φ(c, t)
7: if tp 6∈ CORRECT(c) then
8: UPDATE(w, φ(c, to), φ(c, tp))
9: c← NEXT(c, to)

10: else
11: c← tp(c)

3 Training Transition-Based Parsers

We now turn to the training of greedy transition-
based parsers, starting with a review of the standard
method using static oracles and moving on to the
idea of training with exploration proposed by Gold-
berg and Nivre (2012).

3.1 Training with Static Oracles
The standard approach to training greedy transition-
based parsers is illustrated in Algorithm 2.3 It as-
sumes the existence of an oracle o(t; c, T ), which
returns true if transition t is correct for configura-
tion c and gold tree T . Given this oracle, training is
very similar to parsing, but after predicting the next
transition tp using the model in line 5 we check if
it is contained in the set CORRECT(c) of transitions
that are considered correct by the oracle (lines 4 and
7). If the predicted transition tp is not correct, we
update the model parameters w away from tp and
toward the oracle prediction to, which is the highest-
scoring correct transition under the current model,
and move on to the next configuration (lines 7–9). If
tp is correct, we simply apply it and move to tp(c)
without changing the model parameters (line 11).

The function NEXT(c, to) in line 9 is used to
abstract over a subtle difference in the standard
training procedure for the left-to-right systems (arc-
eager, arc-standard and hybrid), on the one hand,

3We present the standard approach as an online algorithm in
order to ease the transition to the novel approach. While some
transition-based parsers use batch learning instead, the essential
point is that they explore exactly the same configurations during
the training phase.

and the easy-first system, on the other. In the former
case, NEXT(c, to) evaluates to to(c), which means
that we apply the oracle transition to and move on
to the next configuration. For the easy-first system,
NEXT(c, to) instead evaluates to c, which means that
we remain in the same configuration for as many up-
dates as necessary to get a correct model prediction.

Traditionally, the oracles for the left-to-right sys-
tems are static: they return a single correct transition
and are only correct for configurations that result
from transitions predicted by the oracle itself. The
oracle for the easy-first system is non-deterministic
and returns a set of correct transitions. However, like
the static oracle, it is correct only for configurations
from which the gold tree is reachable. Thus, in both
cases, we need to make sure that a transition is ap-
plied during training only if it is considered correct
by the oracle; else we cannot guarantee that later or-
acle predictions will be correct. Therefore, on line
9, we either remain in the same configuration (easy-
first) or follow the oracle prediction and go to to(c)
(left-to-right systems); on line 11, we in fact also go
to to(c), because in this case we have tp(c) = to(c).

A notable shortcoming of this training procedure
is that, at parsing time, the parsing model may pre-
dict incorrect transitions and reach configurations
that are not on the oracle path. Since the model has
never seen such configurations during training, it is
likely to perform badly in them, making further mis-
takes more likely. We would therefore like the parser
to encounter configurations resulting from incorrect
transitions during training and learn what constitutes
optimal transitions in such configurations. Unfortu-
nately, this is not possible using the static (or even
the non-deterministic) oracles.

3.2 Training with Exploration

Assuming we had access to an oracle that could tell
us which transitions are optimal in any configura-
tion, including ones from which the gold tree is not
reachable, we could trivially change the training al-
gorithm to incorporate learning on configurations
that result from incorrect transitions, and thereby
mitigate the effects of error propagation at pars-
ing time. Conceptually, all that we need to change
is line 9. Instead of following the prediction tp
only when it is correct (line 11), we could some-
times choose to follow tp also when it is not correct.
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Algorithm 3 Online training with exploration for
greedy transition-based parsers (ith iteration)

1: for sentence W with gold tree T in corpus do
2: c← INITIAL(W )
3: while not TERMINAL(c) do
4: CORRECT(c)← {t|o(t; c, T ) = true}
5: tp ← argmaxt∈LEGAL(c)w · φ(c, t)
6: to ← argmaxt∈CORRECT(c)w · φ(c, t)
7: if tp 6∈ CORRECT(c) then
8: UPDATE(w, φ(c, to), φ(c, tp))
9: c← EXPLOREk,p(c, to, tp, i)

10: else
11: c← tp(c)

1: function EXPLOREk,p(c, to, tp, i)
2: if i > k and RAND() < p then
3: return tp(c)
4: else
5: return NEXT(c, to)

The rest of the training algorithm does not need to
change, as the set CORRECT(c) obtained in line 4
would now include the set of optimal transitions to
take from configurations reached by following the
incorrect transition, as provided by the new oracle.
Following Goldberg and Nivre (2012), we call this
approach learning with exploration. The modified
training procedure is specified in Algorithm 3.

There are three major questions that need to be
answered when implementing a concrete version of
this algorithm:

Exploration Policy When do we follow an incor-
rect transition, and which one do we follow?

Optimality What constitutes an optimal transition
in configurations from which the gold tree is
not reachable?

Oracle Given a definition of optimality, how do
we calculate the set of optimal transitions in a
given configuration?

The first two questions are independent of the spe-
cific transition system. In our experiments, we use
a simple exploration policy, parameterized by an it-
eration number k and a probability p. This policy
always chooses an oracle transition during the first k
iterations but later chooses the oracle transition with

probability 1− p and the (possibly incorrect) model
prediction otherwise. This is defined in the function
EXPLOREk,p(c, to, tp, i) (called in line 9 of Algo-
rithm 3), which takes two additional arguments com-
pared to Algorithm 2: the model prediction tp and
the current training iteration i. If i exceeds the iter-
ation threshold k and if a randomly generated prob-
ability does not exceed the probability threshold p,
then the function returns tp(c), which means that we
follow the (incorrect) model prediction. Otherwise,
it reverts to the old NEXT(c, to) function, returning
c for easy-first and to(c) for the other systems. We
show in Section 5 that the training procedure is rel-
atively insensitive to the choice of k and p values as
long as predicted transitions are chosen often.

Our optimality criterion is directly related to the
attachment score metrics commonly used to evaluate
dependency parsers.4 We say that a transition t is
optimal in a configuration c if and only if the best
achievable attachment score from t(c) is equal to the
best achievable attachment score from c.

The implementation of oracles is specific to
each transition system. In the next section, we
first provide a characterization of complete non-
deterministic oracles, also called dynamic oracles,
which is what we require for the training procedure
in Algorithm 3. We then define a property of tran-
sition systems which we call arc decomposition and
present a general method for deriving complete non-
deterministic oracles for arc-decomposable systems.
Finally, we use this method to derive concrete ora-
cles for the arc-eager, hybrid and easy-first systems,
which are all arc-decomposable. In Section 5, we
then show experimentally that we indeed achieve
better parsing accuracy when using exploration dur-
ing training.

4 Oracles for Transition-Based Parsing

Almost all greedy transition-based parsers described
in the literature are trained using what we call static
oracles. We now make this notion precise and con-
trast it with non-deterministic and complete oracles.
Following the terminology of Goldberg and Nivre

4The labeled attachment score (LAS) is the percentage of
words in a sentence that are assigned both the correct head and
the correct label. The unlabeled attachment score (UAS) is the
percentage of words that are assigned the correct head (regard-
less of label).
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(2012), we reserve the term dynamic oracles for or-
acles that are both non-deterministic and complete.

4.1 Characterizing Oracles

During training, we assume that the oracle is a
boolean function o(t; c, T ), which returns true if
and only if transition t is correct in configuration c
for gold tree T (cf. Algorithms 2–3). However, such
a function may be defined in terms of different un-
derlying functions that we also call oracles.

A static oracle is a function os(T ) mapping a
tree T to a sequence of transitions t1, . . . , tn. A
static oracle is correct if starting in the initial con-
figuration and applying the transitions in os(T ) in
order results in the transition system reaching a
terminating configuration with parse tree T . For-
mally, a static oracle is correct if and only if, for
every projective dependency tree T with yield W ,
os(T ) = t1, . . . , tn, c = tn(. . . (t1(INITIAL(W )))),
TERMINAL(c) and Ac = T .5 When using a static
oracle for training in Algorithm 2, the function
o(t; c, T ) returns true if os(T ) = t1, . . . , tn, c =
ti−1(. . . (t1(INITIAL(W )))) (for some i, 1 ≤ i ≤ n)
and t = ti. If t 6= ti, o(t; c, T ) = false; if c 6=
ti−1(. . . (t1(INITIAL(W )))) (for all i, 1 ≤ i ≤ n),
o(t; c, T ) is undefined. A static oracle is therefore
essentially incomplete, because it is only defined for
configurations that are part of the oracle path.6 Static
oracles either allow a single transition at a given con-
figuration, or are undefined for that configuration.

By contrast, a non-deterministic oracle is a func-
tion on(c, T ) mapping a configuration c and a tree
T to a set of transitions. A non-deterministic ora-
cle is correct if and only if, for every projective de-
pendency tree T , every configuration c from which
T is reachable, and every transition t ∈ on(c, T ),
t(c) is a configuration from which T is still reach-
able. Note that this definition of correctness for
non-deterministic oracles is restricted to configura-
tions from which a goal tree is reachable. Non-

5Since all the transition systems considered in this paper are
restricted to projective dependency trees, we only define cor-
rectness with respect to this class. There are obvious general-
izations that apply to more expressive transition systems.

6Static oracles are usually described as rules over parser
configurations, i.e., “if the configuration is X take transition Y”,
giving the impressions they are functions from configurations
to transitions. However, as explained here, these rules are only
correct if the sequence of transitions is followed in its entirety.

deterministic oracles are more flexible than static
oracles in that they allow for spurious ambiguity:
they support the possibility of different sequences of
transitions leading to the gold tree. However, they
are still only guaranteed to be correct on a subset
of the possible configurations. Thus, when using a
non-deterministic oracle for training in Algorithm 2,
the function o(t; c, T ) returns true if T is reachable
from c and t ∈ on(c, T ). However, if T is not
reachable from c, o(t; c, T ) is not necessarily well-
defined.

A complete non-deterministic oracle is a function
od(c, T ) for which this restriction is removed, so that
correctness is defined over all configurations that are
reachable from the initial configuration. Follow-
ing Goldberg and Nivre (2012), we call complete
non-deterministic oracles dynamic. In order to de-
fine correctness for dynamic oracles, we must first
introduce a cost function C(A, T ), which measures
the cost of outputting parse A when the gold tree is
T . In this paper, we define cost as Hamming loss
(for labeled or unlabeled dependency arcs), which
is directly related to the attachment score metrics
used to evaluate dependency parsers, but other cost
functions are conceivable. We say that a complete
non-deterministic oracle is correct if and only if,
for every projective dependency tree T with yield
W , every configuration c that is reachable from
INITIAL(W ), and every transition t ∈ od(c, T ),
minA:c;A C(A, T ) = minA:t(c);A C(A, T ), where
c ; A signifies that the parse A is reachable from
c, a notion that will be formally defined in the next
subsection. In other words, even if the gold tree T
is no longer reachable itself, the best tree reachable
from t(c) has the same cost as the best tree reachable
from c.

In addition to a cost function for arc sets and trees,
it is convenient to define a cost function for transi-
tions. We define C(t; c, T ) to be the difference in
cost between the best tree reachable from t(c) and c,
respectively. That is:

C(t; c, T ) = min
A:t(c);A

C(A, T )− min
A:c;A

C(A, T )

A dynamic oracle can then be defined as an oracle
that returns the set of transitions with zero cost:

od(c, T ) = {t | C(t;C, T ) = 0}
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4.2 Arc Reachability and Arc Decomposition

We now define the notion of reachability for parses
(or arc sets), used already in the previous subsec-
tion, and relate it to reachability for individual de-
pendency arcs. This enables us to define a prop-
erty of transition systems called arc decomposition,
which is very useful when deriving dynamic oracles.

Arc Reachability We say that a dependency arc
(h, d)7 is reachable from a configuration c, writ-
ten c ; (h, d), if there is a (possibly empty) se-
quence of transitions t1, . . . , tk such that (h, d) ∈
A(tk(...t1(c))). In words, we require a sequence of
transitions starting from c and leading to a configu-
ration whose arc set contains (h, d).

Arc Set Reachability A set of dependency arcs
A = {(h1, d1), . . . , (hn, dn)} is reachable from a
configuration c, written c ; A, if there is a (pos-
sibly empty) sequence of transitions t1, . . . , tk such
that A ⊆ A(tk(...t1(c))). In words, there is a sequence
of transitions starting from c and leading to a config-
uration where all arcs in A have been derived.

Tree Consistency A set of arcsA is said to be tree
consistent if there exists a projective dependency
tree T such that A ⊆ T .

Arc Decomposition A transition system is said to
be arc decomposable if, for every tree consistent arc
set A and configuration c, c; A is entailed by c;
(h, d) for every arc (h, d) ∈ A. In words, if every
arc in a tree consistent arc set is reachable from a
configuration, then the entire arc set is also reachable
from that configuration.

Arc decomposition is a powerful property, allowing
us to reduce reasoning about the reachability of arc
sets or trees to reasoning about the reachability of
individual arcs, and will later use this property to
derive dynamic oracles for the arc-eager, hybrid and
easy-first systems.

7We consider unlabeled arcs here in order to keep notation
simple. Everything is trivially extendable to the labeled case.

4.3 Proving Arc Decomposition

Let us now sketch how arc decomposition can be
proven for the transition systems in consideration.

Arc-Eager For the arc-eager system, consider an
arbitrary configuration c = (σ, β,A) and a tree-
consistent arc set A′ such that all arcs are reachable
from c. We can partition A′ into four sets, each of
which is by necessity itself a tree-consistent arc-set:

(1) B = {(h, d) |h, d 6∈ β}
(2) B = {(h, d) |h, d ∈ β}
(3) Bh = {(h, d) |h ∈ β, d ∈ σ}
(4) Bd = {(h, d) | d ∈ β, h ∈ σ}

Arcs in B are already in A and cannot interfere with
other arcs. B is reachable by any sequence of transi-
tions that derives a tree consistent with B for a sen-
tence containing only the words in β. In deriving
this tree, every node x involved in some arc in Bh or
Bd must at least once be at the head of the buffer.
Let cx be the first such configuaration. From cx,
every arc (x, d) ∈ Bh can be derived without in-
terfering with arcs in A′ by a sequence of REDUCE

and LEFT-ARClb transitions. This sequence of tran-
sitions will trivially not interfere with other arcs in
Bh. Moreover, it will not interfere with arcs in Bd
becauseA′ is tree consistent and projectivity ensures
that an arc of the form (y, z) (y ∈ σ, z ∈ β) must
satisfy y < d < x ≤ z. Finally, it will not inter-
fere with arcs in B because the buffer remains un-
changed. After deriving every arc (x, d) ∈ Bh, we
remain with at most one (h, x) ∈ Bd (because of
the single-head constraint). By the same reasoning
as above, a sequence of REDUCE and LEFT-ARClb

transitions will take us to a configuration where h
is on top of the stack without interfering with arcs
in A′. We can then derive the arc (h, x) using
RIGHT-ARClb. This does not interfere with arcs re-
maining in Bh or Bd because all such arcs must have
their buffer node further down the buffer (due to pro-
jectivity). At this point, we have reached a configu-
ration cx+1 to which the same reasoning applies for
the next node x+ 1.

Hybrid The proof for the hybrid system is very
similar but with a slightly different partitioning be-
cause of the bottom-up order and the different way
of handling right-arcs.
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Easy-First For the easy-first system, we only need
to partition arcs into L = {(h, d) | d 6∈ λ} and L =
{(h, d) |h, d ∈ λ}. The former must already be in
A, and for the latter there can be no conflict between
arcs as long as we respect the bottom-up ordering.

Arc-Standard Unfortunately, arc decomposition
does not hold for the arc-standard system. To see
why, consider a configuration with the stack σ =
a, b, c. The arc (c, b) is reachable via LEFT, the
arc (b, a) is reachable via RIGHT, LEFT, the arc set
A = {(c, b), (b, a)} forms a projective tree and is
thus tree consistent, but it is easy to convince oneself
that A is not reachable from this configuration. The
reason that the above proof technique fails for the
arc-standard system is that the arc set correspond-
ing to B in the arc-eager system may involve arcs
where both nodes are still on the stack, and we can-
not guarantee that all projective trees consistent with
these arcs can be derived. In the very similar hybrid
system, such arcs exist as well but they are limited to
arcs of the form (h, d) where h < d and h and d are
adjacent on the stack, and this restriction is sufficient
to restore arc decomposition.

4.4 Deriving Oracles

We now present a procedure for deriving a dynamic
oracle for any arc-decomposable system. First of all,
we can define a non-deterministic oracle as follows:

on(c, T ) = {t | t(c) ; T}

That is, we allow all transitions after which the goal
tree is still reachable. Note that if c ; T holds,
then the set returned by the oracle is guaranteed to
be non-empty. For a sound and complete transition
system, we know that INITIAL(W ) ; T for any
projective dependency tree with yieldW , and the or-
acle is guaranteed to return a non-empty set as long
as we are not in the terminal configuration and have
followed transitions suggested by the oracle.

In order to extend the non-deterministic oracle to
a dynamic oracle, we make use of the transition cost
function introduced earlier:

od(c, T ) = {t | C(t; c, T ) = 0}

As already mentioned, we assume here that the cost
is the difference in Hamming loss between the best

tree reachable before and after the transition.8 As-
suming arc decomposition, this is equivalent to the
number of gold arcs that are reachable before but not
after the transition. For configurations from which
T is reachable, the dynamic oracle coincides with
the non-deterministic oracle. But for configurations
from which T cannot be derived, the dynamic ora-
cle returns transitions leading to the best parse A (in
terms of Hamming distance from T ) which is reach-
able from c. This is the behavior expected from a
dynamic oracle, as defined in Section 4.1.

Thus, in order to derive a dynamic oracle for an
arc-decomposable transition system, it is sufficient
to show that the transition cost function C(t; c, T )
can be computed efficiently for that system.9 Next
we show how to do this for the arc-eager, hybrid and
easy-first systems.

4.5 Concrete Oracles

In a given transition system, the set of individually
reachable arcs is relatively straightforward to com-
pute. In an arc-decomposable system, we know that
any intersection of the set of individually reachable
arcs with a projective tree is tree consistent, and
therefore also reachable. In particular, this holds for
the goal tree. For such systems, we can therefore
compute the transition cost by intersecting the set of
arcs that are individually reachable from a config-
uration with the goal arc set, and see how a given
transition affects this set of reachable arcs.

Arc-Eager In the arc-eager system, an arc (h, d)
is reachable from a configuration c if one of the
following conditions hold:

(1) (h, d) is already derived ((h, d) ∈ Ac);
(2) h and d are in the buffer;
(3) h is on the stack and d is in the buffer;
(4) d is on the stack and is not assigned a head

and h is in the buffer.

8The framework is easily adapted to a different cost function
such as weighted Hamming cost, where different gold arcs are
weighted differently.

9In fact, in order to use the dynamic oracle with our current
learning algorithm, we do not need the full power of the cost
function: it is sufficient to distinguish between transitions with
zero cost and transitions with non-zero cost.
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The cost function for a configuration of the form c =
(σ|s, b|β,A)10 can be calculated as follows:11

• C(LEFT; c, T ): Adding the arc (b, s) and pop-
ping s from the stack means that s will not be
able to acquire any head or dependents in β.
The cost is therefore the number of arcs in T
of the form (k, s) or (s, k) such that k ∈ β.
Note that the cost is 0 for the trivial case where
(b, s) ∈ T , but also for the case where b is not
the gold head of s but the real head is not in
β (due to an erroneous previous transition) and
there are no gold dependents of s in β.

• C(RIGHT; c, T ): Adding the arc (s, b) and
pushing b onto the stack means that b will not
be able to acquire any head in σ or β, nor any
dependents in σ. The cost is therefore the num-
ber of arcs in T of the form (k, b), such that
k ∈ σ ∪ β, or of the form (b, k) such that
k ∈ σ and there is no arc (x, k) in Ac. Note
again that the cost is 0 for the trivial case where
(s, b) ∈ T , but also for the case where s is not
the gold head of b but the real head is not in σ
or β (due to an erroneous previous transition)
and there are no gold dependents of b in σ.

• C(REDUCE; c, T ): Popping s from the stack
means that s will not be able to acquire any de-
pendents in B = b|β. The cost is therefore the
number of arcs in T of the form (s, k) such that
k ∈ B. While it may seem that a gold arc of
the form (k, s) should be accounted for as well,
note that a gold arc of that form, if it exists, is
already accounted for by a previous (erroneous)
RIGHT transition when s acquired its head.

• C(SHIFT; c, T ): Pushing b onto the stack means
that b will not be able to acquire any head or
dependents in S = s|σ. The cost is therefore
the number of arcs in T of the form (k, b) or
(b, k) such that k ∈ S and (for the second case)
there is no arc (x, k) in Ac.

10This is a slight abuse of notation, since for the SHIFT tran-
sition s may not exist, and for the REDUCE transition b may not
exist.

11While very similar to the presentation in Goldberg and
Nivre (2012), this version includes a small correction to the
RIGHT and SHIFT transitions.

Hybrid In the hybrid system, an arc (h, d) is
reachable from a configuration c if one of the fol-
lowing conditions holds:

(1) (h, d) is already derived ((h, d) ∈ Ac);
(2) h and d are in the buffer;
(3) h is on the stack and d is in the buffer;
(4) d is on the stack and h is in the buffer;
(5) d is in stack location i, h is in stack loca-

tion i − 1 (that is, the stack has the form
σ = . . . , h, d, . . .).

The cost function for a configuration of the form
c = (σ|s1|s0, b|β,A)12 can be calculated as follows:

• C(LEFT; c, T ): Adding the arc (b, s0) and pop-
ping s0 from the stack means that s0 will not
be able to acquire heads from H = {s1} ∪ β
and will not be able to acquire dependents from
D = {b} ∪ β. The cost is therefore the number
of arcs in T of the form (s0, d) and (h, s0) for
h ∈ H and d ∈ D.

• C(RIGHT; c, T ): Adding the arc (s1, s0) and
popping s0 from the stack means that s0 will
not be able to acquire heads or dependents from
B = {b} ∪ β. The cost is therefore the number
of arcs in T of the form (s0, d) and (h, s0) for
h, d ∈ B.

• C(SHIFT; c, T ): Pushing b onto the stack means
that b will not be able to acquire heads from
H = {s1} ∪ σ, and will not be able to acquire
dependents from D = {s0, s1} ∪ σ. The cost
is therefore the number of arcs in T of the form
(b, d) and (h, b) for h ∈ H and d ∈ D.

Easy-First In the easy-first system, an arc (h, d)
is reachable from a configuration c if one of the fol-
lowing conditions holds:

(1) (h, d) is already derived ((h, d) ∈ Ac);
(2) h and d are in the list λ.

When adding an arc (h, d), d is removed from the
list λ and cannot participate in any future arcs. Thus,
a transition has a cost > 0 with respect to a tree T if
one of the following holds:

12Note again that s0 may be missing in the case of SHIFT

case and s1 in the case of SHIFT and LEFT.
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Figure 1: Effect of k (y axis) and p (x axis) values on parsing accuracies for the arc-eager system on the various
CoNLL-2007 shared-task languages. Each point is an average UAS of 5 runs with different seeds. The general trend
is that smaller k and higher p are better.

(1) it adds an arc (h, d) such that (h′, d) ∈ T
for some h′ ∈ λ, h′ 6= h;

(2) it adds an arc (h, d) such that (d, d′) ∈ T
for some d′ ∈ λ.

The exact cost can be calculated by counting the
number of such arcs.

5 Experiments and Results

Setup, data and parameters The goal of our ex-
periments is to evaluate the utility of the dynamic
oracles for training, by comparing a training sce-
nario which only sees configurations that can lead
to the gold tree (following a static oracle for the
left-to-right systems and a non-deterministic but in-
complete oracle for the easy-first system), against a
training scenario that involves exploration of incor-
rect states, using the dynamic oracles.

As our training algorithm involves a random com-
ponent (we shuffle the sentences prior to each itera-
tion, and randomly select whether to follow a cor-
rect or incorrect action), we evaluate each setup five
times using different random seeds, and report the
averaged results.

We perform all of the experiments on the multi-
lingual CoNLL-2007 data sets. We use 15 training
iterations for the left-to-right parsers, and 20 training
iterations for the easy-first parser. We use the stan-
dard perceptron update as our update rule in training,
and use the averaged weight vector for prediction in
test time. The feature sets differ by transition sys-
tem but are kept the same across data sets. The ex-

act feature-set definitions for the different systems
are available in the accompanying software, which
is available on line at the first author’s homepage.

Effect of exploration parameters In an initial set
of experiments, we investigate the effect of the ex-
ploration parameters k and p on the arc-eager sys-
tem. The results are presented in Figure 1. While the
optimal parameters vary by data set, there is a clear
trend toward lower values of k and higher values of
p. This is consistent with the report of Goldberg and
Nivre (2012) who used a fixed small value of k and
large value of p throughout their experiments.

Training with exploration for the various systems
For the second experiment, in which we compared
training with a static oracle to training with explo-
ration, we fixed the exploration parameters to k = 1
and p = 0.9 for all data sets and transition-system
combinations. The results in terms of labeled accu-
racies (for the left-to-right systems) and unlabeled
accuracies (for all systems) are presented in Table 1.
Training with exploration using the dynamic oracles
yields improved accuracy for the vast majority of the
setups. The notable exceptions are the arc-eager and
easy-first systems for unlabeled Italian and the arc-
hybrid system in Catalan, where we observe a small
drop in accuracy. However, we can safely conclude
that training with exploration is beneficial and note
that we may get even further gains in the future using
better methods for tuning the exploration parameters
or better training methods.
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system / language hungarian chinese greek czech basque catalan english turkish arabic italian
UAS

eager:static 76.42 85.01 79.53 78.70 75.14 91.30 86.10 77.38 81.59 84.40
eager:dynamic 77.48 85.89 80.98 80.25 75.97 92.02 88.69 77.39 83.62 84.30
hybrid:static 76.39 84.96 79.40 79.71 73.18 91.30 86.43 75.91 83.43 83.43
hybrid:dynamic 77.54 85.10 80.49 80.07 73.70 91.06 87.62 76.90 84.04 83.83
easyfirst:static 81.27 87.01 81.28 82.00 75.01 92.50 88.57 78.92 82.73 85.31
easyfirst:dynamic 81.52 87.48 82.25 82.39 75.87 92.85 89.41 79.29 83.70 85.11

LAS
eager:static 66.72 81.24 72.44 71.08 65.34 86.02 84.93 66.59 72.10 80.17
eager:dynamic 68.41 82.23 73.81 72.99 66.63 86.93 87.69 67.05 73.92 80.43
hybrid:static 66.54 80.17 70.99 71.88 62.84 85.57 84.96 64.80 73.16 78.78
hybrid:dynamic 68.05 80.59 72.07 72.15 63.52 85.47 86.28 66.12 74.10 79.25

Table 1: Results on the CoNLL 2007 data set. UAS, including punctuation. Each number is an average over 5 runs
with different randomization seeds. All experiments used the same exploration parameters of k=1, p=0.9.

6 Related Work
The error propagation problem for greedy transition-
based parsing was diagnosed by McDonald and
Nivre (2007) and has been tackled with a variety of
techniques including parser stacking (Nivre and Mc-
Donald, 2008; Martins et al., 2008) and beam search
and structured prediction (Zhang and Clark, 2008;
Zhang and Nivre, 2011). The technique called boot-
strapping in Choi and Palmer (2011) is similar in
spirit to training with exploration but is applied iter-
atively in batch mode and is only approximate due
to the use of static oracles. Dynamic oracles were
first explored by Goldberg and Nivre (2012).

In machine learning more generally, our approach
can be seen as a problem-specific instance of imita-
tion learning (Abbeel and Ng, 2004; Vlachos, 2012;
He et al., 2012; Daumé III et al., 2009; Ross et
al., 2011), where the dynamic oracle is used to im-
plement the optimal expert needed in the imitation
learning setup. Indeed, our training procedure is
closely related to DAgger (Ross et al., 2011), which
also trains a classifier to match an expert on a dis-
tribution of possibly suboptimal states obtained by
running the system itself. Our training procedure
can be viewed as an online version of DAgger (He
et al., 2012) with two extensions: First, our learn-
ing algorithm involves a stochastic policy parame-
terized by k, p for choosing between the oracle or
the model prediction, whereas DAgger always fol-
lows the system’s own prediction (essentially run-
ning with k = 0, p = 1). The heatmaps in Figure

1 show that this parameterization is beneficial. Sec-
ond, while DAgger assumes an expert providing a
single label at each state, our oracle is nondetermin-
istic and allows multiple correct labels (transitions)
which our training procedure tie-breaks according to
the model’s current prediction, a technique that has
recently been proposed in an extension to DAgger
by He et al. (2012). Other related approaches in the
machine learning literature include stacked sequen-
tial learning (Cohen and Carvalho, 2005), LaSO
(Daumé III and Marcu, 2005), Searn (Daumé III et
al., 2009) and SMILe (Ross and Bagnell, 2010).

7 Conclusion

In this paper, we have extended the work on dynamic
oracles presented in Goldberg and Nivre (2012) in
several directions by giving formal characterizations
of non-deterministic and complete oracles, defining
the arc-decomposition property for transition sys-
tems, and using this property to derive novel com-
plete non-deterministic oracles for the hybrid and
easy-first systems (as well as a corrected oracle for
the arc-eager system). We have then used the com-
pleteness of these new oracles to improve the train-
ing procedure of greedy parsers to include explo-
rations of configurations which result from incor-
rect transitions. For all three transition systems, we
get substantial accuracy improvements on many lan-
guages. As the changes all take place at training
time, the very fast running time of the greedy algo-
rithm at test time is maintained.
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