
Polynomial Time and Space Shift-Reduce Parsing
of Arbitrary Context-free Grammars.*

Yves Schabes
D e p t . of C o m p u t e r & I n f o r m a t i o n Science

Un ive r s i t y of P e n n s y l v a n i a
P h i l a d e l p h i a , PA 19104-6389, U S A
e-mail : s c h a b e s ~ l i n c . c i s . u p e n n . e d u

A b s t r a c t

We introduce an algorithm for designing a predictive
left to right shift-reduce non-deterministic push-down
machine corresponding to an arbitrary unrestricted
context-free grammar and an algorithm for efficiently
driving this machine in pseudo-parallel. The perfor-
mance of the resulting parser is formally proven to be
superior to Earley's parser (1970).

The technique employed consists in constructing
before run-time a parsing table that encodes a non-
deterministic machine in the which the predictive be-
havior has been compiled out. At run time, the ma-
chine is driven in pseudo-parallel with the help of a
chart.

The recognizer behaves in the worst case in
O(IGI2n3)-time and O(IGIn2)-space. However in
practice it is always superior to Earley's parser since
the prediction steps have been compiled before run-
time.

Finally, we explain how other more efficient vari-
ants of the basic parser can be obtained by deter-
minizing portionsof the basic non-deterministic push-
down machine while still using the same pseudo-
parallel driver.

1 I n t r o d u c t i o n

Predictive bottom-up parsers (Earley, 1968; Earley,
1970; Graham et al., 1980) are often used for natural
language processing because of their superior average
performance compared to purely bottom-up parsers

*We are extremely indebted to Fernando Pereira and Stuart
Shleber for providing valuable technical comments during dis-
cussions about earlier versio/m of this algorithm. We are also
grateful to Aravind Joehi for his support of this research. We
also thank Robert Frank. All remaining errors are the author 's
responsibility alone. This research wa~ partially funded by
ARO grant DAAL03-89-C0031PRI and DARPA grant N00014-
90-J-1863.

such as CKY-style parsers (Kasami, 1965; Younger,
1967). Their practical superiority is mainly obtained
because of the top-down filtering accomplished by the
predictive component of the parser. Compiling out
as much as possible this predictive component before
run-time will result in a more efficient parser so long
as the worst case behavior is not deteriorated.

Approaches in this direction have been investigated
(Earley, 1968; Lang, 1974; Tomita, 1985; Tomita,
1987), however none of them is satisfying, either be-
cause the worst case complexity is deteriorated (worse
than Earley's parser) or because the technique is not
general. Furthermore, none of these approaches have
been formally proven to have a behavior superior to
well known parsers such as Earley's parser.

Earley himself ([1968] pages 69-89) proposed to pre-
compile the state sets generated by his algorithm to
make it as efficient as LR(k) parsers (Knuth, 1965)
when used on LR(k) grammars by precomputing all
possible states sets that the parser could create. How-
ever, some context-free grammars, including most
likely most natural language grammars, cannot be
compiled using his technique and the problem of
knowing if a grammar can be compiled with this tech-
nique is undecidable (Earley [1968], page 99).

Lang (1974) proposed a technique for evaluating
in pseudo-parallel non-deterministic push down au-
tomata. Although this technique achieves a worst
case complexity of O(n3)-time with respect to the
length of input, it requires that at most two symbols
are popped from the stack in a single move. When the
technique is used for shift-reduce parsing, this con-
straint requires that the context-free grammar is in
Chomsky normal form (CNF). As far as the grammar
size is concerned, an exponential worst case behavior
is reached when used with the characteristic LR(0)

106

machine. 1
Tomita (1985; 1987) proposed to extend LR(0)

parsers to non-deterministic context-free grammars
by explicitly using a graph structured stack which
represents the pseudo-parallel evaluation of the moves
of a non-deterministic LR(0) push-down automaton.
Tomita 's encoding of the non-deterministic push-
down automaton suffers from an exponential time
and space worst case complexity with respect to the
input length and also with respect to the grammar
size (Johnson [1989] and also page 72 in Tomita
[1985]). Although Tomita reports experimental data
that seem to show that the parser behaves in practice
better than Earley's parser (which is proven to take
in the worst case O([G[2n3)-time), the duplication of
the same experiments shows no conclusive outcome.
Modifications to Tomita 's algorithm have been pro-
posed in order to alleviate the exponential complex-
ity with respect to the input length (Kipps, 1989) but,
according to Kipps, the modified algorithm does not
lead to a practical parser. Furthermore, the algorithm
is doomed to behave in the worst case in exponential
time with respect to the grammar size for some am-
biguous grammars and inputs (Johnson, 1989). 2 So
far, there is no formal proof showing that the Tomita 's
parser can be superior for some grammars and in-
puts to Earley's parser, and its worst case complexity
seems to contradict the experimental data.

As explained, the previous at tempts to compile
the predictive component are not general and achieve
a worst case complexity (with respect to the gram-
mar size and the input length) worse than standard
parsers.

The methodology we follow in order to compile the
predictive component of Earley's parser i s to define
a predictive bot tom-up pushdown machine equiva-
lent to the given grammar which we drive in pseudo-
parallel. Following Johnson's (1989) argument, any
parsing algorithm based on the LR(0) characteris-
tic machine is doomed to behave in exponential time
with respect to the grammar size for some ambigu-
ous grammars and inputs. This is a result of the fact
that the number of states of an LR(0) characteristic
machine can be exponential and that there are some
grammars and inputs for which an exponential num-
ber of states must be reached (See Johnson [1989] for
examples of such grammars and inputs). One must
therefore design a different pushdown machine which

1 The same arguraent for the exponential graramar size com-
plexity of Tomita's parser (Johnson, 1989) holds for Lang's
technique.

2 This problem is particularly acute for natural language pro-
cessing since in this context the input length is typically small
(10-20 words) and the granunar size very large (hundreds or
thousands of rules and symbols).

can be driven efficiently in pseudo-parallel.
We construct a non-deterministic predictive push-

down machine given an arbi trary context-free gram-
mar whose number of states is proportional to the size
of the grammar. Then at run time, we efficiently drive
this machine in pseudo-parallel. Even if all the states
of the machine are reached for some grammars and
inputs, a polynomial complexity will still be obtained
since the number of states is bounded by the gram-
mar size. We therefore introduce a shift-reduce driver
for this machine in which all of the predictive compo-
nent has been compiled in the finite state control of
the machine. The technique makes no requirement on
the form of the context-free grammar and it behaves
in the worst case as well as Earley's parser (Earley,
1970). The push-down machine is built before run-
time and it is encoded as parsing tables in the which
the predictive behavior has been compiled out.

In the worst case, the recognizer behaves in the
same O([Gl2nS)-time and O([G[n2)-space as Earley's
parser. However in practice it is always superior
to Earley's parser since the prediction steps have
been eliminated before run-time. We show that the
items produced in the chart correspond to equiva-
lence classes on the items produced for the same input
by Earley's parser. This mapping formally shows its
practical superior behavior. 3

Finally, we explain how other more efficient vari-
ants of the basic parser can be obtained by deter-
minizing portions of the basic non-deterministic push-
down machine while still using the same pseudo-
parallel driver.

2 T h e P a r s e r

The parser we propose handles any context-free gram-
mar; the grammar can be ambiguous and need not be
in any normal form. The parser is a predictive shift-
reduce bot tom-up parser that uses compiled top down
prediction information in the form of tables. Before
run-time, a non-deterministic push down automa-
ton (NPDA) is constructed from a given context-free
grammar. The parsing tables encode the finite state
control and the moves of the NPDA. At run-time,
the NPDA is then driven in pseudo-parallel with the
help of a chart. We show the construction of a basic
machine which will be driven non-deterministically.

In the following, the input string is w -- a l . . . a n
and the context-free grammar being considered is
G = (~, N T , P, S), where ~ is the set of terminal

3The characteristic LR(0) machine is the result of deter-
minizing the n~acldne we introduce. Since this procedure in-
troduce exponentially more states, the LR(0) machine can be
exponentially large.

107

symbols, N T the set of non-terminal symbols, P a
set of product ion rules, S the s tar t symbol. We will
need to refer to the subsequence of the input string
w = az . . . aN f rom position i to j , w]i,j], which we
define as follows:

f ai+l . . . aj , if i < j w]i,~] I, ¢ , i f i > _ j

We explain the data-s t ructures used by the parser,
the moves of the parser, and how the parsing tables
are constructed for the basic NPDA. Then, we s tudy
the formal characteristics of the parser.

The parser uses two moves: shift and reduce. As in
s tandard shift-reduce parsers, shift moves recognize
new terminal symbols and reduce moves perform the
recognition of an entire context-free rule. However in
the parser we propose, shift and reduce moves behave
differently on rules whose recognition has just s tar ted
(i.e. rules tha t have been predicted) than on rules
of which some port ion has been recognized. This be-
havior enables the parser to efficiently perform reduce
moves when ambigui ty arises.

2.1 D a t a - S t r u c t u r e s and t h e M o v e s of
t h e Pa rser

The parser collects i tems into a set called the chart,
C. Each i tem encodes a well formed substr ing of the
input. The parser proceeds until no more i tems can
be added to the chart C.

An item is defined as a triple (s , i , j l , where s is a
s ta te in the control of the NPDA, i and j are indices
referring to positions in the input str ing (i, j E [0, n]).

In an i tem (s , i , j) , j corresponds to the current
position in the input str ing and i is a position in the
input which will facili tate the reduce move.

A dotted rule of a context-free g r am m ar G is defined
as a product ion of G associated with a dot at some
position of the right hand side: A ~ a •/~ with
A --~ afl E P.

We distinguish two kinds of dotted rules. Kernel
dot ted rules, which are of the form A ~ a • fl with a
non empty, and non-kernel dot ted rules, which have
the dot at the left most position in the right hand
side (A --~ •1~). As we will see, non-kernel dot ted
rules correspond to the predictive component of the
parser.

We will later see each s ta te s of the NPDA corre-
sponds to a set of dot ted rules for the g r am mar G.

The set of all possible s ta tes in the control of the
NPDA is wri t ten S. Section 2.2 explains how the
s ta tes are constructed.

The algori thm mainta ins the following proper ty

(which guarantees its soundness)4: if an i tem (s, i ,j)
is in the chart C then for all dot ted rules A ~ aof l E s
the following is satisfied:

(i) if a E (E U NT) +, then B7 E (N T U ~)* such

tha t S~w]o, i]A 7 and a=:=~w]~d];

(ii) if a is the empty string, then B 7 E (N T O ~)*
such tha t S=~w]0. /]A 7.

The parser uses three tables to determine which
move(s) to perform: an action table, ACTION, and
two goto tables, the kernel goto table, GOTOk, and
the non-kernel goto table, GOTOnk.

The goto tables are accessed by a s ta te and a non-
terminal symbol. They each contain a set of states:
GOTO~(s,X) = {r} ,GOTOnk(s ,X) = {r '} with
r, rt,s E S , X E NT. The use of these tables is ex-
plained below.

The action table is accessed by a s tate and a ter-
minal symbol. I t contains a set of actions. Given
an item, (s, i , j) , the possible actions are determined
by the content of ACTION(s , aj+x) where a j+l is the
j + 1 th input token. The possible actions contained
in ACTION(s , a j+ l) are the following:

• K E R N E L S H I F T s t, (ksh(s t) for short) , for s t E
S. A new token is recognized in a kernel dotted
rule A --* a • aft and a push move is performed.
The i t em (s I, i , j + 1) is added to the chart, since
a a spans in this case w]i,j+l].

• N O N - K E R N E L S H I F T s t, (nksh(s I) for short),
for s t E S. A new token is recognized in a non-
kernel dot ted rule of the form A --* •aft. The
i tem (s ' , j , j + 1) is is added to the chart, since a
spans in this case w l j j + x]

• R E D U C E X ---. fl, (red(X ---* fl) for short) , for
X --* ~ E P. The context-free rule X --*/~ has
been totally recognized. The rule spans the sub-
string ai+z . . .a j . For all i tems in the chart of the
form (s ~, k, i), pe r form the following two steps:

- for all r l E GOTOk(s ' ,X), it adds the i tem
(ra, k , j) to the chart . In this case, a dotted
rule of the form A ~ a • Xf l is combined
with X --* fl• to form A ---* a X •/~; since a
spans w]k,i] and X spans wli,j], a X spans
w]k,j].

- for all r2 E GOTOnk(s t, X) , it adds the i tem
(r2,i,j) to the chart . In this case, a dot-
ted rule of the form A ~ • Xf~ is combined
with X --~ fl• to form A ~ X •/~; in this
case X spans w]idl-

4This property holds for all machines derived from the basic
NPDA.

108

The recognizer follows:

b e g i n (* recognizer *)

Input:

a l * • • an
ACTION
GOTO~
GOTOnk
start E ,9
.~ C ,q

(* input string *)
(* action table *)
(* kernel goto table *)
(* non-kernel goto table *)
(* start state *)
(* set of final states *)

Output:acceptance or rejection of the input
string.

Initialization: C := {(start, O, 0)}

Perform the following three operations until no
more items can be added to the chart C:

(1) KERNEL SHIFT: if (s,i,j) 6 C and
if ksh(s') 6 ACTION(s, aj+I), then
(s', i, j + 1) is added to C.

(2) NON-KERNEL SHIFT: if (s,i,j) e C
and if nksh(s') E ACTION(s, aj+I), then
(s ' , j , j+ 1) is added to C.

(3) REDUCE: if (s, i, j) E C, then for all
X --~ j3 s.t. red(X ~ ~) 6 ACTION(s, a j+t)
and for all (s', k, i) E C, perform the follow-
ing:

• for all r l 6 GOTO~(s',X), (rl ,k, j) is
added to C;

• for all r2 E GOTOnk(s',X), (r~,i,j) is
added to C.

I f {(s, O, n) I (s, O, n) 6 C and s e . r } .# #
then return acceptance
otherwise return rejection.

e n d (* recognizer *)

In the above algorithm, non-determinism arises
from multiple entries in ACTION(s, a) and also from
the fact that GOTOk(s,X)and GOTOnk(s,X)con-
tain a set of states.

2 . 2 C o n s t r u c t i o n o f t h e P a r s i n g T a b l e s

We shall give an LR(0)-like method for constructing
the parsing tables corresponding to the basic NPDA.
Several other methods (such as LR(k)-like, SLR(k)-
like) can also be used for constructing the parsing
tables and are described in (Schabes, 1991).

To construct the LR(0)-like finite state control
for the basic non-deterministic push-down automaton
that the parser simulates, we define three functions,
closure, gotok and gotonk.

If s is a state, then closure(s) is the state con-
structed from s by the two rules:

(i) Initially, every dotted rule in s is added to
closure(s);

(ii) If A --* a • B/~ is in closure(s) and B --* 7 is a
production, then add the dotted rule B --* e7 to
closure(s) (if it is not already there). This rule
is applied until no more new dotted rules can be
added to closure(s).

If s is a state and if X is a non-terminal or terminal
symbol, gotok(s,X) and gotonk(s,X) are the set of
states defined as follows:
gotok(s , X) =

{ c l o s u r e ({ A • A - * • X Z e s
and a E (Z3 U NT) + }

gotonk (s, X) =
{closure({A X .,8))1 A • s}

The goto functions we define differ from the one de-
fined for the LR(0) construction in two ways: first we
have distinguished transitions on symbols from ker-
nel items and non-kernel items; second, each state
in goto~(s,X) and gOtOn~(S,X) contains exactly one
kernel item whereas for the LR(0) construction they
may contain more than one.

We are now ready to compute the set of states ,9
defining the finite state control of the parser.

The SET OF STATES CONSTRUCTION is con-
structed as follows:

procedure states(G)
begin

S := {closure({S --, .~ I S-* a e P})}
repeat

for each state s in 8
for each X E r~ u N T terminal

fo r each r E gotok(s,X) U goton~(s, X)
add r to S

u n t i l no more states can be added to 8
e n d

PARSING TABLES. Now we construct the LR(0)
parsing tables ACTION, GOTOk and GOTOnk from
the finite state control constructed above. Given a
context-free grammar G, we construct ~q, the set of
states for G with the procedure given above. We con-
struct the action table ACTION and the goto tables
using the following algorithm.

b e g i n (CONSTRUCTION OF THE PARSING TABLES)

Input: A context-free grammar
G = (Y,, NT, P, S).

Output: The parsing tables ACTION, GOTOk
and GOTOnk for G, the start state start and
the set of final states ~'.

109

Step 1. Construct 8 = { s o , . . . , sin}, the set of states
for G.

Step 2. The parsing actions for state si are deter-
mined for all terminal symbols a E ~ as follows:

(i) for all r e gotok(si,a), add ksh(r) to
ACTION(si , a);

(ii) for all r E goto, k(si,a), add nksh(r) to to
ACTION(si , a);

(iii) if A --* a* is in si, then add red(A--* a)
to ACTION(si , a) for all terminal symbol a
and for the end marker $.

Step 4. The kernel and non-kernel goto tables for
state si are determined for all non-terminal sym-
bols X as follows:

(i) VX E NT, GOTO~(si,X) := gotok(si,X)
(ii) VX E NT,

GOTOnk(si, X) :-- gotonk(si, X)
Step 3. The star t s tate of the parser is

start := ciosure({S --* .a I S --~ a ~_ P})

Step 4. The set of final states of the parser is
Y := {s e SI3 S--* a 6 P s.t. S- - . a . E s}

e n d (CONSTRUCTION OF THE PARSING TABLES)

Appendix A gives an example of a parsing table.

3 C o m p l e x i t y

The recognizer requires in the worst case O([GIn2)-
space and O([G[2na)-time; n is the length of the input
string,]GI is the size of the grammar computed as
the sum of the lengths of the right hand side of each
productions:

[GI = E [a I , where la] is the length of a .
A-*a EP

One of the objectives for the design of the non-
deterministic machine was to make sure tha t it was
not possible to reach an exponential number of states,
a proper ty without which the machine is doomed to
have exponential complexity (Johnson, 1989). First
we observe that the number of states of the finite
state control of the non-deterministic machine that
we constructed in Section 2.2 is proportional to the
size of the grammar, IG[. By construction, each state
(except for the s tar t s tate) contains exactly one ker-
nel dot ted rule. Therefore, the number of states is
bounded by the maximum number of kernel rules of
the form A --* ao/~ (with a non empty) , and is O(IGI).
We conclude tha t the algorithm requires in the worst
case O(IGIn~)-space since the maximum number of
items (8, i, j) in the chart is proportional to IGIn 2.

A close look at the moves of the parser reveals that
the reduce move is the most complex one since it in-
volves a pair of states (s, i,j) and (s', k , j / . This move
can be instantiated at most O(IGI2nS)-time since
i , j ,k E [0, n] and there are in the worst case O(IGI ~)
pairs of states involved in this move. 5 The parser
therefore behaves in the worst case in O(IGI2nS)-time.

One should however note tha t in order to bound the
worst case complexity as s tated above, arrays similar
to the one needed for Earley's parser must be used to
implement efficiently the shift and reduce moves. 6

As for Earley's parser, it can also be shown that the
algorithm requires in the worst case O(IGI2n2)-time
for unambiguous context-free grammars and behaves
in linear time on a large class of grammars.

4 Retr i ev ing a Parse

The algorithm that we described in Section 2 is a rec-
ognizer. However, if we include pointers from an i tem
to the other items (to a pair of items for the reduce
moves or to an i tem for the shift moves) which caused
it to be placed in the chart, the recognizer can be
modified to record all parse trees of the input string.
The representation is similar to a shared forest.

The worst case t ime complexity of the parser is the
same as for the recognizer (O([GI2n3)-time) but, as
for Earley's parser, the worst case space complexity
increases to O([G[2n 3) because of the additional book-
keeping.

5 Correctness and Compar i son
wi th Earley's Parser

We derive the correctness of the parser by showing
how it can be mapped to Earley's parser. In the pro-
cess, we will also be able to show why this parser can
be more efficient than Earley's parser. The detailed
proofs are given in (Schabes, 1991).

We are also interested in formally characterizing
the differences in performance between the parser
we propose and Earley's parser. We show that the
parser behaves in the worst scenario as well as Ear-
ley's parser by mapping it into Earley's parser. The
parser behaves be t te r than Earley's parser because it
has eliminated the prediction step which takes in the
worst case O(]GIn)-time for Earley's parser. There-
fore, in the most favorable scenario, the parser we

SKerael shift and non-kernel shift moves require bo th at
most O(IGIn 2)-time.

6Due to the lack of space, the details of the implementat ion
are not given in this paper bu t they are given in (Schabes,
1991).

110

propose will require O(IGln) less time than Earley's
parser.

For a given context-free grammar G and an input
string al . - . an , let C be the set of items produced by
the parser and CearZey be the set of items produced
by Earley's parser. Earley's parser (Earley, 1970)
produces items of the form (A ---* a * ~, i, j) where
A --* a • ~ is a single dot ted rule and not a set of
dot ted rules.

The following lemma shows how one can map the
items that the parser produces to the items that Ear-
ley's parser produces for the same grammar and in-
put:

L e m m a 1 If Cs, i , j) E C then we have:

(i) for all kernel dot ted rules A ~ a • ~ E s, we
have C A ~ ct • ~, i, j) E CearIey

(ii) and for all non-kernel dot ted rules A ---, *j3 E
s, we have C A ~ •~, j , j) E Cearaev

The proof of the above lemma is by induction on
the number of items added to the chart C.

This shows that an i tem is mapped into a set of
items produced by Earley's parser.

By construction, in a given state s E S, non-kernel
dot ted rules have been introduced before run-time by
the closure of kernel dotted rules. It follows that Ear-
ley's parser can require O(IGln) more space since all
Earley's items of the form C A ~ •a , i, i) (i E [0, n])
are not stored separately from the kernel dot ted rule
which introduced them.

Conversely, each kernel i tem in the chart created by
Earley's parser can be put into correspondence with
an i tem created by the parser we propose.

L e m m a 2 If CA --* a • fl, i , j) E CearZev and if (~ # e,
then C s, i , j) e C where s = closure({A ~ a • fl}).

The proof of the above lemma is by induction on
the number of kernel items added to the chart created
by Earley's parser.

The correctness of the parser follows from Lemma 1
and its completeness from Lemma 2 since it is well
known that the items created by Earley's parser are
characterized as follows (see, for example, page 323 in
Aho and Ullman [1973] for a proof of this invariant):

L e m m a 3 The i tem C A --. a • fl, i, j) E Ceartey
if and only if, ST E (VNT U VT)* such that
S"~W]o , i]XT and X==c, F A = ~ w] i j] A .

The parser we propose is therefore more efficient
than Earley's parser since it has compiled out predic-
tion before run time. How much more efficient it is,
depends on how prolific the prediction is and therefore
on the nature of the grammar and the input string.

6 O p t i m i z a t i o n s

The parser can be easily extended to incorporate stan-
dard optimization techniques proposed for predictive
parsers.

The closure operation which defines how a state
is constructed already optimizes the parser on chain
derivations in a manner very similar to the tech-
niques originally proposed by Graham e t a] . (1980)
and later also used by Leiss (1990).

In addition, the closure operation can be designed
to optimize the processing of non-terminal symbols
tha t derive the empty string in manner very simi-
lar to the one proposed by Graham et al. (1980) and
Leiss (1990). The idea is to perform the reduction
of symbols that derive the empty string at compila-
tion time, i.e. include this type of reduction in the
definition of closure by adding (iii):

If s is a state, then closure(s) is now the state con-
structed from s by the three rules:

(i) Initially, every dot ted rule in s is added to
closure(s);

(ii) i f A ~ a . B f l i s i n c l o s u r e (s) a n d B ~ 7 i s
a production, then add the dot ted rule B ~ • 7
to closure(s) (if it is not already there);

(iii) i fA ~ a . B ~ is in closure(s) and i f B = ~ e, then
add the dotted rule A ~ a B • ~ to closure(s)
(if it is not already there).

Rules (ii) and (iii) are applied until no more new
dotted rules can be added to closure(s).

The rest of the parser remains as before.

7 V a r i a n t s o n t h e b a s i c m a -
c h i n e

In the previous section we have constructed a ma-
chine whose number of states is in the worst case
proportional to the size of the grammar. This re-
quirement is essential to guarantee that the complex-
ity of the resulting parser with respect to the gram-
mar size is not exponential or worse than O(IGI2)-
time as other well known parsers. However, we may
use some non-determinism in the machine to guaran-
tee this property. The non-determinism of the ma-
chine is not a problem since we have shown how the
non-deterministic machine can be efficiently driven in
pseudo-parallel (in O([G[2n3)-time).

We can now ask the question of whether it is pos-
sible to determinize the finite state control of the ma-
chine while still being able to bound the complexity
of the parser to O([Gl2n3)-time. Johnson (1989) ex-
hibits grammars for which the full determinization

111

of the finite state control (the LR(0) construction)
leads to a parser with exponential complexity, because
the finite state control has an exponential number of
states and also because there are some input string
for which an exponential number of states will be
reached. However, there are also cases where the full
determin~ation either will not increase the number
of states or will not lead to a parser with exponential
complexity because there are no input that require to
reach an exponential number of states. We are cur-
rently studying the classes of grammars for which this
is the case.

One can also try to determinize portions of the fi-
nite state automaton from which the control is derived
while making sure that the number of states does not
become larger than O(IGI).

All these variants of the basic parser obtained by
determinizing portions of the basic non-deterministic
push-down machine can be driven in pseudo-parallel
by the same pseudo-parallel driver that we previously
defined. These variants lead to a set of more efficient
machines since the non-determinism is decreased.

8 C o n c l u s i o n

We have introduced a shift-reduce parser for unre-
stricted context-free grammars based on the construc-
tion of a non-deterministic machine and we have for-
mally proven its superior performance compared to
Earley's parser.

The technique which we employed consists of con-
structing before run-time a parsing table that encodes
a non-deterministic machine in the which the predic-
tive behavior has been compiled out. At run time, the
machine is driven in pseudo-parallel with the help a
chart.

By defining two kinds of shift moves (on kernel dot-
ted rules and on non-kernel dotted rules) and two
kinds of reduce moves (on kernel and non-kernel dot-
ted rules), we have been able to efficiently evaluate in
pseudo-parallel the non-deterministic push down ma-
chine constructed for the given context-free grammar.

The same worst case complexity as Earley's rec-
ognizer is achieved: O(IGl2na)-time and O(IG]n2) -
space. However, in practice, it is superior to Earley's
parser since all the prediction steps and some of the
completion steps have been compiled before run-time.

The parser can be modified to simulate other types
of machines (such LR(k)-like or SLR-like automata).
It can also be extended to handle unification based
grammars using a similar method as that employed
by Shieber (1985) for extending Earley's algorithm.

Furthermore, the algorithm can be tuned to a par-

ticular grammar and therefore be made more effi-
cient by carefully determinizing portions of the non-
deterministic machine while making sure that the
number of states in not increased. These variants
lead to more efficient parsers than the one based on
the basic non-deterministic push-down machine. Fur-
thermore, the same pseudo-parallel driver can be used
for all these machines.

We have adapted the technique presented in this
paper to other grammatical formalism such as tree-
adjoining grammars (Schabes, 1991).

Bib l iography

A. V. Aho and J. D. Ullman. 1973. Theory of Pars-
ing, Translation and Compiling. Vol I: Parsing.
Prentice-Hall, Englewood Cliffs, NJ.

Jay C. Earley. 1968. An Efficient Context-Free Pars-
ing Algorithm. Ph.D. thesis, Carnegie-Mellon Uni-
versity, Pittsburgh, PA.

Jay C. Earley. 1970. An efficient context-free parsing
algorithm. Commun. ACM, 13(2):94-102.

S.L. Graham, M.A. Harrison, and W.L. Ruzzo. 1980.
An improved context-free recognizer. ACM Trans-
actions on Programming Languages and Systems,
2(3):415-462, July.

Mark Johnson. 1989. The computational complex-
ity of Tomlta's algorithm. In Proceedings of the
International Workshop on Parsing Technologies,
Pittsburgh, August.

T. Kasami. 1965. An efficient recognition and syn-
tax algorithm for context-free languages. Technical
Report AF-CRL-65-758, Air Force Cambridge Re-
search Laboratory, Bedford, MA.

James R. Kipps. 1989. Analysis of Tomita's al-
gorithm for general context-free parsing. In Pro-
ceedings of the International Workshop on Parsing
Technologies, Pittsburgh, August.

D. E. Knuth. 1965. On the translation of languages
from left to right. Information and Control, 8:607-
639.

Bernard Lang. 1974. Deterministic tech-
niques for efficient non-deterministic parsers. In
Jacques Loeckx, editor, Automata, Languages
and Programming, 2nd Colloquium, University of
Saarbr~cken. Lecture Notes in Computer Science,
Springer Verlag.

112

Hans Leiss. 1990. On Kilbury's modification of Ear-
ley's algorithm. ACM Transactions on Program-
ming Languages and Systems, 12(4):610-640, Oc-
tober.

Yves Schabes. 1991. Polynomial time and space
shift-reduce parsing of context-free grammars and
of tree-adjoining grammars. In preparation.

t

t
e

O
Stuart M. Shieber. 1985. Using restriction to ex- 1

tend parsing algorithms for complex-feature-based 2
formalisms. In 23 rd Meeting of the Association 3 4
for Computational Linguistics (ACL '85), Chicago, s
July.

Masaru Tomita. 1985. Efficient Parsing for Natural
Language, A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers.

Masaru Tomita. 1987. An efficient augmented-
context-free parsing algorithm. Computational
Linguistics, 13:31-46.

D. H. Younger. 1967. Recognition and parsing of
context-free languages in time n 3. Information and
Control, 10(2):189-208.

A An Example

We give an example that illustrates how the recog-
nizer works. The grammar used for the example gen-
erates the language L = {a(ba)nln >_ O} and is in-
finitely ambiguous:

S - - . S b S

S ~ S

S --, a
The set of states and the goto function are shown

in Figure 1. In Figure 1, the set of states is
{0, 1, 2, 3, 4, 5}. We have marked with a sharp sign (~)
transitions on a non-kernel dotted rule. If an arc from
51 to 52 is labeled by a non-sharped symbol X, then
s2 is in gotot(Sl,X). If an arc from sl to 52 is labeled
by a sharped symbol X~, then 52 is in gotont(Sx, X).

1 4
$~"(S-~ S'b$)sCL" ~rS--~ Sb 'S~

- - TLi .Sb , -.> --~*S /
IS-~ S , --#-a J

--> SbS-)

Figure 1: Example of set of states and goto function.

The parsing table corresponding to this grammar
is given in Figure 2.

ACTION

.k,h(3)

red(S--*S)
red(S~a)

nksh(3)
red(S--*SbS)

I b I $

ksh(4)
,~d(S--.S) ,~a(S-.S)
,~d(S--.,) , ,d(s-~ ,)

red(S - ~ 5 b S) red(S. - - *~SbS')

G
O
T
O
k
S

{5)

Figure 2: An LR(0) parsing table for L =
{a(ba)" I n ~ 0}. The start state is 0, the set of
final states is {2, 3, 5}. $ stands for the end marker of
the input string.

The input string given to the recognizer is: ababa$
($ is the end marker). The chart is shown in Fig-
ure 3. In Figure 3, an arc labeled by s from position
i to position j denotes the item (s, i,j). The input is
accepted since the final states 2 and 5 span the en-
tire string ((2, 0, 5) E C and (5, 0, 5) E C). Notice that
there are multiple arcs subsuming the same substring.

a

ab
aba

abab
ababa

items in the chart

(0, O, 0 I
(3,0,1) (2,10,1) (1,0,1)

14,0,2)
(3' 2' 3) (2' 0' 3) (2' 2 l, 3)
(1,0, 3)(1,2, 3)15,0,3)
(4, O, 4) (4 , 2, 4)
(3,4,5) (2,0,5) (2,2,5)
(2,4,5) (1,0,5) (1,2,5)
(1,4,5) (5,0,5)(5,2,5)

Figure 3: Chart created ~r the input
oal b2a3b4ah$.

O
o
T
0
nk
S I

{1,2)

{1,2}

113

