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Abstract  

We describe a generative probabilistic model of 
natural language, which we call HBG, that takes 
advantage of detailed linguistic information to re- 
solve ambiguity. HBG incorporates lexical, syn- 
tactic, semantic, and structural information from 
the parse tree into the disambiguation process in a 
novel way. We use a corpus of bracketed sentences, 
called a Treebank, in combination with decision 
tree building to tease out the relevant aspects of a 
parse tree that will determine the correct parse of 
a sentence. This stands in contrast to the usual ap- 
proach of further grammar tailoring via the usual 
linguistic introspection in the hope of generating 
the correct parse. In head-to-head tests against 
one of the best existing robust probabilistic pars- 
ing models, which we call P-CFG, the HBG model 
significantly outperforms P-CFG, increasing the 
parsing accuracy rate from 60% to 75%, a 37% 
reduction in error. 

I n t r o d u c t i o n  

Almost any natural language sentence is ambigu- 
ous in structure, reference, or nuance of mean- 
ing. Humans overcome these apparent ambigu- 
ities by examining the contez~ of the sentence. 
But what exactly is context? Frequently, the cor- 
rect interpretation is apparent from the words or 
constituents immediately surrounding the phrase 
in question. This observation begs the following 
question: How much information about the con- 
text of a sentence or phrase is necessary and suffi- 
cient to determine its meaning? This question is at 
the crux of the debate among computational lin- 
guists about the application and implementation 
of statistical methods in natural language under- 
standing. 

Previous work on disambiguation and proba- 
bilistic parsing has offered partial answers to this 
question. Hidden Markov models of words and 

*Thanks to Philip Resnik and Stanley Chen for 
their valued input. 

their tags, introduced in (5) and (5) and pop- 
ularized in the natural language community by 
Church (5), demonstrate the power of short-term 
n-gram statistics to deal with lexical ambiguity. 
Hindle and Rooth (5) use a statistical measure 
of lexical associations to resolve structural am- 
biguities. Brent (5) acquires likely verb subcat- 
egorization patterns using the frequencies of verb- 
object-preposition triples. Magerman and Mar- 
cus (5) propose a model of context that combines 
the n-gram model with information from dominat- 
ing constituents. All of these aspects of context 
are necessary for disambiguation, yet none is suf- 
ficient. 

We propose a probabilistic model of context 
for disambiguation in parsing, HBG, which incor- 
porates the intuitions of these previous works into 
one unified framework. Let p(T, w~) be the joint 
probability of generating the word string w~ and 
the parse tree T. Given w~, our parser chooses as 
its parse tree that tree T* for which 

T" = a r g  maxp(T, w~) (1) 
T6~(~) 

where ~(w~) is the set of all parses produced by 
the grammar for the sentence w~. Many aspects of 
the input sentence that might be relevant to the 
decision-making process participate in the prob- 
abilistic model, providing a very rich if not the 
richest model of context ever attempted in a prob- 
abilistic parsing model. 

In this paper, we will motivate and define the 
HBG model, describe the task domain, give an 
overview of the grammar, describe the proposed 
HBG model, and present the results of experi- 
ments comparing HBG with an existing state-of- 
the-art model. 

Motivat ion for His tory-based  
Grammars  

One goal of a parser is to produce a grammatical 
interpretation of a sentence which represents the 
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syntactic and semantic intent of the sentence. To 
achieve this goal, the parser must have a mecha- 
nism for estimating the coherence of an interpreta- 
tion, both in isolation and in context. Probabilis- 
tic language models provide such a mechanism. 

A probabilistic language model attempts 
to estimate the probability of a sequence 
of sentences and their respective interpreta- 
tions (parse trees) occurring in the language, 
:P(SI TI S2 T2 ... S,, T,~). 

The difficulty in applying probabilistic mod- 
els to natural language is deciding what aspects 
of the sentence and the discourse are relevant to 
the model. Most previous probabilistic models of 
parsing assume the probabilities of sentences in a 
discourse are independent of other sentences. In 
fact, previous works have made much stronger in- 
dependence assumptions. The P-CFG model con- 
siders the probability of each constituent rule in- 
dependent of all other constituents in the sen- 
tence. The :Pearl (5) model includes a slightly 
richer model of context, allowing the probability 
of a constituent rule to depend upon the immedi- 
ate parent of the rule and a part-of-speech trigram 
from the input sentence. But none of these mod- 
els come close to incorporating enough context to 
disambiguate many cases of ambiguity. 

A significant reason researchers have limited 
the contextual information used by their mod- 
els is because of the difficulty in estimating very 
rich probabilistic models of context. In this work, 
we present a model, the history-based grammar 
model, which incorporates a very rich model of 
context, and we describe a technique for estimat- 
ing the parameters for this model using decision 
trees. The history-based grammar model provides 
a mechanism for taking advantage of contextual 
information from anywhere in the discourse his- 
tory. Using decision tree technology, any question 
which can be asked of the history (i.e. Is the sub- 
ject of the previous sentence animate? Was the 
previous sentence a question? etc.) can be incor- 
porated into the language model. 

T h e  H i s t o r y - b a s e d  G r a m m a r  M o d e l  

The history-based grammar model defines context 
of a parse tree in terms of the leftmost derivation 
of the tree. 

Following (5), we show in Figure 1 a context- 
free grammar (CFG) for a'~b "~ and the parse tree 
for the sentence aabb. The leftmost derivation of 
the tree T in Figure 1 is: 

"P1 'r2 'P3 
S --~ A S B  --* a S B  --~ a A B B  ~-~ a a B B  ~-h aabB Y-~ 

(2) 
where the rule used to expand the i-th node of 
the tree is denoted by ri. Note that we have in- 

aabb 

S ---, A S B I A B  

A ---, a 

B --~ b 

(, 6 

/ "., 

4-5.: 

a a b b 

Figure h Grammar and parse tree for aabb. 

dexed the non-terminal (NT) nodes of the tree 
with this leftmost order. We denote by ~- the sen- 
tential form obtained just before we expand node 
i. Hence, t~ corresponds to the sentential form 
a S B  or equivalently to the string rlr2. In a left- 
most derivation we produce the words in left-to- 
right order. 

Using the one-to-one correspondence between 
leftmost derivations and parse trees, we can 
rewrite the joint probability in (1) as: 

~r~ 

p(T,  w~) = H p(r, ]t[) 
i = 1  

In a probabilistic context-free grammar (P-CFG), 
the probability of an expansion at node i depends 
only on the identity of the non-terminal Ni, i.e., 
p(r lq) = T h u s  

v(T, = I I  
i - ---1 

So in P-CFG the derivation order does not affect 
the probabilistic model 1. 

A less crude approximation than the usual P- 
CFG is to use a decision tree to determine which 
aspects of the leftmost derivation have a bear- 
ing on the probability of how node i will be ex- 
panded. In other words, the probability distribu- 
tion p(ri ]t~) will be modeled by p(r i[E[ t~])  where 
E[t] is the equivalence class of the history ~ as 
determined by the decision tree. This allows our 

1Note the abuse of notation since we denote by 
p(ri) the conditional probability of rewriting the non- 
terminal AT/. 
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probabilistic model to use any information any- 
where in the part ial  derivation tree to determine 
the probabil i ty of different expansions of the i-th 
non-terminal .  The use of decision trees and a large 
bracketed corpus may  shift some of the burden of 
identifying the intended parse from the g rammar-  
ian to the statistical est imation methods.  We refer 
to probabilistic methods  based on the derivation 
as History-based G r a m m a r s  (HBG). 

In this paper,  we explored a restricted imple- 
menta t ion  of this model in which only the pa th  
f rom the current node to the root of the deriva- 
tion along with the index of a branch (index of 
the child of a parent ) are examined in the decision 
tree model to build equivalence classes of histories. 
Other parts  of the subtree are not examined in the 
implementa t ion of HBG. 

[N It_PPH1 N] 
IV indicates_VVZ 

[Fn [Fn~whether_CSW 
[N a_AT1 call_NN1 N] 
[V completed_VVD successfully_RR V]Fn&] 

or_CC 
[Fn+ iLCSW 

[N some_DD error_NN1 N]@ 
[V was_VBDZ detected_VVN V] 
@[Fr that_CST 

[V caused_VVD 
IN the_AT call_NN1 N] 
[Ti to_TO fail_VVI Wi]V]Fr]Fn+] 

Fn]V]._. 

Figure 2: Sample bracketed sentence f rom Lan- 
caster Treebank. 

T a s k  D o m a i n  

We have chosen computer  manuals  as a task do- 
main.  We picked the most  frequent 3000 words 
in a corpus of 600,000 words from 10 manuals  as 
our vocabulary. We then extracted a few mil- 
lion words of sentences that  are completely cov- 
ered by this vocabulary from 40,000,000 words of 
computer  manuals.  A randomly chosen sentence 
f rom a sample of 5000 sentences from this corpus 
is: 

396.  It  indicates whether a call completed suc- 
cessfully or if some error was detected that  
caused the call to fail. 

To define what  we mean by a correct parse, 
we use a corpus of manual ly  bracketed sentences 
at the University of Lancaster called the Tree- 
bank.  The Treebank uses 17 non-terminal  labels 
and 240 tags. The bracketing of the above sen- 
tence is shown in Figure 2. 

A parse produced by the g rammar  is judged 
to be correct if it agrees with the Treebank parse 
structurally and the NT labels agree. The gram- 
mar  has a significantly richer NT label set (more 
than 10000) than the Treebank but  we have de- 
fined an equivalence mapping  between the gram- 
mar  NT labels and the Treebank NT labels. In 
this paper,  we do not include the tags in the mea- 
sure of a correct parse. 

We have used about  25,000 sentences to help 
the g rammar ian  develop the g r a m m a r  with the 
goal that  the correct (as defined above) parse is 
among  the proposed (by the g rammar )  parses for 

sentence. Our most  common test set consists of 
1600 sentences that  are never seen by the gram- 
marian.  

T h e  G r a m m a r  

The g r ammar  used in this experiment  is a broad- 
coverage, feature-based unification g rammar .  The 
g r a m m a r  is context-free but  uses unification to ex- 
press rule templates  for the the context-free pro- 
ductions. For example,  the rule template:  

(3) 
: n u n s p e c  : n 

corresponds to three CFG productions where the 
second feature : n is either s, p, or : n. This  rule 
templa te  may  elicit up to 7 non-terminals.  The 
g r ammar  has 21 features whose range of values 
maybe  from 2 to about  100 with a median of 8. 
There are 672 rule templates  of which 400 are ac- 
tually exercised when we parse a corpus of 15,000 
sentences. The number  of productions tha t  are 
realized in this training corpus is several hundred 
thousand. 

P - C F G  

While a NT in the above g r a m m a r  is a feature 
vector, we group several NTs into one class we call 
a m n e m o n i c  represented by the one NT tha t  is 
the least specified in tha t  class. For example,  the 
mnemonic  VBOPASTSG* corresponds to all NTs 
tha t  unify with: 

p o s - - v  1 v - -  ~ .ype  = b e  (4) 
t e n s e  - a s p e c t  : p a s t  

We use these mnemonics  to label a parse tree 
and we also use them to est imate a P-CFG,  where 
the probabil i ty of rewriting a NT is given by the 
probabil i ty of rewriting the mnemonic .  So f rom 
a training set we induce a CFG f rom the actual  
mnemonic  productions tha t  are elicited in pars- 
ing the training corpus. Using the Inside-Outside 
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algori thm, we can es t imate  P -CFG from a large 
corpus of text.  But since we also have a large 
corpus of bracketed sentences, we can adapt  the 
Inside-Outside a lgor i thm to reest imate the prob- 
ability parameters  subject to the constraint that  
only parses consistent with the Treebank (where 
consistency is as defined earlier) contribute to the 
reest imation.  From a training run of 15,000 sen- 
tences we observed 87,704 mnemonic  productions, 
with 23,341 NT mnemonics  of which 10,302 were 
lexical. Running on a test set of 760 sentences 32% 
of the rule templates  were used, 7% of the lexi- 
cal mnemonics,  10% of the consti tuent mnemon-  
ics, and 5% of the mnemonic  productions actually 
contr ibuted to parses of test sentences. 

G r a m m a r  a n d  M o d e l  P e r f o r m a n c e  
M e t r i c s  

To evaluate the performance of a g r a m m a r  and an 
accompanying model,  we use two types of mea- 
surements:  

• the any-consistent rate, defined as the percent- 
age of sentences for which the correct parse is 
proposed among  the many  parses tha t  the gram- 
mar  provides for a sentence. We also measure 
the parse base, which is defined as the geomet- 
ric mean of the number  of  proposed parses on a 
per word basis, to quantify the ambigui ty  of the 
g rammar .  

• the Viterbi rate defined as the percentage of sen- 
tences for which the most  likely parse is consis- 
tent.  

The any-contsistentt rate is a measure of the gram- 
mar ' s  coverage of linguistic phenomena.  The 
Viterbi rate evaluates the g r a m m a r ' s  coverage 
with the statistical model imposed on the gram- 
mar .  The goal of probabilistic modelling is to pro- 
duce a Viterbi rate  close to the anty-contsistentt rate. 

The any-consistent rate is 90% when we re- 
quire the structure and the labels to agree and 
96% when unlabeled bracketing is required. These 
results are obtained on 760 sentences from 7 to 17 
words long f rom test mater ia l  tha t  has never been 
seen by the g rammar ian .  The parse base is 1.35 
parses/word.  This  translates to about  23 parses 
for a 12-word sentence. The unlabeled Viterbi rate 
stands at 64% and the labeled Viterbi rate is 60%. 

While we believe tha t  the above Viterbi rate 
is close if not the state-of-the-art  performance, 
there is room for improvement  by using a more re- 
fined statistical model to achieve the labeled any- 
contsistent rate of 90% with this g rammar .  There 
is a significant gap between the labeled Viterbiand 
any-consistent rates: 30 percentage points. 

Instead of the usual approach where a gram- 
mar ian  tries to fine tune the g r a m m a r  in the hope 

of improving the Viterbi rate we use the combina-  
tion of a large Treebank and the resulting deriva- 
tion histories with a decision tree building algo- 
r i thm to extract  statistical parameters  tha t  would 
improve the Viterbi rate. The  g r ammar i an ' s  task 
remains that  of improving the any-consistent rate.  

The history-based g r a m m a r  model  is distin- 
guished from the context-free g r a m m a r  model  in 
that  each constituent structure depends not only 
on the input string, but  also the entire history up 
to tha t  point in the sentence. In HBGs,  history 
is interpreted as any element of the output  struc- 
ture, or the parse tree, which has already been de- 
termined, including previous words, non- terminal  
categories, constituent structure, and any other 
linguistic information which is generated as par t  
of the parse structure. 

The  H B G  Mode l  

Unlike P -CFG which assigns a probabi l i ty  to a 
mnemonic  production, the HBG model  assigns a 
probabil i ty to a rule template .  Because of this the 
HBG formulat ion allows one to handle any gram-  
mar  formalism that  has a derivation process. 

For the HBG model,  we have defined about  
50 syntactic categories, referred to as Syn, and 
about  50 semantic categories, referred to as Sere. 
Each NT (and therefore mnemonic)  of the gram- 
mar  has been assigned a syntactic (Syn) and a 
semantic (Sem) category. We also associate with 
a non-terminal  a p r imary  lexical head, denoted by 
H1, and a secondary lexical head, denoted by H~. 2 
When a rule is applied to a non-terminal ,  it indi- 
cates which child will generate the lexical p r imary  
head and which child will generate the secondary 
lexical head. 

The proposed generative model  associates for 
each constituent in the parse tree the probabil i ty:  

p( Syn, Sern, R, H1, H2 
[Synp, Setup, P~, Ipc, Hip, H2p ) 

In HBG, we predict the syntact ic  and seman- 
tic labels of a constituent, its rewrite rule, and its 
two lexical heads using the labels of the parent  
constituent, the parent ' s  lexical heads, the par-  
ent 's  rule P~ tha t  lead to the consti tuent  and 
the consti tuent 's  index Ipc as a child of R~. As 
we discuss in a later section, we have also used 
with success more information about  the deriva- 
tion tree than the immedia te  parent  in condition- 
ing the probabil i ty of expanding a constituent.  

2The primary lexical head H1 corresponds 
(roughly) to the linguistic notion of a lexicai head. 
The secondary lexical head H2 has no linguistic par- 
allel. It merely represents a word in the constituent 
besides the head which contains predictive information 
about the constituent. 
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We have approximated the above probability 
by the following five factors: 

1. p(Syn IP~, X~o, X ~ ,  Sy~, Se.~) 

2. p( Sern ISyn, Rv, /pc, Hip, H2p, Synp, Sern; ) 
3. p( R ]Syn, Sem, 1~, Ipc, Hip, H2p, Synp, Semi) 
4. p(H  IR, Sw, Sere, I o, 
5. p(n2 IH1,1< Sy , Sere, Ipc, Sy, p) 

While a different order for these predictions is pos- 
sible, we only experimented with this one. 

P a r a m e t e r  E s t i m a t i o n  

We only have built a decision tree to the rule prob- 
ability component (3) of the model. For the mo- 
ment,  we are using n-gram models with the usual 
deleted interpolation for smoothing for the other 
four components of the model. 

We have assigned bit strings to the syntactic 
and semantic categories and to the rules manually. 
Our intention is that  bit strings differing in the 
least significant bit positions correspond to cate- 
gories of non-terminals or rules that  are similar. 
We also have assigned bitstrings for the words in 
the vocabulary (the lexical heads) using automatic  
clustering algorithms using the bigram mutual  in- 
formation clustering algorithm (see (5)). Given 
the bitsting of a history, we then designed a deci- 
sion tree for modeling the probability that  a rule 
will be used for rewriting a node in the parse tree. 

Since the grammar produces parses which may 
be more detailed than the Treebank, the decision 
tree was built using a training set constructed in 
the following manner. Using the grammar with 
the P-CFG model we determined the most likely 
parse that  is consistent with the Treebank and 
considered the resulting sentence-tree pair as an 
event. Note that  the grammar parse will also pro- 
vide the lexical head structure of the parse. Then, 
we extracted using leftmost derivation order tu- 
pies of a history (truncated to the definition of a 
history in the HBG model) and the corresponding 
rule used in expanding a node. Using the resulting 
data  set we built a decision tree by classifying his- 
tories to locally minimize the entropy of the rule 
template.  

With  a training set of about 9000 sentence- 
tree pairs, we had about  240,000 tuples and we 
grew a tree with about  40,000 nodes. This re- 
quired 18 hours on a 25 MIPS RISC-based ma- 
chine and the resulting decision tree was nearly 
100 megabytes. 

I m m e d i a t e  v s .  F u n c t i o n a l  P a r e n t s  

The HBG model employs two types of parents, the 
immediate parent and the functional parent. The 

with 

R: PPI 

Syn : PP 

Sem: With-Data 

HI : list 
}{2 : with 

Sem: Data 
HI : list 
H2: a 

Syn : 
a Sem: 

HI: 
H2 : 

N 
Data 

list 

I 
list 

Figure 3: Sample representation of "with a l i s t"  
in HBG model. 
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immediate parent is the constituent that immedi- 
ately dominates the constituent being predicted. 
If the immediate parent of a constituent has a dif- 
ferent syntactic type from that of the constituent, 
then the immediate parent is also the functional 
parent; otherwise, the functional parent is the 
functional parent of the immediate parent. The 
distinction between functional parents and imme- 
diate parents arises primarily to cope with unit 
productions. When unit productions of the form 
XP2 ~ XP1 occur, the immediate parent of XP1 
is XP2. But, in general, the constituent XP2 does 
not contain enough useful information for ambi- 
guity resolution. In particular, when considering 
only immediate parents, unit rules such as NP2 --* 
NP1 prevent the probabilistic model from allow- 
ing the NP1 constituent to interact with the VP 
rule which is the functional parent of NP1. 

When the two parents are identical as it of- 
ten happens, the duplicate information will be ig- 
nored. However, when they differ, the decision 
tree will select that parental context which best 
resolves ambiguities. 

Figure 3 shows an example of the represen- 
tation of a history in HBG for the prepositional 
phrase "with a list." In this example, the imme- 
diate parent of the N1 node is the NBAR4 node 
and the functional parent of N1 is the PP1 node. 

Resul ts  

We compared the performance of HBG to the 
"broad-coverage" probabilistic context-free gram- 
mar, P-CFG. The any-consistent rate of the gram- 
mar is 90% on test sentences of 7 to 17 words. The 
Vi$erbi rate of P-CFG is 60% on the same test cor- 
pus of 760 sentences used in our experiments. On 
the same test sentences, the HBG model has a 
Viterbi rate of 75%. This is a reduction of 37% in 
error rate. 

Accuracy 
P-CFG 59.8% 

HBG 74.6% 
Error Reduction 36.8% 

Figure 4: Parsing accuracy: P-CFG vs. HBG 

In developing HBG, we experimented with 
similar models of varying complexity. One discov- 
ery made during this experimentation is that mod- 
els which incorporated more context than HBG 
performed slightly worse than HBG. This suggests 
that the current training corpus may not contain 
enough sentences to estimate richer models. Based 
on the results of these experiments, it appears 
likely that significantly increasing the sise of the 

training corpus should result in a corresponding 
improvement in the accuracy of HBG and richer 
HBG-like models. 

To check the value of the above detailed his- 
tory, we tried the simpler model: 

1. p(H1 [HI~, H~ ,  P~, Z~o) 

2. p(H2 [H~, H~p, H2p, 1%, Ip~) 
3. p(syn IH , 
4. v(Sem ISYn, H,, Ip,) 
5. p(R [Syn, Sere, H~, H2) 

This model corresponds to a P-CFG with NTs 
that are the crude syntax and semantic categories 
annotated with the lexical heads. The Viterbi rate 
in this case was 66%, a small improvement over the 
P-CFG model indicating the value of using more 
context from the derivation tree. 

Conclusions  

The success of the HBG model encourages fu- 
ture development of general history-based gram- 
mars as a more promising approach than the usual 
P-CFG. More experimentation is needed with a 
larger Treebank than was used in this study and 
with different aspects of the derivation history. In 
addition, this paper illustrates a new approach to 
grammar development where the parsing problem 
is divided (and hopefully conquered) into two sub- 
problems: one of grammar coverage for the gram- 
marian to address and the other of statistical mod- 
eling to increase the probability of picking the cor- 
rect parse of a sentence. 
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