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Abstract 

This paper describes an operational system which 
can acquire the core meanings of words without any 
prior knowledge of either the category or meaning 
of any words it encounters. The system is given 
as input, a description of sequences of scenes along 
with sentences which describe the [EVENTS] taking 
place as those scenes unfold, and produces as out- 
put, a lexicon consisting of the category and mean- 
ing of each word in the input, that allows the sen- 
tences to describe the [EVENTS]. It is argued, that 
each of the three main components of the system, the 
parser, the linker and the inference component, make 
only linguistically and cognitively plausible assump- 
tions about the innate knowledge needed to support 
tractable learning. The paper discusses the theory 
underlying the system, the representations and al- 
gorithms used in the implementation, the semantic 
constraints which support the heuristics necessary 
to achieve tractable learning, the limitations of the 
current theory and the implications of this work for 
language acquisition research. 

1 Introduction 

Several natural language systems have been reported 
which learn the meanings of new words[5, 7, 1, 16, 
17, 13, 14]. Many of these systems (in particular 
[5, 7, 1]) learn the new meanings based upon expec- 
tations arising from the morphological, syntactic, se- 
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visiting Xerox PARC as a research intern and as a consultant. 

mantic and pragmatic context of the unknown word 
in the text being processed. For example, if such a 
system encounters the sentence "I woke up yesterday, 
turned off my alarm clock, took a shower, and cooked 
myself two grimps for breakfast[5]" it might conclude 
that grimps is a noun which represents a type of 
food. Such systems succeed in learning new words 
only when the context offers sufficient constraint to 
narrow down the possible meanings to make the ac- 
quisition unambiguous. Accordingly, such a theory 
accounts only for the type of learning which arises 
when an adult encounters an unknown word while 
reading a text comprised mostly of known words. It 
can not explain the kind of learning which a young 
child performs during the early stages of language 
acquisition when it starts out knowing the meanings 
of few if any words. 

In this paper, I present a new theory which can 
account for the language learning which a child ex- 
hibits. In this theory, the learner is presented with 
a training session consisting of a sequence of sce- 
narios. Each scenario contains both linguistic and 
non-linguistic (i.e. visual) information. The non- 
linguistic information for each scenario consists of 
a time-ordered sequence of scenes, each depicted via 
a conjunction of true and negated atomic formulas 
describing that scene. Likewise, the linguistic infor- 
mation for each scenario consists of a time-ordered 
sequence of sentences. Initially, the learner knows 
nothing about the words comprising the sentences in 
the training session, neither their lexical category nor 
their meaning. From the two correlated sources of in- 
put, the linguistic and the non-linguistic, the learner 
can infer the set of possible lexicons (i.e. the possible 
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categories and meanings of the words in the linguistic 
input) which allow the linguistic input to describe or 
account for the non-linguistic input. This inference 
is accomplished by applying a compositional seman- 
tics linking rule in reverse and then performing some 
constraint satisfaction. 

This theory has been implemented in a working 
computer program. The program succeeds and is 
tractable because of a small number of judicious se- 
mantic constraints and a small number of heuristics 
which order and eliminate much of the search. This 
paper explains the general theory as well as the im- 
plementation details which make it work. In ad- 
dition, it discusses some limitations in the current 
theory, among which is one which prevents it from 
converging on a single definition of some words. 

2 Background 

In [15], Rayner et. al. describe a system which 
can determine the lexical category of each word 
in a corpus of sentences. They observe that 
while in the original formulation, a definite clause 
grammar[12] normally defines a two-argument pred- 
icate pa r s e r (S en t ence ,T ree )  with the lexicon rep- 
resented directly in the clauses of the grammar, an 
alternative formulation would allow the lexicon to be 
represented explicitly as an additional argument to 
the parser relation, yielding a three argument predi- 
cate paxser(Sentence,Tree,Lexicon). This three 
argument relation can be used to learn lexical cate- 
gory information by a technique summarized in Fig- 
ure I. Here, a query is formed containing a conjunc- 
tion of calls to the parser, one for each sentence in 
the corpus. All of the calls share a common Lexicon, 
while in each call, the Tree is left unbound. The 
Lexicon is initialized with an entry for each word 
appearing in the corpus where the lexical category 
of each such initial entry is left unbound. The pur- 
pose of this initial lexicon is to enforce the constraint 
that each word in the corpus be assigned a unique 
lexical category. This restriction, the monosemy con- 
straint, will play an important role in the work we 
describe later. The result of issuing the query in the 
above example is a lexicon, with instantiated lexical 
categories for each lexical entry, such that with that 
lexicon, all of the words in the corpus can be parsed. 
Note that there could be several such lexicons, each 
produced by backtracking. 

In this paper we extend the results of Rayner et. 
al. to the learning of representations of word mean- 
ings in addition to lexical category information. Our 
theory is implemented in an operational computer 

program called MAIMRA. 1 Unlike Rayner et. al.'s 
system, which is given only a corpus of sentences as 
input, MAIMRA is given two correlated streams of 
input, one linguistic and one non-linguistic, the later 
modeling the visual context in which the former were 
uttered. This is intended to more closely model the 
kind of learning exhibited by a child with no prior 
lexical knowledge. The task faced by MAIMRA is il- 
lustrated in Figure 2. 

MAIMRA does not at tempt to solve the perception 
problem; both the linguistic and non-linguistic input 
are presented in symbolic form to MAIMRA. Thus, 
the session given in Figure 2 would be presented to 
MAIMRA as the following two input pairs: 

(BE(cup, AT(John))A } 
-~BE(cup, AT(Mary))) ;  
(BE(cup, AT(Mary))A 
-~BE(cup, AT(John)))  

The cup slid from John fo Mary. 
(BE(cup, AT(Mary))A } 
-~BE(cup, AT(Bill))); 
(BE(cup, AT(Bill))^ 

-~BE(cup, AT(Mary))) 
The cup slid from Mary ~o Bill. 

MAIMRA attempts to infer both category and mean- 
ing information from input such as this. 

3 Archi tec ture  

MAIMRA operates as a collection of modules which 
mutually constrain various mental representations: 
The organization of these modules is illustrated in 
Figure 3. Conceptually, each of the modules is non- 
directional; each module simply constrains the val- 
ues which may appear concurrently on each of its 
inputs. Thus the parser enforces a relation between 
a time-ordered sequence of sentences and a corre- 
sponding time-ordered sequence of syntactic struc- 
tures or parse trees which are licensed by the lexi- 
cal category information from a lexicon. The linker 
imposes compositional semantics on the parse trees 
produced by the parser, relating the meanings of in- 
dividual words found in the lexicon, to the meanings 
of entire utterances, through the mediation of the 
syntactic structures consistent with the parser. Fi- 
nally, the inference component relates a time-ordered 
sequence of observations from the non-linguistic in- 
put, to a time-ordered sequence of semantic struc- 
tures which in some sense explain the non-linguistic 
input. The non-directional collection of modules can 

1MAIMRA, or t~lr~FJ, is the Aramaic word for word. 
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?- Lexicon - [ en t r y ( t he ,_ ) ,  
ent ry(cup,_) ,  
e n t r y ( s l i d , _ ) ,  
en t ry ( f rom,_) ,  
ent ry( john,_) ,  
en t ry ( to ,_ ) ,  
entry(mary,_),  
e n t r y ( b i l l , _ ) ] ,  

parse r ( [ the ,cup ,s l id , f rom, john , to ,mary] ,_ ,Lexicon) ,  
pa r se r ( [ the , cup , s l id , f rom,mary , to ,b i l l ] , _ ,Lex icon) ,  
pa r se r ( [ t he , cup , s l i d , f rom,b i l l , t o , j ohn ] ,_ ,Lex icon ) .  

Lexicon = [ en t ry ( the ,de t ) ,  
entry(cup,n) ,  
e n t r y ( s l i d , v ) ,  
entry(from,p), 
entry(john,n), 
entry(to,p), 
entry(mary,n), 
entry(bill,n)]. 

Figure h The technique used by Rayner et. al. in [15] to acquire lexical category information from a corpus 
of sentences. 

Input: 

rlCeP~flO 
r m  • 

BE(cup,A'r(John))A 
~B~cap J%T(Mary )) 

rllCUtO • 

B~cup~%T(M~y)~ 

The cup slid from John to Mary 

r so~mio  

B~cup ,AT(Mary))A 
-,BE(cup,AT{roll )) 

rm=elt$ 

~'y am BNcu p,AT{,Bill )g 
"-BNcup &~Mary)) 

The cup slid from Mary to Bill I! 
J 

Output:  

The : DET 
cup : N [Thing cup] 
slia: v [ v,nt GO(x,[Path z])] 
f rom:  P [Path FROM([elace AT(x)])] 
lo :  P [Path TO([Place AT(x)])] 
John : N [Thing John]  
Mary : N [Thing Mary]  
Bill : N [Thing Bill] 

Figure 2: A sample learning session with MAIMRA. MAIMRA is given the two scenarios as input. Each sce- 
nario comprises linguistic information, in the form of a sequence of sentences, and non-linguistic information. 
The non-linguistic information is a sequence of conceptual structure [STATE] descriptions which describe a 
sequence of visual scenes. MAIMRA produces as output,  a lexicon which allows the linguistic input to explain 
the non-linguistic input. 

145 



lexicon 

Figure 3: The cognitive architecture used by 
MAIMRA. 

be used in three ways. Given a lexicon and a se- 
quence of sentences as input, the architecture could 
produce as output, a sequence of observations which 
are predicted by the sentences. This corresponds to 
language understanding. Likewise, given a lexicon 
and a sequence of observations as input, the archi- 
tecture could produce as output, a sequence of sen- 
tences which explain the observations. This corre- 
sponds to language generation. Finally, given a se- 
quence of observations and a sequence of sentences 
as input, the architecture could produce as output, 
a lexicon which allows the sentences to explain the 
observations. This last alternative, corresponding to 
language acquisition, is what interests us here. 

Of the five mental representations used by 
MAIMRA, only three are externally visible, namely 
the linguistic input, the non-linguistic input and the 
lexicon. Syntactic and semantic structures exist only 
internal to MAIMRA and are not externally visible. 
When using the cognitive architecture from Figure 3 
for learning, the values of two of the mental rep- 
resentations, namely the sentences and the observa- 
tions, are deterministic, since they are fixed as input. 
The remaining three representations may be nonde- 
terministic; there may be multiple lexicons, syntac- 
tic structure sequences and semantic structure se- 
quences which are consistent with the fixed input. 
In general, each of the three modules alone provides 
only limited constraint on the possible values for each 
of the mental representations. Thus taken alone, sig- 
nificant nondeterminism is introduced by each mod- 
ule in isolation. Taken together however, the mod- 
ules offer much greater constraint on the mutually 
consistent values for the mental representations, thus 
reducing the amount of nondeterminism. Much of 
the success of MAIMRA hinges on efficient ways of 
representing this nondeterminism. 

Conceptually, MAIMRA could have been imple- 
mented using techniques similar to Rayner et. al.'s 
system. Such a naive implementation would directly 

reflect the architecture given in Figure 3 and is il- 
lustrated in Figure 4. The predicate aaimra would 
represent the conjunction of constraints introduced 
by the parser ,  l i n k e r  and in:ference modules, ul- 
timately constraining the mutually consistent val- 
ues for sentence and observation sequences and the 
lexicon. Learning a lexicon would be accomplished 
by forming a conjunction of queries to maimra, 
one for each scenario, where a single Lexicon is 
shared among the conjoined queries. This lexi- 
con is a list of lexical entries, each of the form 
entry(Word,Category,Meaning). The monosemy 
constraint is enforced by initializing the Lexicon to 
contain a single entry for each word, each entry hav- 
ing unbound Category and Heaning slots. The re- 
sult of processing such a query would be bindings for 
those Category and Heaning slots which allow the 
Sentences to explain the Observations. 

The naive implementation is too inefficient to be 
practical. This inefficiency results from two sources: 
inefficient representation of nondeterministic values 
and non-directional computation. Nondeterministic 
mental representations are expressed in the naive im- 
plementation via backtracking. Expressing nonde- 
terminism this way requires that substructure shared 
across different alternatives for a mental representa- 
tion be multiplied out. For example, if MAIMRA is 
given as input, a sequence of two sentences $1; S~, 
where the first sentence has n parses and the sec- 
ond m parses, then there would be m x n distinct 
values for the parse tree sequence produced by the 
parser for this sentence sequence. Each such parse 
tree sequence would be represented as a distinct 
backtrack possibility by the naive implementation. 
The actual implementation instead represents this 
nondeterminism explicitly as AND/OR trees and ad- 
ditionally factors out much of the shared common 
substructure to reduce the size of the mental rep- 
resentations and the time needed to process them. 
As noted previously, the individual modules them- 
selves offer little constraint on the mental represen- 
tations. A given sentence sequence corresponds to 
many parse tree sequences which in turn corresponds 
to an even greater number of semantic structure se- 
quences. Most of these are filtered out, only at the 
end by the inference component, because they do 
not correspond to the non-linguistic input. Rather 
then have these modules operate as non-directed sets 
of constraints, direction-specific algorithms are used 
which are tailored to producing the factored mental 
representations in an efficient order. First, the in- 
ference component is called to produce all semantic 
structure sequences which correspond to the observa- 
tion sequence. Then, the parser is called to produce 
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maiDra (Sentences, Lexicon, Observations ) : - 
parser (Sentences, Synt act icStructures, Lexicon), 
l i n k e r  (Trees,  ConceptualStructures ,  Lexicon) ,  
inference (ConceptualStructures, Observat ions). 

7-  Lexicon - [entry(the,_,_),  
entry(cup . . . .  ), 
entry (s l id  . . . .  ), 
entry(from . . . .  ), 
entry (john . . . .  ), 
entry (to . . . .  ) , 
entry (mary . . . .  ), 
en t ry(b i l l  . . . .  )] ,  

mainLra( [ [the, cup, s l id ,  from, john, to ,mary] ] ,  
Lexicon, 
be (cup, at ( j ohn) ) R'be ( cup (at  (mary)) ) : 
be (cup, at (mary) ) R'be (cup (at  (john) ) ) ), 

maimra ( [ [the, cup, s l id ,  from,mary, to ,b i l l ]  ] ,  
Lexicon, 
be ( cup, at (mary)) R-be (cup (at  ( b i l l ) )  ) ; 
be (cup, at ( b i l l ) )  R-be (cup (at (mary) ) ) ) .  

=~ 

Lexicon - [entry (the, det, noSemant ics), 
entry (cup, n, cup), 
entry(sl id,v,go(x,  [from(y) , to(z)] ) ,  
entry (from, p, at (x)), 
entry(john,n, j ohn), 
entry (to ,p, at (x)), 
entry (mary,n, mary), 
en t ry (b i l l , n , b i l l ) ] .  

Figure 4: A naive implementation of the cognitive architecture from Figure 3 using techniques similar to 
those used by Rayner et. al. in [15]. 

all syntactic structure sequences which correspond 
to the sentence sequence. Finally, the linking com- 
ponent is run in reverse to produce meanings of lex- 
ical items by correlating the syntactic and semantic 
structure sequences previously produced. The de- 
tails of the factored representation, and the algo- 
rithms used to create it, will be discussed in Sec- 
tion 5. 

Several of the mental representations used by 
MAIMRA require a method for representing semantic 
information. We have chosen Jackendoff's theory of 
conceptual structure, presented in [6], as our model 
for semantic representation. It should be stressed 
that although we represent conceptual structure via 
a decomposition into primitives much in the same 
way as does Schank[18], unlike both Schank and 
Jackendoff, we do not claim that any particular such 
decompositional theory is adequate as a basis for ex- 
pressing the entire range of human thought and the 
meanings of even most words in the lexicon. Clearly, 
much of human experience is well beyond formaliza- 
tion within the current state of the art in knowledge 
representation. We are only concerned with repre- 
senting and learning the meanings of words describ- 
ing simple spatial movements of objects within the 
visual field of the learner. For this limited task, a 
primitive decompositional theory such as Jackend- 
off's seems adequate. 

Conceptual structures appear within three of the 
mental representations used by MAIMrtA. First, the 

semantic structures produced by the linker, as mean- 
ings of entire utterances, are represented as either 
conceptual structure [STATE] or [EVENT] descrip- 
tions. Second, the observation sequence comprising 
the non-linguistic input is represented as a conjunc- 
tion of true and negated [STATE] descriptions. Only 
[STATE] descriptions appear in the observation se- 
quence. It is the function of the inference component 
to infer the possible [EVENT] descriptions which 
account for the observed [STATE] sequences. Fi- 
nally, meaning components of lexical entries are rep- 
resented as fragments of conceptual structure which 
contain variables. The conceptual structure frag- 
ments are combined by the linker, filling in the vari- 
ables with other fragments, to produce the variable 
free conceptual structures representing the meanings 
of whole utterances from the meanings of their con- 
stituent words. 

4 Learning Constraints  

Each of the three modules implements some linguis- 
tic or cognitive theory, and accordingly, makes some 
assumptions about what knowledge is innate and 
what can be learned. Additionally, each module cur- 
rently implements only a simple theory and thus has 
limitations on the linguistic and cognitive phenom- 
ena that it can account for. This section discusses 
the innateness assumptions and limitations of each 
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S --~ 

g --. 

NP --, 

VP 

pp -.-, 

AUX 

{COMP} [~] 

{DEW} ~ {S[NP[VP[PP}" 

{AUX} ~ {glNPIVPIPP }" 

[~] {g[NPIVP[PP}" 
{DOIBEI{MODALITOI 

{{MODALITO}} HAVE} {BE}} 

Figure 5: The context free grammar used by 
MAIMRA. This grammar is motivated by X-theory. 
The head of each rule is enclosed in a box. This head 
information is used by the linker. 

module in greater detail. 

4 .1  T h e  P a r s e r  

While MAIMRA can learn lexical category informa- 
tion required by the parser, the parser is given a fixed 
context-free grammar which is assumed to be innate. 
This fixed grammar used by MAIMRA is shown in 
Figure 5. At first glance it might seem unreasonable 
to assume that the grammar given in Figure 5 is 
innate. A closer look however, reveals that the par- 
ticular context-free grammar we use is not entirely 
arbitrary; it is motivated by X-theory[2, 3] which 
many linguists take to be innate. Our grammar can 
be derived from X-theory as follows. We start with a 
version of X-theory which allows non-binary branch- 
ing nodes and where maximal projections carry bar- 
level one (i.e. XP is X--). First, fix the parameters 
HEAD-first and SPEC-first to yield the prototype 
rule: 

XP ---* {XsPEc} X complement*. 

Second, instantiate this rule for each of the lexi- 
cal categories N, V and P viewing NSPEC as DET, 
VSPEC as AUX and making PSpEC degenerate. 
Third, add the rules for S and S stipulating that 

is a maximal projection. 2 Fourth, declare all max- 
imal projections to be valid complements. Finally, 
add in the derivation for the English auxiliary sys- 
tem. Thus, our particular context-free grammar is 
little more than instantiating X-theory with the En- 
glish lexical categories N, V and P, the English pa- 
rameters HEAD-first and SPEC-first and the English 
auxiliary system. 

2A more principled way of deriving the rides for S and 
from T-theory is given in [4] 

We make no claim that the syntactic theory im- 
plemented by MAIMRA is complete. Many linguistic 
phenomena remain unaccounted for in our grammar, 
among them agreement, tense, aspect, adjectives, ad- 
verbs, negation, coordination, quantifiers, wh-words, 
pronouns, reference and demonstratives. While the 
grammar is motivated by GB theory, the only com- 
ponents of GB theory which have been implemented 
are T-theory and 0-theory. (0-theory is enforced via 
the linking rule discussed in the next subsection.) 
Although future work may increase the scope and 
accuracy of the syntactic theory incorporated into 
MAIMRA, even the current limited grammar offers 
a sufficiently rich framework for investigating lan- 
guage acquisition. It's most severe limitation is a 
lack of subcategorization; the grammar allows nouns, 
verbs and prepositions to take any number of com- 
plements of any kind. This causes the grammar to 
severely overgenerate and results in a high degree of 
non-determinism in the representation of syntactic 
structure. It is interesting that despite the use of a 
highly ambiguous grammar, the combination of the 
parser with the linker and inference component, to- 
gether with the non-linguistic context, provide suffi- 
cient constraint for the system to learn words quickly 
with few training scenarios. This gives evidence that 
many of the constraints normally assumed to be im- 
posed by syntax, actually result from the interplay 
of multiple modules in a broad cognitive system. 

4.2  T h e  L i n k e r  

The linking component of MAIMRA implements a 
single linking rule which is assumed to be innate. 
This rule is best illustrated by way of the exam- 
ple given in Figure 6. Linking proceeds in a bottom 
up fashion from the leaves of the parse tree towards 
its root. Each node in the parse tree is annotated 
with a fragment of conceptual structure. The anno- 
tation of leaf nodes comes from the meaning entry for 
that word in the lexicon. Every non-leaf node has a 
distinguished daughter called the head. Knowledge 
of which daughter node is the head for any given 
phrasal category is assumed to be innate. For the 
grammar used by MAIMRA, this information is indi- 
cated in Figure 5 by the categories enclosed in boxes. 
The annotation of a non-leaf node is formed by copy- 
ing the annotation of its head daughter node, which 
may contain variables, and filling some of its variable 
slots with the annotation of the remaining non-head 
daughters. Note that this is a nondeterministic pro- 
cess; there is no stipulation of which variables get 
linked to which complements. Because of this non- 
determinism, there can be many linkings associated 
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with any given lexicon and parse tree. In addition 
to this linking ambiguity, existence of multiple lexi- 
cal entries with different meanings for the same word 
can cause meaning ambiguity. 

A given variable may appear multiple times in a 
fragment of conceptual structure. The linking rule 
stipulates that  when a variable is linked to an argu- 
ment, all instances of the same variable get linked to 
that  argument as well. Additionally, the linking rule 
maintains the constraint that  the annotation of the 
root node, as well as any node which is a sister to a 
head, must be variable free. Linkings which violate 
this constraint are discarded. There must be at least 
as many distinct variables in the conceptual struc- 
ture annotating the head as there are sisters of the 
head. Again, if there are insufficient variables in the 
head the partial linking is discarded. There may be 
more, however, which means that  the annotation of 
the parent will contain variables. This is acceptable 
if the parent is not itself a sister to a head. 

MAIMRA imposes two additional constraints on 
the linking process. First, meanings of lexical items 
must have some semantic content; they can not be 
simply a variable. Second, the functor of a con- 
ceptual s tructure fragment can not be a variable. 
In other words, it is not possible to have a frag- 
ment F R O M ( z ( J o h n ) )  which would link with AT 
to produce FROM(AT(John ) ) .  These constraints 
help reduce the space of possible lexicons and sup- 
port  search pruning heuristics which make learning 
faster. 

In summary, the linking component makes use of 
six pieces of knowledge which are assumed to be in- 
nate. 

1. The linking rule. 

2. The head category associated with each phrasal 
category. 

3. The requirement that  the root semantic struc- 
ture be variable free. 

4. The requirement that  conceptual structure frag- 
ments associated with sisters of heads be vari- 
able free. 

5. The requirement that  no lexical i tem have 
empty semantics. 

6. The requirement that  no conceptual structure 
fragment contain variable functors. 

There are at least two limitations in the theory of 
linking discussed above. First, there is no a t tempt  to 
give an adequate semantics for the categories DET, 
AUX and COMP. Currently, the linker assumes that  

nodes labeled with these categories have no concep- 
tual structure annotation. Furthermore, DET, AUX 
and COMP nodes which are sisters to a head are not 
linked to any variable in the conceptual structure an- 
notating the head. Second, while the above linking 
rule can account for predication, it cannot account 
for the semantics of adjuncts. This shortcoming re- 
sults not just from limitations in the linking rule but 
also from the fact that  Jackendoff's conceptual struc- 
ture is unable to represent adjunct information. 

4 . 3  T h e  I n f e r e n c e  C o m p o n e n t  

The inference component imposes the constraint that 
the linguistic input must "explain" the non-linguistic 
input. This notion of explanation is assumed to be 
innate and comprises four principles. First, each 
sentence must describe some subsequence of scenes. 
Everything the teacher says must be true in the 
current non-linguistic context of the learner. The 
teacher cannot say something which is either false 
or unrelated to the visual field of the learner. Sec- 
ond, while the teacher is constrained to making 
only true statements about the visual field of the 
learner, the teacher is not required to state every- 
thing which is true; some non-linguistic data  may go 
undescribed. Third, the order of the linguistic de- 
scription must match the order of occurrence of the 
non-linguistic [EVENTS]. This is necessary because 
the language fragment handled by MAIMRA does not 
support  tense and aspect. It also adds substantial 
constraint to the learning process. Finally, sentences 
must describe non-overlapping scene sequences. Of 
these principles, the first two seem very reasonable. 
The third is in accordance with the evidence that  
children acquire tense and aspect later in the lan- 
guage learning process. Only the fourth principle is 
questionable. The motivation for the fourth principle 
is that  it enables the use of the inference algorithm 
discussed in Section 5. More recent work, beyond the 
scope of this paper, suggests using a different infer- 
ence algorithm which does not require this principle. 

The above four learning principles make use of 
the notion of a sentence "describing" a sequence of 
scenes. The notion of description is expressed via the 
set of inference rules given in Figure 7. Each rule 
enables the inference of the [EVENT] or [STATE] 
description on its right hand side from a sequence 
of [STATE] descriptions which match the pattern on 
its left hand side. For example, Rule 1 states that 
if there is a sequence of scenes which can be divided 
into two concatenated subsequences of scenes, such 
that  each subsequence contains at least one scene, 
and in every scene in that  first subsequence, x is at 
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NP 
c u p  

DET N c u p  

I 
The cup 

S 
GO(cup, [FROM(AT(John)), TO(AT(Mary))]) 

VP 
GO(z, [FROM(AT(John)), TO(AT(Mary))I)  

V PP PP 
GO(x, [y, z]) FROM(AT(John)) TO(AT(Mary))  

P NP P NP 
slid FROM(AT(x)) Jo h n  TO(AT(x)) M a r y  

I I I I 
N N 

from John to M a r y  

• I I 
John Mary 

Figure 6: An example of the linking rule used by MAIMRA showing the derivation of conceptual structure 
for the sentence The cup slid from John to Mary from the conceptual structure meanings of the individual 
words, along with a syntactic structure for the sentence. 

y and not at z, while in every scene in the second 
subsequence, x is at z but  not at y, then we can de- 
scribe that  entire sequence of scenes by saying that  x 
went on a path from y to z. This rule does not stip- 
ulate that  other things can't  be true in those scenes 
embodying an [EVENT] of type GO, just  that  at 
a minimum, the conditions on the right hand side 
must hold over tha t  scene sequence. In general, any 
given observation may entail multiple descriptions, 
each describing some subsequence of scenes which 
may overlap with other descriptions. 

MAIMRA currently assumes that  these inference 
rules are innate. This seems tenable as these rules are 
very low level and are probably implemented by the 
vision system. Nonetheless, current work is focus- 
ing on removing the innateness requirement of these 
rules from the inference component.  

One severe limitation of the current set of inference 
rules is the lack of rules for describing the causality 
incorporated in the CAUSE and LET primitive con- 
ceptual functions. One method we have considered 
is to use rules like: 

CAUSE(w, GO(x,  [FROM(y), TO(z)]))  

(BE(w, y) A BE(x, y) A -,BE(x, z))+; 

(BE(x,  z) A -~BE(x, y))+. 

This states that  w caused z to move from y to z if 
w was at the same location y, as x was, at the start  
of the motion. This is clearly unsatisfactory. One 
would like to incorporate a more accurate notion of 
causality such as that  discussed in [9]. Unfortunately, 
it seems that  Jackendoff's conceptual structures are 
not expressive enough to support  the more complex 
notions of causality. This is another area for future 
work. 

5 Implementat ion 

As mentioned previously, MAIMRA uses directed al- 
gorithms, rather than non-directed constraint pro- 
cessing, to produce a lexicon. When processing a 
scenario, MAIMRA first applies the inference compo- 
nent to the non-linguistic input to produce semantic 
structures. Then,  it applies the parser to the linguis- 
tic input to produce syntactic structures. Finally, 
it applies the linking component in reverse, to both 
the syntactic structures and semantic structures, to 
produce a lexicon as output.  This process is best 
illustrated by way of an example. 
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GO(z, [FROM(y), TO(z)]) 
GO(z, FROM(y)) 

GO(x, TO(z)) 
GO(z, [ 1) 

STAY(z, y) 
STAY(z, [ ]) 

GOExt (z, [FROM(y), TO(z)]) 
GOExt (z, FROM(y)) 

GOExt(z, TO(z)) 
BE(z,y) 

ORIENT(z, [FROM(y), TO(z)]) 
ORIENT(z, FROM(y)) 

ORIENT(z, TO(y)) 

(BE(z, y) ̂  -"BE(z, z))+; (BE(z, z) ^ --BE(z, y))+ (1) 
• -- (BE(z, y) A --BE(z, z))+; (BE(z, z) A --BE(z, y))+ (2) 

(BE(z, y) ^ -~BE(z, z))+; (BE(z, z) ^ --BE(z, y))+ (3) 
~- (BE(z, y) ̂  -.BE(z, z))+; (BE(z, z) ̂  -.BE(x, y))+ (4) 

~- BE(z,y);(BE(z, y))+ (5) 

~- BE(z,y); (BE(z,y))+ (6) 
• -- (BE(z, y) ^ BE(z, z) ^ y # z) + (7) 
• -- (BE(z,y) ̂  BE(z, z) A y # z) + (8) 

.-- (BE(z, y) ̂  BE(z, z) ̂  y # z) + (9) 

BE(z, y)+ (10) 
~-- ORIENT(z,[FROM(y),TO(z)]) + (11) 
• -- (ORIENT(z, [FROM(y), TO(z)]) V ORIENT(x, FROM(y))) + (12) 

(ORIENT(z, [FROM(y), TO(z)]) v ORIENT(z, TO(y))) + (13) 

Figure 7: The inference rules used by the inference component of MAIMRA to infer [EVENTS] from [STATES]. 

Consider the following input scenario. 

(BE(cup, AT(John)));  
(BE(cup, AT(Mary))A 
--BE(cup, AT(John)));  
(BE(cup, AT(Mary)));  

(BE(cup, AT(Bill))A 
-,BE(cup, AT(Mary)));  

The cup slid from John to Mary.; 
The cup slid from Mary to Bill. 

This scenario contains four scenes and two sentences. 
First, frame axioms are applied to the scene se- 
quence, yielding a sequence of scene descriptions con- 
taining all of the true [STATE] descriptions pertain- 
ing to those scenes, and only those true [STATE] 
descriptions. 

BE(cup, AT(John));  
BE(cup, AT(Mary));  
BE(cup, AT(Mary));  

BE(cup, AT(Bill)) 

Given a scenario with n sentences and m scenes, 
find all possible ways of partitioning the m scenes 
into sequences of n partitions, where the partitions 
each contain a contiguous subsequence of scenes, but 
where the partitions themselves do not overlap and 
need not be contiguous. If we abbreviate the above 
sequence of four scenes as a; b; e; d, then partitioning 
for a scenario containing two sentences produces the 
following disjunction: 

{[a]; ([b] V [c] V [d] V [b;c] v [c;d] v [b; c;d])}v 
{([b] V [a; b]); ([c] V [d] V [c; d])}V 

{([c] V [b;c] V [a; b; c]); [d]}. 

Next, apply the inference rules from Figure 7 to each 
partition in the resulting disjunctive formula, replac- 
ing each partition with a disjunction of all [EVENTS] 
and [STATES] which can describe that partition. For 
our example, this results in the replacements given 
in Figure 8. 

The disjunction that remains after these replace- 
ments describes all possible sequences comprised of 
two [EVENTS] or [STATES] that can explain the 
input scene sequence. Notice how non-determinism 
is managed with a factored representation produced 
directly by the algorithm. 

After the inference component produces the se- 
mantic structure sequences corresponding to the 
non-linguistic input, the parser produces the syntac- 
tic structure sequences corresponding to the linguis- 
tic input. A variant of the CKY algorithm[8, 19] is 
used to produce factored parse trees. Finally, the 
linker is applied in reverse to each corresponding 
parse-tree/semantic-structure pair. 

This inverse linking process is termed fracturing. 
Fracturing is a recursive process applied to a parse 
tree fragment and a conceptual structure fragment. 
At each step, the conceptual structure fragment is as- 
signed to the root node of the parse tree fragment. If 
the root node of the parse tree has n non-head daugh- 
ters, then compute all possible ways of extracting 
n variable-free subexpressions from the conceptual 
structure fragment and assigning them to the non- 
head daughters, leaving distinct variables behind as 
place holders. The residue after subexpression ex- 
traction is assigned to the head daughter. Fractur- 
ing is applied recursively to the conceptual structures 
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[a] =~ BE(cup, AT(John)) 

[b],[c] =~ BE(cup, AT(Mary)) 
[d] =~ BE(cup, AT(Bill)) 

[a;b], [a;b;c] ::~ (GO(cup,[FROM(AT(John)),TO(AT(Mary))]) v 
GO(cup, FROM(AT(John))) v 

GO(cup, TO(AT(Mary))) v 

GO(cup, [ ])) 
[b; c] ::~ (BE(cup, AT(Mary)) V 

STAY(cup, AT(Mary))) 
[c; d], [b; c; d] ::~ (GO(cup, [FROM(AT(Mary)),TO(AT(Bill))]) V 

GO(cup, FROM(AT(Mary))) V 
GO(cup, TO(AT(Bill))) v 
GO(cup, [])). 

Figure 8: The replacements resulting from the application of the inference rules from Figure 7 to the example 
given in the text. 

assigned to daughters of the root node of the parse 
tree fragment, along with their annotations. The 
results of these reeursive calls are then conjoined to- 
gether. Finally, a disjunction is formed over each 
possible way of performing the subexpression extrac- 
tion. This process is illustrated by the following ex- 
ample. Consider fracturing the conceptual structure 
fragment 

GO(z, [FROM(AT(John)), TO(AT(Mary))]) 

along with a VP node with a head daughter labeled 
V and two sister daughters labeled PP. This produces 
the set of possible extractions shown in Figure 9. The 
fracturing recursion terminates when a lexical item 
is fractured. This returns a lexical entry triple com- 
prising the word, its category and a representation 
of its meaning. The end result of the fracturing pro- 
cess is a monotonic Boolean formula over definition 
triples which concisely represents the set of all pos- 
sible lexicons which allow the linguistic input from a 
scenario to explain the non-linguistic input. Such a 
factored lexicon (arising when processing a scenario 
similar to the second scenario of the training session 
given in Figure 2) is illustrated in Figure 10. 

The disjunctive lexicon produced by the fractur- 
ing process may contain lexicons which assign more 
than one meaning to a given word. We incorporate a 
monosemy constraint to rule out such lexicons. Con- 
ceptually, this is done by converting the factored dis- 
junctive lexicon to disjunctive normal form and re- 
moving lexicons which contain more than one lex- 
ical entry for the same word. Computationally, a 

more efficient way of accomplishing the same task is 
to view the factored disjunctive lexicon as a mono- 
tonic Boolean formula (I) whose propositions are lex- 
ical entries. We conjoin • with all conjunctions of 
the form ~ where the ai and ~j are both dis- 
tinct lexieal entries for the same word that appear 
in ~. The resulting formula is no longer monotonic. 
Satisfying assignments for this formula correspond 
to conjunctive lexicons which meet the monosemy 
constraint. The satisfying assignments can be found 
using well known constraint satisfaction techniques 
such as truth maintenance systems[10, 11]. While 
the problem of finding satisfying assignments for a 
Boolean formula (i.e. SAT) is NP-complete, our ex- 
perience is that in practice, the SAT problems gen- 
erated by MAIMRA are easy to solve and that the 
fracturing process of generating the SAT problems 
takes far more time than actually solving them. 

The monosemy constraint may seem a bit restric- 
tive. It can be relaxed somewhat by allowing up 
to n alternate meanings for a word by conjoining in 
conjunctions of the form 

n+l 
A ~ i j  
j=l 

where each of the aij are distinct lexical entries for 
the same word that appear in ~, instead of the pair- 
wise conjunctions used previously. 
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GO(z, [y, z]) 
GO(z, [y, 4) 

GO(z, [FROM(y), z]) 
GO(z, [FROM(y), z]) 

GO(z, [FROM(AT(y)), z]) 
GO(z, [FROM(AT(y)), z]) 

GO(z, [y, TO(z)]) 
GO(x, [y, TO(z)]) 

GO(z, [FROM(y), TO(z)]) 
GO(z, [FROM(y), TO(z)]) 

GO(z, [FROM(AT(y)), TO(z)]) 
GO(z, [FROM(AT(y)), TO(z)]) 

GO(z, [y, TO(AT(z))]) 
GO(z, [y, TO(AT(z))]) 

GO(z, [FROM(y), TO(AT(z))]) 
GO(z, [FROM(y), TO(AT(z))]) 

GO(z, [FROM(AT(y)), TO(AT(z))]) 
GO(z, [FROM(AT(y)), TO(AT(z))]) 

FROM(AT(John)) TO(AT(Mary)) 
TO(AT(Mary)) FROM(AT(John)) 

AT(John) TO(AT(Mary)) 
TO(AT(Mary)) AT(John) 

John TO(AT(Mary)) 
TO(AT(Mary)) John 

FROM(AT(John)) AT(Mary) 
AT(Mary) FROM(AT(John)) 
AT(John) AT(Mary) 
AT(Mary) AT(John) 

John AT(Mary) 
AT(Mary) John 

FROM(AT(John)) Mary 
Mary FROM(AT(John)) 

AT(John) Mary 
Mary AT(John) 
John Mary 
Mary John 

i • 

conju.ction 

disjunction. 

Figure 9: A recursive step of the fracturing process illustrating all possible subexpression extractions from 
the conceptual structure fragment given in the text, and their assignments to non-head daughters. The 
center column contains fragments annotating the first PP while the rightmost column contains fragments 
annotating the second PP. The leftmost column shows the residue which annotates the head. Each row is 
one distinct possible extraction. 

(AND (DEFINITION CUP N CuP) 
(OR (AND (OR (A~D (DEFINITIONIt~RY N (IT It~RY)) 

(DEFINITIONTO P (TO 70))) 
(AND (DEFINITION MARY N MARY) 

(DEFINITION TO P (TO (AT ?0))))) 
(OR (AND (OR (AND (DEFINITION JOHN N (AT JOHN)) 

(DEFINITION FROM P (FROM 70))) 
(AND (DEFINITION JOHN N JOHN) 

(DEFINITION FROM P (FROM (AT 70))))) 
(DEFINITION SLID V (GO 70 (PATH 71 72)))) 

(AND (DEFINITION JOHN N JOHN) 
(DEFINITION FROM P (AT 70)) 
(DEFINITION SLID V (GO ?0 (PATH 71 (FROM ?2))))))) 

(AND (DEFINITION MARY N MARY) 
(DEFINITION TO P (AT 70)) 
(OR (AND (OR (AND (DEFINITION JOHN N (AT JOHN)) 

(DEFINITION FROM P (FROM ?0))) 
(AND (DEFINITION JOHN N JOHN) 

(DEFINITION FROM P (FROM (AT 7 0 ) ) ) ) )  
(DEFINITION SLID V (GO 70 (PATH 71 (TO 7 2 ) ) ) ) )  

(AND (DEFINITION JOHN N JOHN) 
(DEFINITION FROM P (AT 70)) 
(DEFINITION SLID V (GO ?0 (PATH (FROM ?I) (TO ?2))))))))) 

Figure 10: A portion of the disjunctive lexicon which results from processing a scenario similar to the second 
scenario of the training session given in Figure 2. 
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6 D i s c u s s i o n  

When presented with a training session 3 much like 
that given in Figure 2, MAIMRA converges to a 
unique lexicon within six scenarios and several min- 
utes of CPU time. It is not however, able to converge 
to a unique meaning for the word enter when given 
scenarios of the form: 

(BE(John, AT(outside))A } 
- ,BE(John, IN(room))); 
(BE(John, IN(room))A . 

--BE(John, AT(outside))) 
John entered the room. 

It turns out that there is no way to force MAIMRA 

to realize that the sentence describes the entire sce- 
nario and not just the first or last scene alone. Thus 
MAIMRA does not rule out the possibility that en- 
ter might mean "to be somewhere." The reason 
MAIMRA is successful with the session from Figure 2 
is that the empty semantics constraint rules out asso- 
ciating the sentences with just the first or last scene 
because the semantic structures representing those 
scene subsequences have too little semantic material 
to distribute among the words of the sentence. One 
way around this problem would be for MAIMRA to 
attempt to choose the lexicon which maximizes the 
amount of non-linguistic data which is accounted for. 
Future work will investigate this issue further. 

We make three claims as a result of this work. 
First, this work demonstrates that the combina- 
tion of syntactic, semantic and pragmatic modules, 
each incorporating coguitively plausible innateness 
assumptions, offers sufficient constraint for learning 
word meanings with no prior lexical knowledge in 
the context of non-linguistic input. This offers a 
general framework for explaining meaning acquisi- 
tion. Second, appropriate choices of representation 
and algorithms allow efficient implementation within 
the general framework. While no claim is being made 
that children employ the mechanisms described here, 
they nonetheless can be used to construct useful en- 
gineered systems which learn language. The third 

3Although not strictly required by either the theory or 
the implementation, we currently incorporate into the train- 
ing session given to MAIMRA, all initial lexicon telling it that  
' John, '  'Mary'  and 'Bill' are nouns, 'from' and ' to '  are preposi- 
tions and ' the '  is a determiner. This is to reduce the combina~ 
torics of generating ambiguous parses. Category information 
is not given for any other words, nor is meaning information 
given for any words occurring in the training session. In the- 
ory it would be possible to efficiently bootstrap the categories 
for these words as well, via a longer training session containing 
a few shorter sentences to constrain the possible categories for 
these words. We have not done so yet, however. 

claim is more bold. Most language acquisition re- 
search operates under a tacit assumption that chil- 
dren acquire individual pieces of knowledge about 
language by experiencing single short stimuli in iso- 
lation. This is often extended to an assumption that 
knowledge of language is acquired by discovering dis- 
tinct cues in the input, each cue elucidating one pa- 
rameter setting in a parameterized linguistic theory. 
We will call this assumption the local learning hy- 
pothesis. This is in contrast to our approach where 
knowledge of language is acquired by finding data 
consistent across longer correlated sessions. Our ap- 
proach requires the learner to do some puzzle solving 
or constraint satisfaction. 4 It is normally believed 
that the latter approach is not cognitively plausi- 
ble. The evidence for this is that children seem to 
have short "input buffers." The limited size of the 
input buffers is taken to imply that only short iso- 
lated stimuli can take part in inferring each new lan- 
guage fact. MAIMRA demonstrates that despite a 
short input buffer with the ability of retaining only 
one scenario at a time, it is nonetheless possible to 
produce a disjunctive representation which supports 
constraint solving across multiple scenarios. We be- 
lieve that without cross scenario constraint solving, it 
is impossible to account for meaning acquisition and 
thus the local learning hypothesis is wrong. Our ap- 
proach offers a viable alternative to the local learning 
hypothesis consistent with the observed short input 
buffer effect. 

7 R e l a t e d  W o r k  

While most prior computational work on meaning ac- 
quisition focuses on contextual learning by scanning 
texts, some notable work has pursued a path simi- 
lax to that described here attempting to learn from 
correlated linguistic and non-linguistic input. In 
[16, 17], Salveter describes a system called MORAN. 
The non-linguistic component of each scenario pre- 
sented to MORAN consists of a sequence of exactly 
two scenes, where each scene is described by a con- 
junction of atomic formula. The linguistic compo- 
nent of each scenario is a preparsed case frame anal- 
ysis of a single sentence describing the state change 
occurring between those two scenes. From each sce- 
nario in isolation, MORAN infers what Salveter calls 
a Conceptual Meaning Structure (CMS) which at- 
tempts to capture the essence of the meaning of the 
verb in the sentence. This CMS is a subset of the 

4We are not claiming that  such puzzle solving is conscious. 
It is likely that  constraint satisfaction, if done by children or 
adults, is a very low level subconscious cognitive function not 
subject to introspective observation. 
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two scenes identifying the portion of the scenes re- 
ferred to by the sentence, with the arguments of the 
atomic formula linked to noun phrases replaced by 
variables labeled with the syntactic positions those 
noun phrases fill in the sentence. The process of 
inferring CMSs involves two processes reminiscent 
of tasks performed by MAIMRA, namely the fig- 
ure/ground distinction whereby the inference com- 
ponent suggests possible subsets of the non-linguistic 
input as being referred to by the linguistic input (as 
distinct from the part which is not referred to) and 
the fracturing process whereby verb meanings are 
constructed by extracting out arguments from whole 
sentence meanings. MORAN's variants of these tasks 
are much simpler than the analogous tasks performed 
by MAIMRA. First, the figure/ground distinction is 
easier since each scenario presented to MORAN con- 
tains but a single sentence and a pair of scenes. 
MORAN need not figure out which subsequence of 
scenes corresponds to each sentence. Second, the 
linguistic input comes to MORAN preparsed which 
relies on preexisting knowledge of the lexical cate- 
gories of the words in the sentence. MORAN does not 
acquire category information, and furthermore does 
not deal with any ambiguity that might arise from 
the parsing process or the figure/ground distinction. 
Finally, the training session presented to MORAN re- 
lies on a subtle implicit link between the objects in 
the world and linguistic tokens used to refer to them. 
Part of the difficulty faced by MAIMRA is discerning 
that the linguistic token John refers to the concep- 
tual structure fragment John. MORAN is given that 
information a pr/or/by lacking a formal distinction 
between the notion of a linguistic token and concep- 
tual structure. Given this information, the fractur- 
ing process becomes trivial. MORAN therefore, does 
not exhibit the cross-scenario correlational behavior 
attributed to MAIMRA and in fact learns every verb 
meaning with just a single training scenario. This 
seems very implausible as a model of child language 
acquisition. In contrast to MAIMRA, MORAN is able 
to learn polysemous senses for verbs; one for each sce- 
nario provided for a given verb. MORAN focuses on 
extracting out the common substructure for polyse- 
mous meanings attempting to maximize commonal- 
ity between different word senses and build a catalog 
of higher level conceptual building blocks, a task not 
attempted by MAIMRA. 

In [13, 14], Pustejovsky describes a system called 
TULLY, which also operates in a fashion similar to 
MAIMRA arid MORAN, learning word meanings from 
pairs of linguistic and non-linguistic input. Like 
MORAN, the linguistic input given to TULLY for 
each scenario is a single parsed sentence. The non- 

linguistic input given along with that parsed sentence 
is a predicate calculus description of three parts of 
a single event, its beginning, middle and end. From 
this input, TULLY derives a Thematic Mapping In- 
dex, a data structure representing the 8-roles borne 
by each of the arguments to the main predicate. Like 
MORAN, the task faced by TULLY is much simpler 
than that faced by MAIMRA, since TULLY is pre- 
sented with unambiguous parsed input, is given the 
correspondence between nouns and their referents 
and is given the correspondence between a single sen- 
tence and the semantic representation of the event 
described by that sentence. TULLY does not learn 
lexical categories, does not have to determine fig- 
ure/ground partitioning of non-linguistic input and 
implausibly learns verb meanings from single scenar- 
ios without any cross-scenario correlation. Multiple 
scenarios for the same verb cause TULLY to gener- 
alize to the least common generalization of the in- 
dividual instances. TULLY however, goes beyond 
MAIMRA in trying to account for the acquisition of 
a variety of markedness features for 0-roles includ- 
ing [+motion], [+abstract], [±direct], [±partitive] and 
[±animate] 

8 Conclusion 

The MAIMRA system successfully learns word mean- 
ings with no prior lexical knowledge of any words. 
It works by applying syntactic, semantic and prag- 
matic constraints to correlated linguistic and non- 
linguistic input. In doing so, it more accurately re- 
flects the type of learning performed by children, 
in contrast to previous lexical acquisition systems 
which focus on learning unknown words encountered 
while reading texts. Although, each module imple- 
ments a weak theory, and in isolation offers only lim- 
ited constraint on possible mental representations, 
the collective constraint provided by the combina- 
tion of modules is sufficient to reduce the nondeter- 
minism to a manageable level. It demonstrates that 
with a reasonable set of assumptions about innate 
knowledge, combined with appropriate representa- 
tions and algorithms, tractable learning is possible 
with short training sessions and limited processing. 
Though there may be disagreement as to the lin- 
guistic and cognitive plausibility of some of the in- 
nateness assumptions, and while the particular syn- 
tactic, semantic and pragmatic theories currently in- 
corporated into MAIMRA may be only approxima- 
tions to reality, nonetheless, the general framework 
shows promise of explaining how children acquire 
word meanings. In particular, it offers a viable al- 
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ternative to the local learning hypothesis which can 
explain how children acquire meanings that require 
correlation of experience across many input scenar- 
ios, with only limited size input buffers. Future work 
will attempt to address these potential shortcomings 
and will focus on supporting more robust acquisition 
of a broader class of word meanings. 
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