
USING BRACKETED PARSES TO EVALUATE A GRAMMAR CHECKING
APPLICATION

Richard H. Wojcik, Philip Harrison, John Bremer

Boeing Computer Services Research and Technology Division
P.O. Box 24346, MS 7L--43

Seattle, WA 98124-2964
Internet: rwojcik@boeing.com, pharrison@boeing.com, jbremer@boeing.com

Abstract

We describe a method for evaluating a grammar
checking application with hand-bracketed parses.
A randomly-selected set of sentences was sub-
mitted to a grammar checker in both bracketed and
unbracketed formats. A comparison of the result-
ing error reports illuminates the relationship be-
tween the underlying performance of the parser-
grammar system and the error critiques presented
to the user.

I N T R O D U C T I O N

The recent development of broad-coverage
natural language processing systems has stimu-
lated work on the evaluation of the syntactic com-
ponent of such systems, for purposes of basic eval-
uation and improvement of system performance.
Methods utilizing hand-bracketed corpora (such
as the University of Pennsylvania Treebank) as a
basis for evaluation metrics have been discussed
in Black et al. (1991), Harrison et al. (1991), and
Black et al. (1992). Three metrics discussed in
those works were the Crossing Parenthesis Score
(a count of the number of phrases in the machine
produced parse which cross with one or more
phrases in the hand parse), Recall (the percentage
of phrases in the hand parse that are also in the ma-
chine parse), and Precision (the percentage of
phrases in the machine parse that are in the hand
parse).

We have developed a methodology for using
hand-bracketed parses to examine both the inter-
nal and external performance of a grammar
checker. The internal performance refers to the
behavior of the underlying system--i.e, the toke-
nizer, parser, lexicon, and grammar. The external
performance refers to the error critiques generated

by the system. 1 Our evaluation methodology re-
lies on three separate error reports generated from
a corpus of randomly selected sentences: 1) a
report based on unbracketed sentences, 2) a report
based on optimally bracketed sentences with our
current system, and 3) a report based on the opti-
mal bracketings with the system modified to in-
sure the same coverage as the unbracketed corpus.
The bracketed report from the unmodified system
tells us something about the coverage of our
underlying system in its current state. The brack-
eted report from the modified system tells us
something about the external accuracy of the error
reports presented to the user.

Our underlying system uses a bottom-up, fun-
ambiguity parser. Our error detection method
relies on including grammar rules for parsing
errorful sentences, with error critiques being gen-
erated from the occurrence of an error rule in the
parse. Error critiques are based on just one of all
the possible parse trees that the system can find for
a given sentence. Our major concern about the
underlying system is whether the system has a cor-
rect parse for the sentence in question. We are also
concerned about the accuracy of the selected
parse, but our current methodology does not
directly address that issue, because correct error
reports do not depend on having precisely the cor-
rect parse. Consequently, our evaluation of the
underlying grammatical coverage is based on a
simple metric, namely the parser success rate for
satisfying sentence bracketings (i.e. correct
parses). Either the parser can produce the optimal
parse or it can't.

We have a more complex approach to evaluat-
ing the performance of the system's ability to
detect errors. Here, we need to look at both the

1. We use the term critique to represent an
instance of an error detected. Each sentence may
have zero or more critiques reported for it.

38

overgeneration and undergeneration of individual
error critiques. What is the rate of spurious cri-
tiques, or critiques incorrectly reported, and what
is the rate of missed critiques, or critiques not
reported. Therefore we define two additional met-
rics, which illuminate the spurious and missed cri-
tique rates, respectively:

Precision: the percentage of correct critiques
from the unbracketed corpus.

Recall: the percentage of critiques generated from
an ideal bracketed corpus that are also
present among those in the unbracketed
corpus.

Precision tells us what percentage of reported cri-
tiques are reliable, and Recall tells iJs what per-
centage of correct critiques have been reported
(modulo the coverage).

O V E R V I E W O F T H E A P P L I C A T I O N

The Boeing Simplified English Checker (a.k.a.
the BSEC, cf. Hoard, Wojcik, and Holzhauser
1992) is a type of grammar and style checker, but
it is more accurately described as a 'controlled En-
glish checker' (cf. Adriaens 1992). That is, it re-
ports to users on where a text fails to comply with
the aerospace standard for maintenance documen-
tation known as Simplified English (AECMA
1989). If the system cannot produce a parse, it
prints the message "Can't do SE check." At pres-
ent, the Checker achieves parses for about 90 per-
cent of the input strings submitted to it. 2 The accu-
racy of the error critiques over that 90 percent
varies, but our subjective experience suggests that
most sentence reports contain critiques that are
useful in that they flag some bona fide failure to
comply with Simplified English.

The NLP methodology underlying the BSEC
does not rely on the type of pattern matching tech-
niques used to flag errors in more conventional
checkers. It cannot afford simply to ignore sen-
tences that are too complex to handle. As a con-
trolled sublanguage, Simplified English requires

2. The 90 percent figure is based on random
samplings taken from maintenance documents sub-
mitted to the BSEC over the past two years. This
figure has remained relatively consistent for main-
tenance documentation, although it varies with
other text domains.

that every word conform to specified usage. That
is, each word must be marked as 'allowed' in the
lexicon, or it will trigger an error critique. Since
the standard generally requires that words be used
in only one part of speech, the BSEC produces a
parse tree on which to judge vocabulary usage as
well as other types of grammatical violations) As
one would expect, the BSEC often has to choose
between quite a few alternative parse trees, some-
times even hundreds or thousands of them. Given
its reliance on full-ambiguity parse forests and
relatively little semantic analysis, we have been
somewhat surprised that it works as well as it does.

We know of few grammar and style checkers
that rely on the complexity of grammatical analy-
sis that the BSEC does, but IBM's Critique is cer-
tainly one of the best known. In discussing the ac-
curacy of Critique, Richardson and
Braden-Harder (1993:86) define it as "the actual
'under the covers' natural language processing in-
volved, and the user's perception." In other
words, there are really two levels upon which to
gauge accuracy--that of the internal parser and
that of the reports generated. They add: "Given
the state of the art, we may consider it a blessing
that it is possible for the latter to be somewhat bet-
ter than the former." The BSEC, like Critique, ap-
pears to be smarter than it really is at guessing
what the writer had in mind for a sentence struc-
ture. Most error critiques are not affected by incor-
rect phrasal attachment, although grossly incor-
rect parses lie behind most sentence reports that go
sour. What we have not fully understood in the
past is the extent to which parsing accuracy affects
error critiques. What if we could eliminate all the
bad parses? Would that make our system more ac-
curate by reducing incorrect critiques, or would it
degrade performance by reducing the overall
number of correct critiques reported? We knew
that the system was capable of producing good er-
ror reports from relatively bad parses, but how
many of those error reports even had a reasonably
correct parse available to them?

3. The Simplified English (SE) standard allows
some exceptions to the 'single part of speech' rule
in its core vocabulary of about a thousand words.
The BSEC currently does little to guarantee that
writers have used a word in the 'Simplified Eng-
lish' meaning, only that they have selected the cor-
rect part of speech.

39

OVERVIEW OF SIMPLIFIED
ENGLISH

The SE standard consists of a set of grammar,
style, format, and vocabulary restrictions, not all
of which lend themselves to computational analy-
sis. A computer program cannot yet support those
aspects of the standard that require deep under-
standing, e.g. the stricture against using a word in
any sense other than the approved one, or the re-
quirement to begin paragraphs with the topic sen-
tence. What a program can do is count the number
of words in sentences and compound nouns, detect
violations of parts of speech, flag the omission of
required words (such as articles) orthe presence of
banned words (such as auxiliary have and be, etc.).
The overall function of such a program is to pres-
ent the writer with an independent check on a fair
range of Simplified English requirements. For
further details on Simplified English and the
BSEC, see Hoard et al. (1992) and Wojcik et al.
(1990).

Although the BSEC detects a wide variety of
Simplified English and general writing violations,
only the error categories in Table 1 are relevant to
this study: Except for illegal comma usage, which
is rather uncommon, the above errors are among
the most frequent types of errors detected by the
BSEC.

To date, The Boeing Company is the only aero-
space manufacturer to produce a program that de-
tects such a wide range of Simplified English
violations. In the past, Boeing and other compa-
nies have created checkers that report on all words
that are potential violations of SE, but such 'word
checkers' have no way of avoiding critiques for
word usage that is correct. For example, if the
word test is used legally as a noun, the word-
checking program will still flag the word as a po-
tential verb-usage error. The BSEC is the only
Simplified English checker in existence that man-
ages to avoid this. a

As Richardson and Braden-Harder (p. 88)
pointed out: "We have found...that professionals
seem much more forgiving of wrong critiques, as

4. Oracle's recently released CoAuthor product,
which is designed to be used with the Interleaf
word processor, has the potential to produce gram-
matical analyses of sentences, but it only works as
a Simplified English word checker at present.

long as the time required to disregard them is mini-
mal." In fact, the chief complaint of Boeing tech-
nical writers who use the BSEC is when it pro-
duces too many nuisance errors. So
word-checking programs, while inexpensive and
easy to produce, do not address the needs of Sim-
plified English writers.

POS A known word is used in in-
correct part of speech.

NON-SE An unapproved word is used.

MISSING Articles must be used wherev-
ARTICLE er possible in SE.

PASSIVE Passives are usually illegal.

T W O -
C O M M A N D

Commands may not be con-
joined when they represent se-
quential activities. Simulta-
neous commands may be con-

i joined.

ING Progressive participles may
not be used in SE.

C O M M A A violation of comma usage.
E R R O R

i WARNING/
CAUTION

Warnings and cautions must
appear in a special format.
Usually, an error arises when a
declarative sentence has been
used where an imperative one
is required.

Table 1. Error Types Detected By The BSEC

T H E P A R S E R U N D E R L Y I N G T H E
B S E C

The parser underlying the Checker (cf. Harri-
son 1988) is loosely based on GPSG. The gram-
mar contains over 350 rules, and it has been imple-
mented in Lucid Common Lisp running on Sun
workstations. 5 Our approach to error critiquing
differs from that used by Critique (Jensen, Hei-
dorn, Miller, and Ravin 1993). Critique uses a
two-pass approach that assigns an initial canoni-
cal parse in so-called 'Chomsky-normal ' form.
The second pass produces an altered tree that is an-
5. The production version of the BSEC is actual-
ly a C program that emulates the lisp development
version. The C version accepts the same rules as
the lisp version, but there are some minor differ-
ences between it and the lisp version. This paper
is based solely on the lisp version of the BSEC.

40

notated for style violations. No-parses cause the
system to attempt a 'fitted parse', as a means of
producing some information on more serious
grammar violations. As mentioned earlier, the
BSEC generates parse forests that represent all
possible ambiguities vis-a-vis the grammar.
There is no 'canonical' parse, nor have we yet im-
plemented a 'fitted parse' strategy to reclaim in-
formation available in no-parses. 6 Our problem
has been the classic one of selecting the best parse
from a number of alternatives. Before the SE
Checker was implemented, Boeing's parser had
been designed to arrive at a preferred or 'fronted'
parse tree by weighting grammatical rules and
word entries according to whether we deemed
them more or less desirable. This strategy is quite
similar to the one described in Heidorn 1993 and
other works that he cites. In the maintenance
manual domain, we simply observed the behavior
of the BSEC over many sentences and adjusted the
weights of rules and words as needed.

To get a better idea of how our approach to
fronting works, consider the ambiguity in the fol-
lowing two sentences:

(1) The door was closed.
(2) The damage was repaired.

In the Simplified English domain, it is more likely
that (2) will be an example of passive usage, thus
calling for an error report. To parse (1) as a passive
would likely be incorrect in most cases. We there-
fore assigned the adjective reading of closed a low
weight in order to prefer an adjectival over a verb
reading. Sentence (2) reports a likely event rather
than a state, and we therefore weight repaired to
be preferred as a passive verb. Although this
method for selecting fronted parse trees some-
times leads to false error critiques, it works well
for most cases in our domain.

B R A C K E T E D I N P U T S T R I N G S

In order to coerce our system into accepting
only the desired parse tree, we modified it to ac-
cept only parses that satisfied bracketed forms.

6. The BSEC has the capability to report on po-
tential word usage violations in no-parses, but the
end-users seem to prefer not to use it. It is often
difficult to say whether information will be viewed
as help or as clutter in error reports.

For example, the following sentence produces five
separate parses because our grammar attaches
prepositional phrases to preceding noun phrases
and verb phrases in several ways. The structural
ambiguity corresponds to five different interpreta-
tions, depending on whether the boy uses a tele-
scope, the hill has a telescope on it, the girl on the
hill has a telescope, and so on.

(3) The boy saw the girl on the hill with a
telescope.

We created a lisp operation called spe, for
"string, parse, and evaluate," which takes an input
string and a template. It returns all possible parse
trees that fit the template. Here is an example of
an spe form for (3):

(SPE 'q'he boy saw the girl on the hill with a
telescope."

(S (NP the boy)
(VP (V saw)

(NP (NP the girl)
(PP on (NP (NP the hill)

(PP with a telescope)))))))

The above bracketing restricts the parses to just
the parse tree that corresponds to the sense in
which the boy saw the girl who is identified as be-
ing on the hill that has a telescope. If run through
the BSEC, this tree will produce an error message
that is identical to the unbracketed report--viz.
that boy, girl, hill, and telescope are NON-SE
words. In this case, it does not matter which tree
is fronted. As with many sentences checked, the
inherent ambiguity in the input string does not af-
fect the error critique.

Recall that some types of ambiguity do affect
the error reports----e.g, passive vs. adjectival parti-
cipial forms. Here is how the spe operation was
used to disambiguate a sentence from our data:

(SPE "Cracks in the impeller blades are not permitted"
(S (NP Cracks in the impeller blades)

(VP are not (A permitted))))

We judged the word permitted to have roughly the
same meaning as stative 'permissible' here, and
that led us to coerce an adjectival reading in the
bracketed input. If the unbracketed input had re-
suited in the verb reading, then it would have
flagged the sentence as an illegal passive. It turned
out that the BSEC selected the adjective reading

41

in the unbracketed sentence, and there was no dif-
ference between the bracketed and unbracketed er-
ror critiques in this instance.

M E T H O D O L O G Y

We followed this procedure in gathering and
analyzing our data: First, we collected a set of data
from nightly BSEC batch runs extending over a
three month period from August through October
1991. The data set consisted of approximately
20,000 sentences from 183 documents. Not all of
the documents were intended to be in Simplified
English when they were originally written. We
wrote a shell program to extract a percentage-stra-
tified sample from this data. After extracting a test
set, we ended up culling the data for duplicates,
tables, and other spurious data that had made it
past our initial filter. 7 We ended up with 297 sen-
tences in our data set.

We submitted the 297 sentences to the current
system and obtained an error report, which we call
the unbracketed report. We then created spe forms
for each sentence. By observing the parse trees
with our graphical interface, we verified that the
parse tree we wanted was the one produced by the
spe operation. For 49 sentences, our system could
not produce the desired tree. We ran the current
system, using the bracketed sentences to produce
the unmodified bracketed report. Next we
examined the 24 sentences which did not have
parses satisfying their bracketings but did, never-
theless, have parses in the unbracketed report. We
added the lexical information and new grammar
rules needed to enable the system to parse these
sentences. Running the resulting system pro-
duced the modified bracketed report. These new
parses produced critiques that we used to evaluate
the critiques previously produced from the
unbracketed corpus. The comparison of the
unbracketed report and the modified bracketed
report produced the estimates of Precision and
Recall for this sample.

'7. The BSEC falters out tables and certain other
types of input, but the success rate varies with the
type of text.

R E S U L T S

Our 297-sentence corpus had the following
characteristics. The length of the sentences ranged
between three words and 32 words. The median
sentence length was 12 words, and the mean was
13.8 words, s Table 2 shows the aggregated out-
comes for the three reports.

Checker Unbrack- Unmodi- Modified
Outcome eted fled Brack-

Brack- eted
eted

NO 25 49 25
PARSE

NO 123 134 137
ERROR

ONE OR 149 114 135
MORE
ERRORS

Totals 297 297 297

Table 2: Overview Of The Results

The table shows the coverage of the system and the
impact of the spurious parses. The coverage is
reflected in the Unmodified Bracketed column,
where 248 parses indicates a coverage of 84 per-
cent for the underlying system in this domain. The
table also reveals that there were 24 spurious
parses in the unbracketed corpus, corresponding
to no valid parse tree in our grammar. The Modi-
fied Bracketed column shows the effect on the
report generator of forcing the system to have the
same coverage as the unbracketed run.

Table 3 shows by type the errors detected in
instances where errors were reported. The Spuri-
ous Error column indicates the number of errors
from the unbracketed sentences which we judged
to be bad. The Missed Errors column indicates er-
rors which were missed in the unbracketed report,
but which showed up in the modified bracketed
8. Since most of the sentences in our corpus were
intended to be in Simplified English, it is not sur-
prising that they tended to be under the 20 word
limit imposed by the standard.

4 2

report. The modified bracketed report contained
only 'actual' Simplified English errors.

Category

POS

N O N - S E

MISSING
A R T I C L E

N O U N
CLUS-
TER

PASSIVE

T W O -
COM-
MAND

ING

C O M M A
ERROR

WARN-
ING/
CAU-
TION

Total

Table 3:

Un- Spuri- Miss- Actual
brack- ous ed Errors

eted Errors Errors
Errors

120 22 7 105

71 6 5 70

38 13 1 26

30 7 5 28

17 7 8 18

14 3 3 14

5 2 0 3

5 4 0 1

2 0 0 2

302 64 29

Types Of Errors Detected

267

For this data, the estimate of Precision (rate of
correct error critiques for unbracketed data) is
(302-64)/302, or 79 percent. We estimate that this
precision rate is accurate to within 5 percent with
95 percent confidence. Our estimate of Recall
(rate of correct critiques from the set of possible
critiques) is (267-29)/267, or 89 percent. We esti-
mate that this Recall rate is accurate to within 4
percent with 95 percent confidence.

It is instructive to look at a report that contains
an incorrectly identified error. The following re-
port resulted from our unbracketed test run:

ff strut requires six fluid ounces or more to fill, f ind
leakage source and repair.

Two commands - possible error:
find leakage source and repair

Noun errors:
fill

Allowed as: Verb
Verb errors:

requires
Use: be necessary

Missing articles:
strut
leakage source

The bracketed run produced a no-parse for this
sentence because of an inadequacy in our grammar
that blocked fill from parsing as a verb. Since it
parsed as a noun in the unbracketed run, the sys-
tem complained thatfill was allowed as a verb. In
our statistics, we counted thefill Noun error as an
incorrect POS error and the requires Verb error as
a correct one. This critique contains two POS er-
rors, one T W O - C O M M A N D error, and two MIS-
SING ARTICLE error. Four of the five error cri-
tiques are accurate.

D I S C U S S I O N

We learned several things about our system
through this exercise. First, we learned that the act
of comparing unbracketed and unmodified
bracketed sentences revealed worse performance
in the underlying system than we anticipated. We
had expected there to be a few more no-parses
with unmodified bracketing, but not so many
more. Second, the methodology helped us to
detect some obscure bugs in the system. For ex-
ample, the T W O - C O M M A N D and NOUN
CLUSTER errors were not being flagged properly
in the unmodified bracketed set because of bugs in
the report generator. These bugs had not been not-
iced because the errors were being flagged proper-
ly in some sentences. When a system gets as large
and complicated as ours, especially when it gener-
ates hundreds or thousands of parse trees for some
sentences, it becomes very difficult to detect errors
that only show up sporadically and infrequently in

4 3

the data. Our new methodology provided us with
a window on that aspect of system performance.

Perhaps a more interesting observation con-
cerns the relationship between our system and one
like Critique, which relies on no-parses to trigger
a fitted parse 'damage repair' phase. We believe
that the fitted-parse strategy is a good one, al-
though we have not yet felt a strong need to imple-
ment it. The reason is that our system generates
such rich parse forests that strings which ought to
trigger no-parses quite frequently end up trigger-
ing 'weird' parses. That is, they trigger parses that
are grammatical from a strictly syntactic perspec-
five, but inappropriate for the words in their accus-
tomed meanings. A fitted parse strategy would
not work with these cases, because the system has
no way of detecting weirdness. Oddly enough, the
existence of weird parses often has the same effect
in error reports as parse fitting in that they generate
error critiques which are useful. The more ambi-
guity a syntactic system generates, the less likely
it is to need a fitted parse strategy to handle unex-
pected input. The reason for this is that the number
of grammatically correct, but 'senseless' parses is
large enough to get a parse that would otherwise
be ruled out on semantic grounds.

Our plans for the use of this methodology are as
follows. First, we intend to change our current
system to improve deficiencies and lack of cover-
age revealed by this exercise. In effect, we plan to
use the current test corpus as a training corpus in
the next phase. Before deploying the changes, we
will collect a new test corpus and repeat our
method of evaluation. We are very interested in
seeing how this new cycle of development will
affect the figures of coverage, Precision, and
Recall on the next evaluation.

REFERENCES

Adriaens, G. 1992. From COGRAM to ALCO-
GRAM: Toward a Controlled English Gram-
mar Checker. Proceedings of the fifteenth In-
ternational Conference on Computational
Linguistics. Ch. Boitet, ed. Nantes: COL-
ING. Pp. 595-601.

AECMA. 1989. A Guide for the Preparation of
Aircraft Maintenance Documentation in the
Aerospace Maintenance Language. AECMA

Simplified English. AECMA Document:
PSC-85-16598, Change 5. Paris.

Black, E., S. Abney, D. Flickinger, C. Gdaniec, R.
Grishman, E Harrison, D. Hindle, R. Ingria,
E Jelinek, J. Klavans, M. Liberman, M. Mar-
cus, S. Roukos, B. Santorini, and T. Strzal-
kowski. 1991. A Procedure for Quantitative-
ly Comparing the Syntactic Coverage of
English Grammars. Proceedings of the
Fourth DARPA Speech and Natural Lan-
guage Workshop. Pp. 306-311.

Black, E., J. Lafferty, Salim Roukos. 1992. De-
velopment and Evaluation of a Broad-Cover-
age Probabilistic Grammar of English-Lan-
guage Computer Manuals. Proceedings of the
30th Annual Meeting of the Association for
Computational Linguistics. Pp. 185-192.

Gazdar, G., E. Klein, G. Pullum, and I. Sag. 1985.
Generalized Phrase Structure Grammar.
Cambridge, Mass.: Harvard University Press.

Harrison, P. 1988. A New Algorithm for Parsing
Generalized Phrase Structure Grammars.
Unpublished Ph.D. dissertation. Seattle:
University of Washington.

Harrison, E, S. Abney, E. Black, D. Flickinger, C.
Gdaniec, R, Grishman, D. Hindle, R. Ingria,
M. Marcus, B. Santorini, and T. Strzalkowski.
1991. Evaluating Syntax Performance of
Parser/Grammars of English. Proceedings of
Natural Language Processing Systems Evalu-
ation Workshop. Berkeley, California.

Heidorn, G. 1993. Experience with an Easily
Computed Metric for Ranking Alternative
Parses. In Jensen, Heidorn, and Richardson
1993. Pp. 29-45.

Hoard, J. E., R. H. Wojcik, and K. Holzhauser.
1992. An Automated Grammar and Style
Checker for Writers of Simplified English. In
EO. Holt and N. Williams, eds. 1992. Holt,
E O. 1992. Computers and Writing: State of
the Art. Boston: Kluwer.

Jensen, K. 1993. PEG: The PLNLP English
Grammar. In Jensen, Heidorn, and Richard-
son 1993. Pp. 29-45.

Jensen, K., G. Heidorn, L. Miller, and Y. Ravin.
1993, Parse Fitting and Prose Fixing. In Jen-
sen, Heidorn, and Richardson 1993. Pp.
53-64.

4 4

Jensen, K., G. Heidorn, and S. Richardson, eds.
1993. Natural Language Processing: The
PLNLP Approach. Boston: Kluwer.

Ravin, Y. 1993. Grammar Errors and Style Weak-
nesses in a Text-Critiquing System. In Jen-
sen, Heidorn, and Richardson 1993. Pp.
65-76.

Richardson, S. and L. Braden-Harder. 1993. The
Experience of Developing a Large-Scale Nat-

ural Language Processing System: Critique.
In Jensen, Heidorn, and Richardson 1993. Pp.
78-89.

Wojcik, R. H., J. E. Hoard, K. Holzhauser. 1990.
The Boeing Simplified English Checker. Pro-
ceedings of the International Conference, Hu-
man Machine Interaction and Artificial Intel-
ligence in Aeronautics and Space. Toulouse:
Centre d'Etudes et de Recherches de Tou-
louse. Pp. 43-57.

45

