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Abstract 

Any large language processing software 
relies in its operation on heuristic decisions 
concerning the strategy of processing. 
These decisions are usually "hard-wired" 
into the software in the form of hand- 
crafted heuristic rules, independent of the 
nature of the processed texts. We propose 
an alternative, adaptive approach in which 
machine learning techniques learn the rules 
from examples of sentences in each class. 
We have experimented with a variety of 
learning techniques on a representative in- 
stance of this problem within the realm of 
parsing. Our approach lead to the discovery 
of new heuristics that perform significantly 
better than the current hand-crafted heuris- 
tic. We discuss the entire cycle of applica- 
tion of machine learning and suggest a 
methodology for the use of machine learn- 
ing as a technique for the adaptive optimi- 
sation of language-processing software. 

1 Introduction 

Any language processing program---in our case, a 
top-down parser which outputs only the first tree 
it could find--must make decisions as to what 
processing strategy, or rule ordering, is most ap- 
propriate for the problem (i.e. string) at hand. 
Given the size and the intricacy of the rule-base 
and the goal (to optimise a parser's precision, or 
recall, or even its speed), this becomes a complex 
decision problem. Without precise knowledge of 
the kinds of texts that will be processed, these de- 
cisions can at best be educated guesses. In the 
parser we used, they were performed with the 

help of hand-crafted heuristic rules, which are 
briefly presented in section 2. 

Even when the texts are available to fine-tune 
the parser, it is not obvious how these decisions are 
to be made from texts alone. Indeed, the decisions 
may often be expressed as rules whose 
representation is in terms which are not directly or 
easily available from the text (e.g. non-terminals of 
the grammar of the language in which the texts are 
written). Hence, any technique that may 
automatically or semi-automatically adapt such 
rules to the corpus at hand will be valuable. As it is 
often the case, there may be a linguistic shift in the 
kinds of texts that are processed, especially if the 
linguistic task is as general as parsing. It is then 
interesting to adapt the "version" of the parser to 
the corpus at hand. 

We report on an experiment that targets this 
kind of adaptability. We use machine learning as 
an artificial intelligence technique that achieves 
adaptability. We cast the task described above as a 
classification task: which, among the parser's top- 
level rules, is most appropriate to launch the 
parsing of the current input string? Although we 
restricted ourselves to a subset of a parser, our 
objective is broader than just applying an existing 
learning system on this problem. What is interes- 
ting is: a) definition of the attributes in which 
examples are given, so that the attributes are both 
obtainable automatically from the text and lead to 
good rules--this is called "feature engineering"; b) 
selection of the most interesting learned rules; c) 
incorporation of the learned rules in the parser; d) 
evaluation of the performance of the learned rules 
after they have been incorporated in the parser. It is 
the lessons from the whole cycle that we followed 
in the work that we report here, and we suggest it 
as a methodology for an adaptive optimisation of 
language processing programs. 

307 



2 The existing hand-crafted heuristics 

The rule-based parser we used was DIPETT 
[Delisle 1994]: it is a top-down, depth-first 
parser, augmented with a few look-ahead mecha- 
nisms, which returns the first analysis (parse 
tree). The fact that our parser produces only a 
single analysis, the "best" one according to its 
hand-crafted heuristics, is part of the motivation 
for this work. When DIPETT is given an input 
string, it first selects the top-level rules it is to at- 
tempt, as well as their ordering in this process. 
Ideally, the parser would find an optimal order 
that minimises parsing time and maximises par- 
sing accuracy by first selecting the most promi- 
sing rules. For example, there is no need to treat a 
sentence as multiply coordinated or compound 
when the data contains only one verb. DIPETT 
has three top-level rules for declarative state- 
ments: i) MULT_COOR for multiple (normally, 
three or more) coordinated sentences; ii) 
COMPOUND for compound sentences, that is, cor- 
relative and simple coordination (of, normally, 
two sentences); iii) NONCOMPOUND for simple 
and complex sentences, that is, a single main 
clause with zero or more subordinate clauses 
([Quirk et  e l .  1985]). To illustrate the data that 
we worked with and the classes for which we 
needed the rules, here are two sentences (from the 
Brown corpus) used in our experiments: "And know, 
while all this went on, that there was no real reason to suppo- 
se that the murderer had been a guest in either hotel." is a 

n o n - c o m p o u n d  sentence, and =Even I can remember 
nothing but ruined cellars and tumbled pillars, and nobody has 

lived there in the memory of any living man." is a com-  

pound  sentence. 

The current hand-crafted heuristic ([Delisle 
1994]) is based on three parameters, obtained af- 
ter (non-disambiguating) lexical analysis and be- 
fore parsing: 1) the number of potential verbs' in 
the data, 2) the presence of potential coordinators 
in the data, and 3) verb density (roughly spea- 
king, it indicates how potential verbs are distri- 
buted). For instance, low density means that 
verbs are scattered throughout the input string; 
high density means that the verbs appear close to 
each other in the input string, as in a conjunction 

i A "potential" verb may actually turn out to be, say, a 
noun, but only parsing can tell us how such a lexical 
ambiguity has been resolved. If the input were pre- 
processed by a tagger, the ambiguity might disappear. 

of verbs such as "Verbl and Verb2 and Verb3". 
Given the input string's features we have just dis- 
cussed, DIPETT's algorithm for top-level rule 
selection returns an ordered list of up to 3 of the 
rules COMPOUND, NONCOMPOUND, and 
MULT_COOR tO be attempted when parsing this 
string. For the purposes of our experiment, we sim- 
plified the situation by neglecting the MULT_COOR 
rule since it was rarely needed when parsing real- 
life text. Thus, the original problem went from a 3- 
class to a 2-class classification problem: 
COMPOUND or NON_COMPOUND. 

3 Learning rules from sentences 

As any heuristic, the top-level rule selection 
mechanism just described is not perfect. Among 
the principal difficulties, the most important are: i) 
the accuracy of the heuristic is limited and ii) the 
internal choices are relatively complex and 
somewhat obscure from a linguist's viewpoint. The 
aim of this research was to use classification 
systems as a tool to help developing n e w  know- 
ledge for improving the parsing process. To pre- 
serve the broad applicability of DIPETT, we have 
emphasised the generality of the results and did not 
use any kind of domain knowledge. The sentences 
used to build the classifiers and evaluate the 
performance have been randomly selected from 
five unrelated real corpora. 

Typical classification systems (e.g. decision 
trees, neural networks, instance based learning) 
require the data to be represented by feature vec- 
tors. Developing such a representation for the task 
considered here is difficult. Since the top-level rule 
selection heuristic is one of the first steps in the 
parsing process, very little information for making 
this decision is available at the early stage of 
parsing. All the information available at this phase 
is provided by the (non-disambiguating) lexical 
analysis that is performed before parsing. This 
preliminary analysis provides four features: 1) 
number of potential verbs in the sentence, 2) 
presence of potential coordinators, 3) verb density, 
and 4) number of potential auxiliaries. As 
mentioned above, only the first three features are 
actually used by the current hand-crafted heuristic. 
However, preliminary experiments have shown 
that no interesting knowledge can be inferred by 
using only these four features. We then decided to 
improve our representation by the use of DIPETT's 
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fragmentary parser: an optional parsing mode in 
which DIPETT does not attempt to produce a 
single structure for the current input string but, 
rather, analyses a string as a sequence of major 
constituents (i.e. noun, verb, prepositional and 
adverbial phrases). The new features obtained 
from fragmentary parsing are: the number of 
fragments, the number of "verbal" fragments 
(fragments that contain at least one verb), number 
of tokens skipped, and the total percentage of the 
input recognised by the fragmentary parser. The 
fragmentary parser is a cost-effective solution to 
obtain a better representation of sentences 
because it is very fast---on average, less than one 
second of CPU time for any sentence--in 
comparison to full parsing. 

Moreover, the information obtained from the 
fragmentary parser is adequate for the task at 
hand because it represents well the complexity of 
the sentence to be parsed. In addition to the featu- 
res obtained from the lexical analysis and those 
obtained from the fragmentary parser, we use the 
string length (number of tokens in the sentence) 
to describe each sentence. The attribute used to 
classify the sentences, provided by a human ex- 
pert, is called rule-to-attempt and it can take two 
values: compound or non-compound, according 
to the type of the sentence. To summarise, we 
used the ten following features to represent each 
sentence: l) string-length: number of tokens 
(integer); 2) num-potential-verbs: number of 
potential verbs (integer); 3) num-potential-auxiliary: 
number of potential auxiliaries (integer); 4) verb- 
density: a flag that indicates if all potential verbs are 
separated by coordinators (boolean); 5) nbr-potential, 
coordinators: number of potential coordinators 
(integer); 6) num-fragments: number of fragments 
used by the fragmentary parser (integer); 7) num- 
verbal-fragments: number of fragments that contain 
at least one potential verb (integer); 8) num-tokens- 
skip: number of tokens not considered by the 
fragmentary parser (integer); 9) %.input.recognized: 
percentage of the sentence recognized, i.e. not skipped 
(real); 10) rule-to-attempt: type of the sentence 
(COMPOUND or NON-COMPOUND). 

We built the first data set by randomly 
selecting 300 sentences from four real texts: a 
software user manual, a tax guide, a junior 
science textbook on weather phenomena, and the 
Brown corpus. Each sentence was described in 
terms of the above features, which are of course 

acquired automatically by the lexical analyser and 
the fragmentary parser, except for rule-to-attempt 
as mentioned above. After a preliminary analysis 
of these 300 sentences, we realised that we had un- 
balanced numbers of examples of compound and 
non-compound sentences: non-compounds are 
approximately five times more frequent than 
compounds. However, it is a well-known fact in 
machine learning that such unbalanced training sets 
are not suitable for inductive learning. For this 
reason, we have re-sampled our texts to obtain 
roughly an equal number of non-compound and 
compound sentences (55 compounds and 56 non- 
compounds). 

Our experiment consisted in running a variety 
of attribute classification systems: IMAFO ([Famili 
& Tumey 1991]), C4.5 ([Quinlan 1993]), and 
different learning algorithms from MLC++ 
([Kohavi et al. 1994]). IMAFO includes an en- 
hanced version of ID3 and an interface to C4.5 (we 
used both engines in our experimentation). MLC++ 
is a machine learning library developed in C++. 
We experimented with many algorithms included 
in MLC++. 

We concentrated mainly on learning algorithms 
that generate results in the form of rules. For this 
project, rules are more interesting than other form 
of results because they are relatively easy to 
integrate in a rule-based parser and because they 
can be evaluated by experts in the domain. 
However, for accuracy comparison, we have also 
used learning systems that do not generate rules in 
terms of the initial representation: neural networks 
and instance-based systems. We randomly divided 
our data set into the training set (2/3 of the 
examples, or 74 instances) and the testing set (1/3 
of the examples, or 37 instances). Table 1 
summarises the results obtained from different 
systems in terms of the error rates on the testing 
set. All systems gave results with an error rate 
below 20%. 

SYSTEM Type of system 
decision rules 

Error rate 
ID3 16.2% 
C4.5 decision rules 18.9% 

IMAFO decision rules 16.5% 
decision rule (one) 

instance-based 
oneR 15.6% 

IB 10.8% 
aha-ib instance-based 18.9% 

belief networks naive-bayes 
perceptron 

16.2% 
neural networks 13.5% 

Table 1. Global results from learning. 
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The error rates presented in Table I for the 
first four systems (decision rules systems) repre- 
sent the average rates for all rules generated by 
these systems. However, not all rules were parti- 
cularly interesting. We kept only some of them 
for further evaluation and integration in the 
parser. Our selection criteria were: 1) the esti- 
mated error rate, 2) the "reasonability" (only 
rules that made sense for a computational linguist 
were kept), 3) the readability (simple rules are 
preferred), and 4) the novelty (we discarded rules 
that are already in the parser). Tables 2 and 3 pre- 
sent rules that satisfy all the above the criteria: 
Table 2 focuses on rules to identify compound 
sentences while Table 3 presents rules to identify 
non-compound sentences. The error rate for each 
rule is also given. These error rates were obtained 
by a 10 fold cross-validation test. 

Rules to identify COMPOUND sen- 
tences 

num-potential-verbs <= 3 AND 
num-potential-coordinators > 0 AND 
num-verbal-fra£ments > 1 
num-fragments > 7 
num-fragments > 5 AND 
num-verbal-fragments <= 2 
string-length <= 17 AND 
num-potential-coordinators > 0 AND 
num-verbal-fra£ments > 1 
num-potential-verbs > 1 AND 
num-potential-verbs <= 3 AND 
num-potential-coordinators > 0 AND 
num-fra~ments > 4 

Error 
rate (%) 

10.5 

9.4 
23.9 

5.4 

4.2 

num-potential-coordinators > 0 AND 4.3 
num-fragrnents >= 7 
num-potential-coordinators > 0 AND 16.8 
num-verbal-fragments > 1 
num-potential-coordinators > 0 AND 
num-fragments < 7 AND 4.7 
string-length < 18 
Table 2. Rules to identify COMPOUND sentences 

The error rates that we have obtained are quite 
respectable for a two-class learning problem 
given the volume of available examples. More- 
over, the rules are justified and make sense. They 
are also very compact in comparison with the 
original hand-crafted heuristics. We will see in 
section 4 how these rules behave on unseen data 
from a totally different text. 

Rules to identify NON- 
COMPOUND sentences 

num-potential-verbs <= 3 AND 
num-verbal-fragments <= 1 
string-length > 10 AND 
num-potential-verbs <= 3 AND 
num-fra~ments <= 4 
string-length <= 21 AND 
num-potential-coordinators = 0 

Error 
rate (%) 

8.3 

6.7 

5.6 
num-potential-coordinators = 0 AND 9.7 
num-fragments <= 7 
Table 3. Rules to identify NON-COMPOUND sen- 

tences 

Attribute classification systems such as those used 
during the experiment reported here are highly 
sensitive to the adequacy of the features used to 
represent the instances. For our task (parsing), 
these features were difficult to find and we had 
only a rough idea about their appropriateness. For 
this reason, we felt that better results could be 
obtained by transforming the original instance 
space into a more adequate space by creating new 
attributes. In machine learning research, this 
process is referred as constructive learning, or 
constructive induction ([Wnek & Michalski 1994]). 
We even attempted to use principal component 
analysis (PCA) ([Johnson & Wichern 1992]) as a 
technique of choice for simple constructive 
learning but we did not get very impressive results. 
We see two reasons for this. The primary reason is 
that the ratio between the number of examples and 
the number of attributes is not high enough for 
PCA to derive high-quality new attributes. The se- 
cond reason is that the original attributes are al- 
ready highly non-redundant. It is important to note 
that these rules do not satisfy the reasonability 
criteria applied to the original representation. In 
fact, losing the understandability of  the attributes is 
the usual consequence of almost all approaches that 
change the representation of instances. 

4 E v a l u a t i o n  o f  t h e  n e w  r u l e s  

We explained in section 3 how we derived new 
parsing heuristics with the help of  machine 
learning techniques. The next step was to evaluate 
how well would the new rules perform if we 
replaced the parser's current hand-crafted heuris- 
tics with the new ones. In particular, we wanted to 
evaluate the accuracy of  the heuristics in correctly 
identifying the appropriate rule, COMPOUND or 
NON COMPOUND, that should first be attempted by 
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the parser. This goal was prompted by an earlier 
evaluation of DIPETT in which it was noted that 
a good proportion of questionable parses (i.e. 
either bad parses or correct but too time- 
consuming parses) were caused by a bad first 
attempt, such as attempting COMPOUND instead of 
NON_COMPOUND. 

4.1 F r o m  n e w  rules to n e w  parsers  

Our machine learning experiments lead us to two 
classes of rules obtained from a variety of classi- 
fiers and concerned only with the notion of com- 
poundness: 1) those predicting a COMPOUND 
sentence, and 2) those predicting a 
NON_COMPOUND. The problem was then to de- 
cide what should be done with the set of new 
rules. More precisely, before actually imple- 
menting the new rules and including them in the 
parser, we first had to decide on an appropriate 
strategy for exploiting the set of new rules. We 
now describe the three implementations that we 
realised and evaluated. 

The first implements only the rules for the 
COMPOUND class---one big rule which is a dis- 
junct of all the learned rules for that class. And 
since there are only two alternatives, either 
COMPOUND or NON_COMPOUND, if none of the 
COMPOUND rules applies, the NON_COMPOUND 
class is predicted. This first implementation is re- 
ferred to as C-Imp. The second implementation, 
referred to as NC-Imp, does exactly the opposite: 
i.e. it implements only the rules predicting the 
NON_COMPOUND class. 

The third implementation, referred to as 
NC_C-Imp, benefits from the first two imple- 
mentations. The class of a new sentence is deter- 
mined by combining the output from C-Imp and 
NC-Imp. The combination of the output is done 
according to the following decision table in Table 
4. 

C-Imp NC-Imp .] Output of 

I NC_C-Imp 

C C C 
NC NC NC 
NC C NC 
C NC NC 

Table 4. Decision table used in the NC_C imple- 
mentation. 

The first two lines of this decision table are ob- 
vious since the outputs from both implementations 
are consistent. When the two implementations 
disagree, the NC_C-Imp implementation predicts 
the non-compound. This prediction is justified by a 
bayesian argumentation. In the absence of any 
additional knowledge, we are forced to assign an 
equal probability of success to each of the two sets 
of rules and the most probable class becomes the 
one with the highest frequency. Thus, in general, 
non-compound sentences are more frequent then 
compound ones. One obvious way to improve this 
third implementation would be to precisely 
evaluate the accuracies of the two sets of rules and 
then incorporate these accuracies in the decision 
process. 

4.2 The  results 

To perform the evaluation, we randomly sampled 
200 sentences from a new corpus on mechanics 
([Atkinson 1990]): note that this text had not been 
used to sample the sentences used for  learning. Out 
of these 200 sentences, 10 were discarded since 
they were not representative (e.g. one-word 
"sentences"). We ran the original implementation 
of DIPETT plus the three new implementations 
described in the previous section on the remaining 
190 test sentences. Table 5 presents the results. The 
error-rate, the standard deviation of the error-rate 
and the p-value are listed for each implementation. 
The p-value gives the probability that DIPETT's 
original hand-crafted heuristics are better than the 
new heuristics. In other words, a small p-value 
means an increase in performance with a high 
probability. 

Implementation 

Original heur. 
C-Imp 

NC-Imp 
NC_C-Imp 

Err- Std. p-value 
rate dev. 
(%) 

25.268 ±3.2 

20.526 ±2.9 0.126 
22.105 ±3.0 0.229 
16.316 ±2.7 0.009 

Table 5. Performances of the new implementations 
versus DIPETT's original heuristics. 

We observe that all new automatically-derived 
heuristics did beat DIPETT's hand-crafted heu- 
ristics and quite clearly. The results from the third 
implementation (i.e. NC_C-Imp) are especially 
remarkable: with a confidence of  over 99%, we can 
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affirm that the NC_C-lmplementation will 
outperform DIPETT's original heuristic. We also 
note that the error rate drops by 35% of its value 
for the original heuristic. Similarly, with a confi- 
dence of 87.4%, we can affirm that the imple- 
mentation that uses only the C-rules (i.e. C-Imp) 
will perform better then DIPETT's current heu- 
ristics. 

These very good results are also amplified by 
the fact that the testing described in this evalua- 
tion was done on sentences totally independent 
from the ones used for  training. Usually, in ma- 
chine learning research, the training and the tes- 
ting sets are sampled from the same original data 
set, and the kind of "out-of-sample" testing that 
we perform here has only recently come to the 
attention of the learning community ([Ezawa et 
al. 1996]). Our experiments have shown that it is 
possible to infer rules that perform very well and 
are highly meaningful in the eyes of an expert 
even if the training set is relatively small. This 
indicates that the representation of sentences that 
we chose for the problem was adequate. Finally, 
an other important output of our research is the 
identification of the most significant attributes to 
distinguish non-compound sentences from com- 
pound ones. This alone is valuable information to 
a computational linguist. Only five out of ten 
original attributes are used by the learned rules, 
and all of them are cheap to compute: two attri- 
butes are derived by fragmentary parsing (num- 
ber of verbal fragments and number of frag- 
ments), and three are lexical (number of potential 
verbs, length of the input string, and presence of 
potential coordinators). 

5 Related Work 

There have been successful attempts at using ma- 
chine learning in search of a solution for linguis- 
tic tasks, e.g. discriminating between discourse 
and sentential senses of cues ([Litman 1996]) or 
resolution of coreferences in texts ([McCarthy & 
Lehnert 1995]). Like our work, these problems 
are cast as classification problems, and then ma- 
chine learning (mainly C4.5) techniques are used 
to induce classifiers for each class. What makes 
"these applications different from ours is that they 
have worked on surface linguistic or mixed surfa- 
ce linguistic and intonational representation, and 
that the classes are relatively balanced, while in 

our case the class of compound sentences is much 
less numerous than the class of non-composite 
sentences. Such unbalanced classes create prob- 
lems for the majority of inductive learning systems. 

A distinctive feature of our work is the fact that 
we used machine learning techniques to improve 
an existing rule-based natural language processor 
from the inside. This contrasts with approaches 
where there are essentially no explicit rules, such 
as neural networks (e.g. [Buo 1996]), or 
approaches where the machine learning algorithms 
attempt to infer--via deduction (e.g. [Samuelsson 
1994]), induction (e.g. [Theeramunkong et al. 
1997]; [Zelle & Mooney 1994]) under user coope- 
ration (e.g. [Simmons & Yu 1992]; [Hermjakob & 
Mooney 1997]), transformation-based error-driven 
learning (e.g. [Brill 1993]), or even decision trees 
(e.g. [Magerman 1995])--a grammar from raw or 
preprocessed data. In our work, we do not wish to 
acquire a grammar: we have one and want to de- 
vise a mechanism to make some of its parts 
adaptable to the corpus at hand or, to improve 
some aspect of  its performance. Other researchers, 
such as [Lawrence et al. 1996], have compared 
neural networks and machine learning methods at 
the task of sentence classification. In this task, the 
system must classify a string as either grammatical 
or not. We do not content ourselves with results 
based on a grammatical/ungrammatical dichotomy. 
We are looking for heuristics, using relevant 
features, that will do better than the current ones 
and improve the overall performance of a natural 
language processor: this is a very difficult problem 
(see, e.g., [Huyck & Lytinen 1993]). One could 
also look at this problem as one of optimisation of 
a rule-based system. 

Work somewhat related to ours was conducted 
by [Samuelsson 1994] who used explanation-based 
generalisation to extract a subset of a grammar that 
would parse a given corpus faster than the original, 
larger grammar [Neumann 1997] also used EBL 
but for a generation task. In our case, we are not 
looking for a subset of the existing rules but, rather, 
we are looking for brand new rules that would 
replace and outperform the existing rules. We 
should also mention the work of [Soderland 1997] 
who also worked on the comparison of 
automatically learned and hand-crafted rules for 
text analysis. 
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6 Conclusion 

We have presented an experiment which demon- 
strates that machine learning may be used as a 
technique to optimise in an adaptive manner the 
high-level decisions that any parser must make in 
the presence of incomplete information about the 
properties of the text it analyses. The results show 
clearly that simple and understandable rules 
learned by machine learning techniques can sur- 
pass the performance of heuristics supplied by an 
experienced computational linguist. Moreover, 
these very encouraging results indicate that the 
representation that we chose and discuss was an 
adequate one for this problem. We feel that a 
methodology is at hand to extend and deepen this 
approach to language processing programs in 
general. The methodology consists of three main 
steps: I) feature engineering, 2) learning, using 
several different available learners, 3) evaluation, 
with the recommendation of using the "out-of- 
sample" approach to testing. Future work will fo- 
cus on improvements to constructive learning; on 
new ways of integrating the rules acquired by dif- 
ferent learners in the parser; and on the identifi- 
cation of criteria for selecting parser rules that 
have the best potential to benefit from the gene- 
ralisation of our results. 

Acknowledgements 

The work described here was supported by the Natural 
Sciences and Engineering Research Council of Canada. 

References 

Atkinson, H.F. (1990) Mechanics of Small Engines. New 
York: Gregg Division, McGraw-Hill. 

Brill E. (1993) "Automatic Grammar Induction and Parsing 
Free Text: A Transformation-Based Approach", Proc. of 
the 31st Annual Meeting of the ACL, pp.259-265. 

Buo F.D. (1996) "FeasPar--A Feature Structure Parser 
Learning to Parse Spontaneous Speech", Ph.D. Thesis, 
Fakultiit ftir Informatik, Univ. Karlsruhe, Germany. 

Delisle S. (1994) "Text Processing without a priori Domain 
Knowledge: Semi-Automatic Linguistic for Incremental 
Knowledge Acquisition", Ph.D. Thesis, Dept. of Compu- 
ter Science, Univ. of Ottawa. Published as technical report 
TR-94-02. 

Ezawa K., Singh M. & Norton S. (1996) "Learning Goal 
Oriented Bayesian Networks for Telecommunications 
Risk Management", Proc. of the 13th International Conf. 
on Machine Learning, pp. 139-147. 

Famili A. & Turney P. (1991) "Intelligently Helping the 
Human Planner in Industrial Process Planing", AI EDAM - 

AI for Engineering Design Analysis and Manufacturing, 
5 (2), pp. 109-124. 

Hermjakob U. & Mooney R.J. (1997) "Learning Parse and 
Translation Decisions From Examples With Rich Context", 
Proc. of ACL-EACL Conf., pp.482-489. 

Huyck C.R. & Lytinen S.L. (1993) "Efficient Heuristic 
Natural Language Parsing", Proc. of the ll th National 
Conf. on AI, pp.386-391. 

Johnson R.A. & Wichern D.W. (1992) Applied Multivariate 
Statistical Analysis, Prentice Hall. 

Kohavi R., John G., Long R., Manley D. & Pleger K. (1994) 
"MLC++: A machine learning library in C++", Tools with 
AI, IEEE Computer Society Press, pp.740-743. 

Lawrence S., Fong S. & Lee Giles C. (1996) "Natural Lan- 
guage Grammatical Inference: A Comparison of Recurrent 
Neural Networks and Machine Learning Methods", in S. 
Wermter, E. Riloff and G. Scheler (eds.), Symbolic, 
Connectionnist, and Statistical Approaches to Learning for 
Natural Language Processing, Lectures Notes in AI, 
Springer-Verlag, pp.33-47. 

Litman D. (1996) "Cue Phrase Classification Using Machine 
Learning', Journal of Al Research, 5, pp.53-95. 

Magerman D. (1995) "Statistical Decision-Tree Models for 
Parsing", Proc. of the 33rd Annual Meeting of the ACL, 
276-283. 

McCarthy J. & Lehnert W.G. (1995) "Using Decision Trees 
for Coreference Resolution", Proc. of IJCAI-95, pp.1050- 
1055. 

Neumann G. (1997) "Applying Explanation-based Learning to 
Control and Speeding-up Natural Language Generation", 
Proc. of ACL-EACL Conf., pp.214-221. 

Quinlan J.R. (1993) C4.5: Programs for Machine Learning, 
Morgan Kaufmann. 

Quirk R., Greenbaum S., Leech G. & Svartvik J. 0985) A 
Comprehensive Grammar of the English Language, 
Longman. 

Samuelsson C. (1994) "Grammar Specialization Through 
Entropy Thresholds", Proc. of the 32nd Annual Meeting of 
the ACL, pp.188-195. 

Simmons F.S. & Yu Y.H. (1992) "The Acquisition and Use of 
Context-dependent Grammars for English", Computational 
Linguistics, 18(4), pp.392-418. 

Soderland S.G. (1997) "Learning Text Analysis Rules for 
Domain-Specific Natural Language Processing", Ph.D. 
Thesis, Dept. of Computer Science, Univ. of Massachusetts. 

Theeramunkong T., Kawaguchi Y. & Okumura (1997) 
"Exploiting Contextual Information in Hypothesis Selection 
for Grammar Refinement", Proc. of the CEGDLE Workshop 
at ACL-EACL'97, pp.78-83. 

Wnek J. & Michalski R.S. (1994) "Hypothesis-driven cons- 
tructive induction in AQ17-HCI: a method and experi- 
ments", Machine Learning, 14(2), pp. 139-168. 

Zelle J.M. & Mooney R.J. (1994) "Inducing Deterministic 
Prolog Parsers from Treebanks: A Machine Learning Ap- 
proach", Proc. of the 12th National Conf. on AI, pp.748- 
753. 

313 


