
Computing Optimal Descriptions for Optimality Theory
Grammars with Context-Free Position Structures

Bruce T e s a r
T h e Rutgers Center for Cogni t ive Science /

T h e Linguis t ics D e p a r t m e n t

Rutgers Univers i ty

P isca taway, NJ 08855 USA

tesar@ruccs, rutgers, edu

A b s t r a c t

This paper describes an algorithm for
computing optimal structural descriptions
for Optimality Theory grammars with
context-free position structures. This
algorithm extends Tesar's dynamic pro-
gramming approach (Tesar, 1994) (Tesar,
1995@ to computing optimal structural
descriptions from regular to context-free
structures. The generalization to context-
free structures creates several complica-
tions, all of which are overcome without
compromising the core dynamic program-
ming approach. The resulting algorithm
has a time complexity cubic in the length
of the input, and is applicable to gram-
mars with universal constraints that ex-
hibit context-free locality.

1 C o m p u t i n g Optimal Descriptions
in O p t i m a l i t y T h e o r y

In Optimality Theory (Prince and Smolensky, 1993),
grammaticality is defined in terms of optimization.
For any given linguistic input, the grammatical
structural description of that input is the descrip-
tion, selected from a set of candidate descriptions
for that input, that best satisfies a ranked set of uni-
versal constraints. The universal constraints often
conflict: satisfying one constraint may only be pos-
sible at the expense of violating another one. These
conflicts are resolved by ranking the universal con-
straints in a strict dominance hierarchy: one viola-
tion of a given constraint is strictly worse than any
number of violations of a lower-ranked constraint.
When comparing two descriptions, the one which
better satisfies the ranked constraints has higher
Harmony. Cross-linguistic variation is accounted for
by differences in the ranking of the same constraints.

The term linguistic input should here be under-
stood as something like an underlying form. In
phonology, an input might be a string of segmental
material; in syntax, it might be a verb's argument

structure, along with the arguments. For exposi-
tional purposes, this paper will assume linguistic in-
puts to be ordered strings of segments. A candidate
structural description for an input is a full linguis-
tic description containing that input, and indicating
what the (pronounced) surface realization is. An im-
portant property of Optimality Theory (OT) gram-
mars is that they do not accept or reject inputs;
every possible input is assigned a description by the
grammar.

The formal definition of Optimality Theory posits
a function, Gen, which maps an input to a large (of-
ten infinite) set of candidate structural descriptions,
all of which are evaluated in parallel by the universal
constraints. An OT grammar does not itself specify
an algorithm, it simply assigns a grammatical struc-
tural description to each input. However, one can
ask the computational question of whether efficient
algorithms exist to compute the description assigned
to a linguistic input by a grammar.

The most apparent computational challenge is
posed by the allowance of faithfulness violations:
the surface form of a structural description may not
be identical with the input. Structural positions
not filled with input segments constitute overpars-
ing (epenthesis). Input segments not parsed into
structural positions do not appear in the surface pro-
nunciation, and constitute underparsing (deletion).
To the extent that underparsing and overparsing are
avoided, the description is said to be faithful to the
input. Crucial to Optimality Theory are faithful-
ness constraints, which are violated by underparsing
and overparsing. The faithfulness constraints ensure
that a grammar will only tolerate deviations of the
surface form from the input form which are neces-
sary to satisfy structural constraints dominating the
faithfulness constraints.

Computing an optimal description means consid-
ering a space of candidate descriptions that include
structures with a variety of faithfulness violations,
and evaluating those candidates with respect to a
ranking in which structural and faithfulness con-
straints may be interleaved. This is parsing in the
generic sense: a structural description is being as-

101

signed to an input. It is, however, distinct from
what is traditionally thought of as parsing in com-
putationM linguistics. Traditional parsing at tempts
to construct a grammatical description with a sur-
face form matching the given input string exactly; if
a description cannot be fit exactly, the input string is
rejected as ungrammatical. Traditional parsing can
be thought of as enforcing faithfulness absolutely,
with no faithfulness violations are allowed. Partly
for this reason, traditional parsing is usually under-
stood as mapping a surface form to a description. In
the computation of optimal descriptions considered
here, a candidate that is fully faithful to the input
may be tossed aside by the grammar in favor of a
less faithful description better satisfying other (dom-
inant) constraints. Computing an optimal descrip-
tion in Optimality Theory is more naturally thought
of as mapping an underlying form to a description,
perhaps as part of the process of language produc-
tion.

Tesar (Tesar, 1994) (Tesar, 1995a) has devel-
oped algorithms for computing optimal descriptions,
based upon dynamic programming. The details laid
out in (Tesar, 1995a) focused on the case where the
set of structures underlying the Gen function are
formally regular. In this paper, Tesar's basic a p -
proach is adopted, and extended to grammars with
a Gen function employing fully context-free struc-
tures. Using such context-free structures introduces
some complications not apparent with the regular
case. This paper demonstrates that the complica-
tions can be dealt with, and that the dynamic pro-
gramming case may be fully extended to grammars
with context-free structures.

2 C o n t e x t - F r e e P o s i t i o n S t r u c t u r e

G r a m m a r s

Tesar (Tesar, 1995a) formalizes Gen as a set of
matchings between an ordered string of input seg-
ments and the terminals of each of a set of position
structures. The set of possible position structures
is defined by a formal grammar, the position struc-
ture grammar. A position structure has as terminals
structural positions. In a valid structural descrip-
tion, each structural position may be filled with at
most one input segment, and each input segment
may be parsed into at most one position. The linear
order of the input must be preserved in all candidate
structural descriptions.

This paper considers Optimali ty Theory gram-
mars where the position structure grammar is
context-free; that is, the space of position structures
can be described by a formal context-free grammar.
As an illustration, consider the grammar in Exam-
ples 1 and 2 (this illustration is not intended to rep-
resent any plausible natural language theory, but
does use the "peak/margin" terminology sometimes
employed in syllable theories). The set of inputs

is {C,V} +. The candidate descriptions of an input
consist of a sequence of pieces, each of which has a
peak (p) surrounded by one or more pairs of margin
positions (m). These structures exhibit prototypi-
cal context-free behavior, in that margin positions
to the left of a peak are balanced with margin po-
sitions to the right. 'e' is the empty string, and 'S'
the start symbol.

E x a m p l e 1 The Position Structure Grammar

S :=~ F i e
F =~ Y I Y F
Y ~ P I MFM
M ::~ m
P =:~ p

E x a m p l e 2 The Constraints

- (m/V) Do not parse V into a margin position
-(p/C) Do not parse C into a peak position
PARSE Input segments must be parsed
FILL m A margin position must be filled
FILL p A peak position must be filled

The first two constraints are structurM, and man-
date that V not be parsed into a margin position,
and that C not be parsed into a peak position. The
other three constraints are faithfulness constraints.
The two structural constraints are satisfied by de-
scriptions with each V in a peak position surrounded
by matched C's in margin positions: CCVCC, V,
CVCCCVCC, etc. If the input string permits such
an analysis, it will be given this completely faithful
description, with no resulting constraint violations
(ensuring that it will be optimal with respect to any
ranking).

Consider the constraint hierarchy in Example 3.

E x a m p l e 3 A Constraint Hierarchy

{- (m/V) , - (p /C) , PARSE} ~> {FILL p} > {FILL m}

This ranking ensures that in optimal descriptions,
a V will only be parsed as a peak, while a C will only
be parsed as a margin. Further, all input segments
will be parsed, and unfilled positions will be included
only as necessary to produce a sequence of balanced
structures. For example, the input / V C / receives
the description 1 shown in Example 4.

E x a m p l e 4 The Optimal Description f o r / V C /

S(F(Y(M(C),P(V),M(C))))
The surface string for this description is CVC: the

first C was "epenthesized" to balance with the one
following the peak V. This candidate is optimal be-
cause it only violates FILL m, the lowest-ranked con-
straint.

Tesar identifies locality as a sufficient condition
on the universal constraints for the success of his

l In this paper, tree structures will be denoted with
parentheses: a parent node X with child nodes Y and Z
is denoted X(Y,Z).

102

approach. For formally regular position structure
grammars, he defines a local constraint as one which
can be evaluated strictly on the basis of two consec-
utive positions (and any input segments filling those
positions) in the linear position structure. That idea
can be extended to the context-free case as follows.
A local constraint is one which can be evaluated
strictly on the basis of the information contained
within a local region. A local region of a description
is either of the following:

• a non4erminal and the child non-terminals that
it immediately dominates;

• a non-terminal which dominates a terminal
symbol (position), along with the terminal and
the input segment (if present) filling the termi-
nal position.

It is important to keep clear the role of the posi-
tion structure grammar. It does not define the set of
grammatical structures, it defines the Space of can-
didate structures. Thus, the computation of descrip-
tions addressed in this paper should be distinguished
from robust, or error-correcting, parsing (Anderson
and Backhouse, 1981, for example). There, the in-
put string is mapped to the grammatical structure
that is 'closest'; if the input completely matches a
structure generated by the grammar, that structure
is automatically selected. In the OT case presented
here, the full grammar is the entire OT system, of
which the position structure grammar is only a part.
Error-correcting parsing uses optimization only with
respect to the faithfulness of pre-defined grammati-
cal structures to the input. OT uses optimization to
define grammaticality.

3 The Dynamic Programming Table
The Dynamic Programming (DP) Table is here a
three-dimensional, pyramid-shaped data structure.
It resembles the tables used for context-free chart
parsing (Kay, 1980) and maximum likelihood com-
putation for stochastic context-free grammars (Lari
and Young, 1990) (Charniak, 1993). Each cell of
the table contains a partial description (a part of
a structural description), and the Harmony of that
partial description. A partial description is much
like an edge in chart parsing, covering a contigu-
ous substring of the input. A cell is identified
by three indices, and denoted with square brackets
(e.g., [X,a,c]). The first index identifying the cell (X)
indicates the cell category of the cell. The other two
indices (a and c) indicate the contiguous substring
of the input string covered by the partial description
contained in the cell (input segments ia through ic).

In chart parsing, the set of cell categories is pre-
cisely the set of non-terminals in the grammar, and
thus a cell contains a subtree with a root non-
terminal corresponding to the cell category, and with
leaves that constitute precisely the input substring

covered by the cell. In the algorithm presented here,
the set of cell categories are the non-terminals of the
position structure grammar, along with a category
for each left-aligned substring of the right hand side
of each position grammar rule. Example 5 gives the
set of cell categories for the position structure gram-
mar in Example 1.

E x a m p l e 5 The Set of Cell Categories

S, F, Y, M, P, MF

The last category in Example 5, MF, comes from
the rule Y =:~ MFM of Example 1, which has more
than two non-terminals on the right hand side. Each
such category corresponds to an incomplete edge in
normal chart parsing; having a table cell for each
such category eliminates the need for a separate data
structure containing edges. The cell [MF,a,c] may
contain an ordered pair of subtrees, the first with
root M covering input [a,b], and the second with
root F covering input [b+l,c].

The DP Table is perhaps best envisioned as a set
of layers, one for each category. A layer is a set
of all cells in the table indexed by a particular cell
category.

E x a m p l e 6 A Layer of the Dynamic Programming
Table for Category M (input i1"i3)

[U,l,3]
[M,1,2] [M,2,3]
[M,I,1] [M,2,2] [M,3,3] I

il i2 i3
For each substring length, there is a collection of

rows, one for each category, which will collectively
be referred to as a level. The first level contains the
cells which only cover one input segment; the num-
ber of cells in this level will he the number of input
segments multiplied by the number of cell categories.
Level two contains cells which cover input substrings
of length two, and so on. The top level contains one
cell for each category. One other useful partition
of the DP table is into blocks. A block is a set of
all cells covering a particular input subsequence. A
block has one cell for each cell category.

A cell of the DP Table is filled by comparing the
results of several operations, each of which try to fill
a cell. The operation producing the partial descrip-
tion with the highest Harmony actually fills the cell.
The operations themselves are discussed in Section
4.

The algorithm presented in Section 6 fills the ta-
ble cells level by level: first, all the cells covering
only one input segment are filled, then the cells cov-
ering two consecutive segments are filled, and so
forth. When the table has been completely filled,
cell [S,1,J] will contain the optimal description of
the input, and its Harmony. The table may also
be filled in a more left-to-right manner, bottom-up,
in the spirit of CKY. First, the cells covering only
segment il, and then i2, are filled. Then, the cells

103

covering the first two segments are filled, using the
entries in the cells covering each of il and is. The
cells of the next diagonal are then filled.

4 The Operations S e t

The Operations Set contains the operations used to
fill DP Table cells. The algorithm proceeds by con-
sidering all of the operations that could be used to fill
a cell, and selecting the one generating the partial
description with the highest Harmony to actually
fill the cell. There are three main types of opera-
tions, corresponding to underparsing, parsing, and
overparsing actions. These actions are analogous to
the three primitive actions of sequence comparison
(Sankoff and Kruskal, 1983): deletion, correspon-
dence, and insertion.

The discussion that follows makes the assumption
that the right hand side of every production is either
a string of non-terminals or a single terminal. Each
parsing operation generates a new element of struc-
ture, and so is associated with a position structure
grammar production. The first type of parsing op-
eration involves productions which generate a single
terminal (e.g., P:=~p). Because we are assuming that
an input segment may only be parsed into at most
one position, and that a position may have at most
one input segment parsed into it, this parsing oper-
ation may only fill a cell which covers exactly one
input segment, in our example, cell [P,I,1] could be
filled by an operation parsing il into a p position,
giving the partial description P(p filled with il).

The other kinds of parsing operations are matched
to position grammar productions in which a parent
non-terminal generates child non-terminals. One of
these kinds of operations fills the cell for a cate-
gory by combining cell entries for two factor cat-
egories, in order, so that the substrings covered by
each of them combine (concatenatively, with no over-
lap) to form the input substring covered by the
cell being filled. For rule Y =~ MFM, there will
be an operation of this type combining entries in
[M,a,b] and [F,b+l,c], creating the concatenated
structure s [M,a,b]+[F,b+l,c], to fill [MF,a,c]. The
final type of parsing operation fills a cell for a cate-
gory which is a single non-terminal on the left hand
side of a production, by combining two entries which
jointly form the entire right hand side of the pro-
duction. This operation would combining entries
in [MF,a,c] and [M,c÷l,d], creating the structure
Y([MF,a,c],[M,c+l,d]), to fill [Y,a,d]. Each of these
operations involves filling a cell for a target cate-
gory by using the entries in the cells for two factor
categories.

The resulting Harmony of the partial description
created by a parsing operation will be the combina-

2This partial description is not a single tree, but an
ordered pair of trees. In general, such concatenated
structures will be ordered lists of trees.

tion of the marks assessed each of the partial descrip-
tions for the factor categories, plus any additional
marks incurred as a result of the structure added by
the production itself. This is true because the con-
straints must be local: any new constraint violations
are determinable on the basis of the cell category of
the factor partial descriptions, and not any other
internal details of those partial descriptions.

All possible ways in which the factor categories,
taken in order, may combine to cover the substring,
must be considered. Because the factor categories
must be contiguous and in order, this amounts to
considering each of the ways in which the substring
can be split into two pieces. This is reflected in the
parsing operation descriptions given in Section 6.2.

Underparsing operations are not matched with po-
sition grammar productions. A DP Table cell which
covers only one input segment may be filled by an
underparsing operation which marks the input seg-
ment as underparsed. In general, any partial de-
scription covering any substring of the input may
be extended to cover an adjacent input segment by
adding that additional segment marked as under-
parsed. Thus, a cell covering a given substring of
length greater than one may be filled in two mirror-
image ways via underparsing: by taking a partial
description which covers all but the leftmost input
segment and adding that segment as underparsed,
and by taking a partial description which covers all
but the rightmost input segment and adding that
segment as underparsed.

Overparsing operations are discussed in Section 5.

5 The Overparsing Operations
Overparsing operations consume no input; they only
add new unfilled structure. Thus, a block of cells
(the set of cells each covering the same input sub-
string) is interdependent with respect to overparsing
operations, meaning that an overparsing operation
trying to fill one cell in the block is adding structure
to a partial description from a different cell in the
same block. The first consequence of this is that the
overparsing operations must be considered after the
underparsing and parsing operations for that block.
Otherwise, the cells would be empty, and the over-
parsing operations would have nothing to add on to.

The second consequence is that overparsing oper-
ations may need to be considered more than once,
because the result of one overparsing operation (if it
fills a cell) could be the source for another overpars-
ing operation. Thus, more than one pass through the
overparsing operations for a block may be necessary.
In the description of the algorithm given in Section
6.3, each Repeat-Until loop considers the overpars-
ing operations for a block of cells. The number of
loop iterations is the number of passes through the
overparsing operations for the block. The loop iter-
ations stop when none of the overparsing operations

104

is able to fill a cell (each proposed partial description
is less harmonic than the partial description already
in the cell).

In principle, an unbounded number of overpars-
ing operations could apply, and in fact descriptions
with arbitrary numbers of unfilled positions are con-
tained in the output space of Gen (as formally de-
fined). The algorithm does not have to explicitly
consider arbitrary amounts of overparsing, however.
A necessary property of the faithfulness constraints,
given constraint locality, is that a partial description
cannot have overparsed structures repeatedly added
to it until the resulting partial description falls into
the same cell category as the original prior to over-
parsing, and be more Harmonic. Such a sequence of
overparsing operations can be considered a overpars-
ing cycle. Thus, the faithfulness constraints must
ban overparsing cycles. This is not solely a computa-
tional requirement, but is necessary for the grammar
to be well-defined: overparsing cycles must be har-
monically suboptimal, otherwise arbitrary amounts
of overparsing will be permitted in optimal descrip-
tions. In particular, the constraints should prevent
overparsing from adding an entire overparsed non-
terminal more than once to the same partial descrip-
tion while passing through the overparsing opera-
tions. In Example 2, the constraints FILL m and
FILL p effectively ban overparsing cycles: no mat-
ter where these constraints are ranked, a description
containing an overparsing cycle will be less harmonic
(due to additional FILL violations) than the same
description with the cycle removed.

Given that the universal constraints meet this cri-
terion, the overparsing operations may be repeatedly
considered for a given level until none of them in-
crease the Harmony of the entries in any of the cells.
Because each overparsing operation maps a partial
description in one cell category to one for another
cell category, a partial description cannot undergo
more consecutive overparsing operations than there
are cell categories without repeating at least one cell
category, thereby creating a cycle. Thus, the num-
ber of cell categories places a constant bound on the
number of passes made through the overparsing op-
erations for a block.

A single non-terminal may dominate an entire
subtree in which none of the syllable positions at
the leaves of the tree are filled. Thus, the optimal
"unfilled structure" for each non-terminal, and in
fact each cell category, must be determined, for use
by the overparsing operations. The optimal over-
parsing structure for category X is denoted with
IX,0], and such an entity is referred to as a base
overparsing structure. A set of such structures must
be computed, one for each category, before filling
input-dependent DP table cells. Because these val-
ues are not dependent upon the input, base overpars-
ing structures may be computed and stored in ad-
vance. Computing them is just like computing other

cell entries, except that only overparsing operations
are considered. First, consider (once) the overpars-
ing operations for each non-terminal X which has a
production rule permitting it to dominate a terminal
x: each tries to set IX,0] to contain the corresponding
partial description with the terminal x left unfilled.
Next consider the other overparsing operations for
each cell, choosing the most Harmonic of those op-
erations' partial descriptions and the prior value of
IX,0].

6 T h e D y n a m i c P r o g r a m m i n g

A l g o r i t h m

6.1 N o t a t i o n

maxH{} returns the argument with maximum Har-
mony
(i~) denotes input segment i~ underparsed
X t is a non-terminal
x t is a terminal
+ denotes concatenation

6.2 The Operations

Underparsing Operations for [X t,a,a]:
create (i~/+[X*,0]

Underparsing Operations for IX t,a,c]:
create (ia)+[X~,a+l,c]
create [Xt,a,e-1]+(ia)

Parsing operations for [X t,a,a]:
for each production X t ::~ x k

create Xt(x k filled with ia)

Parsing operations for [X*,a,c],
where c>a and all X are cell categories:

for each production X t =~ XkX m
for b = a + l to c-1

create X* ([Xk,a,b],[X'~,b+ 1,c])
for each production X u :=~ X/:xmxn. . .
where X t = XkX'~:

for b = a + l to c-1
create [Xk,a,b]+[X'~,b+l,c]

Overparsing operations for [X t,0]:
for each production X t =~ x k

create Xt(x k unfilled)
for each production X t =~ XkX m

create x t ([Xk,0],[Xm,0])
for each production X ~ ~ XkXmXn...
where X t -- x k x m :

create [Xk,0]+[Xm,0]

Overparsing operations for [X t,a,a]:
same as for [X*,a,c]

Overparsing operations for [X t,a,c]:
for each production X t ~ X k

create X t ([X k ,a,c])

105

for each production X t ::V x k x "~
create Xt ([Xk,0],[X'~,a,c])
create X~ ([Xk,a,c],[X'~,0])

for each production X u :=~ XkXmX~...
where X t = XkX'~:

create [Xk,a,c]+[Xm,0]
create [Xk,0]+[Xm,a,c]

6.3 T h e M a i n A l g o r i t h m

/* create the base overparsing structures */

Repeat
For each X t, Set [Xt,0] to
maxH{[Xt,0], overparsing ops for [Xt,0]}

Until no IX t,0] has changed during a pass

/* fill the cells covering only a single segment */

For a = 1 to J
For each X t, Set [Xt,a,a] to
maxH{underparsing ops for [Xt,a,a]}
For each X t, Set [Xt,a,a] to
maxH{[Xt,a,a], parsing ops for [Xt,a,a]}
Repeat

For each X t, Set [Xt,a,a] to
maxH{[Xt,a,a], overparsing ops for [Xt,a,a]}

Until no [X t,a,a] has changed during a pass

/* fill the rest of the cells */

For d = l to (J-l)
For a = l to (J-d)

For each X t, Set [Xt,a,a+d] to
maxH{underparsing ops for [Xt,a,a+d]}
For each X ~, Set [Xt,a,a+d]
maxH{[Xt,a,a+d], parsing ops for [Xt,a,a+d]}
Repeat

For each X t,
Set [Xt,a,a+d] to
maxH{[Xt,a,a+d],

overparsing ops for [Xt,a,a+d]}
Until no [Xt,a,a+d] has changed during a pass

Return [S,1,J] as the optimal description

6.4 C o m p l e x i t y

Each block of cells for an input subsequence is pro-
cessed in time linear in the length of the subse-
quence. This is a consequence of the fact that in
general parsing operations filling such a cell must
consider all ways of dividing the input subsequence
into two pieces. The number of overparsing passes
through the block is bounded from above by the
number of cell categories, due to the fact that over-
parsing cycles are suboptimal. Thus, the number
of passes is bounded by a constant, for any fixed
position structure grammar. The number of such
blocks is the number of distinct, contiguous input
subsequences (equivalently, the number of cells in a
layer), which is on the order of the square of the

length of the input. If N is the length of the input,
the algorithm has computational complexity O(N3).

7 D i s c u s s i o n

7.1 L o c a l i t y

That locality helps processing should he no great
surprise to computationalists; the computational
significance of locality is widely appreciated. Fur-
ther, locality is often considered a desirable property
of principles in linguistics, independent of computa-
tional concerns. Nevertheless, locality is a sufficient
but not necessary restriction for the applicability of
this algorithm. The locality restriction is really a
special case of a more general sufficient condition.
The general condition is a kind of " M a r k o v " prop-
erty. This property requires that, for any substring
of the input for which partial descriptions are con-
structed, the set of possible partial descriptions for
that substring may be partitioned into a finite set
of classes, such that the consequences in terms of
constraint violations for the addition of structure to
a partial description may he determined entirely by
the identity of the class to which that partial de-
scription belongs. The special case of strict locality
is easy to understand with respect to context-free
structures, because it states that the only informa-
tion needed about a subtree to relate it to the rest
of the tree is the identity of the root non-terminal,
so that the (necessarily finite) set of non-terminals
provides the relevant set of classes.

7.2 Underpars ing and Derivat ional
Redundancy

The treatment of the underparsing operations given
above creates the opportunity for the same par-
tial description to be arrived at through several dif-
ferent paths. For example, suppose the input is
ia . . . ib ic id . . . i e , and there is a constituent in [X,a,b]
and a constituent [Y,d,e]. Further suppose the input
segment ic is to be marked underparsed, so that the
final description [S,a,e] contains [X,a,b] (i~) [Y,d,e].
That description could be arrived at either by com-
bining [X,a,b] and (ic) to fill [X,a,c], and then com-
bine [X,a,c] and [Y,d,e], or it could be arrived at by
combining (i~) and [Y,d,e] to fill [Y,c,e], and then
combine [X,a,b] and [Y,c,e]. The potential confu-
sion stems from the fact that an underparsed seg-
ment is part of the description, but is not a proper
constituent of the tree.

This problem can be avoided in several ways. An
obvious one is to only permit underparsings to be
added to partial descriptions on the right side. One
exception would then have to be made to permit in-
put segments prior to any parsed input segments to
be underparsed (i.e., if the first input segment is un-
derparsed, it has to be attached to the left side of
some constituent because it is to the left of every-
thing in the description).

106

8 C o n c l u s i o n s

The results presented here demonstrate that the
basic cubic time complexity results for processing
context-free structures are preserved when Optimal-
ity Theory grammars are used. If Gen can be speci-
fied as matching input segments to structures gener-
ated by a context-free position structure grammar,
and the constraints are local with respect to those
structures, then the algorithm presented here may
be applied directly to compute optimal descriptions.

9 A c k n o w l e d g m e n t s

I would like to thank Paul Smolensky for his valu-
able contributions and support. I would also like to
thank David I-Iaussler, Clayton Lewis, Mark Liber-
man, Jim Martin, and Alan Prince for useful dis-
cussions, and three anonymous reviewers for helpful
comments. This work was supported in part by an
NSF Graduate Fellowship to the author, and NSF
grant IRI-9213894 to Paul Smolensky and Geraldine
Legendre.

Bruce Tesar. 1994. Parsing in Optimality Theory:
A dynamic programming approach. Technical Re-
port CU-CS-714-94, April 1994. Department of
Computer Science, University of Colorado, Boul-
der.

Bruce Tesar. 1995a. Computing optimal forms in
Optimality Theory: Basic syllabification. Tech-
nical Report CU-CS-763-95, February 1995. De-
partment of Computer Science, University of Col-
orado, Boulder.

Bruce Tesar. 1995b. Computational Optimality The-
ory. Unpublished Ph.D. Dissertation. Department
of Computer Science, University of Colorado,
Boulder. June 1995.

A.J. Viterbi. 1967. Error bounds for convolution
codes and an asymptotically optimal decoding
algorithm. IEEE Trans. on Information Theory
13:260-269.

R e f e r e n c e s

S. O. Anderson and R. C. Backhouse. 1981. Lo-
cally least-cost error recovery in Earley's algo-
rithm. A CM Transactions on Programming Lan-
guages and Systems 3: 318-347.

Eugene Charniak. 1993. Statistical language learn-
ing. Cambridge, MA: MIT Press.

Martin Kay. 1980. Algorithmic schemata and data
structures in syntactic processing. CSL-80-12, Oc-
tober 1980.

K. Lari and S. J. Young. 1990. The estimation of
stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Lan-
guage 4: 35-36.

Harry R. Lewis and Christos H. Papadimitriou.
1981. Elements of the theory of computation. En-
glewood Cliffs, New Jersey: Prentice-Hall, Inc.

Alan Prince and Paul Smolensky. 1993. Optimal-
ity Theory: Constraint interaction in generative
grammar. Technical Report CU-CS-696-93, De-
partment of Computer Science, University of Col-
orado at Boulder, and Technical Report TR-2,
Rutgers Center for Cognitive Science, Rutgers
University, New Brunswick, NJ. March. To ap-
pear in the Linguistic Inquiry Monograph Series,
Cambridge, MA: MIT Press.

David Sankoff and Joseph Kruskal. 1983. Time
warps, string edits, and macromolecules: The the-
ory and practice of sequence comparison. Reading,
MA: Addison-Wesley.

107

