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Abstract  
I present a semantic analysis of collective- 
distributive ambiguity, and resolution of such am- 
biguity by model-based reasoning. This approach 
goes beyond Scha and Stallard [17], whose reasoning 
capability was limited to checking semantic types. 
My semantic analysis is based on Link [14, 13] and 
Roberts [15], where distributivity comes uniformly 
from a quantificational operator, either explicit (e.g. 
each) or implicit (e.g. the D operator). I view 
the semantics module of the natural language sys- 
tem as a hypothesis generator and the reasoner in 
the pragmatics module as a hypothesis filter (cf. 
Simmons and Davis [18]). The reasoner utilizes a 
model consisting of domain-dependent constraints 
and domain-independent axioms for disambiguation. 
There are two kinds of constraints, type constraints 
and numerical constraints, and they are associated 
with predicates in the knowledge base. Whenever 
additional information is derived from the model, 
the Contradiction Checker is invoked to detect any 
contradiction in a hypothesis using simple mathe- 
matical knowledge. CDCL (Collective-Distributive 
Constraint Language) is used to represent hypothe- 
ses, constraints, and axioms in a way isomorphic 
to diagram representations of collective-distributive 
ambiguity. 

1 Semant ics  of  Col lect ive-  
Dis tr ibut ive  A m b i g u i t y  

Collective-distributive ambiguity can be illustrated 
by the following sentence. 

(1) Two students moved a desk upstairs. 

(1) means either that two students T O G E T H E R  

moved one desk (a collective reading) or that each 

* T h e  work desc r ibed  in th i s  p a p e r  was done  as a p a r t  of  
t he  a u t h o r ' s  doc to ra l  d i s se r t a t i on  a t  T h e  Un ive r s i t y  of  Texas  
a t  A u s t i n .  

of them moved a desk S E P A R A T E L Y  ( a  distributive 
reading). Following Link [14, 13] and Roberts [15], 
distributivity comes from either an explicit quantifi- 
cational operator like each or an implicit distributive 
operator called the D o p e r a t o r .  The D operator 
was motivated by the equivalence in the semantics 
of the following sentences. 

(2) a. Every student in this class lifted the piano. 
b. Students in this class each lifted the piano. 
c. Students in this class lifted the piano. 

(the distributive reading) 

Thus, the distributive readings of (1) and (2c) result 
from applying the D operator to the subjects. 

Now, look at another sentence "Five students ate 
four slices of pizza." It has 8 POSSIBLE readings be- 
cause the D operator may apply to each of the two 
arguments of eat, and the two NPs can take scope 
over each other. Thus, 2x2x2  = 8. i j have extended 
Link's and Roberts's theories to quantify over events 
in Discourse Representation Theory (cf. Kamp [10], 
Heirn [9], Aone [2]) so that these readings can be sys- 
tematically generated and represented in the seman- 
tics module. However, the most PLAUSIBLE reading 
is the "distributive-distributive reading", where each 
of the five students ate four slices one at a time, as 
represented in a discourse representation structure 
(DRS) in Figure 1 ~. Such plausibility comes partly 
from the lexical semantics of eat. From our "common 
sense", we know that "eating" is an individual activ- 
ity unlike "moving a desk", which can be done either 
individually or in a group. However, such plausi- 
bility should not be a part of the semantic theory, 
but should be dealt with in pragmatics where world 
knowledge is available. In section 2, I'll identify the 

1Actua l ly  t h e  two col lect ive-col lect ive r e a d i n g s  a re  equiv-  
a lent ,  so t he r e  are  7 d i s t i nc t  r e ad ings .  

2( i -par t  x I x) s a y s  "x I is a n  a t o m i c  i n d i v i d u a l - p a r t  o f  x" 
(cf. L ink  [12]), a n d  CU,  i.e. " C o u n t - U n i t " ,  s t a n d s  for a n a t u r a l  
m e a s u r e  u n i t  for s t u d e n t s  (cf. Kr i fka  [11]). 
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Figure h DRS for "Five students ate four slices of pizza" 

necessary knowledge and develop a reasoner, which 
goes beyond Scha and Stallard [17]. 

There is a special reading called a cumula t i ve  
reading (cf. Scha [16]). 

(3) 500 students ate 1200 slices of pizza. 

The cumulative reading of (3) says "there were 500 
students and each student ate some slices of pizza, 
totaling 1200 slices." The semantics of a cumulative 
reading is UNDERSPECIFIED and is represented as a 
collective-collective reading at the semantic level (cf. 
Link [13], Roberts [15], Aone [2]). This means that a 
cumulative reading should have a more specific rep- 
resentation at the pragmatics level for inferencing. 
Reasoning about cumulative readings is particularly 
interesting, and I will discuss it in detail. 

2 M o d e l - B a s e d  R e a s o n i n g  f o r  

D i s a m b i g u a t i o n  

Although scope ambiguity has been worked on by 
many researchers (e.g. Grosz et al. [8]), the main 
problem addressed has been how to generate all the 
scope choices and order them according to some 
heuristics. This approach might be sufficient as 
far as scope ambiguity goes. However, collective- 
distributive ambiguity subsumes scope ambiguity 
and a heuristics strategy would not be a strong 
method. I argue that the reason why some of the 
readings are implausible (and even do not occur to 
some people) is because we have access to domain-  
d e p e n d e n t  knowledge (e.g. constraints on predi- 
cates) along with d o m a l n - i n d e p e n d e n t  knowledge 
(e.g. mathematical knowledge). I have developed a 
reasoner based on the theory of model-based reason- 
ing (cf. Simmons and Davis [18], Fink and Lusth [6], 
Davis and Hamscher [5]) for collective-distributive 
ambiguity resolution. The model that the reasoner 

uses consists of four kinds of knowledge, namely 
predicate constraints, two types of axioms, and sim- 
ple mathematical knowledge. First, I will discuss the 
representation language CDCL 3. Then, I will discuss 
how these four kinds of knowledge are utilized during 
reasoning. 

2.1 CDCL 

CDCL is used to represent collective-distributive 
readings, constraints and axioms for reasoning. 
There are three types of CDCL clauses as in (4), 
and I will explain them as I proceed 4. 

(4) Core clause: (1 ((5) a0 4 al)) 
Number-of clause: (number-of al ?q:num) 
Number comparison clause: ( < =  ?q:num 1) 

2.1.1 Expres s ing  Col lec t ive  and  D i s t r i b u t i v e  
R e a d i n g s  in C D C L  

CDCL is used to express collective and distributive 
readings. Below, a's are example sentences, b's are 
the most plausible readings of the sentences, and c's 
are representations of b's in CDCL. 

(5) a. "5 students ate 4 slices of pizza." 
b. Each of the 5 students ate 4 slices of pizza 

one at a time. 
c. (eat a0 al): (5 (1 a0 -* 4 al))  

3CDCL s tands  for "Collective-Distributive Const ra int  
Language".  

4Though not  described in this  paper ,  CDCL has  been  ex- 
tended to deal with  sentences with explicit quantifiers as in 
"Every s tudent  a te  4 slices of pizza" and  sentences with n-ary 
predicates as in "2 companies dona ted  3 PC ' s  to 5 schools". 
For example: 

(i) (eat a0 a l ) :  (every (1 a0 -* 4 a l ) )  
(ii) (donate a0 a l  a2): (2 (1 a0 --* (5 (1 a2 ---* (3) a l ) ) ) )  

See Aone [2] for details of CDCL expressed in a context-free 
grammar .  

2 



(6) a. "5 dogs had (a litter of) 4 puppies." 
b. Each of the 5 mother  dogs delivered a litter 

of 4 puppies. 
c. (deliver-offspring a0 al):  (5 (1 a0 --~ (4) a l ) )  

(7) a. "5 alarms were installed in 6 buildings." 
b. Each of the 6 buildings was installed with 5 

alarms one at a time. 
c. (installed-in a0 al) :  (6 (1 a l  --* 5 a0)) 

First, consider (5c). The representation should 
capture three pieces of information: scope relations, 
distributive-collective distinctions, and numerical re- 
lations between objects denoted by NP arguments. 
In CDCL, a0 and a l  signify the arguments of a pred- 
icate, e.g. (eat a0 al) .  The scope relation is repre- 
sented by the relative position of those arguments. 
Tha t  is, the argument on the left hand side of an ar- 
row takes wide scope over the one on the right hand 
side (cf. (5) vs. (7)). The numerical relation such as 
"there is an eating relation from EACH student to 4 
slices of pizza" is represented by the numbers before 
each argument.  The number outside the parenthe- 
ses indicates how many instances of such a numerical 
relation there are. Thus, (5c) says there are five in- 
stances of one-to-four relation from students to slices 
of pizza. CDCL is designed to be isomorphic to a di- 
agram representation as in Figure 2. 

- - p  s - - p  s - - p  s - - p  s - - p  
\ -p  \ -p  \ - p  . \ - p  \ -p  
\ -p  \ -p  \ - p  \ - p  \ -p  
\ - p  \ - p  \ - p  \ - p  \ - p  
s = a student 
p = a s~ce of pizza 

Figure 2 : " 5  students ate 4 slices of pizza." 

As for the collective-distributive information in 
CDCL, it was implicitly assumed in (5c) that  both 
arguments were read DISTRIBUTIVELY. To mark that  
an argument is read COLLECTIVELY, a number be- 
fore an argument i s written in parentheses where the 
number indicates cardinality, as in (6c). 

There are two additional symbols, anynum and 
anyset for representing cumulative readings. The 
cumulative reading of (3) is represented in CDCL 
as follows. 

(s) (500 (1 a0 --* anynum0 al ) )  ~c 
(1200 (1 al  --~ anynuml  a0)) 

In (8), the situation is one in which each student (a0) 
ate a certain number of pizza slices, and the number 

may differ from student to student.  Thus,  anynumO 
represents any positive integer which can vary with 
the value of a0. 

2.1.2 C o n s t r a i n t s  in  C D C L  

CDCL is also used to express constraints. Each pred- 
icate, defined in the knowledge base, has its associ- 
ated constraints that  reflect our "common sense". 
Thus, constraints are d o m a i n - d e p e n d e n t .  There 
are two kinds of constraints: t y p e  c o n s t r a i n t s  (i.e. 
constraints on whether the arguments should be read 
collectively or distributively) and n u m e r i c a l  con-  
s t r a i n t s  (i.e. constraints on numerical relations be- 
tween arguments of predicates.) There are 6 type  
constraints (C1 - C6) and 6 numerical constraints 
(C7 -  C12) as in Figure 3. 

C1. (?p:num (1 ?a:arg ---* ?q:num ?b:arg)) 
:::~z inconsistent 
"Both arguments are distributive." 

C2. (1 (?p:set ?a:arg ~ ?q:set ?b:arg)) 
:=~ inconsistent 
"Both arguments are collective." 

C3. (?p:num (1 a0 ---. ?r:set al)) :=~ inconsistent 
C4. (1 (?q:set al ~ ?r:num a0)) :=~ inconsistent 

"lst argument distributive and 2nd collective." 

C5. (1 (?p:set a0 ---* ?q:num al))  :=~ inconsistent 
C6. (?p:num (1 al ~ ?q:set a0)) :=~ inconsistent 

"lst argument collective and 2nd distributive." 

C7. (?p:num (1 ?a:arg ---* ?q:num ?b:arg)) 
=~ (<--- ?q:num ?r:num) 

C8. (?p:num (1 ?a:arg --* ?q:num ?b:arg)) 
=~ (<- -  ?r:num ?q:num) 

C9. (?p:num (1 a0 --, 1 al))  :=~ inconsistent 
"A relation from a0 to al is a function." 

C10. (?p:num (1 al ---, 1 a0)) :=~ inconsistent 
"A relation from al to a0 is a function." 

C l l .  (1 (?p:set a0 --* 1 al))  :=~ inconsistent 
"Like C9, the domain is a set of sets." 

C12. (1 (?p:set al --* 1 a0)) :=~ inconsistent 
"Like C10, the domain is a set of sets." 

Figure 3: Constraints 

Predicate constraints are represented as rules. 
Those except C7 and C8 are represented as "anti- 
rules". Tha t  is, if a reading does not meet  a con- 
straint in the antecedent, the reading is considered 
inconsistent. C7 and C8 are ordinary rules in that  
if they succeed, the consequents are asserted and if 
they fail, nothing happens. 

The notation needs some explanation. Any sym- 
bol with a ?-prefix is a variable. There  are 4 variable 



types, which can be specified after the colon of each 
variable: 

(9) ?a:arg 
?b:num 
?c:set 
?d:n-s 

argument type (e.g. a0, al, etc.) 
positive integer type 
non-empty set type 
either num type or set type 

If an argument type variable is preceded by a set 
type variable, the argument should be read collec- 
tively while if an argument type variable is preceded 
by a number type variable, it should be read dis- 
tributively. 

To explain type constraints, look at sentence (6). 
The predicate (deliver-offspring a0 al) requires its 
first argument to be distributive and its second to 
be collective, since delivering offspring is an individ- 
ual activity but offspring come in a group. So, the 
predicate is associated with constraints C3 and C4. 

As for constraints on numerical relations between 
arguments of a predicate, there are four useful con- 
straints (C9 - C12), i.e. constraints that a given re- 
lation must be a FUNCTION. For example, the pred- 
icate deliver-o~spring in (6) has a constraint of a 
biological nature: offspring have one and only one 
mother. Therefore, the relation from al (i.e. off- 
spring) to a0 (i.e. mothers) is a function whose do- 
main is a set of sets. Thus, the predicate is associ- 
ated with C12. Another example is (7). This time, 
the predicate (installed-in a0 al)  has a constraint of 
a physical nature: one and the same object cannot 
be installed in greater than one place at the same 
time. Thus, the relation from a0 (i.e. alarms) to al 
(i.e. buildings) is a many-to-one function. The pred- 
icate is therefore associated with C9. 

In addition, more specific numerical constraints 
are defined for specific domains. For example, the 
constraint "each client machine (al) has at most 
one diskserver (a0)" is expressed as in (10), given 
(disk-used-by a0 al). It is an instance of a general 
constraint C7. 

(10) (?p:num (1 al --* ?q:num a0)) 

( ~ =  ?q:num 1) 

2.1.3 A x i o m s  in CDCL 

While constraints are associated only with particular 
predicates, axioms hold regardless of predicates (i.e. 
are d o m a l n - i n d e p e n d e n t ) .  There are two kinds 
of axioms as in Figure 4. The first two are con- 
s t r a in t  axioms,  i.e. axioms about predicate con- 
straints. Constraint axioms derive more constraints 
if a predicate is associated with certain constraints. 

CA1. 

CA2. 

RA1. 

RA2. 

RA3. 

(?m:num (1 ?a:arg --~ 1 ?b:arg)) 

(number-of ?a:arg ?re:hum) & 
(number-of ?b:arg ?n:num) & 
(<= ?n:num ?m:num) 
(?l:num (?s:set ?a:arg --~ 1 ?b:arg)) 

(number-of ?a:arg ?re:hum) & 
(number-of ?b:arg ?n:num) & 
(<= ?n:num ?re:hum) 
(?m:num (1 ?a:arg -~ ?y:n-s ?b:arg)) 

(number-of ?a:arg ?m:num) 
(?re:hum (1 ?a:arg --* ?y:num ?b:arg)) & 
(<= ?y:num ?z:num) 

(number-of ?b:arg ?n:num) & 
(<= ?n:num (* ?m:num ?z:num)) 
(?m:num (1 ?a:arg --* ?y:num ?b:arg)) & 
(<= ?z:num ?y:num) 

(number-of ?b:arg ?n:num) & 
(<= ?z:num ?n:num) 

Figure 4: Axioms 

(11) C9. 
CA1. 

The others are r ead ing  axioms.  They are ax- 
ioms about certain assertions representing particu- 
lar readings. Reading axioms derive more assertions 
from existing assertions. 

The constraint axiom CA1 derives an additional 
numerical constraint. It says that if a relation is a 
function, the number of the objects in the range is 
less than or equal to the number of the objects in the 
domain. This axiom applies when constraints C9 or 
C10 is present. For example: 

(?p:num (1 a0 ~ 1 al)) 
(?m:num (1 ?a:ar s --* 1 ?b:arg)) 

(number-of ?a:arg ?re:hum) & 
(number-of ?b:arg ?n:num) & 
(<= ?n:num ?re:hum) 
(number-of a0 ?m:num) & 
(number-of al ?n:num) & 
(<= ?n:num ?m:num) 

The constraint axiom CA2 is similar to CA1 except 
that the domain is a set of sets. 

The reading axiom RA1 asserts the number of all 
objects in the domain of a relation. For example: 

(12) A1. (5 (1 a0 --* 6 al)) 
RA1. (?m:num (1 - -  ?y:n-s ?b:arg)) 

(number-of ?a:arg ?m:num) 
(number-of a0 5) 

4 



Given an assertion A1, RA1 asserts that  the number 
of objects in the domain is 5. 

The reading axiom RA2 is for a relation where 
each object in the domain is related to less than 
or equal to n objects in the range. In such a case, 
the number of the objects in the range is less than 
or equal to the number of objects in the domain 
multiplied by n. For example: 

(13) A2. 

RA2. 

(5 (1 a0 ~ ?x:num al)) 
& (<----- ?x:num 2) 
(?m:num (1 ?a:arg --+ ?y:num ?b:arg)) 
& (<= ?y:num ?z:num) 

(number-of ?b:arg ?n:num) & 
(<= ?n:num (, ?m:num ?z:num)) 
(number-of al ?n:num) & 
(<---- ?n:num (. 5 2)) 

The last axiom RA3 is similar to RA2. 
These axioms are necessary to reason about con- 

sistency of cumulative readings when numerical con- 
straints are associated with the predicates. For ex- 
ample, given "5 alarms were installed in 6 buildings", 
intuitively we eliminate its cumulative reading be- 
cause the number of buildings is more than the num- 
ber of alarms. I claim that  behind this intuition is a 
calculation and comparison of the number of build- 
ings and the number of alarms given what we know 
about "being installed in". The constraint axioms 
above are intended to simulate how humans make 
such comparisons between two groups of objects re- 
lated by a predicate that  has a numerical constraint. 
The reading axioms, on the other hand, are intended 
to simulate how we do such calculations of the num- 
ber of objects from what we know about the reading 
(cf. 2.2.2). 

2 .2  M o d e l - B a s e d  R e a s o n e r  

In this section, I describe how the reasoner per- 
forms disambiguation. But first I will describe spe- 
cial "unification" which is the basic operation of the 
reasoner 5 . 

2.2.1 U n i f i c a t i o n  

"Unification" is used to unify CDCL clauses during 
the reasoning process. However, it is not standard 
unification. It consists of three sequential matching 
operations: Syntax Match, ARG Match, and Value 
Match. First, Syntax Match tests if the syntax of 

5 T h e  r e a s o n e r  h a s  b e e n  i m p l e m e n t e d  in C o m m o n  Lisp.  
Uni f ica t ion  a n d  fo rward  cha in ing  ru le  codes  are  ba sed  on  
Ab leson  a n d  S u s s m a n  [1] a n d  W i n s t o n  a n d  Horn  [19]. 

two expressions matches. The syntax of two expres- 
sions matches when they belong to the same type of 
CDCL clauses (cf. (4)). If Syntax Match succeeds, 
ARG Match tests if the argument constants (i.e. a0, 
a l)  in the two expressions match. If this operation is 
successful, Value Match is performed. There are two 
ways Value Match fails. First, it fails when types do 
not match. For example, (14a) fails to unify with 
(14b) because ?r:set does not match the integer 4. 

(14) a. (?p:num (?q:num a0 --* ?r:set a l ) )  
b. (5 (1 a0 ---* 4 a l ) )  

The second way Value Match fails is two values of 
the same type are simply not the same. 

(15) a. (1 (?p:set a l  --* 1 a0)) 
b. (1 ((4) a l  --* 5 a0)) 

Unification fails only when the first and second 
operations succeed and the third one fails, and uni- 
fication succeeds only when all the three operations 
succeed. Otherwise, unification neither succeeds nor 
fails. 

2.2.2 I n f e r e n c e s  U s i n g  A M o d e l  

Each reading (i.e. a hypothesis) generated by the se- 
mantics module is stored in what I call a reading 
r e c o r d  (RR). Initially, it just  stores assertions that  
represent the reading. As reasoning proceeds, more 
information is added to it. When the RR is updated 
and inconsistency arises, the RR is marked as incon- 
sistent and the hypothesis is filtered out. 

The reasoner uses a model consisting of four 
kinds of knowledge. Inferences that  use these four 
(namely Predicate-Constraint inference, Constraint- 
Axiom inference, Reading-Axiom inference, and the 
Contradiction Checker) are controlled as in Figure 
5.  

First, Predicate-Constraint inference tests if each 
hypothesis satisfies predicate constraints. This is 
done by unifying each CDCL clause in the hypoth- 
esis with predicate constraints. For example, take a 
type constraint C1 and a hypothesis HI. 

(16) H1. (eat a0 al): (5 (1 a0 --* (4) al)) 
c l .  (?v:num (I ?a:arg - ,  ?q:num ?b:arg)) 

:=# i n c o n s i s t e n t  

i n c o n s i s t e n t  

When a predicate constraint is an anti-rule like C1, 
a hypothesis is filtered out if it fails to unify with 
the constraint. When a predicate constraint is a rule 
like C7, the consequent is asserted into the RR if the 
hypothesis successfully unifies with the antecedent. 



Figure 5: Control Structure 

Second, Constraint-Axiom inference derives addi- 
tional CONSTRAINTS by unifying antecedents of con- 
straint axioms with predicate constraints. If the uni- 
fication is successful, the consequent is stored in each 
RR (cf. (11)). (19) 

Third, Reading-Axiom inference derives more AS- 
SERTIONS by unifying reading axioms with assertions 
in each RR (cf. (12) and (13)). 

While these three inferences are performed, the 
fourth kind, the Contradiction Checker, constantly 
monitors consistency of each RR. Each RR contains 
a cons i s t ency  da t abase .  Every time new infor- 
mation is derived through any other inference, the 
Contradiction Checker updates this database. If, at 
any point, the Contradiction Checker finds the new 
information inconsistent by itself or with other infor- 
mation in the database, the RR that contains this (20) 
database is filtered out. 

For example, take the cumulative reading of (7a), 
which is implausible because there should be at 
least 6 alarms even when each building has only one 
alarm. The reading is represented in CDCL as fol- 
lows. 

(17) (5 (1 a0 --* anynum0 al)) & 
(6 (1 al --* anynuml a0)) 

The Contradiction Checker has simple mathematical 
knowledge and works as follows. Initially, the con- (21) 
sistency database records that the upper and lower 
bounds on the number of objects denoted by each 
argument are plus infinity and zero respectively. 

(18) Number-of-a0 [0 +inf] 
Number-of-al [0 +inf] 
Constraint NIL 
Consistent? T 

Then, when the constraint axiom CA1 applies to the 
predicate constraint C9 associated with installed-in 

(cf. (11)), a new numerical constraint "the number 
of buildings (al) should be less than or equal to the 
number of alarms (a0)" is added to the database. 

Number-of-a0 [0 +inf] 
Number-of-al [0 +inf] 
Constraint (<=  al a0) 
Consistent? T 

Now, the reading axiom RA1 applies to the first 
clause of (17) and adds an assertion (number-of a0 
5) to the database (cf. (12)). The database is up- 
dated so that both upper and lower bounds on a0 
are 5. Also, because of the constraint (<=  al a0), 
the upper bound on al is updated to 5. 

Number-of-a0 [5 5] 
Number-of-al [0 5] 
Constraint (<=  al a0) 
Consistent? T 

Finally, RA1 applies to the second clause of (17) and 
derives (number-of al  6). However, the Contradic- 
tion Checker detects that this assertion is inconsis- 
tent with the information in the database, i.e. the 
number of al  must be at most 5. Thus, the cumula- 
tive reading is filtered out. 

Number-of-a0 [5 5] 
Number-of-al [0 5] 
Constraint (<=  al a0) 
Consistent? NIL 

[6 6] 

2.2.3 E x a m p l e  

I illustrate how the reasoner disambiguates among 
possible collective and distributive readings of a sen- 
tence. The sentence (7a) "5 alarms were installed in 
6 buildings" generates 7 hypotheses as in (22). 



(22) R1 (5 (1 a0 -~ 6 al))  
R2 (1 ((5) a0---. 6 al))  
R3 (5 (1 a0 ---* (6) al))  
R4 (6 (1 al  ~ 5 a0)) 
R5 (1 ((6) al ~ 5 a0)) 
R6 (6 (1 al --* (5) a0)) 
R7 (5 (1 a0 ~ anynumO al))  & 

(6 (1 al ---+ anynuml a0)) 

The predicate (be-installed a0 al) is associated with 
two constraints C1 and C9. Predicate-Constraint 
inference, using the type constraint C1 (i.e. both ar- 
guments should be read distributively), filters out 
R2, R3, R5, and R6. The numerical constraint, C9, 
requires that the relation from alarms to buildings 
be a function. This eliminates R1, which says that 
each alarm was installed in 6 buildings. The cumu- 
lative reading R7 is filtered out by the other three 
inferences, as described in section 2.2.2. Thus, only 
R4 is consistent, which is what we want. 

3 C o n c l u s i o n  

A c k n o w l e d g m e n t s  

I would like to thank Prof. Manfred Krifka and Prof. 
Benjamin Kuipers for their useful comments. The 
prototype of the reasoner was originally built using 
Algernon (cf. Crawford [3], Crawford and Kuipers 
[4]). Many thanks go to Dr. James Crawford, who 
gave me much useful help and advice. 

R e f e r e n c e s  

[1] 

[2] 

Harold Abelson and Gerald Sussman. Structure 
and Interpretation of  Computer Programs. The 
MIT Press, Cambridge, Massachusetts, 1985. 

[3] 

Chinatsu Aone. Treatment of Plurals and 
Collective-Distributive Ambiguity in Natural 
Language Understanding. PhD thesis, The Uni- 
versity of Texas at Austin, 1991. 

The work described in this paper improves upon 
previous works on collective-distributive ambiguity [4] 
(cf. Scha and Stallard [17], Gardiner et al. [7]), 
since they do not fully explore the necessary reason- 
ing. I believe that the reasoning method described 
in this paper is general enough to solve collective- 
distributive problems because 1) any special con- 
straints can be added as new predicates are added 
to the KB, and 2) intuitively simple reasoning to [5] 
solve numerical problems is done by using domain- 
independent axioms. 

However, the current reasoning capability should 
be extended further to include different kinds of 
knowledge. For example, while the cumulative read- [6] 
ings of "5 alarms were installed in 6 building" is 
implausible and is successfully filtered out by the 
reasoner, that of "5 students ate 4 slices of pizza" 
is less implausible because a slice of pizza can be [7] 
shared by 2 students. The difference between the 
two cases is that an alarm is not divisible but a slice 
of pizza is. Thus knowledge about divisibility of ob- 
jects must be exploited. Further, if an object is divis- 
ible, knowledge about its "normal size" with respect 
to the predicate must be available with some prob- [8] 
ability. For example, the cumulative reading of "5 
students ate 4 large pizzas" is very plausible because 
a large pizza is UNLIKELY to be a normal size for an 
individual to eat. On the other hand, the cumula- 
tive reading of "5 students ate 4 slices of pizza" is [9] 
less plausible because a slice of pizza is more LIKELY 
to be a normal size for an individual consumption. 

James Crawford. Access-Limited Logic - A Lan- 
guage for Knowledge Representation. PhD the- 
sis, The University of Texas at Austin, 1990. 

James Crawford and Benjamin Kuipers. To- 
wards a theory of access-limited logic for knowl- 
edge representation. In Proceedings of the 
First International Conference on Principles of 
Knowledge Representation and Reasoning, Los 
Altos, California, 1989. Morgan Kaufmann. 

Randall Davis and Walter Hamscher. Model- 
based reasoning: troubleshooting. In H. E. 
Shrobe, editor, Exploring Artificial Intelligence. 
Morgan Kaufmann, Los Altos, California, 1988. 

Pamela Fink and John Lusth. A general expert 
system design for diagnostic problem solving. 
IEEE Transactions on Systems, Man, and Cy- 
bernetics, 17(3), 1987. 

David Gardiner, Bosco Tjan, and James Single. 
Extended conceptual structures notation. Tech- 
nical Report TR 89-88, Department of Com- 
puter Science, University of Minnesota, Min- 
neapolis, Minnesota, 1989. 

Barbara Grosz, Douglas Appelt, Paul Martin, 
and Fernando Pereira. Team: An experiment 
in the design of transportable natural-language 
interfaces. Artificial Intelligence, 32, 1987. 

Irene Heim. The Semantics of Definite and In- 
definite Noun Phrases. PhD thesis, University 
of Massachusetts at Amherst, 1982. 

7' 



[10] Hans Kamp. A theory of truth and semantic 
representation. In Groenendijk et al., editor, 
Truth, Interpretation, and Information. Foris, 
1981. 

[11] Manfred Krifka. Nominal reference and tempo- 
ral constitution: Towards a semantics of quan- 
tity. In Proceedings of the Sixth Amsterdam Col- 
loquium, pages 153-173, University of Amster- 
dam, Institute for Language, Logic and Infor- 
mation, 1987. 

[12] Godehard Link. The logical analysis of plurals 
and mass terms: Lattice-theoretical approach. 
In Rainer Banerle, Christoph Schwarze, and 
Arnim von Steehow, editors, Meaning, Use, and 
Interpretations of Language. de Gruyter, 1983. 

[13] Godehard Link. Plural. In Dieter Wunderlich 
and Arnim yon Steehow, editors, To appear in: 
Handbook of Semantics. 1984. 

[14] Godehard Link. Generalized quantifiers and 
plurals. In P. Gaerdenfors, editor, General- 
ized Qnantifiers: Linguistics and Logical Ap- 
proaches. Reidel, 1987. 

[15] Craige Roberts. Modal Subordina- 
tion, Anaphora, and Distribntivitg. PhD thesis, 
University of Massachusetts at Amherst, 1987. 

[16] Remko Scha. Distributive, collective, and 
cumulative quantification. In Janssen and 
Stokhof, editors, Truth, Interpretation and In- 
formation. Foris, 1984. 

[17] Remko Scha and David Stallard. Multi-level 
plural and distributivity. In Proceedings of 26th 
Annual Meeting of the ACL, 1988. 

[18] Reid Simmons and Randall Davis. Generate, 
test and debug: Combining associational rules 
and causal models. In Proceedings of the Tenth 
International Joint Conference on Artificial In- 
telligence, Los Altos, California, 1987. 

[19] Patrick Winston and Berthold Horn. LISP 
8rd Edition. Addison-Wesley, Reading, Mas- 
sachusetts, 1989. 




