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1. I N T R O D U C T I O N  

Gemini is a natural  language (NL) under- 
standing system developed for spoken language 
applications. This paper describes the details of 
the system, and includes relevant measurements 
of size, efficiency, and performance of each of its 
components. 

In designing any NL understanding system, 
there is a tension between robustness and correct- 
ness. Forgiving an error risks throwing away cru- 
cial information; furthermore, devices added to a 
system to enhance robustness can sometimes en- 
rich the ways of finding an analysis, multiplying 
the number of analyses for a given input, and mak- 
ing it more difficult to find the correct analysis. In 
processing spoken language this tension is height- 
ened because the task of speech recognition in- 
troduces a new source of error. The robust sys- 
tem will a t tempt  to find a sensible interpretation, 
even in the presence of performance errors by the 
speaker, or recognition errors by the speech rec- 
ognizer. On the other hand, a system should be 
able to detect tha t  a recognized string is not a sen- 
tence of English, to help filter recognition errors by 
the speech recognizer. Furthermore,  if parsing and 
recognition are interleaved, then the parser should 
enforce constraints on partial  utterances. 

The approach taken in Gemini is to con- 
strain language recognition with fairly conven- 
tional grammar,  but  to augment that  grammar 
with two orthogonal rule-based recognition mod- 
ules, one for glueing together the fragments found 
during the conventional grammar parsing phase, 
and another for recognizing and eliminating dis- 
fluencies known as "repairs." At the same time, 
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the multiple analyses arising before and after all 
this added robustness are managed in two ways: 
first, by highly constraining the additional rule- 
based modules by parti t ioning the rules into pref- 
erence classes, and second, through the addition 
of a postprocessing parse preference component.  

Processing starts in Gemini when syntac- 
tic, semantic, and lexical rules are applied by a 
bot tom-up all-paths consti tuent parser to populate 
a chart with edges containing syntactic, seman- 
tic, and logical form information. Then,  a second 
utterance parser is used to apply a second set of 
syntactic and semantic rules that  are required to 
span the entire utterance. If no semantically ac- 
ceptable utterance-spanning edges are found dur- 
ing this phase, a component to recognize and cor- 
rect certain grammatical  disfluencies is applied. 
When an acceptable interpretation is found, a set 
of parse preferences is used to choose a single best 
interpretation from the chart to be used for sub- 
sequent processing. Quantifier scoping rules are 
applied to this best interpretation to produce the 
final logical form, which is then used as input to 
a query-answering system. The following sections 
describe each of these components in detail, with 
the exception of the query-answering subsystem, 
which is not described in this paper. 

In our component-by-component view of 
Gemini, we provide detailed statistics on each 
component 's  size, speed, coverage, and accuracy. 
These numbers detail our performance on the sub- 
domain of air-travel planning that  is currently be- 
ing used by the ARPA spoken language under- 
standing community (MADCOW, 1992). Gem- 
ini was trained on a 5875-utterance dataset from 
this domain, with another 688 utterances used as 
a blind test (not explicitly trained on, but  run 
nmltiple times) to monitor our performance on a 
dataset on which we did not train. We also report 
here our results on another 756-utterance fair test 
set that  we ran only once. Table 1 contains a sum- 
mary of the coverage of the various components on 
both the training and fair test sets. More detailed 
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explanations of these numbers are given in the rel- 
evant sections. 

Training Test 
Lexicon 99.1% 95.9% 
Syntax 94.2% 90.9% 
Semantics 87.4% 83.7% 
Syntax (repair correction) 96.0% 93.1% 
Semantics (repair correction) 89.1% 86.0% 

Table 1: Domain Coverage by Component 

2. S Y S T E M  D E S C R I P T I O N  

Gemini maintains a firm separation between 
the language- and domain-specific portions of the 
system, and the underlying infrastructure and ex- 
ecution strategies. The Gemini kernel consists of 
a set of compilers to interpret the high-level lan- 
guages in which the lexicon and syntactic and se- 
mantic grammar rules are written, as well as the 
parser, semantic interpretation, quantifier scop- 
ing, repair correction mechanisms, and all other 
aspects of Gemini that are not specific to a lan- 
guage or domain. Although this paper describes 
the lexicon, grammar, and semantics of English, 
Gemini has also been used in a Japanese spo- 
ken language understanding system (Kameyama, 
1992). 

2.1. G r a m m a r  F o r m a l i s m  

Gemini includes a midsized constituent gram- 
mar of English (described in section 2.3), a small 
utterance grammar for assembling constituents 
into utterances (described in section 2.7), and a 
lexicon. All three are written in a variant of the 
unification formalism used in the Core Language 
Engine (Alshawi, 1992) . 

The basic building block of the grammar for- 
malism is a category with feature constraints. 
Here is an example: 

np: [wh=ynq, case= (nomVacc), 
pers_num= (3rdAsg) ] 

This category can be instantiated by any noun 
phrase with the value ynq for its wh feature (which 
means it must be a wh-bearing noun phrase like 
which book, who, or whose mother), either ace (ac- 
cusative) or nora (nominative) for its case feature, 
and the conjunctive value 3rdAsg (third and sin- 
gular) for its person-number feature. This for- 
malism is related directly to the Core Language 
Engine, but more conceptually it is closely re- 
lated to that of other unification-based grammar 
formalisms with a context-free skeleton, such as 
PATR-II (Shieber et al., 1983), Categorial Uni- 
fication Grammar (Uszkoreit, 1986), Generalized 
Phrase-Structure Grammar (Gazdar et al., 1982), 

and Lexical Functional Grammar (Bresnan, 1982). 

Gemini differs from other unification for- 
malisms in the following ways. Since many of 
the most interesting issues regarding the formal- 
ism concern typing, we defer discussing motivation 
until section 2.5. 

Gemini uses typed unification. Each category 
has a set of features declared for it. Each fea- 
ture has a declared value space of possible values 
(value spaces may be shared by different fea- 
tures). Feature structures in Gemini can be re- 
cursive, but only by having categories in their 
value space; so typing is also recursive. Typed 
feature structures are also used in HPSG (Pol- 
lard and Sag, in press). One important differ- 
ence with the use in Gemini is that Gemini has 
no type inheritance. 

Some approaches do not assume a syntactic 
skeleton of category-introducing rules (for ex- 
ample, Functional Unification Grammar (Kay, 
1979)). Some make such rules implicit (for 
example, the various categorial unification ap- 
proaches, such as Unification Categorial Gram- 
mar (Zeevat, Klein, and Calder, 1987)). 

Even when a syntactic skeleton is assumed, 
some approaches do not distinguish the category 
of a constituent (for example, rip, vp) from its 
other features (for example, pers_aum, gapsin, 
gapsout). Thus, for example, in one version of 
GPSG, categories were simply feature bundles 
(attribute value structures) and there was a fea- 
ture l~hJ taking values like N,V,A, and P which 
determined the major category of constituent. 

• Gemini does not allow rules schematizing over 
syntactic categories. 

2.2. L e x i c o n  

The Gemini lexicon uses the same category 
notation as the Gemini syntactic rules. Lexical 
categories are types as well, with sets of features 
defined for them. The lexical component of Gem- 
ini includes the lexicon of base forms, lexical tem- 
plates, morphological rules, and the lexical type 
and feature default specifications. 

The Gemini lexicon used for the air-travel 
planning domain contains 1,315 base entries. 
These expand by morphological rules to 2,019. In 
the 5875-utterance training set, 52 sentences con- 
tained unknown words (0.9%), compared to 31 
sentences in the 756-utterance fair test set (4.1%). 

2.3. C o n s t i t u e n t  G r a m m a r  

A simplified example of a syntactic rule is 
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syn (whq_ynq_slash_np, 
[ s: [sentence_type=whq, form=tnsd, 

gapsin=G, gapsout=G], 
np: [wh=ynq, pers_num=N] , 
s : [sentence_type=ynq, form=tnsd, 

gapsin=np: [pets_hum=N], 
gapsout =null] ] ). 

This syntax rule (named whq_ynq..$1ash..np) 
says that  a sentence (category s) can be built by 
finding a noun phrase (category np) followed by a 
sentence. It requires that  the daughter np have the 
value ynq for its wh feature and that  it have the 
value 1~ (a variable) for its pe r son-number  feature. 
It requires that  the daughter sentence have a cat- 
egory value for its g a p s i n  feature, namely an np 
with a person number value N, which is the same as 
the person number value on the wh-bearing noun 
phrase. The interpretation of the entire rule is 
that  a gapless sentence with sentence_type whq 
can be built by finding a wh-phrase followed by a 
sentence with a noun phrase gap in it that  has the 
same person number as the wh-phrase. 

Semantic rules are written in much the same 
rule format,  except tha t  in a semantic rule, each of 
the constituents mentioned in the phrase structure 
skeleton is associated with a logical form. Thus, 
the semantics for the rule above is 

s em (whq_ynq_slash_np, 
[( [ , h q ,  S] ,  s : ['1 ) ,  
(Np, np: [ ] ) ,  
(S,  s : [gaps in=np:  [gapsem=Np] ] )] ) .  

Here the semantics of the mother  s is just  the 
semantics of the daughter s with the illocution- 
ary force marker whq wrapped around it. In addi- 
tion, the semantics of the s gap's np's gapsem has 
been unified with the semantics of the wh-phrase. 
Through a succession of unifications this will end 
up assigning the wh-phrase's semantics to the gap 
position in the argument structure of the s. Al- 
though each semantic rule must be keyed to a pre- 
existing syntactic rule, there is no assumption of 
rule-to-rule uniqueness. Any number of semantic 
rules may be written for a single syntactic rule. 
We discuss some further details of the semantics 
in section 2.6 

The constituent grammar used in Gemini con- 
tains 243 syntactic rules, and 315 semantic rules. 
Syntactic coverage on the 5875-utterance training 
set was 94.2%, and on the 756-utterance test set 
it was 90.9%. 

2 .4 .  P a r s e r  

Since Gemini was designed with spoken lan- 
guage interpretation in mind, key aspects of the 
Gemini parser are motivated by the increased 
needs for robustness and efficiency that  charac- 
terize spoken language. Gemini uses essentially 

a pure bot tom-up chart parser, with some limited 
left-context constraints applied to control creation 
of categories containing syntactic gaps. 

Some key properties of the parser are 

• The parser is all-paths bot tom-up,  so that  all 
possible edges admissible by the grammar are 
found. 

• The parser uses subsumption checking to reduce 
the size of the chart. Essentially, an edge is not 
added to the chart if it is less general than a 
preexisting edge, and preexisting edges are re- 
moved from the chart if the new edge is more 
general. 

• The parser is on-line (Graham, Harrison, and 
Russo, 1980), essentially meaning that  all edges 
that  end at position i are constructed before 
any that  end at position i + 1. This feature is 
particularly desirable if the final architecture of 
the speech understanding system couples Gem- 
ini tightly with the speech recognizer, since it 
guarantees for any partial recognition input that  
all possible constituents will be built. 

An important  feature of the parser is the 
mechanism used to constrain the construction of 
categories containing syntactic gaps. In earlier 
work (Moore and Dowding, 1991), we showed that  
approximately 80% of the edges built in an all- 
paths bot tom-up parser contained gaps, and that  
it is possible to use prediction in a bot tom-up 
parser only to constrain the gap categories, with- 
out requiring prediction for nongapped categories. 
This limited form of left-context constraint greatly 
reduces the total number of edges built for a very 
low overhead. In the 5875-utterance training set, 
the chart for the average sentence contained 313 
edges, but  only 23 predictions. 

2 .5 .  T y p i n g  

The main advantage of typed unification is for 
grammar development. The type information on 
features allows the lexicon, grammar,  and seman- 
tics compilers to provide detailed error analysis re- 
garding the flow of values through the grammar,  
and to warn if features are assigned improper val- 
ues, or variables of incompatible types are unified. 
Since the type-analysis is performed statically at 
compile time, there is no run-time overhead asso- 
ciated with adding types to the grammar.  

The major grammatical  category plays a spe- 
cial role in the typing scheme of Gemini. For each 
category, Gemini makes a set of declarations stipu- 
lating its allowable features and the relevant value 
spaces. Thus, the distinction between the syntac- 
tic category of a constituent and its other features 
can be cashed out as follows: the syntactic cat- 
egory can be thought of as the feature structure 
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type. The only other types needed by Gemini are 
the value spaces used by features. Thus for ex- 
ample, the type v (verb) admits a feature vforra, 
whose value space v fo r r a - t ypes  call be instanti- 
ated with values like present participle, finite, and 
past participle. Since all recursive features are 
category-valued, these two kinds of types suffice. 

2 .6 .  I n t e r l e a v i n g  S y n t a c t i c  a n d  Se -  
m a n t i c  I n f o r m a t i o n  

S o r t a l  C o n s t r a i n t s  Selectional restrictions 
are imposed in Gemini through the sorts mecha- 
nism. Selectional restrictions include both highly 
domain-specific information about predicate- 
argument and very general predicate restrictions. 
For example, in our application the object of 
the transitive verb depart (as in flights departing 
Boston) is restricted to be an airport or a city, 
obviously a domain-specific requirement. But the 
same machinery also restricts a determiner like all 
to take two propositions, and an adjective like fur- 
ther to take distances as its measure-specifier (as 
in thirty miles further). In fact, sortal constraints 
are assigned to every atomic predicate and opera- 
tor appearing in the logical forms constructed by 
the semantic rules. 

Sorts are located in a conceptual hierarchy 
and are implemented as Prolog terms such that  
more general sorts subsume more specific sorts 
(Mellish, 1988). This allows the subsumption 
checking and packing in the parser to share struc- 
ture whenever possible. Semantic coverage with 
sortal constraints applied was 87.4% on the train- 
ing set, and on the test set it was 83.7%. 

I n t e r l e a v i n g  S e m a n t i c s  w i t h  P a r s i n g  In 
Gemini, syntactic and semantic processing is fully 
interleaved. Building an edge requires that syntac- 
tic constraints be applied, which results in a tree 
structure, to which semantic rules can be applied, 
which results in a logical form to which sortal con- 
traints can be applied. Only if the syntactic edge 
leads to a well-sorted semantically-acceptable log- 
ical form fragment is it added to the chart. 

Interleaving the syntax and semantics in this 
way depends on a crucial property of the seman- 
tics: a semantic interpretation is available for each 
syntactic node. This is guaranteed by the seman- 
tic rule formalism and by the fact that every lexical 
i tem has a semantics associated with it. 

Table 2 contains average edge counts and 
parse timing statistics 1 for the 5875-utterance 
training set. 

1Gemini is implemented primarily in Quintus Pro- 
log version 3.1.1. All timing numbers given in this 
paper were run on a lightly loaded Sun SPARCsta- 
tion 2 with at least 48 MB of memory. Under normal 
conditions, Gemini runs in under 12 MB of memory. 

Edges Time 
Syntax only 197 3.4 sec. 
Syntax -t- semantics 234 4.47 sec. 
Syntax q- semantics ÷ sorts 313 13.5 sec. 

Table 2: Average Number of Edges Built by In- 
terleaved Processing 

2 .7 .  U t t e r a n c e  P a r s i n g  

The constituent parser uses the constituent 
grammar to build all possible categories bottom- 
up, independent of location within the string. 
Thus, the constituent parser does not force any 
constituent to occur either at the beginning of 
the utterance, or at the end. Those constraints 
are stated in what we call the utterance grammar. 
They are applied after constituent parsing is com- 
plete by the utterance parser. The utterance gram- 
mar specifies ways of combining the categories 
found by the constituent parser into an analysis 
of the complete utterance. It is at this point that 
the system recognizes whether the sentence was 
a simple complete sentence, an isolated sentence 
fragment, a run-on sentence, or a sequence of re- 
lated fragments. 

Many systems (Carbonell and Hayes, 1983), 
(Hobbs et al., 1992), (Seneff, 1992), (Stallard and 
Bobrow, 1992) have added robustness with a sim- 
ilar postprocessing phase. The approach taken 
in Gemini differs in that  the utterance grammar 
uses the same syntactic and semantic rule for- 
malism used by the constituent grammar.  Thus, 
the same kinds of logical forms built during con- 
sti tuent parsing are the output  of utterance pars- 
ing, with the same sortal constraints enforced. For 
example, an utterance consisting of a sequence 
of modifier fragments (like on Tuesday at three 
o'clock on United) is interpreted as a conjoined 
property of a flight, because the only sort of thing 
in the ATIS domain that  can be on Tuesday at 
three o'clock on United is a flight. 

The  utterance parser partitions the utterance 
grammar into equivalence classes and considers 
each class according to an ordering. Utterance 
parsing terminates when all constituents satisfy- 
ing the rules of the current equivalence class are 
built, unless there are none, in which case the next 
class is considered. The highest ranked class con- 
sists of rules to identify simple complete sentences, 
the next highest class consists of rules to iden- 
tify simple isolated sentence fragments, and so on. 
Thus, the utterance parser allows us to enforce a 
very coarse form of parse preferences (for exam- 
ple, prefering complete sentences to sentence frag- 
ments). These coarse preferences could also be 
enforced by the parse preference component de- 
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scribed in section 2.9, but for the sake of efficiency 
we choose to enforce them here. 

The utterance grammar is significantly 
smaller than the constituent grammar - only 37 
syntactic rules and 43 semantic rules. 

2.8.  R e p a i r s  

Grammatical disfluencies occur frequently in 
spontaneous spoken language. We have imple- 
mented a component to detect and correct a large 
subclass of these disfluencies (called repairs, or 
self-corrections) where the speaker intends that 
the meaning of the utterance be gotten by deleting 
one or more words. Often, the speaker gives clues 
of their intention by repeating words or adding cue 
words that signal the repair: 

(1) a. How many American airline flights leave 
Denver on June June tenth. 

b. Can you give me information on all the 
flights from San Francisco no from Pitts- 
burgh to San Francisco on Monday. 

The mechanism used in Gemini to detect and 
correct repairs is currently applied as a fallback if 
no semantically acceptable interpretation is found 
for the complete utterance. The mechanism finds 
sequences of identical or related words, possibly 
separated by a cue word (for example, oh or no) 
that might indicate the presence of a repair, and 
deletes the first occurrence of the matching por- 
tion. Since there may be several such sequences of 
possible repairs in the utterance, the mechanism 
produces a ranked set of candidate corrected ut- 
terances. These candidates are ranked in order 
of the fewest deleted words. The first candidate 
that can be given an interpretation is accepted as 
the intended meaning of the utterance. This ap- 
proach is presented in detail in (Bear, Dowding, 
and Shriberg, 1992). 

The repair correction mechanism helps in- 
crease the syntactic and semantic coverage of 
Gemini (as reported in Table 1). In the 5875- 
utterance training set, 178 sentences contained 
nontrivial repairs 2, of which Gemini found 89 
(50%). Of the sentences Gemini corrected, 81 were 
analyzed correctly (91%), and 8 contained repairs 
but were corrected wrongly. Similarly, the 756- 
utterance test set contained 26 repairs, of which 
Gemini found 11 (42%). Of those 11, 8 were ana- 
lyzed correctly (77%), and 3 were analyzed incor- 
rectly. 

Since Gemini's approach is to extend lan- 
guage analysis to recognize specific patterns char- 
acteristic of spoken language, it is important for 

2For these results, we ignored repairs consisting of 
only an isolate fragment word, or sentence-initial filler 
words like "yes" and "okay". 

components like repair correction (which provide 
the powerful capability of deleting words) not to 
be applied in circumstances where no repair is 
present. In the 5875-utterance training set, Gem- 
ini misidentified only 15 sentences (0.25%) as con- 
taining repairs when they did not. In the 756- 
utterance test set, only 2 sentences were misiden- 
tiffed as containing repairs (0.26%). 

While the repair correction component cur- 
rently used in Gemini does not make use of acous- 
tic/prosodic information, it is clear that acoustics 
can contribute meaningful cues to repair. In fu- 
ture work, we hope to improve the performance of 
our repair correction component by incorporating 
acoustic/prosodic techniques for repair detection 
(Bear, Dowding, and Shriberg, 1992) (Nakatani 
and Hirschberg, 1993) (O'Shaughnessy, 1992). 

A central question about the repairs module 
concerns its role in a tightly integrated system in 
which the NL component filters speech recognition 
hypotheses. The open question: should the repairs 
module be part of the recognizer filter or should 
it continue to be a post-processing component? 
The argument for including it in the filter is that 
without a repairs module, the NL system rejects 
many sentences with repairs, and will thus dispre- 
fer essentially correct recognizer hypotheses. The 
argument against including it is efficiency and the 
concern that with recognizer errors present, the 
repair module's precision may suffer: it may at- 
tempt to repair sentences with no repair in them. 
Our current best guess is that recognizer errors 
are essentially orthogonal to repairs and that a 
filter including the repairs module will not suffer 
from precision problems. But we have not yet per- 
formed the experiments to decide this. 

2.9. P a r s e  P r e f e r e n c e  M e c h a n i s m  

In Gemini, parse preferences are enforced 
when extracting syntactically and semantically 
well-formed parse trees from the chart. In this 
respect, our approach differs from many other 
approaches to the problem of parse preferences, 
which make their preference decisions as pars- 
ing progresses, pruning subsequent parsing paths 
(Frazier and Fodor, 1978), (Hobbs and Bear, 
1990), (Marcus 1980). Applying parse prefer- 
ences requires comparing two subtrees spanning 
the same portion of the utterance. 

The parse preference mechanism begins with 
a simple strategy to disprefer parse trees contain- 
ing specific "marked" syntax rules. As an example 
of a dispreferred rule, consider: Book those three 
flights to Boston. This sentence has a parse on 
which those three is a noun phrase with a miss- 
ing head (consider a continuation of the discourse 
Three of our clients have sufficient credit). After 
penalizing such dispreferred parses, the preference 
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mechanism applies attachment heuristics based on 
the work by Pereira (1985) and Shieber (1983) 

Pereira's paper shows how the heuristics of 
Minimal Attachment and Right Association (Kim- 
ball, 1973) can both be implemented using a 
bottom-up shift-reduce parser. 

(2)(a) John sang a song for Mary. 
(b) John canceled the room Mary reserved yes- 

terday. 

Minimal Attachment selects for the tree with the 
fewest nodes, so in (2a), the parse that makes for 
Mary a complement of sings is preferred. Right 
Association selects for the tree that incorporates 
a constituent A into the rightmost possible con- 
stituent (where rightmost here means beginning 
the furthest to the right). Thus, in (2b) the parse 
in which yesterday modifies reserved is preferred. 

The problem with these heuristics is that 
when they are formulated loosely, as in the pre- 
vious paragraph, they appear to conflict. In par- 
ticular, in (2a), Right Association seems to call for 
the parse that makes for Mary a modifier of song. 

Pereira's goal is to show how a shift-reduce 
parser can enforce both heuristics without conflict 
and enforce the desired preferences for examples 
like (2a) and (2b). He argues that Minimal At- 
tachment and Right Association can be enforced in 
the desired way by adopting the following heuris- 
tics for resolving conflicts: 

1. Right Association: In a shift-reduce conflict, 
prefer shifts to reduces. 

2. Minimal Attachment: In a reduce-reduce con- 
flict, prefer longer reduces to shorter reduces. 

Since these two principles never apply to the same 
choice, they never conflict. 

For purposes of invoking Pereira's heuristics, 
the derivation of a parse can be represented as the 
sequence of S's (Shift) and R's (Reduce) needed to 
construct the parse's unlabeled bracketing. Con- 
sider, for example, the choice between two unla- 
beled bracketings of (2a): 

(a) [John [sang [a song ] [for Mary ] ] ] 
S S S S R S S RRR 

(b) [John [sang [[a song] [for Mary ]] ]] 
S S S S R S S RRRR 

There is a shift for each word and a reduce for 
each right bracket. Comparison of the two parses 
consists simply of pairing the moves in the shift- 
reduce derivation from left to right. Any parse 
making a shift move that corresponds to a reduce 
move loses by Right Association. Any parse mak- 
ing a reduce move that corresponds to a longer 
reduce loses by Minimal Attachment. In deriva- 
tion (b) above, the third reduce move builds the 

constituent a song for Mary from two constituents, 
while the corresponding reduce in (a) builds sang 
a song for Mary from three constituents. Parse 
(b) thus loses by Minimal Attachment. 

Questions about the exact nature of parse 
preferences (and thus about the empirical ade- 
quacy of Pereira's proposal) still remain open, but 
the mechanism sketched does provide plausible re- 
sults for a number of examples. 

2.10. S c o p i n g  

The final logical form produced by Gemini 
is the result of applying a set of quantifier scop- 
ing rules to the best interpretation chosen by the 
parse preference mechanism. The semantic rules 
build quasi-logical forms, which contain complete 
semantic predicate-argument structure, but do not 
specify quantifier scoping. The scoping algorithm 
that we use combines syntactic and semantic in- 
formation with a set of quantifier scoping prefer- 
ence rules to rank the possible scoped logical forms 
consistent with the quasi-logical form selected by 
parse preferences. This algorithm is described in 
detail in (Moran, 1988). 

3. C O N C L U S I O N  

In our approach to resolving the tension be- 
tween overgeneration and robustness in a spoken 
language understanding system, some aspects of 
Gemini are specifically oriented towards limiting 
overgeneration, such as the on-line property for 
the parser, and fully interleaved syntactic and se- 
mantic processing. Other components, such as the 
fragment and run-on processing provided by the 
utterance grammar, and the correction of recog- 
nizable grammatical repairs, increase the robust- 
ness of Gemini. We believe a robust system can 
still recognize and disprefer utterances containing 
recognition errors. 

Research in the construction of the Gemini 
system is ongoing to improve Gemini's speed and 
coverage, as well as to examine deeper integration 
strategies with speech recognition, and integration 
of prosodic information into spoken !anguage dis- 
ambiguation. 

R E F E R E N C E S  

Alshawi, tI. (ed) (1992). The Core Language En- 
gine, MIT Press, Cambridge. 

Bear, J., Dowding, J., and Shriberg, E. (1992). 
"Integrating Multiple Knowledge Sources for 
the Detection and Correction of Repairs in 
Human-Computer Dialog", in Proceedings of 
the 30lh Annual Meeting of the Association 
for Computational Linguists, Newark, DE,pp. 
56-63. 

59 



Bresnan, ,]. (ed) (1982). The Mental Represen- 
tation of Grammatical Relations, MIT Press, 
Cambridge. 

Carbonell, J., and Hayes, P. (1983). "Recovery 
Strategies for Parsing Extragrammatical Lan- 
guage", American Journal of Computational 
Linguistics, Vol. 9, Numbers 3-4, pp. 123-146. 

Frazier, L., and Fodor, J.D. (1978). "The Sausage 
Machine: A New Two-Stage Parsing Model", 
Cognition, Vol. 6, pp. 291-325. 

Gazdar, G., Klein, E., Pullum, G., and Sag, I. 
(1982). Generalized Phrase Structure Gram- 
mar, Harvard University Press, Cambridge. 

Graham, S., ttarrison, M., and Ruzzo, W. 
(1980). "An Improved Context-Free Recog- 
nizer", ACM Transactions on Programming 
Languages and Systems, Vol. 2, No. 3, pp. 415- 
462. 

Hobbs, J., and Bear, J. (1990). "Two Principles 
of Parse Preference", in Proceedings of the 
13th International Conference on Computa- 
tional Linguistics, Helsinki, Vol. 3, pp. 162- 
167. 

Hobbs, J., Appelt, D., Bear, J., Tyson, M., and 
Magerman, D. (1992). "Robust Processing 
of Real-World Natural-Language Texts", in 
Text Based Intelligent Systems, ed. P. Jacobs, 
Lawrence Erlbaum Associates, Hillsdale, N J, 
pp. 13-33. 

Kameyama, M. (1992). "The Syntax and Seman- 
tics of the Japanese Language Engine", forth- 
coming. In Mazuka, R., and N. Nagai, Eds. 
Japanese Syntactic Processing, Hillsdale, NJ: 
Lawrence Erlbaum Associates. 

Kay, M. (1979). "Functional Grammar", in Pro- 
ceedings of the 5th Annual Meeting of the 
Berkeley Linguistics Society. pp. 142-158. 

Kimball, J. (1973). "Seven Principles of Surface 
Structure Parsing in Natural Language", Cog- 
nition, Vol. 2, No. 1, pp. 15-47. 

MADCOW (1992). "Multi-site Data Collection for 
a Spoken Language Corpus", in Proceedings 
of the DARPA Speech and Natural Language 
Workshop, February 23-26, 1992. 

Marcus, M. (1980). A Theory of Syntactic Recog- 
nition for Natural Language, MIT Press, 
Cambridge. 

Moran, D. (1988). "Quantifier Scoping in the SRI 
Core Language Engine", in Proceedings of the 
26th Annual Meeting of the Association for 
Computational Linguistics, State University 
of New York at Buffalo, Buffalo, NY, pp. 33- 
40. 

Mellish, C. (1988). "Implementing Systemic Clas- 
sification by Unification". Computational Lin- 
guistics Vol. 14, pp. 40-51. 

Moore, R., and Dowding, J. (1991). "Efficient 
Bottom-up Parsing", in Proceedings of the 
DARPA Speech and Natural Language Work- 
shop, February 19-22, 1991, pp. 200-203. 

Nakatani, C., and Hirschberg, J. (1993). "A 
Speech-First Model for Repair Detection and 
Correction", in Proceedings of the ARPA 
Workshop on Human Language Technology, 
March 21-24, 1993, Plainsboro, NJ. 

O'Shaughnessy, D. (1992). "Analysis of False 
Starts in Spontaneous Speech", in Proceed- 
ings of the 1992 International Conference on 
Spoken Language Processing, October 12-16, 
1992, Banff, Alberta, Canada, pp. 931-934. 

Pereira, F. (1985). "A New Characterization of At- 
tachment Preferences", in Natural Language 
Parsing, Ed. by Dowty, D., Karttunen, L., 
and Zwicky, A., Cambridge University Press, 
Cambridge, pp. 307-319. 

Pollard, C., and Sag, I. (in press). Information- 
Based Syntax and Semantics, Vol. 2, CSLI 
Lecture Notes. 

Seneff, S. (1992). "A Relaxation Method for Un- 
derstanding Spontaneous Speech Utterances", 
in Proceedings of the Speech and Natural Lan- 
guage Workshop, Harriman, NY, pp. 299-304. 

Shieber, S. (1983). "Sentence Disambiguation by a 
Shift-Reduce Parsing Technique", in Proceed- 
ings of the 21 Annual Meeting of the Associ- 
ation for Computational Linguistics, Boston, 
Massachusetts, pp. 113-118. 

Shieber, S., Uszkoreit, H., Pereira, F., Robinson, 
J., and Tyson, M. (1983). "The Formalism 
and Implementation of PATR-II", in Grosz, 
B. and Stickel, M. (eds) Research on Interac- 
tive Acquisition and Use of Knowledge, SRI 
International, pp. 39-79. 

Stallard, D., and Bobrow, R. (1992). "Fragment 
Processing in the DELPHI System", in Pro- 
ceedings of the Speech and Natural Language 
Workshop, Harriman, NY, pp. 305-310. 

Uszkoreit, H. (1986). "Categorial Unification 
Grammars", in Proceedings of the 11th Inter- 
national Conference on Computational Lin- 
guistics and the 24th Annual Meeting of the 
Association for Computational Linguistics, 
Institut fur Kummunikkationsforschung und 
Phonetik, Bonn University. 

Zeevat, H., Klein, E., and Calder, J. (1987). "An 
Introduction to Unification Categorial Gram- 
mar", in IIaddock, N., Klein, E., Merrill, G. 

60 



(eds.) Edinburgh Working Papers in Cogni- 
tive Science, Volume 1: Calegorial Grammar, 
Unification Grammar, and Parsing. 

61 




