
PRECISE N-GRAM PROBABILITIES FROM 
STOCHASTIC CONTEXT-FREE GRAMMARS 

Andreas Stolcke and Jonathan Segal 
University of California, Berkeley 

and 
International Computer Science Institute 

1947 Center Street 
Berkeley, CA 94704 

{stolcke, j segal}@icsi, berkeley, edu 

Abstract 
We present an algorithm for computing n-gram probabil- 
ities from stochastic context-free grammars, a procedure 
that can alleviate some of the standard problems associated 
with n-grams (estimation from sparse data, lack of linguis- 
tic structure, among others). The method operates via the 
computation of substring expectations, which in turn is ac- 
complished by solving systems of linear equations derived 
from the grammar. The procedure is fully implemented and 
has proved viable and useful in practice. 

INTRODUCTION 
Probabilistic language modeling with n-gram grammars 
(particularly bigram and trigram) has proven extremely use- 
ful for such tasks as automated speech recognition, part-of- 
speech tagging, and word-sense disambiguation, and lead to 
simple, efficient algorithms. Unfortunately, working with 
these grammars can be problematic for several reasons: they 
have large numbers of parameters, so reliable estimation 
requires a very large training corpus and/or sophisticated 
smoothing techniques (Church and Gale, 1991); it is very 
hard to directly model linguistic knowledge (and thus these 
grammars are practically incomprehensible to human inspec- 
tion); and the models are not easily extensible, i.e., if a new 
word is added to the vocabulary, none of the information 
contained in an existing n-gram will tell anything about the 
n-grams containing the new item. Stochastic context-free 
grammars (SCFGs), on the other hand, are not as suscep- 
tible to these problems: they have many fewer parameters 
(so can be reasonably trained with smaller corpora); they 
capture linguistic generalizations, and are easily understood 
and written, by linguists; and they can be extended straight- 
forwardly based on the underlying linguistic knowledge. 

In this paper, we present a technique for computing an 
n-gram grammar from an existing SCFG--an attempt to get 
the best of both worlds. Besides developing the mathematics 
involved in the computation, we also discuss efficiency and 
implementation issues, and briefly report on our experience 

confirming its practical feasibility and utility. 
The technique of compiling higher-level grammat- 

ical models into lower-level ones has precedents: 
Zue et al. (1991) report building a word-pair grammar from 
more elaborate language models to achieve good coverage, 
by random generation of sentences. In our own group, 
the current approach was predated by an alternative one 
that essentially relied on approximating bigram probabili- 
ties through Monte-Carlo sampling from SCFGs. 

PRELIMINARIES 
An n-gram grammar is a set of probabil- 
ities P(w,~lWlW2...wn_a), giving the probability that wn 
follows a word string Wl w2. . .  wn-1,  for each possible com- 
bination of the w's in the vocabulary of the language. So 
for a 5000 word vocabulary, a bigram grammar would have 
approximately 5000 x 5000 = 25,000,000 free parameters, 
and a trigram grammar would have ~ 125,000,000,000. 
This is what we mean when we say n-gram grammars have 
many parameters. 

A SCFG is a set of phrase-structure rules, annotated with 
probabilities of choosing a certain production given the left- 
hand side nonterminal. For example, if we have a simple 
CFG, we can augment it with the probabilities specified: 

S --+ N P V P  [1.0] 
N P  --+ N [0.4] 
N P -+ Det  N [0.6] 
V P  --+ V [0.8] 
V P --+ V U P  [0.2] 
Det  --~ the [0.4] 
Det  --+ a [0.6] 
N ~ book [1.0] 
V --+ close [0.3] 
V ~ open [0.7] 

The language this grammar generates contains 5 words. 
Including markers for sentence beginning and end, a bigram 
grammar would contain 6 x 6 probabilities, or 6 x 5 = 30 
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free parameters (since probabilities have to sum to one). A 
trigram grammar would come with (5 x 6 + 1) x 5 = 155 
parameters. Yet, the above SCFG has only 10 probabilities, 
only 4 of which are free parameters. The divergence between 
these two types of models generally grows as the vocabulary 
size increases, although this depends on the productions in 
the SCFG. 

The reason for this discrepancy, of course, is that the struc- 
ture of the SCFG itself is a discrete (hyper-)parameter with a 
lot of potential variation, but one that has been fixed before- 
hand. The point is that such a structure is comprehensible by 
humans, and can in many cases be constrained using prior 
knowledge, thereby reducing the estimation problem for the 
remaining probabilities. The problem of estimating SCFG 
parameters from data is solved with standard techniques, 
usually by way of likelihood maximization and a variant of 
the Baum-Welch (EM) algorithm (Baker, 1979). A tutorial 
introduction to SCFGs and standard algorithms can be found 
in Jelinek et al. (1992). 

M O T I V A T I O N  

There are good arguments that SCFGs are in principle not ad- 
equate probabilistic models for natural languages, due to the 
conditional independence assumptions they embody (Mager- 
man and Marcus, 1991; Jones and Eisner, 1992; Briscoe and 
Carroll, 1993). Such shortcomings can be partly remedied 
by using SCFGs with very specific, semantically oriented 
categories and rules (Jurafsky et al., 1994). If  the goal is to 
use n-grams nevertheless, then their their computation from 
a more constrained SCFG is still useful since the results can 
be interpolated with raw n-gram estimates for smoothing. 
An experiment illustrating this approach is reported later in 
the paper. 

On the other hand, even if vastly more sophisticated lan- 
guage models give better results, r~-grams will most likely 
still be important in applications such as speech recogni- 
tion. The standard speech decoding technique of frame- 
synchronous dynamic programming (Ney, 1984) is based 
on a first-order Markov assumption, which is satisfied by bi- 
grams models (as well as by Hidden Markov Models), but not 
by more complex models incorporating non-local or higher- 
order constraints (including SCFGs). A standard approach is 
therefore to use simple language models to generate a prelim- 
inary set of candidate hypotheses. These hypotheses, e.g., 
represented as word lattices or N-best  lists (Schwartz and 
Chow, 1990), are re-evaluated later using additional criteria 
that can afford to be more costly due to the more constrained 
outcomes. In this type of setting, the techniques developed 
in this paper can be used to compile probabilistic knowledge 
present in the more elaborate language models into n-gram 
estimates that improve the quality of the hypotheses gener- 
ated by the decoder. 

Finally, comparing directly estimated, reliable n-grams 
with those compiled from other language models is a poten- 
tially useful method for evaluating the models in question. 

For the purpose of this paper, then, we assume that comput- 
ing n-grams from SCFGs is of either practical or theoretical 
interest and concentrate on the computational aspects of the 

problem. 
It should be noted that there are alternative, unrelated 

methods for addressing the problem of the large parameter 
space in n-gram models. For example, Brown et al. (1992) 
describe an approach based on grouping words into classes, 
thereby reducing the number of conditional probabilities in 
the model. 

T H E  A L G O R I T H M  

Normal form for SCFGs 
A grammar is in Chomsky Normal Form (CNF) if every 
production is of the form A ~ B C or A ~ terminal. 
Any CFG or SCFG can be converted into one in CNF which 
generates exactly the same language, each of the sentences 
with exactly the same probability, and for which any parse in 
the original grammar would be reconstructible from a parse 
in the CNF grammar. In short, we can, without loss of 
generality, assume that the SCFGs we are dealing with are 
in CNF. In fact, our algorithm generalizes straightforwardly 
to the more general Canonical Two-Form (Graham et al., 
1980) format, and in the case of bigrams (n =- 2) it can even 
be modified to work directly for arbitrary SCFGs. Still, the 
CNF form is convenient, and to keep the exposition simple 
we assume all SCFGs to be in CNF. 

Probabilities from expectations 
The first key insight towards a solution is that the n-gram 
probabilities can be obtained from the associated expected 
frequencies for n-grams and (n - 1)-grams: 

c ( w l . . . w n l L )  
P(w,dwlw2...w,~-a) = c(wx . . .wn- l lL )  (1) 

where c(wlL ) stands for the expected count of occurrences 
of the substring w in a sentence of L.1 

Proof Write the expectation for n-grams recursively in 
terms of those of order n - 1 and the conditional n-gram 
probabilities: 

C(Wl...Wr~[L) ~--- C(Wl...W~_llL)P(w~lw l w 2 . . . w r ~ _ l ) .  

So if we can compute c(wlG) for all substrings w of 
lengths n and n - 1 for a SCFG G, we immediately have an 
n-gram grammar for the language generated by G. 

Computing expectations 
Our goal now is to compute the substring expectations for 
a given grammar. Formalisms such as SCFGs that have a 
recursive rule structure suggest a divide-and-conquer algo- 
rithrn that follows the recursive structure of the grammar, z 

We generalize the problem by considering c(wIX), the 
expected number of (possibly overlapping) occurrences of 

1The only counts appearing in this paper are expectations, so 
be will not be using special notation to make a distinction between 
observed and expected values. 

2A similar, even simpler approach applies to probabilistic finite 
state (i.e., Hidden Markov) models. 
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Figure 1: Three ways of generating a substring w from a nonterminal X. 

113 .~- 2131 . . .  W n in strings generated by an arbitrary nonter- 
minal X. The special case c(wIS) = c(wlL) is the solution 
sought, where S is the start symbol for the grammar. 

Now consider all possible ways that nonterminal X can 
generate string w = wl . . .  wn as a substring, denoted by 
X ::~ . . .  wl • .. wn .. . .  and the associated probabilities. For 
each production of X we have to distinguish two main cases, 
assuming the grammar is in CNF. If the string in question is 
of length I, w = wl, and if X happens to have a production 
X --~ Wl, then that production adds exactly P ( X  --~ wt) to 
the expectation c(w IX). 

If X has non-terminal productions, say, X ~ Y Z  then 
w might also be generated by recursive expansion of the 
right-hand side. Here, for each production, there are three 
subcases. 

(a) First, Y can by itself generate the complete w (see 
Figure l(a)). 

(b) Likewise, Z itself can generate w (Figure l(b)). 

(c) Finally, Y could generate wl . . .  wj as a suffix (Y ~ R  

w l . . . w j )  and Z, Wj+l . . .wn  as a prefix (Z ~ L  
wj+l . . .  w,O, thereby resulting in a single occurrence 
of w (Figure l(c)). 3 

Each of these cases will have an expectation for generating 
wl .. .  wn as a substring, and the total expectation c(w}X) 
will be the sum of these partial expectations. The total 
expectations for the first two cases (that of the substring 
being completely generated by Y or Z) are given recursively: 
c(wlY) and c(wlY ) respectively. The expectation for the 
third case is 

n--1 

E P ( Y  :~zR w l . . .  w j ) P ( Z  :~'L w j+ , . . .  W,), (2) 
j=l 

where one has to sum over all possible split points j of the 
string w. 

3We use the notation X =~R c~ to denote that non-terminal X 
generates the string c~ as a suffix, and X :~z c~ to denote that X 
generates c~ as a prefix. Thus P(X :~t. ~) and P(X  ::~n o~) are 
the probabilities associated with those events. 

To compute the total expectation c(wlX),  then, we have 
to sum over all these choices: the production used (weighted 
by the rule probabilities), and for each nonterminal rule the 
three cases above. This gives 

c (wlx)  = P ( x  -~ w) 
+ E P ( X ~ Y Z )  

X-+ Y Z ( c(w[Y) + ~(~lz)  

n--1 

+ P(Y :;R 
j=l  

\ 

P ( Z  ::~L w j + , . . ,  wn))  
J 

(3) 
In the important special case of bigrams, this summation 

simplifies quite a bit, since the terminal productions are ruled 
out and splitting into prefix and suffix allows but one possi- 
bility: 

c(wlw21X) = E P ( X  ~ Y Z )  
X--~  Y Z 

C(WlW2IY) q- C ( W l W 2 I Z )  

\ 

+ P ( Y  ---~t~ w , ) P ( Z  :~L w2)) 

(4) 
For unigrams equation (3) simplifies even more: 

C(WllX) = P(X --+ wl) 

+ ~_, P ( X - + Y Z ) ( c ( w ' I Y ) + c ( w 1 I Z ) )  
X--+YZ 

(5) 
We now have a recursive specification of the quantities 

c(wlX ) we need to compute. Alas, the recursion does not 
necessarily bottom out, since the c(wlY) and c(wlZ) quanti- 
ties on the right side of equation (3) may depend themselves 
on c(wlX). Fortunately, the recurrence is linear, so for each 
string w, we can find the solution by solving the linear system 
formed by all equations of type (3). Notice there are exactly 
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as many equations as variables, equal to the number of non- 
terminals in the grammar. The solution of these systems is 
further discussed below. 

Computing prefix and suffix probabilities 

The only substantial problem left at this point is the com- 
putation of the constants in equation (3). These are derived 
from the rule probabilities P(X ~ w) and P(X --+ YZ), 
as well as the prefix/suffix generation probabilities P(Y =~R 
wl ... wj) and P(Z =~z wj+l ... w,~). 

The computation of prefix probabilities for SCFGs is gen- 
erally useful for applications, and has been solved with 
the LRI algorithm (Jelinek and Lafferty, 1991). Recently, 
Stolcke (1993) has shown how to perform this computation 
efficiently for sparsely parameterized SCFGs using a proba- 
bilistic version of Earley's parser (Earley, 1970). Computing 
suffix probabilities is obviously a symmetrical task; for ex- 
ample, one could create a 'mirrored' SCFG (reversing the 
order of right-hand side symbols in all productions) and then 
run any prefix probability computation on that mirror gram- 
mar. 

Note that in the case of bigrams, only a particularly simple 
form of prefix/suffix probabilities are required, namely, the 
'left-corner' and 'right-corner' probabilities, P(X ~ z  wl) 
and P(Y ~ R w2), which can each be obtained from a single 
matrix inversion (Jelinek and Lafferty, 1991). 

It should be mentioned that there are some technical con- 
ditions that have to be met for a SCFG to be well-defined 
and consistent (Booth and Thompson, 1973). These condi- 
tion are also sufficient to guarantee that the linear equations 
given by (3) have positive probabilities as solutions. The 
details of this are discussed in the Appendix. 

Finally, it is interesting to compare the relative ease with 
which one can solve the substring expectation problem to the 
seemingly similar problem of finding substringprobabilities: 
the probability that X generates (one or more instances of) 
w. The latter problem is studied by Corazza et al. (1991), 
and shown to lead to a non-linear system of equations. The 
crucial difference here is that expectations are additive with 
respect to the cases in Figure 1, whereas the corresponding 
probabilities are not, since the three cases can occur simul- 
taneously. 

E F F I C I E N C Y  A N D  C O M P L E X I T Y  I S S U E S  

Summarizing from the previous section, we can compute 
any n-gram probability by solving two linear systems of 
equations of the form (3), one with w being the n-gram itself 
and one for the (n - 1)-gram prefix wl ... wn-1. The latter 
computation can be shared among all n-grams with the same 
prefix, so that essentially one system needs to be solved for 
each n-gram we are interested in. The good news here is that 
the work required is linear in the number of n-grams, and 
correspondingly limited if one needs probabilities for only 
a subset of the possible n-grams. For example, one could 
compute these probabilities on demand and cache the results. 

Let us examine these systems of equations one more time. 

Each can be written in matrix notation in the form 

(I - A)c = b (6) 

where I is the identity matrix, A = (axu) is a coefficient 
matrix, b = (bx) is the right-hand side vector, and c rep- 
resents the vector of unknowns, c(wlX ). All of these are 
indexed by nonterminals X, U. 

We get 

axu = Z P(X-+ YZ)(6(Y,U)+6(Z,U))(7) 
X--+ Y Z  

bx = P(X ~ w) 

+ Z P(X--4 YZ) 
X--+ Y Z  

n-1 

~ P(Y :~R wl .. .wj) 
j=l  

P(Z ~L  W j + l , . .  'OJn) (8) 

where 6(X, Y) = 1 i f X  = Y, and 0 otherwise. The 
expression I - A arises from bringing the variables c(wlY ) 
and c(wlZ ) to the other side in equation (3) in order to collect 
the coefficients. 

We can see that all dependencies on the particular bigram, 
w, are in the right-hand side vector b, while the coefficient 
matrix I - A depends only on the grammar. This, together 
with the standard method of LU decomposition (see, e.g., 
Press et al. (1988)) enables us to solve for each bigram in 
time O(N2), rather than the standard O(N 3) for a full sys- 
tem (N being the number of nonterminals/variables). The 
LU decomposition itself is cubic, but is incurred only once. 
The full computation is therefore dominated by the quadratic 
effort of solving the system for each n-gram. Furthermore, 
the quadratic cost is a worst-case figure that would be in- 
curred only if the grammar contained every possible rule; 
empirically we have found this computation to be linear in the 
number of nonterminals, for grammars that are sparse, i.e., 
where each nonterminal makes reference only to a bounded 
number of other nonterminals. 

S U M M A R Y  

Listed below are the steps of the complete computation. For 
concreteness we give the version specific to bigrams (n = 2). 

1. Compute the prefix (left-corner) and suffix (right- 
corner) probabilities for each (nonterminal,word) pair. 

2. Compute the coefficient matrix and right-hand sides for 
the systems of linear equations, as per equations (4) 
and (5). 

3. LU decompose the coefficient matrix. 

4. Compute the unigram expectations for each word in the 
grammar, by solving the LU system for the unigram 
right-hand sides computed in step 2. 

5. Compute the bigram expectations for each word pair by 
solving the LU system for the bigram right-hand sides 
computed in step 2. 
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. Compute each bigram probability P (w2 ]wl ), by divid- 
ing the bigram expectation c(wlw2[S) by the unigram 
expectation C(Wl IS). 

EXPERIMENTS 
The algorithm described here has been implemented, and 
is being used to generate bigrams for a speech recognizer 
that is part of the BeRP spoken-language system (Jurafsky 
et al., 1994). An early prototype of BeRP was used in an 
experiment to assess the benefit of using bigram probabili- 
ties obtained through SCFGs versus estimating them directly 
from the available training corpus. 4 The system's domain are 
inquiries about restaurants in the city of Berkeley. The train- 
ing corpus used had only 2500 sentences, with an average 
length of about 4.8 words/sentence. 

Our experiments made use of a context-free grammar 
hand-written for the BeRP domain. With 1200 rules and 
a vocabulary of 1 I00 words, this grammar was able to parse 
60% of the training corpus. Computing the bigram proba- 
bilities from this SCFG takes about 24 hours on a SPARC- 
station 2-class machine. 5 

In experiment 1, the recognizer used bigrams that were 
estimated directly from the training corpus, without any 
smoothing, resulting in a word error rate of 35.1%. In ex- 
periment 2, a different set of bigram probabilities was used, 
computed from the context-free grammar, whose probabil- 
ities had previously been estimated from the same training 
corpus, using standard EM techniques. This resulted in a 
word error rate of 35.3%. This may seem surprisingly good 
given the low coverage of the underlying CFGs, but notice 
that the conversion into bigrams is bound to result in a less 
constraining language model, effectively increasing cover- 
age. 

Finally, in experiment 3, the bigrams generated from the 
SCFG were augmented by those from the raw training data, 
in a proportion of 200,000 : 2500. We have not attempted to 
optimize this mixture proportion, e.g., by deleted interpola- 
tion (Jelinek and Mercer, 1980). 6 With the bigram estimates 
thus obtained, the word error rate dropped to 33.5%. (All 
error rates were measured on a separate test corpus.) 

The experiment therefore supports our earlier argument 
that more sophisticated language models, even if far from 
perfect, can improve n-gram estimates obtained directly 
from sample data. 

4Corpus and grammar sizes, as well as the recognition per- 
formance figures reported here are not up-to-date with respect to 
the latest version of BeRP. For ACL-94 we expect to have revised 
results available that reflect the current performance of the system. 

5Unlike the rest of BeRP, this computation is implemented in 
Lisp/CLOS and could be speeded up considerably if necessary. 

6This proportion comes about because in the original system, 
predating the method described in this paper, bigrams had to be 
estimated from the SCFG by random sampling. Generating 200,000 
sentence samples was found to give good converging estimates for 
the bigrams. The bigrams from the raw training sentences were then 
simply added to the randomly generated ones. We later verified that 
the bigrams estimated from the SCFG were indeed identical to the 
ones computed directly using the method described here. 

CONCLUSIONS 
We. have described an algorithm to compute in closed form 
the distribution of n-grams for a probabilistic language 
given by a stochastic context-free grammar. Our method 
is based on computing substring expectations, which can be 
expressed as systems of linear equations derived from the 
grammar. The algorithm was used successfully and found 
to be practical in dealing with context-free grammars and 
bigram models for a medium-scale speech recognition task, 
where it helped to improve bigram estimates obtained from 
relatively small amounts of data. 

Deriving n-gram probabilities from more sophisticated 
language models appears to be a generally useful technique 
which can both improve upon direct estimation of n-grams, 
and allow available higher-level linguistic knowledge to be 
effectively integrated into the speech decoding task. 
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C 

This leads to 

APPENDIX: CONSISTENCY OF SCFGS 
Blindly applying the n-gram algorithm (and many others) 
to a SCFG with arbitrary probabilities can lead to surprising 
results. Consider the following simple grammar 

S-~ z Iv] 
S ---r S S  [ q =  l - p ]  (9) 

What is the expected frequency of unigram x? Using the 
abbreviation c = c(X]S) and equation 5, we see that 

P ( S  --4 z) + P ( S  ~ SS)(c  + c) 

p + 2qe 

P - P (10)  
c - -  1 - 2 q  2 p -  1 

Now, for p = 0.5 this becomes infinity, and for probabilities 
p < 0.5, the solution is negative! This is a rather striking 
manifestation of the failure of this grammar, for p < 0.5, 
to be consistent. A grammar is said to be inconsistent if 
the underlying stochastic derivation process has non-zero 
probability of not terminating (Booth and Thompson, 1973). 
The expected length of the generated strings should therefore 
be infinite in this case. 

Fortunately, Booth and Thompson derive a criterion for 
checking the consistency of a SCFG: Find the first-order ex- 
pectancy matrix E = (exy) ,  where e x y  is the expected 
number of occurrences of nonterminal Y in a one-step ex- 
pansion of nonterminal X, and make sure its powers E k 
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converge to 0 as k ~ oe. If so, the grammar is consistent, 
otherwise it is not]  

For the grammar in (9), E is the 1 x 1 matrix (2q). Thus 
we can confirm our earlier observation by noting that (2q) k 
converges to 0 iff q < 0.5, or p > 0.5. 

Now, it so happens that E is identical to the matrix A that 
occurs in the linear equations (6) for the n-gram computation. 
The actual coefficient matrix is I - A, and its inverse, if it 
exists, can be written as the geometric sum 

( I - A )  -~ = I + A + A 2 + A  3 + . . .  

This series converges precisely if A k converges to 0. We 
have thus shown that the existence of a solution for the n- 
gram problem is equivalent to the consistency of the grammar 
in question. Furthermore, the solution vector c = (I - 
A ) - l b  will always consist of non-negative numbers: it is 
the sum and product of the non-negative values given by 
equations (7) and (8). 
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