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ABSTRACT 

Unification-based NL parsers that copy 
argument graphs to prevent their destruction 
suffer from inefficiency. Copying is the 
most expensive operation in such parsers, 
and several methods to reduce copying have 
been devised with varying degrees of 
success. Lazy Unification is presented here 
as a new, conceptually elegant solution that 
reduces copying by nearly an order of 
magnitude. Lazy Unification requires no new 
slots in the structure of nodes, and only 
nominal revisions to the unif icat ion 
algorithm. 

PROBLEM STATEMENT 

degradat ion in per formance .  This 
performance drain is illustrated in Figure 1, 
where average parsing statistics are given for 
the original implementat ion of  graph 
unification in the TASLINK natural language 
system. TASLINK was built upon the LINK 
parser in a joint project between GM Research 
and the University of Michigan. LINK is a 
descendent of the MOPTRANS system 
developed by Lytinen (1986). The statistics 
below are for ten sentences parsed by 
TASLINK. As can be seen, copying consumes 
more computation time than unification. 
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Unification is widely used in natural 
language processing (NLP) as the primary 
operation during parsing. The data 
structures unified are directed acyelic 
graphs (DAG's), used to encode grammar 
rules, lexical entries and intermediate 
parsing structures. A crucial point 
concerning unification is that the resulting 
DAG is constructed directly from the raw 
material of its input DAG's, i.e. unification 
is a destructive operation. This is especially 
important when the input DAG's are rules of 
the grammar or lexical items. If nothing 
were done to prevent their destruction 
during unification, then the grammar would 
no longer have a correct rule, nor the lexicon 
a valid lexical entry for the DAG's in 
question. They would have been transformed 
into the unified DAG as a side effect. 

The simplest way to avoid destroying 
grammar rules and lexical entries by 
unification is to copy each argument DAG 
prior to calling the unification routine. This 
is sufficient to avoid the problem of 
destruction, but the copying itself then 
becomes problemat ic ,  causing severe 
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Figure 1. Relative Cost of 
Operations during Parsing 

PAST SOLUTIONS 

Improving the efficiency of unification 
has been an active area of research in 
unification-based NLP, where the focus has 
been on reducing the amount of DAG copying, 
and several approaches have arisen. 
Different versions of structure sharing were 
employed by Pereira (1985) as well as 
Karttunen and Kay (1985). In Karttunen 
(1986) structure sharing was abandoned for 
a technique allowing reversible unification. 
Wroblewski (1987) presents what he calls a 
non-destructive unification algorithm that 
avoids destruction by incrementally copying 
the DAG nodes as necessary. 
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All of these approaches to the copying 
problem suffer from difficulties of their 
own. For both Pereira and Wroblewski there 
are special cases involving convergent arcs-- 
ares from two or more nodes that point to the 
same destination node--that still require full 
copying. In Karttunen and Kay's version of 
structure sharing, all DAG's are represented 
as b inary  branching DAG's, even though 
g rammar  ru les  are more  na tu ra l ly  
represen ted  as non-b ina ry  s t ructures .  
Reversible unification requires two passes 
over the input DAG's, one to unify them and 
another to copy the result. Furthermore, in 
both successful and unsuccesful unification 
the input DAG's must be restored to their 
original forms because reversible unification 
allows them to be destructively modified. 

Wroblewski  points  out a useful  
distinction between early copying and over  
copying. Early copying refers to the copying 
of input DAG's before unification is applied. 
This can lead to ine f f ic iency  when 
unification fails because only the copying up 
to the point of failure is necessary. Over 
copying refers to the fact that when the two 
input DAG's are copied they are copied in 
their entirety. Since the resultant unified 
DAG generally has fewer total nodes than the 
two input DAG's, more nodes than necessary 
were copied to produce the result .  
Wroblewski 's algorithm eliminates early 
copying entirely, but as noted above it can 
partially over copy on DAG's involving 
convergent arcs. Reversible unification may 
also over copy, as will be shown below. 

LAZY UNIFICATION 

I now present Lazy Unification (LU) 
as a new approach to the copying problem. In 
the following section I will present statistics 
which indicate that LU accomplishes nearly  
an order of magnitude reduction in copying 
compared to non-lazy, or eager unification 
(EU). These results are attained by turning 
DAG's into active data structures to 
implement the lazy evaluation of copying. 

Lazy evaluation is an optimization 
technique developed for the interpretation of 
functional programming languages (Field and 
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Harrison, 1988), and has been extended to 
theorem proving and logic programming in 
attempts to integrate that paradigm with 
functional programming (Reddy, 1986). 

The concept underlying lazy evaluation 
is simple: delay the operation being 
optimized until the value it produces is 
needed by the calling program, at which 
point the delayed operation is forced. These 
actions may be implemented by high-level 
procedures called delay and force.  Delay is 
used in place of the original call to the 
procedure being optimized, and force is 
inserted into t h e  program at each location 
where the results of the delayed procedure 
are needed. 

Lazy evaluation is a good technique for 
the copying problem in graph unification 
precisely because the overwhelming majority 
of copying is unnecessary. If all copying can 
be delayed until a destructive change is 
about to occur to a DAO, then both early 
copying and over copying can be completely 
e l iminated.  

The de lay  o p e r a t i o n  is eas i ly  
implemented by using closures. A closure is 
a compound object that is both procedure and 
data. In the context of LU, the data portion 
of a closure is a DAG node. The procedural 
code within a closure is a function that 
processes a variety of messages sent to the 
closure. One may generally think of the 
encapsulated procedure as being a suspended 
call to the copy function. Let us refer to 
these closures as active nodes as contrasted 
with a simple node not combined with a 
procedure in a closure. The delay function 
returns an active node when given a simple 
node as its argument. For now let us assume 
that delay behaves as the identity function 
when applied to an active node. That is, it 
returns an active node unchanged. As a 
mnemonic we will refer to the delay function 
as delay-copy-the-dag.  

We now redefine DAG's t o  allow either 
simple or active nodes wherever simple 
nodes were previously allowed in a DAG. An 
active node will be notated in subsequent 
diagrams by enclosing the node in angle 
brackets .  



In LU the unification algorithm proceeds 
largely as it did before, except that at every 
point in the algorithm where a destructive 
change is about to be made to an active node, 
that node is first replaced by a copy of its 
encapsulated node. This replacement is 
mediated through the force function, which 
we shall call force-delayed-copy. In the case 
of a simple node argument force-delayed- 
copy acts as the identity function, but when 
given an active node it invokes the suspended 
copy procedure with the encapsulated node 
as argument. Force-delayed-copy returns 
the DAG that results from this invocation. 

To avoid copying an entire DAG when 
only its root node is going to be modified by 
unification, the copying function is also 
rewritten. The new version of copy-the-dag 
takes an optional argument to control how 
much of the DAG is to be copied. The default 
is to copy the entire argument, as one would 
expect of a function called copy- the-dag.  
But when copy-the-dag is called from inside 
an active node (by force-de layed-copy 
invoking the procedural portion of the active 
node), then the optional argument is 
supplied with a flag that causes copy-the- 
dag to copy on ly  the root node of its 
argument. The nodes at the ends of the 
outgoing arcs from the new root become 
active nodes, created by delaying the 
original nodes in those positions. No 
traversal of the DAG takes place and the 
deeper nodes are only present implicitly 
through the active nodes of the resulting 
DAG. This is illustrated in Figure 2. 

v _ ~ g J  

becomes 

<b> 
a2<><c> 

"~<d> 
Figure 2. Copy-the-dag on 'a' from 

Inside an Active Node 

Here, DAG a was initially encapsulated 
in a closure as an active node. When a is 
about to undergo a destructive change by 
being unified with some other DAG, force- 
delayed-copy activates the suspended call to 
copy- the-dag with DAG a as its first 
argument and the message d e l a y - a r e s  as its 
optional argument. Copy-the-dag then copies 
only node a, returning a2 with outgoing arcs 
pointing at active nodes that encapsulate the 
original destination nodes b, e, and d. DAG 
a2 may then be unified with another DAG 
without  des t roy ing  DAG a, and the 
unification algorithm proceeds with the 
active nodes <b>, <c>, and <d>.  As these 
subdag's are modified, their nodes are 
likewise copied incrementally. Figure 3 
illustrates this by showing DAG a2 a f t e r  
unifying <b>.  It may be seen that as active 
nodes are copied one by one, the resulting 
unified DA(3 is eventually constructed. 

b2 

a2~i<c> 
"~<d> 

Figure 3. DAG a2 after Unifying <b> 

One can see how this scheme reduces the 
amount of  copying if, for  example,  
unification fails at the active node <e>.  In 
this case only nodes a and b will have been 
copied and none of the nodes e, d, e, f, g, or 
h. Copying is also reduced when unification 
succeeds, this reduction being achieved in 
two ways. 
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First, lazy unification only creates new 
nodes for the DAG that r e s u l t s  f rom 
unification. Generally this DAG has fewer 
total nodes than the two input DAG's. For 
example, if  the 8-node DAG a in Figure 2 
were unified with the 2-node DAG a - - > i ,  then 
the resulting DAG would have only nine 
nodes, not ten. The result DAG would have 
the arc ' - - > i '  copied onto the 8-node DAG's 
root. Thus, while EU would copy all ten 
original nodes, only nine are necessary for 
the result. 

Active nodes that remain in a final DAG 
represent  the other savings for successful 
unificat ion.  Whereas EU copies all ten 
original nodes to create the 9-node result, 
LU would only create five new nodes during 
unification, resulting in the DAG of  Figure 4. 
Note that the "missing" nodes e, f, g, and h 
are implicit in the active nodes and did not 
require copying. For larger DAG's, this kind 
of savings in node copying can be significant 
as several  large sub-DAG's may survive 
uncopied in the final DAG . 

<b> 

a2 ~ <c> 

Figure 4. Saving Four Node Copies 
with Active Nodes 

A useful compar ison with Kart tunen's  
reversible  unif icat ion may now be made. 
Recall that when reversible unificat ion is 
successful the resulting DAG is copied and 
the originals restored.  Notice that this 
copying of the entire resulting DAG may 
overcopy some of the sub-DAG's. This is 
evident because we have just seen in LU that 
some of the sub-DAG's of  a resulting DAG 
remain uncopied inside active nodes. Thus, 

LU offers less real copying than reversible 
un i f i ca t i on .  

Let us look again at DAG a in Figure 2 
and discuss a potential problem with lazy 
unification as described thus far. Let us 
suppose that through unification a has been 
partially copied resulting in the DAG shown 
in Figure 5, with active node <f> about to be 
copied .  

b2 02 

a2 ~< f > ~  h2 

d> 

Figure 5. DAG 'a' Partially Copied 

Recall from Figure 2 that node f points at 
e. Following the procedure described above, 
<f> would be copied to f2 which would then 
point at active node <e>,  which could lead to 
another node e 3 as shown in Figure 6. What 
is needed is some form of m e m o r y  to 
recognize that e was already copied once and 
that f2 needs to point at e2 not <e>.  

b2 e2 
b c< 

a2 ~ ~t 2 - - - - . - ~ ~  h2 

d> 

Figure 6. Erroneous Splitting of Node 
e into e2 and e3 

This memory is implemented with a copy 
env i ronmen t ,  which is an association list 
relat ing original  nodes to their  copies.  
Before f2 is given an arc pointing at <e>,  this 
alist is searched to see if e has already been 
copied. Since it has, e2  is returned as the 
destination node for the outgoing arc from 
f2 ,  thus preserving the topography of the 
original DAG. 
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Because there are several  DAG's  that 
must  be p rese rved  during the course  of  
parsing,  the copy  env i ronment  cannot  be 
global but must be associated with each DAG 
for which it records the copying history.  
This  is accompl i shed  by encapsulat ing a 
particular DAG's  copy environment  in each 
of the active nodes of  that DAG. Looking 
again at Figure 2, the active nodes for DAG 
a2  are all created in the scope of a variable 
bound to an initially empty association list 
for a 2 ' s  copy  env i ronment .  Thus,  the 
closures that implement  the act ive nodes 
<b>, <c>, and <d> all have access to the same 
copy environment.  When < b >  invokes the 
suspended  call  to c o p y - t h e - d a g ,  this 
function adds the pair ( b .  b 2 ) t o  the copy 
environment as a side effect before returning 
its value b2.  When this occurs, <c> and < d >  
instantly have access to the new pair through 
their  shared access  to the same copy  
environment.  Furthermore,  when new active 
nodes are created as traversal of the DAG 
continues during unification,  they are also 
created in the scope of  the same copy 
environment .  Thus,  this alist is p u s h e d  
forward deeper into the nodes of the parent 
DAG as part of the data portion of each active 
node .  

Returning to Figure 5, the pair ( e .  e2) 
was added to the copy environment  being 
maintained for DAG a 2 when e was copied to 

e2. Active node <f> was created in the scope 
of this list and therefore "remembers" at the 
time f2 is created that it should point to the 
previously created e2 and not to a new active 
node <e>. 

There is one more mechanism needed to 
correctly implement  copy environments.  We 
have already seen how some act ive nodes 
remain after  unif icat ion.  As intermediate  
D A G ' s  a r e  r e u s e d  d u r i n g  the  
nonde te rmin i s t i c  pars ing  and are unif ied 
with other DAG's,  it can happen that some of 
these  r e m a i n i n g  ac t i ve  nodes  b e c o m e  
descendents of  a root different from their 
original root node. As those new root DAG's 
are incremental ly  copied during unification, 
a s i tuat ion can arise whereby  an act ive 
node's  parent  node is copied and then an 
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attempt is made to create an active node out 
of an active node. 

For example, let us suppose that the DAG 
shown in Figure 5 is a sub-DAG of  some 
larger DAG. Let us refer to the root of  that 
larger DAG as node n.  As unification of n 
p roceeds ,  we may  reach  a 2  and start  
i n c r e m e n t a l l y  c o p y i n g  it. Th is  could 
eventually result in c2 being copied to c3 at 
which point the system will attempt to create 
an outgoing arc for c3 pointing at a newly 
created active node over  the already active 
node < f > .  There is no need to try to create 
such a beast as <<f>> .  Rather, what is needed 
is to assure that active node <f> be g iven 
access to the new copy environment for n 
passed down to < f >  f rom its predecessor  
n o d e s .  T h i s  is a c c o m p l i s h e d  by  
destructively merging the new copy  
environment with that previously created for 
a2  and surviving inside < f > .  It is important 
that this merge  be destructive in order to 
give all active nodes that are descendents of 
n access to the same information so that the 
p rob lem of  node spl i t t ing i l lus t ra ted  in 
Figure 6 continues to be avoided. 

It was mentioned previously how calls to 
force-delayed-copy must be inserted into the 
u n i f i c a t i o n  a l g o r i t h m  to i n v o k e  the  
incrementa l  copy ing  of  nodes .  Another  
m o d i f i c a t i o n  to the a l g o r i t h m  is also 
necessary  as a result  of  this incremental  
copying. Since active nodes are replaced by 
new nodes in the middle of  unification, the 
algorithm must undergo a revision to effect 
this replacement.  For example,  in Figure 5 
in order for < b >  to be replaced by b 2 ,  the 

corresponding arc from a2  must be replaced. 
Thus as the unification algorithm traverses a 
DAG, it also collects such replacements  in 
order to reconstruct  the outgoing arcs of a 
parent DAG. 

In addition to the message delay-arcs 
sent to an ac t ive  node  to invoke  the 
suspended  cal l  to c o p y - t h e - d a g ,  o ther  
messages are needed. In order to compare 
ac t i ve  nodes  and m e r g e  the i r  c o p y  
environments,  the active nodes must process 
messages that cause the active node to return 



either its encapsulated node's l abe l  or the 
encapsulated copy environment. 40000 

EFFECTIVENESS OF LAZY 
U N I F I C A T I O N  

Lazy Unification results in an impressive 
reduction to the amount of copying during 
parsing. This in turn reduces the overall 
slice of parse time consumed by copying as 
can be seen by contrasting Figure 7 with 
Figure 1. Keep in mind that these charts 
illustrate proportional computations, not 
speed. The pie shown below should be 
viewed as a smaller pie, representing faster 
parse times, than that in Figure 1. Speed is 
discussed below. 

45.78% 

18.67% 
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Figure 7. Relative Cost of Operations 
with Lazy Unification 

Lazy Unification copies less than 7% of 
the nodes copied under eager unification. 
However, this is not a fair comparison with 
EU because LU substitutes the creation of 
active nodes for some of the copying. To get a 
truer comparison of  Lazy vs. Eager 
Unification, we must add together the 
number of copied nodes and active nodes 
created in LU. Even when active nodes are 
taken into account, the results are highly 
favorable toward LU because again less than 
7% of the nodes copied under EU are 
accounted for by active nodes in LU. 
Combining the active nodes with copies, LU 
still accounts for an 87% reduction over 
eager unification. Figure 8 graphically 
illustrates this difference for ten sentences. 

30000 

Number 
of 20000 

Nodes 

10000 

Eager Lazy Active 
Copies Copies Nodes 

Figure 8. Comparison of Eager v s .  

Lazy Unification 

From the time slice of eager copying 
shown in Figure 1, we can see that if LU were 
to incur no overhead then an 87% reduction 
of copying would result in a faster parse of 
roughly 59%. The actual speedup is about 
50%, indicating that the overhead of 
implementing LU is 9%. However, the 50% 
speedup does not consider the effects of 
garbage collection or paging since they are 
system dependent. These effects will be 
more pronounced in EU than LU because in 
the former paradigm more data structures 
are created and referenced. In practice, 
therefore, LU performs at better than twice 
the speed of EU. 

There are several sources of overhead in 
LU, The major cost is incurred in 
distinguishing between active and simple 
nodes. In our Common Lisp implementation 
simple DAG nodes are defined as named 
structures and active nodes as closures. 
Hence, they are distinguished by the Lisp 
predicates DAG-P and F U N C T I O N P .  
Disassembly on a Symbolics machine shows 
both predicates to be rather costly. (The 
functions TYPE-OF and TYPEP could also 
be used, but they are also expensive.) 
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Another expensive operation occurs when 
the copy environments in active nodes are 
searched. Currently, these environments are 
simple associat ion lists which require 
sequential searching. As was discussed 
above,  the copy envi ronments  must 
sometimes be merged. The merge function 
presently uses the U N I O N  function. While a 
far less expensive destructive concatenation 
of copy environments could be employed, the 
union operation was chosen initially as a 
simple way to avoid creation of circular lists 
during merging. 

All of these sources of overhead can and 
will be attacked by additional work. Nodes 
can be defined as a tagged data structure, 
al lowing an inexpensive  tag test to 
distinguish between active and inactive 
nodes. A non-sequential data structure 
could allow faster than linear searching of 
copy environments  and more eff ic ient  
merging. These and additional modifications 
are expected to eliminate most of the 
ove rhead  incu r red  by the cu r ren t  
implementation of LU. In any case, Lazy 
Unification was developed to reduce the 
amount of copying during unification and we 
have seen its dramatic success in achieving 
that goal. 

CONCLUDING REMARKS 

There is another optimization possible 
regarding certain leaf nodes of a DAG. 
Depending on the application using graph 
unification, a subset of the leaf nodes will 
never be unified with other DAG's. In the 
TASLINK application these are nodes 
representing such features as third person 
singular. This observation can be exploited 
under both lazy and eager unification to 
reduce both copying and active node 
creation. See Godden (1989) for details. 

It has been my experience that using 
lazy evaluation as an optimization technique 
for graph unification, while elegant in the 
end result, is slow in development time due 
to the difficulties it presents for debugging. 
This property is intrinsic to lazy evaluation, 
(O'Donnell and Hall, 1988). 
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The problem is that a DAG is no 
longer copied locally because the copy 
operation is suspended in the active nodes. 
When a DAG is eventual ly copied, that 
copying is performed incrementally and 
therefore non-locally in both time and 
program space. In spite of this distributed 
nature of the opt imized process,  the 
programmer continues to conceptualize the 
operation as occurring locally as it would 
occur in the non-optimized eager mode. As a 
result  of this mismatch between the 
programmer's visualization of the operation 
and its actual execut ion ,  bugs are 
no tor ious ly  d i f f icul t  to trace.  T h e  
development time for a program employing 
lazy evaluation is, therefore, much longer 
than would be expected. Hence, this 
technique should only be employed when the 
possible efficiency gains are expected to be 
large, as they are in the case of graph 
unification. O'Donnell and Hall present an 
excellent discussion of these and other 
problems and offer insight into how tools 
may be built to alleviate some of them. 
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