
An Incremental Connectionist Phrase Structure Parser 

J a m e s  Hende r son*  

U. of  P e n n s y l v a n i a ,  D e p t  of  C o m p u t e r  and  I n f o r m a t i o n  Sc ience  

200 S o u t h  33rd  
P h i l a d e l p h i a ,  P A  19104 

1 Introduction 

This abstract outlines a parser implemented in a con- 
nectionist model of short term memory and reasoning 1 . 
This connectionist architecture, proposed by Shastri in 
[Shastri and Ajjanagadde, 1990], preserves the sym- 
bolic interpretation of the information it stores and 
manipulates, but does its computations with nodes 
which have roughly the same computational proper- 
ties as neurons. The parser recovers the phrase struc- 
ture of a sentence incrementally from beginning to end 
and is intended to be a plausible model of human sen- 
tence processing. The formalism which defines the 
grammars for the parser is expressive enough to in- 
corporate analyses from a wide variety of grammatical 
investigations 2. This combination gives a theory of hu- 
man syntactic processing which spans from the level of 
linguistic theory to the level of neuron computations. 

2 T h e  C o n n e c t i o n i s t  A r c h i t e c -  
t u r e  

In order to store and manipulate information in a con- 
nectionist net quickly, the information needs to be rep- 
resented in the activation of nodes, not the connections 
between nodes 3. A property of an entity can be repre- 
sented by having a node for the entity and a node for 
the property both active at the same time. However, 
this only permits information about one entity to be 
stored at any one time. The connectionist architecture 
used here solves this problem with nodes which, when 
active, fire at regular intervals. A property is predi- 
cated of an entity only if their nodes are firing syn- 

*This research was supported by DARPA grant num- 
ber N0014-90-J-1863 and ARO grant number DAAL03-89- 
C0031PRI. 

lAs  of this writing the parser has been designed, but n o t  

coded. 
2A paper about a closely related formalism was submitted 

to this year's regular ACL session under the title "A CCG--Like 
System of Types for Trees", and an older version of the later 
was discussed in my masters thesis ([Henderson, 1990]), where 
its linguistic expressiveness is demonstrated. 

3This section is a very brief characterization of the core sys- 
tem presented in [Shastri and Ajjanagadde, 1990]. 

chronously. This permits multiple entities to be stored 
at one time by having their nodes firing in different 
phases. However, the number of entities is limited by 
the number of distinct phases which can fit in the inter- 
val between periodic firings. Such boundedness of hu- 
man conscious short term memory is well documented, 
where it is about seven entities. 

Computation using the information in the memory is 
done with pattern-action rules. A rule is represented as 
a collection of nodes which look for a temporal pattern 
of activation, and when it finds the pattern it modifies 
the memory contents. Rules can compute in parallel. 

3 T h e  G r a m m a r  Formal i sm 

I will describe grammar entries through the examples 
given in figure 1. Each entry must be a rooted tree 
fragment. Solid lines are immediate dominance links, 
dashed arrows are linear precedence constraints, and 
dotted lines, called dominance links, specify the need 
for a chain of immediate dominance links. Plus sub- 
scripts on nodes designate that the node is headed and 
minus subscripts that  the node still needs a head. The 
parent of a dominance link must always be an:unheaded 
node. Node labels are feature structures, but corefer- 
ence of features between nodes is not allowed. In the 
figure, the structure for "likes" needs heads for both 
its NP's, thereby expressing the subcategorization for 
these arguments. The structure for '`white" expresses 
its modification of N's by having a headless root N. 
The structure for "who" subcategorizes for an S and 
specifies that somewhere within that S there must be a 
headless NP. These four words can combine to form a 
complete phrase structure tree through the appropriate 
equations of nodes. 

NP."~'VP+ 

w~o NP÷ p177a 

Figure 1: Example grammar entries. 

There are four operations for combining adjacent 

357 



tree f r a g m e n t s  4. The first e q u a t e s  a node in the left 
tree with the root of the right tree. As in all equations, 
at least one of these nodes must be unheaded, and their 
node labels must unify. If the node on the left is un- 
headed then it is subcategorisation, and if the root is 
unheaded then it is modification. The second combi- 
nation operation satisfies a dominance link in the left 
tree by equating the node above the dominance link to 
the root of the right tree and the node below the dom- 
inance link to another node in the right tree. This is 
for things such as attaching embedded subjects to their 
verbs and filling subject gaps. The third combination 
operation also involves a dominance link in the left sub- 
tree, but only the parent and root are equated and the 
dominance relationship is passed to an unheaded node 
in the right tree. This is for passing traces down the 
tree. The last operation only involves one tree frag- 
ment. This operation satisfies a dominance link by 
equating the child of the link with some node which is 
below the node which was the original parent of this 
dominance link, regardless of what nodes the link has 
been passed to with the third operation. This is for 
gap filling. Limitations on the purser's ability to de- 
termine what nodes are eligible for this equation force 
some known constraints on long distance movement. 
All these operations are restricted so that linear prece- 
dence constraints are never violated. 

The important properties of this formalism are its 
use of partiality in the specification of tree fragments 
and the limited domain affected by each combination 
operation. Partiality is essential to allow the parser to 
incrementally specify what it knows so far about the 
structure of the sentence. The fact that each combi- 
nation operation is only dependent on a few nodes is 
important both because it simplifies the parser's rules 
and because nodes which are no longer going to be in- 
volved in any equations can be forgotten. Nodes must 
be forgotten in order to parse arbitrarily long sentences 
with the memory's very limited capacity. 

4 T h e  Parser  

The parser builds the phrase structure for a sentence 
incrementally from beginning to end. After each word 
the short term memory contains information about the 
structure bui l t  so  far. Pattern-action rules are then 
used to compute how the next word's tree can be com- 
bined with the current tree. In the memory, the nodes 
of the tree are the entities, and predicates are used 
to specify the necessary information about these nodes 
and the relationships between them. The tree in the 

4Thls formalism has both a structural interpretation and a 
Categorial Grmmnar style interpretation. In the late~ interpre- 
tati~m these combination opez'atiorm have a more natural  speci- 
fication. Unfortunately space prevents me discueming it here. 

memory is used as the left tree for the combination 
operations. The tree for the next word is the right 
tree. For every grammar entry there are pattern-action 
rules for each way it could participate in a combination. 
When the next word is identified its grammar entries 
are activated and their rules each try to find a place in 
the current tree where their combination can be done. 
The best match is chosen and that rule modifies the 
memory contents to represent the result of its combi- 
nation. The gap filling combination operation is done 
with a rule which can be activated at any time. If 
the parser does not have enough space to store all the 
nodes for the new word's tree, then any node which has 
both a head and an immediate parent can be removed 
from the memory without changing any predications 
on other nodes. When the parse is done it succeeds if 
all nodes have heads and only the root doesn't have an 
immediate parent. 

Because nodes may be forgotten before the parse of 
a sentence is finished, the output of the parser is not a 
complete phrase structure tree. The output is a list of 
the combinations which were done. This is isomorphic 
to the complete phrase structure, since the structure 
can be constructed from the combination information. 
It also provides incremental information about the pro- 
gression of the parse. Such information could be used 
by a separate short term memory module to construct 
the semantic structure of the sentence in parallel with 
the construction of the syntactic structure. 

Several characteristics make this parser interesting. 
Most importantly, the computational architecture it 
uses is compatible with what we know about the ar- 
chitecture of the human brain. Also, its incrementality 
conforms to our intuitions about the incrementality of 
our sentence processing, even providing for incremental 
semantic analysis. The parallelism in the combination 
process provides for both lexical ambiguity and uncer- 
tainty about what word was heard. Only further work 
can determine the linguistic adequacy of the parser's 
grammars, but work on related formalisms provides ev- 
idence of its expressiveness. 

R e f e r e n c e s  

[Henderson, 1990] James Henderson. Structure Uni- 
fication Grammar: A Unifying Framework For 
Investigating Natural Language. Technical Re- 
port MS-CIS-90-94, University of Pennsylvania, 
Philadelphia, PA, 1990. 

[Shastri and Ajjanagadde, 1990] Lokendra Shastri and 
Venkat Ajjanagadde. From Simple Associations 
to Systematic Reasoning: A Connectionist Repre- 
sentation of Rules, Variables and Dynamic Bind- 
ings. Technical Report MS-CIS-90-05, University 
of Pennsylvania, Philadelphia, PA, 1990. 

358 




