
A N I N T E G R A T E D H E U R I S T I C S C H E M E
F O R P A R T I A L P A R S E E V A L U A T I O N

Alon Lavie
School of C o m p u t e r Science
Carneg ie Mel lon Univers i ty

5000 Forbes Ave. , Pittsburgh, PA 15213
email : lavie@cs.cmu.edu

Abstrac t
GLR* is a recently developed robust version of the
Generalized LR Parser [Tomita, 1986], that can parse
almost any input sentence by ignoring unrecognizable
parts of the sentence. On a given input sentence, the
parser returns a collection of parses that correspond to
maximal, or close to maximal, parsable subsets of the
original input. This paper describes recent work on de-
veloping an integrated heuristic scheme for selecting the
parse that is deemed "best" from such a collection. We
describe the heuristic measures used and their combi-
nation scheme. Preliminary results from experiments
conducted on parsing speech recognized spontaneous
speech are also reported.

T h e G L R * P a r s e r

T h e G L R P a r s i n g A l g o r i t h m

The Generalized LR Parser, developed by Tomita
[Tomita, 1986], extended the original Lit parsing al-
gorithm to the case of non-LR languages, where the
parsing tables contain entries with multiple parsing ac-
tions. Tomita's algorithm uses a Graph Structured
Stack (GSS) in order to efficiently pursue in parallel
the different parsing options that arise as a result of
the multiple entries in the parsing tables. A second data
structure uses pointers to keep track of all possible parse
trees throughout the parsing of the input, while sharing
common subtrees of these different parses. A process of
local ambiguity packing allows the parser to pack sub-
parses that are rooted in the same non-terminal into a
single structure that represents them all.

The GLR parser is the syntactic engine of the Univer-
sal Parser Architecture developed at CMU [Tomita et
al., 1988]. The architecture supports grammatical spec-
ification in an LFG framework; that consists of context-
free grammar rules augmented with feature bundles
that are associated with the non-terminals of the rules.
Feature structure computation is, for the most part,
specified and implemented via unification operations.
This allows the grammar to constrain the applicability
of context-free rules. The result of parsing an input sen-
tence consists of both a parse tree and the computed

feature structure associated with the non-terminal at
the root of the tree.

T h e G L R * P a r s e r

GLR* is a recently developed robust version of the Gen-
eralized LR Parser, that allows the skipping of unrecog-
nizable parts of the input sentence [Lavie and Tomita,
1993]. It is designed to enhance the parsability of do-
mains such as spontaneous speech, where the input is
likely to contain deviations from the grammar, due to
either extra-grammaticalities or limited grammar cov-
erage. In cases where the complete input sentence is not
covered by the grammar, the parser attempts to find a
maximal subset of the input that is parsable. In many
cases, such a parse can serve as a good approximation
to the true parse of the sentence.

The parser accommodates the skipping of words of
the input string by allowing shift operations to be per-
formed from inactive state nodes in the Graph Struc-
tured Stack (GSS). Shifting an input symbol from an
inactive state is equivalent to skipping the words of the
input that were encountered after the parser reached
the inactive state and prior to the current word that
is being shifted. Since the parser is LR(0), previous
reduce operations remain valid even when words fur-
ther along in the input are skipped. Information about
skipped words is maintained in the symbol nodes that
represent parse sub-trees.

To guarantee runtime feasibility, the GLR* parser is
coupled with a "beam" search heuristic, that dynami-
cally restricts the skipping capability of the parser, so as
to focus on parses of maximal and close to maximal sub-
strings of the input. The efficiency of the parser is also
increased by an enhanced process of local ambiguity
packing and pruning. Locally ambiguous symbol nodes
are compared in terms of the words skipped within
them. In cases where one phrase has more skipped
words than the other, the phrase with more skipped
words is discarded in favor of the more complete parsed
phrase. This operation significantly reduces the number
of parses being pursued by the parser.

316

T h e P a r s e E v a l u a t i o n H e u r i s t i c s
At the end of the process of parsing a sentence, the
GLR* parser returns with a set of possible parses, each
corresponding to some grammatical subset of words of
the input sentence. Due to the beam search heuristic
and the ambiguity packing scheme, this set of parses
is limited to maximal or close to maximal grammatical
subsets. The principle goal is then to find the maximal
parsable subset of the input string (and its parse). How-
ever, in many cases there are several distinct maximal
parses, each consisting of a different subset of words of
the original sentence. Furthermore, our experience has
shown that in many cases, ignoring an additional one
or two input words may result in a parse that is syn-
tactically and/or semantically more coherent. We have
thus developed an evaluation heuristic that combines
several different measures, in order to select the parse
that is deemed overall "best".

Our heuristic uses a set of features by which each of
the parse candidates can be evaluated and compared.
We use features of both the candidate parse and the
ignored parts of the original input sentence. The fea-
tures are designed to be general and, for the most part,
grammar and domain independent. For each parse, the
heuristic computes a penalty score for each of the fea-
tures. The penalties of the different features are then
combined into a single score using a linear combination.
The weights used in this scheme are adjustable, and can
be optimized for a particular domain and /or grammar.
The parser then selects the parse ranked best (i.e. the
parse of lowest overall score). 1

T h e P a r s e E v a l u a t i o n F e a t u r e s
So far, we have experimented with the following set of
evaluation features:

1. The number and position of skipped words

2. The number of substituted words

3. The fragmentation of the parse analysis

4. The statistical score of the disambiguated parse tree

The penalty scheme for skipped words is designed to
prefer parses that correspond to fewer skipped words.
It assigns a penalty in the range of (0.95 - 1.05) for
each word of the original sentence that was skipped.
The scheme is such that words that are skipped later
in the sentence receive the slightly higher penalty. This
preference was designed to handle the phenomena of
false starts, which is common in spontaneous speech.

The GLR* parser has a capability for handling com-
mon word substitutions when the parser's input string
is the output of a speech recognition system. When
the input contains a pre-determined commonly substi-
tuted word, the parser a t tempts to continue with both

1The system can display the n best parses found, where
the parameter n is controlled by the user at runtime. By
default, we set n to one, and the parse with the lowest score
is displayed.

the original input word and a specified "correct" word.
The number of substituted words is used as an eval-
uation feature, so as to prefer an analysis with fewer
substituted words.

The grammars we have been working with allow a sin-
gle input sentence to be analyzed as several grammat-
ical "sentences" or fragments. Our experiments have
indicated that , in most cases, a less fragmented analy-
sis is more desirable. We therefore use the sum of the
number of fragments in the analysis as an additional
feature.

We have recently augmented the parser with a statis-
tical disambiguation module. We use a framework simi-
lar to the one proposed by Briscoe and Carroll [Briscoe
and Carroll, 1993], in which the shift and reduce ac-
tions of the LR parsing tables are directly augmented
with probabilities. Training of the probabilities is per-
formed on a set of disambiguated parses. The proba-
bilities of the parse actions induce statistical scores on
alternative parse trees, which are used for disambigua-
tion. However, additionally, we use the statistical score
of the disambiguated parse as an additional evaluation
feature across parses. The statistical score value is first
converted into a confidence measure, such that more
"common" parse trees receive a lower penalty score.
This is done using the following formula:

penalty = (0.1 * (-loglo(pscore)))

The penalty scores of the features are then combined
by a linear combination. The weights assigned to the
features determine the way they interact. In our exper-
iments so far, we have fined tuned these weights manu-
ally, so as to t ry and optimize the results on a training
set of data. However, we plan on investigating the pos-
sibility of using some known optimization techniques
for this task.

T h e P a r s e Q u a l i t y H e u r i s t i c

The ut i l i~ of a parser such as GLR* obviously depends
on the semantic coherency of the parse results that it
returns. Since the parser is designed to succeed in pars-
ing almost any input, parsing success by itself can no
longer provide a likely guarantee of such coherency. Al-
though we believe this task would ult imately be better
handled by a domain dependent semantic analyzer that
would follow the parser, we have a t tempted to partially
handle this problem using a simple filtering scheme.

The filtering scheme's task is to classify the parse
chosen as best by the parser into one of two categories:
"good" or "bad". Our heuristic takes into account both
the actual value of the parse's combined penalty score
and a measure relative to the length of the input sen-
tence. Similar to the penalty score scheme, the precise
thresholds are currently fine tuned to try and optimize
the classification results on a training set of data.

317

GLR
GLR*/1)
GLR* 2)

Unparsable

number percent
58 48.3%
5 4.2%
5 4.2%

Parsable

number percent
62 51.7%
115 95.8%
115 95.8%

Good/Close
Parses

number percent
60 50.0%
84 70.0%
90 75.0%

Table I: Performance Results of the GLR* Parser
(I) = simple heuristic, (2) = full heuristics

Bad
Parses

number l~ercent
2 1.7%

31 25.8%
25 20.8%

Parsing of Spontaneous Speech U s i n g

G L R *

We have recently conducted some new experiments to
test the utility of the GLR* parser and our parse evalu-
ation heuristics when parsing speech recognized sponta-
neous speech in the ATIS domain. We modified an ex-
isting partial coverage syntactic grammar into a gram-
mar for the ATIS domain, using a development set of
some 300 sentences. The resulting grammar has 458
rules, which translate into a parsing table of almost
700 states.

A list of common appearing substitutions was con-
structed from the development set. The correct parses
of 250 grammatical sentences were used to train the
parse table statistics that are used for disambiguation
and parse evaluation. After some experimentation, the
evaluation feature weights were set in the following way.
As previously described, the penalty for a skipped word
ranges between 0.95 and 1.05, depending on the word's
position in the sentence. The penalty for a substituted
word was set to 0.9, so that substituting a word would
be preferable to skipping the word. The fragmentation
feature was given a weight of 1.1, to prefer skipping a
word if it reduces the fragmentation count by at least
one. The three penalties are then summed, together
with the converted statistical score of the parse.

We then used a set of 120 new sentences as a test set.
Our goal was three-fold. First, we wanted to compare
the parsing capability of the GLR* parser with that
of the original GLR parser. Second, we wished to test
the effectiveness of our evaluation heuristics in select-
ing the best parse. Third, we wanted to evaluate the
ability of the parse quality heuristic to correctly classify
GLR* parses as "good" or "bad". We ran the parser
three times on the test set. The first run was with
skipping disabled. This is equivalent to running the
original GLR parser. The second run was conducted
with skipping enabled and full heuristics. The third
run was conducted with skipping enabled, and with a
simple heuristic that prefers parses based only on the
number of words skipped. In all three runs, the sin-
gle selected parse result for each sentence was manually
evaluated to determine if the parser returned with a
"correct" parse.

The results of the experiment can be seen in Table 1.
The results indicate that using the GLR* parser results
in a significant improvement in performance. When

using the full heuristics, the percentage of sentences,
for which the parser returned a parse that matched
or almost matched the "correct" parse increased from
50% to 75%. As a result of its skipping capabilities,
GLR* succeeds to parse 58 sentences (48%) that were
not parsable by the original GLR parser. Fully 96%
of the test sentences (all but 5) are parsable by GLR*.
However, a significant portion of these sentences (23 out
of the 58) return with bad parses, due to the skipping
of essential words of the input. We looked at the effec-
tiveness of our parse quality heuristic in identifying such
bad parses. The heuristic is successful in labeling 21 of
the 25 bad parses as "bad". 67 of the 90 good/close
parses are labeled as "good" by the heuristic. Thus,
although somewhat overly harsh, the heuristic is quite
effective in identifying bad parses.

Our results indicate that our full integrated heuris-
tic scheme for selecting the best parse out-performs
the simple heuristic, that considers only the number of
words skipped. With the simple heuristic, good/close
parses were returned in 24 out of the 53 sentences that
involved some degree of skipping. With our integrated
heuristic scheme, good/close parses were returned in
30 sentences (6 additional sentences). Further analy-
sis showed that only 2 sentences had parses that were
better than those selected by our integrated parse eval-
uation heuristic.

R e f e r e n c e s

[Briscoe and Carroll, 1993] T. Briscoe and J. Carroll.
Generalized Probabilistic LR Parsing of Natural Lan-
guage (Corpora) with Unification-Based Grammars.
Computational Linguistics, 19(1):25-59, 1993.

[Lavie and Tomita, 1993] A. Lavie and M. Tomita.
GLR* - An Efficient Noise-skipping Parsing Algo-
rithm for Context-free Grammars. In Proceedings of
Third International Workshop on Parsing Technolo-
gies, pages 123-134, 1993.

[Tomita et al., 1988] M. Tomita, T. Mitamura,
H. Musha, and M. Kee. The Generalized LR
Parser/Compiler- Version 8.1: User's Guide. Tech-
nical Report CMU-CMT-88-MEMO, 1988.

[Tomita, 1986] M. Tomita. Efficient Parsing for Nat.
nral Language. Kluwer Academic Publishers, Hing-
ham, Ma., 1986.

318

