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A b s t r a c t  

This paper describes an algorithm for 
computing optimal structural descriptions 
for Optimality Theory grammars with 
context-free position structures. This 
algorithm extends Tesar's dynamic pro- 
gramming approach (Tesar, 1994) (Tesar, 
1995@ to computing optimal structural 
descriptions from regular to context-free 
structures. The generalization to context- 
free structures creates several complica- 
tions, all of which are overcome without 
compromising the core dynamic program- 
ming approach. The resulting algorithm 
has a time complexity cubic in the length 
of the input, and is applicable to gram- 
mars with universal constraints that ex- 
hibit context-free locality. 

1 C o m p u t i n g  Optimal Descriptions 
in  O p t i m a l i t y  T h e o r y  

In Optimality Theory (Prince and Smolensky, 1993), 
grammaticality is defined in terms of optimization. 
For any given linguistic input, the grammatical 
structural description of that input is the descrip- 
tion, selected from a set of candidate descriptions 
for that input, that best satisfies a ranked set of uni- 
versal constraints. The universal constraints often 
conflict: satisfying one constraint may only be pos- 
sible at the expense of violating another one. These 
conflicts are resolved by ranking the universal con- 
straints in a strict dominance hierarchy: one viola- 
tion of a given constraint is strictly worse than any 
number of violations of a lower-ranked constraint. 
When comparing two descriptions, the one which 
better satisfies the ranked constraints has higher 
Harmony. Cross-linguistic variation is accounted for 
by differences in the ranking of the same constraints. 

The term linguistic input should here be under- 
stood as something like an underlying form. In 
phonology, an input might be a string of segmental 
material; in syntax, it might be a verb's argument 

structure, along with the arguments. For exposi- 
tional purposes, this paper will assume linguistic in- 
puts to be ordered strings of segments. A candidate 
structural description for an input is a full linguis- 
tic description containing that input, and indicating 
what the (pronounced) surface realization is. An im- 
portant property of Optimality Theory (OT) gram- 
mars is that they do not accept or reject inputs; 
every possible input is assigned a description by the 
grammar. 

The formal definition of Optimality Theory posits 
a function, Gen, which maps an input to a large (of- 
ten infinite) set of candidate structural descriptions, 
all of which are evaluated in parallel by the universal 
constraints. An OT grammar does not itself specify 
an algorithm, it simply assigns a grammatical struc- 
tural description to each input. However, one can 
ask the computational question of whether efficient 
algorithms exist to compute the description assigned 
to a linguistic input by a grammar. 

The most apparent computational challenge is 
posed by the allowance of faithfulness violations: 
the surface form of a structural description may not 
be identical with the input. Structural positions 
not filled with input segments constitute overpars- 
ing (epenthesis). Input segments not parsed into 
structural positions do not appear in the surface pro- 
nunciation, and constitute underparsing (deletion). 
To the extent that underparsing and overparsing are 
avoided, the description is said to be faithful to the 
input. Crucial to Optimality Theory are faithful- 
ness constraints, which are violated by underparsing 
and overparsing. The faithfulness constraints ensure 
that a grammar will only tolerate deviations of the 
surface form from the input form which are neces- 
sary to satisfy structural constraints dominating the 
faithfulness constraints. 

Computing an optimal description means consid- 
ering a space of candidate descriptions that include 
structures with a variety of faithfulness violations, 
and evaluating those candidates with respect to a 
ranking in which structural and faithfulness con- 
straints may be interleaved. This is parsing in the 
generic sense: a structural description is being as- 
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signed to an input. It is, however, distinct from 
what is traditionally thought of as parsing in com- 
putationM linguistics. Traditional parsing at tempts 
to construct a grammatical description with a sur- 
face form matching the given input string exactly; if 
a description cannot be fit exactly, the input string is 
rejected as ungrammatical.  Traditional parsing can 
be thought of as enforcing faithfulness absolutely, 
with no faithfulness violations are allowed. Partly 
for this reason, traditional parsing is usually under- 
stood as mapping a surface form to a description. In 
the computation of optimal descriptions considered 
here, a candidate that  is fully faithful to the input 
may be tossed aside by the grammar in favor of a 
less faithful description better  satisfying other (dom- 
inant) constraints. Computing an optimal descrip- 
tion in Optimality Theory is more naturally thought 
of as mapping an underlying form to a description, 
perhaps as part of the process of language produc- 
tion. 

Tesar (Tesar, 1994) (Tesar, 1995a) has devel- 
oped algorithms for computing optimal descriptions, 
based upon dynamic programming. The details laid 
out in (Tesar, 1995a) focused on the case where the 
set of structures underlying the Gen function are 
formally regular. In this paper, Tesar's basic a p -  
proach is adopted, and extended to grammars with 
a Gen function employing fully context-free struc- 
tures. Using such context-free structures introduces 
some complications not apparent with the regular 
case. This paper demonstrates that  the complica- 
tions can be dealt with, and that  the dynamic pro- 
gramming case may be fully extended to grammars 
with context-free structures. 

2 C o n t e x t - F r e e  P o s i t i o n  S t r u c t u r e  

G r a m m a r s  

Tesar (Tesar, 1995a) formalizes Gen as a set of 
matchings between an ordered string of input seg- 
ments and the terminals of each of a set of position 
structures. The set of possible position structures 
is defined by a formal grammar,  the position struc- 
ture grammar. A position structure has as terminals 
structural positions. In a valid structural descrip- 
tion, each structural position may be filled with at 
most one input segment, and each input segment 
may be parsed into at most one position. The linear 
order of the input must be preserved in all candidate 
structural descriptions. 

This paper considers Optimali ty Theory gram- 
mars where the position structure grammar is 
context-free; that  is, the space of position structures 
can be described by a formal context-free grammar.  
As an illustration, consider the grammar in Exam- 
ples 1 and 2 (this illustration is not intended to rep- 
resent any plausible natural language theory, but  
does use the "peak/margin" terminology sometimes 
employed in syllable theories). The set of inputs 

is {C,V} +. The candidate descriptions of an input 
consist of a sequence of pieces, each of which has a 
peak (p) surrounded by one or more pairs of margin 
positions (m). These structures exhibit prototypi- 
cal context-free behavior, in that  margin positions 
to the left of a peak are balanced with margin po- 
sitions to the right. 'e' is the empty string, and 'S' 
the start  symbol. 

E x a m p l e  1 The Position Structure Grammar 

S :=~ F i e  
F =~ Y I Y F  
Y ~ P I MFM 
M ::~ m 
P =:~ p 

E x a m p l e  2 The Constraints 

- (m/V)  Do not parse V into a margin position 
-(p/C) Do not parse C into a peak position 
PARSE Input segments must be parsed 
FILL m A margin position must be filled 
FILL p A peak position must be filled 

The first two constraints are structurM, and man- 
date that  V not be parsed into a margin position, 
and that  C not be parsed into a peak position. The 
other three constraints are faithfulness constraints. 
The two structural constraints are satisfied by de- 
scriptions with each V in a peak position surrounded 
by matched C's in margin positions: CCVCC, V, 
CVCCCVCC, etc. If the input string permits such 
an analysis, it will be given this completely faithful 
description, with no resulting constraint violations 
(ensuring that  it will be optimal with respect to any 
ranking). 

Consider the constraint hierarchy in Example 3. 

E x a m p l e  3 A Constraint Hierarchy 

{- (m/V) , - (p /C) ,  PARSE} ~> {FILL p} > {FILL m} 

This ranking ensures that  in optimal descriptions, 
a V will only be parsed as a peak, while a C will only 
be parsed as a margin. Further, all input segments 
will be parsed, and unfilled positions will be included 
only as necessary to produce a sequence of balanced 
structures. For example, the input / V C /  receives 
the description 1 shown in Example 4. 

E x a m p l e  4 The Optimal Description f o r / V C /  

S(F(Y(M(C),P(V),M(C)))) 
The surface string for this description is CVC: the 

first C was "epenthesized" to balance with the one 
following the peak V. This candidate is optimal be- 
cause it only violates FILL m, the lowest-ranked con- 
straint. 

Tesar identifies locality as a sufficient condition 
on the universal constraints for the success of his 

l In this paper, tree structures will be denoted with 
parentheses: a parent node X with child nodes Y and Z 
is denoted X(Y,Z). 
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approach. For formally regular position structure 
grammars, he defines a local constraint as one which 
can be evaluated strictly on the basis of two consec- 
utive positions (and any input segments filling those 
positions) in the linear position structure. That  idea 
can be extended to the context-free case as follows. 
A local constraint is one which can be evaluated 
strictly on the basis of the information contained 
within a local region. A local region of a description 
is either of the following: 

• a non4erminal and the child non-terminals that  
it immediately dominates; 

• a non-terminal which dominates a terminal 
symbol (position), along with the terminal and 
the input segment (if present) filling the termi- 
nal position. 

It is important to keep clear the role of the posi- 
tion structure grammar. It does not define the set of 
grammatical structures, it defines the Space of can- 
didate structures. Thus, the computation of descrip- 
tions addressed in this paper should be distinguished 
from robust, or error-correcting, parsing (Anderson 
and Backhouse, 1981, for example). There, the in- 
put string is mapped to the grammatical structure 
that is 'closest'; if the input completely matches a 
structure generated by the grammar, that structure 
is automatically selected. In the OT case presented 
here, the full grammar is the entire OT system, of 
which the position structure grammar is only a part. 
Error-correcting parsing uses optimization only with 
respect to the faithfulness of pre-defined grammati- 
cal structures to the input. OT uses optimization to 
define grammaticality. 

3 The Dynamic Programming Table 
The Dynamic Programming (DP) Table is here a 
three-dimensional, pyramid-shaped data structure. 
It resembles the tables used for context-free chart 
parsing (Kay, 1980) and maximum likelihood com- 
putation for stochastic context-free grammars (Lari 
and Young, 1990) (Charniak, 1993). Each cell of 
the table contains a partial description (a part of 
a structural description), and the Harmony of that  
partial description. A partial description is much 
like an edge in chart parsing, covering a contigu- 
ous substring of the input. A cell is identified 
by three indices, and denoted with square brackets 
(e.g., [X,a,c]). The first index identifying the cell (X) 
indicates the cell category of the cell. The other two 
indices (a and c) indicate the contiguous substring 
of the input string covered by the partial description 
contained in the cell (input segments ia through ic). 

In chart parsing, the set of cell categories is pre- 
cisely the set of non-terminals in the grammar, and 
thus a cell contains a subtree with a root non- 
terminal corresponding to the cell category, and with 
leaves that constitute precisely the input substring 

covered by the cell. In the algorithm presented here, 
the set of cell categories are the non-terminals of the 
position structure grammar, along with a category 
for each left-aligned substring of the right hand side 
of each position grammar rule. Example 5 gives the 
set of cell categories for the position structure gram- 
mar in Example 1. 

E x a m p l e  5 The Set of Cell Categories 

S, F, Y, M, P, MF 

The last category in Example 5, MF, comes from 
the rule Y =:~ MFM of Example 1, which has more 
than two non-terminals on the right hand side. Each 
such category corresponds to an incomplete edge in 
normal chart parsing; having a table cell for each 
such category eliminates the need for a separate data 
structure containing edges. The cell [MF,a,c] may 
contain an ordered pair of subtrees, the first with 
root M covering input [a,b], and the second with 
root F covering input [b+l,c]. 

The DP Table is perhaps best envisioned as a set 
of layers, one for each category. A layer is a set 
of all cells in the table indexed by a particular cell 
category. 

E x a m p l e  6 A Layer of the Dynamic Programming 
Table for Category M (input i1"i3) 

[U,l,3] 
[M,1,2] [M,2,3] 
[M,I,1] [M,2,2] [M,3,3] I 

il i2 i3 
For each substring length, there is a collection of 

rows, one for each category, which will collectively 
be referred to as a level. The first level contains the 
cells which only cover one input segment; the num- 
ber of cells in this level will he the number of input 
segments multiplied by the number of cell categories. 
Level two contains cells which cover input substrings 
of length two, and so on. The top level contains one 
cell for each category. One other useful partition 
of the DP table is into blocks. A block is a set of 
all cells covering a particular input subsequence. A 
block has one cell for each cell category. 

A cell of the DP Table is filled by comparing the 
results of several operations, each of which try to fill 
a cell. The operation producing the partial descrip- 
tion with the highest Harmony actually fills the cell. 
The operations themselves are discussed in Section 
4. 

The algorithm presented in Section 6 fills the ta- 
ble cells level by level: first, all the cells covering 
only one input segment are filled, then the cells cov- 
ering two consecutive segments are filled, and so 
forth. When the table has been completely filled, 
cell [S,1,J] will contain the optimal description of 
the input, and its Harmony. The table may also 
be filled in a more left-to-right manner, bottom-up, 
in the spirit of CKY. First, the cells covering only 
segment il, and then i2, are filled. Then, the cells 

103 



covering the first two segments are filled, using the 
entries in the cells covering each of il and is. The 
cells of the next diagonal are then filled. 

4 The Operations S e t  

The Operations Set contains the operations used to 
fill DP Table cells. The algorithm proceeds by con- 
sidering all of the operations that  could be used to fill 
a cell, and selecting the one generating the partial 
description with the highest Harmony to actually 
fill the cell. There are three main types of opera- 
tions, corresponding to underparsing, parsing, and 
overparsing actions. These actions are analogous to 
the three primitive actions of sequence comparison 
(Sankoff and Kruskal, 1983): deletion, correspon- 
dence, and insertion. 

The discussion that  follows makes the assumption 
that  the right hand side of every production is either 
a string of non-terminals or a single terminal. Each 
parsing operation generates a new element of struc- 
ture, and so is associated with a position structure 
grammar production. The first type of parsing op- 
eration involves productions which generate a single 
terminal (e.g., P:=~p). Because we are assuming that  
an input segment may only be parsed into at most 
one position, and that  a position may have at most 
one input segment parsed into it, this parsing oper- 
ation may only fill a cell which covers exactly one 
input segment, in our example, cell [P,I,1] could be 
filled by an operation parsing il into a p position, 
giving the partial description P(p filled with il). 

The other kinds of parsing operations are matched 
to position grammar productions in which a parent 
non-terminal generates child non-terminals. One of 
these kinds of operations fills the cell for a cate- 
gory by combining cell entries for two factor cat- 
egories, in order, so that  the substrings covered by 
each of them combine (concatenatively, with no over- 
lap) to form the input substring covered by the 
cell being filled. For rule Y =~ MFM, there will 
be an operation of this type combining entries in 
[M,a,b] and [F,b+l,c], creating the concatenated 
structure s [M,a,b]+[F,b+l,c], to fill [MF,a,c]. The 
final type of parsing operation fills a cell for a cate- 
gory which is a single non-terminal on the left hand 
side of a production, by combining two entries which 
jointly form the entire right hand side of the pro- 
duction. This operation would combining entries 
in [MF,a,c] and [M,c÷l,d], creating the structure 
Y([MF,a,c],[M,c+l,d]), to fill [Y,a,d]. Each of these 
operations involves filling a cell for a target cate- 
gory by using the entries in the cells for two factor 
categories. 

The resulting Harmony of the partial description 
created by a parsing operation will be the combina- 

2This partial description is not a single tree, but an 
ordered pair of trees. In general, such concatenated 
structures will be ordered lists of trees. 

tion of the marks assessed each of the partial descrip- 
tions for the factor categories, plus any additional 
marks incurred as a result of the structure added by 
the production itself. This is true because the con- 
straints must be local: any new constraint violations 
are determinable on the basis of the cell category of 
the factor partial descriptions, and not any other 
internal details of those partial descriptions. 

All possible ways in which the factor categories, 
taken in order, may combine to cover the substring, 
must be considered. Because the factor categories 
must be contiguous and in order, this amounts to 
considering each of the ways in which the substring 
can be split into two pieces. This is reflected in the 
parsing operation descriptions given in Section 6.2. 

Underparsing operations are not matched with po- 
sition grammar productions. A DP Table cell which 
covers only one input segment may be filled by an 
underparsing operation which marks the input seg- 
ment as underparsed. In general, any partial de- 
scription covering any substring of the input may 
be extended to cover an adjacent input segment by 
adding that  additional segment marked as under- 
parsed. Thus, a cell covering a given substring of 
length greater than one may be filled in two mirror- 
image ways via underparsing: by taking a partial 
description which covers all but the leftmost input 
segment and adding that  segment as underparsed, 
and by taking a partial description which covers all 
but the rightmost input segment and adding that  
segment as underparsed. 

Overparsing operations are discussed in Section 5. 

5 The Overparsing Operations 
Overparsing operations consume no input; they only 
add new unfilled structure. Thus, a block of cells 
(the set of cells each covering the same input sub- 
string) is interdependent with respect to overparsing 
operations, meaning that  an overparsing operation 
trying to fill one cell in the block is adding structure 
to a partial description from a different cell in the 
same block. The first consequence of this is that  the 
overparsing operations must be considered after the 
underparsing and parsing operations for that  block. 
Otherwise, the cells would be empty, and the over- 
parsing operations would have nothing to add on to. 

The second consequence is that  overparsing oper- 
ations may need to be considered more than once, 
because the result of one overparsing operation (if it 
fills a cell) could be the source for another overpars- 
ing operation. Thus, more than one pass through the 
overparsing operations for a block may be necessary. 
In the description of the algorithm given in Section 
6.3, each Repeat-Until loop considers the overpars- 
ing operations for a block of cells. The number of 
loop iterations is the number of passes through the 
overparsing operations for the block. The loop iter- 
ations stop when none of the overparsing operations 
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is able to fill a cell (each proposed partial description 
is less harmonic than the partial description already 
in the cell). 

In principle, an unbounded number of overpars- 
ing operations could apply, and in fact descriptions 
with arbitrary numbers of unfilled positions are con- 
tained in the output  space of Gen (as formally de- 
fined). The algorithm does not have to explicitly 
consider arbitrary amounts of overparsing, however. 
A necessary property of the faithfulness constraints, 
given constraint locality, is that  a partial description 
cannot have overparsed structures repeatedly added 
to it until the resulting partial description falls into 
the same cell category as the original prior to over- 
parsing, and be more Harmonic. Such a sequence of 
overparsing operations can be considered a overpars- 
ing cycle. Thus, the faithfulness constraints must 
ban overparsing cycles. This is not solely a computa- 
tional requirement, but is necessary for the grammar 
to be well-defined: overparsing cycles must be har- 
monically suboptimal, otherwise arbitrary amounts 
of overparsing will be permitted in optimal descrip- 
tions. In particular, the constraints should prevent 
overparsing from adding an entire overparsed non- 
terminal more than once to the same partial descrip- 
tion while passing through the overparsing opera- 
tions. In Example 2, the constraints FILL m and 
FILL p effectively ban overparsing cycles: no mat- 
ter where these constraints are ranked, a description 
containing an overparsing cycle will be less harmonic 
(due to additional FILL violations) than the same 
description with the cycle removed. 

Given that the universal constraints meet this cri- 
terion, the overparsing operations may be repeatedly 
considered for a given level until none of them in- 
crease the Harmony of the entries in any of the cells. 
Because each overparsing operation maps a partial 
description in one cell category to one for another 
cell category, a partial description cannot undergo 
more consecutive overparsing operations than there 
are cell categories without repeating at least one cell 
category, thereby creating a cycle. Thus, the num- 
ber of cell categories places a constant bound on the 
number of passes made through the overparsing op- 
erations for a block. 

A single non-terminal may dominate an entire 
subtree in which none of the syllable positions at 
the leaves of the tree are filled. Thus, the optimal 
"unfilled structure" for each non-terminal, and in 
fact each cell category, must be determined, for use 
by the overparsing operations. The optimal over- 
parsing structure for category X is denoted with 
IX,0], and such an entity is referred to as a base 
overparsing structure. A set of such structures must 
be computed, one for each category, before filling 
input-dependent DP table cells. Because these val- 
ues are not dependent upon the input, base overpars- 
ing structures may be computed and stored in ad- 
vance. Computing them is just  like computing other 

cell entries, except that  only overparsing operations 
are considered. First, consider (once) the overpars- 
ing operations for each non-terminal X which has a 
production rule permitting it to dominate a terminal 
x: each tries to set IX,0] to contain the corresponding 
partial description with the terminal x left unfilled. 
Next consider the other overparsing operations for 
each cell, choosing the most Harmonic of those op- 
erations' partial descriptions and the prior value of 
IX,0]. 

6 T h e  D y n a m i c  P r o g r a m m i n g  

A l g o r i t h m  

6.1 N o t a t i o n  

maxH{} returns the argument with maximum Har- 
mony 
(i~) denotes input segment i~ underparsed 
X t is a non-terminal 
x t is a terminal 
+ denotes concatenation 

6.2 The Operations 

Underparsing Operations for [X t,a,a]: 
create (i~/+[X*,0] 

Underparsing Operations for IX t,a,c]: 
create (ia)+[X~,a+l,c] 
create [Xt,a,e-1]+(ia) 

Parsing operations for [X t,a,a]: 
for each production X t ::~ x k 

create Xt(x k filled with ia) 

Parsing operations for [X*,a,c], 
where c>a and all X are cell categories: 

for each production X t =~ XkX m 
for b = a + l  to c-1 

create X* ([Xk,a,b],[X'~,b+ 1,c]) 
for each production X u :=~ X/:xmxn. . .  
where X t = XkX'~: 

for b = a + l  to c-1 
create [Xk,a,b]+[X'~,b+l,c] 

Overparsing operations for [X t,0]: 
for each production X t =~ x k 

create Xt(x k unfilled) 
for each production X t =~ XkX m 

create x t  ([Xk,0],[Xm,0]) 
for each production X ~ ~ XkXmXn... 
where X t -- x k x m :  

create [Xk,0]+[Xm,0] 

Overparsing operations for [X t,a,a]: 
same as for [X*,a,c] 

Overparsing operations for [X t,a,c]: 
for each production X t ~ X k 

create X t ([X k ,a,c]) 
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for each production X t ::V x k x  "~ 
create Xt ([Xk,0],[X'~,a,c]) 
create X~ ([Xk,a,c],[X'~,0]) 

for each production X u :=~ XkXmX~... 
where X t = XkX'~: 

create [Xk,a,c]+[Xm,0] 
create [Xk,0]+[Xm,a,c] 

6.3 T h e  M a i n  A l g o r i t h m  

/* create the base overparsing structures */ 

Repeat 
For each X t, Set [Xt,0] to 
maxH{[Xt,0], overparsing ops for [Xt,0]} 

Until no IX t,0] has changed during a pass 

/* fill the cells covering only a single segment */ 

For a = 1 to J 
For each X t, Set [Xt,a,a] to 
maxH{underparsing ops for [Xt,a,a]} 
For each X t, Set [Xt,a,a] to 
maxH{[Xt,a,a], parsing ops for [Xt,a,a]} 
Repeat 

For each X t, Set [Xt,a,a] to 
maxH{[Xt,a,a], overparsing ops for [Xt,a,a]} 

Until no [X t,a,a] has changed during a pass 

/* fill the rest of the cells */ 

For d = l  to (J-l) 
For a = l  to (J-d) 

For each X t, Set [Xt,a,a+d] to 
maxH{underparsing ops for [Xt,a,a+d]} 
For each X ~, Set [Xt,a,a+d] 
maxH{[Xt,a,a+d], parsing ops for [Xt,a,a+d]} 
Repeat 

For each X t, 
Set [Xt,a,a+d] to 
maxH{[Xt,a,a+d], 

overparsing ops for [Xt,a,a+d]} 
Until no [Xt,a,a+d] has changed during a pass 

Return [S,1,J] as the optimal description 

6.4 C o m p l e x i t y  

Each block of cells for an input subsequence is pro- 
cessed in time linear in the length of the subse- 
quence. This is a consequence of the fact that  in 
general parsing operations filling such a cell must 
consider all ways of dividing the input subsequence 
into two pieces. The number of overparsing passes 
through the block is bounded from above by the 
number of cell categories, due to the fact that  over- 
parsing cycles are suboptimal. Thus, the number 
of passes is bounded by a constant, for any fixed 
position structure grammar. The number of such 
blocks is the number of distinct, contiguous input 
subsequences (equivalently, the number of cells in a 
layer), which is on the order of the square of the 

length of the input. If N is the length of the input, 
the algorithm has computational complexity O(N3). 

7 D i s c u s s i o n  

7.1 L o c a l i t y  

That  locality helps processing should he no great 
surprise to computationalists; the computational 
significance of locality is widely appreciated. Fur- 
ther, locality is often considered a desirable property 
of principles in linguistics, independent of computa- 
tional concerns. Nevertheless, locality is a sufficient 
but not necessary restriction for the applicability of 
this algorithm. The locality restriction is really a 
special case of a more general sufficient condition. 
The general condition is a kind of " M a r k o v "  prop- 
erty. This property requires that,  for any substring 
of the input for which partial descriptions are con- 
structed, the set of possible partial descriptions for 
that  substring may be partitioned into a finite set 
of classes, such that  the consequences in terms of 
constraint violations for the addition of structure to 
a partial description may he determined entirely by 
the identity of the class to which that  partial de- 
scription belongs. The special case of strict locality 
is easy to understand with respect to context-free 
structures, because it states that  the only informa- 
tion needed about a subtree to relate it to the rest 
of the tree is the identity of the root non-terminal, 
so that  the (necessarily finite) set of non-terminals 
provides the relevant set of classes. 

7.2 Underpars ing and Derivat ional  
Redundancy  

The treatment of the underparsing operations given 
above creates the opportunity for the same par- 
tial description to be arrived at through several dif- 
ferent paths. For example, suppose the input is 
ia . . . ib ic id . . . i e  , and there is a constituent in [X,a,b] 
and a constituent [Y,d,e]. Further suppose the input 
segment ic is to be marked underparsed, so that  the 
final description [S,a,e] contains [X,a,b] (i~) [Y,d,e]. 
That  description could be arrived at either by com- 
bining [X,a,b] and (ic) to fill [X,a,c], and then com- 
bine [X,a,c] and [Y,d,e], or it could be arrived at by 
combining (i~) and [Y,d,e] to fill [Y,c,e], and then 
combine [X,a,b] and [Y,c,e]. The potential confu- 
sion stems from the fact that  an underparsed seg- 
ment is part of the description, but is not a proper 
constituent of the tree. 

This problem can be avoided in several ways. An 
obvious one is to only permit underparsings to be 
added to partial descriptions on the right side. One 
exception would then have to be made to permit in- 
put segments prior to any parsed input segments to 
be underparsed (i.e., if the first input segment is un- 
derparsed, it has to be attached to the left side of 
some constituent because it is to the left of every- 
thing in the description). 
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8 C o n c l u s i o n s  

The results presented here demonstrate that the 
basic cubic time complexity results for processing 
context-free structures are preserved when Optimal- 
ity Theory grammars are used. If Gen can be speci- 
fied as matching input segments to structures gener- 
ated by a context-free position structure grammar, 
and the constraints are local with respect to those 
structures, then the algorithm presented here may 
be applied directly to compute optimal descriptions. 
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