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Abstract 
Certain restrictions on possible scopings of quan- 
tified noun phrases in natural language are usually 
expressed in terms of formal constraints on bind- 
ing at a level of logical form. Such reliance on the 
form rather than the content of semantic inter- 
pretations goes against the spirit of composition- 
ality. I will show that those scoping restrictions 
follow from simple and fundamental facts about 
functional application and abstraction, and can be 
expressed as constraints on the derivation of possi- 
ble meanings for sentences rather than constraints 
of the alleged forms of those meanings. 

1 A n  O b v i o u s  C o n s t r a i n t ?  
Treatments of quantifier scope in Montague gram- 
mar (Montague, 1973; Dowty et al., 1981; Cooper, 
1983), transformational grammar (Reinhart, 1983; 
May, 1985; Helm, 1982; Roberts, 1987) and com- 
putational linguistics (Hobbs and Shieber, 1987; 
Moran, 1988) have depended implicitly or explic- 
itly on a constraint on possible logical forms to 
explain why examples 1 such as 

(1) * A woman who saw every man disliked 
him 

are ungrammatical, and why in examples such as 

(2) Every man saw a friend of his 
(3) Every admirer of a picture of himself is 

vain 

the every.., noun phrase must have wider scope 
than the a... noun phrase if the pronoun in each 
example is assumed to be bound by its antecedent. 
What exactly counts as bound anaphora varies be- 
tween different accounts of the phenomena, but 
the rough intuition is that semantically a bound 
pronoun plays the role of a variable bound by the 
logical form (a quantifier) of its antecedent. Ex- 
ample (1) above is then "explained" by noting that 

l I n  all the examples t ha t  follow, the pronoun and  its 
intended antecedent are italicized. As usual, s tarred exam- 
pies are supposed to be u n g r m t i c a L  

its logical form would be something like 

3W.WOMAN(W)~ 

(Vm.MAN(rn) ::~ SAW(W, rn))~ 
DISLIKED(W, m )  

but this is "ill-formed" because variable m occurs 
as an argument of DISLIKED outside the scope of 
its binder Vm. 2 As for Examples (2) and (3), 
the argument is similar: wide scope for the log- 
ical form of the a... noun phrase would leave an 
occurrence of the variable that the logical form of 
every.., binds outside the scope of this quantifier. 
For lack of an official name in the literature for 
this constraint, I will call it here the free-variable 
constraint. 

In accounts of scoping possibilities based on 
quantifier raising or storage (Cooper, 1983; van Ei- 
jck, 1985; May, 1985; Hobbs and Shieber, 1987), 
the free-variable constraint is enforced either by 
keeping track of the set of free variables FREE(q)  
in each ralsable (storable) term q and when z E 
FREE(q) blocking the raising of q from any context 
Bz.t  in which z is bound by some binder B, or by 
checking after all applications of raising (unstor- 
ing) that no variable occurs outside the scope of 
its binder. 

The argument above is often taken to be so ob- 
vions and uncontroversial that it warrants only a 
remark in passing, if any (Cooper, 1983; Rein- 
hart, 1983; Partee and Bach, 1984; May, 1985; van 
Riernsdijk and Williams, 1986; Williams, 1986; 
Roberts, 1987), even though it depends on non- 
trivial assumptions on the role of logical form in 
linguistic theory and semantics. 

First of all, and most immediately, there is the 
requirement for a logical-form level of representa- 
tion, either in the predicate-logic format exempli- 
fied above or in some tree format as is usual in 
transformational grammar (Helm, 1982; Cooper, 
1983; May, 1985; van Riemsdijk and Williams, 
1986; Williams, 1986; Roberts, 1987). 

2In fact, this is & perfectly good ope~t well-formed for~ 
nmla and  therefore the precise formulation of the constraint  
is more delicate than  seems to be realized in the li terature. 
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Second, and most relevant to Montague gram- 
mar and related approaches, the constraint is for- 
mulated in terms of restrictions on formal ob- 
jects (logical forms) which in turn are related to 
meanings through a denotation relation. How- 
ever, compositionaiity as it is commonly under- 
stood requires meanings of phrases to be func- 
tions of the meanings rather than the forms of 
their constituents. This is a problem even in ac- 
counts based on quantifier storage (Cooper, 1983; 
van Eijck, 1985), which are precisely designed, as 
van Eijck puts it, to "avoid all unnecessary ref- 
erence to properties of ... formulas" (van Eijck, 
1985, p. 214). In fact, van gijck proposes an inter- 
eating modification of Cooper storage that avoids 
Cooper's reliance on forbidding vacuous abstrac- 
tion to block out cases in which a noun phrase is 
unstored while a noun phrase contained in it is 
still in store. However, this restriction does not 
deal with the case I have been discussing. 

It is also interesting to observe that a wider class 
of examples of forbidden scopings would have to 
be considered if raising out of relative clauses were 
allowed, for example in 

(4) An author who John has read every book 
by arrived 

In this example, if we did not assume the re- 
striction against raising from relative clauses, the 
every.., noun phrase could in principle be as- 
signed widest scope, but this would be blocked by 
the free-variable constraint as shown by the occur- 
rence of b free as an argument of BOOK-BY in 

Vb.BOOK-BY(b, a) :~ 
(~a.AUTHOR(a)& 

HAS-READ(JOHN, b)&ARRIVED(a)) 

That  is, the alleged constraint against raising from 
relatives, for which many counterexamples exist 
(Vanlehn, 1978), blocks some derivations in which 
otherwise the free-variable constraint would be in- 
volved, specifically those associated to syntactic 
configurations of the form 

[Np," • .N[s-- • • [Np¢- • .X, • • .] • • .] • • • ] 

where Xi is a pronoun or trace coindexed with 
NPI and NPj is a quantified noun phrase. Since 
some of the most extensive Montague grammar 
fragments in the literature (Dowry et al., 1981; 
Cooper, 1983) do not cover the other major source 
of the problem, PP complements of noun phrases 
(replace S by PP in the configuration above), the 
question is effectively avoided in those treatments. 

1 5 3  

The main goal of this paper is to argue that the 
free-variable constraint is actually a consequence 
of basic semantic properties that hold in a seman- 
tic domain allowing functional application and ab- 
straction, and are thus independent of a particular 
10gical-form representation. As a corollary, I will 
also show that the constraint is bet ter  expressed 
as a restriction on the derivations of meanings of 
sentences from the meanings of their parts rather 
than a restriction on logical forms. The result- 
ing system is related to the earlier system of con- 
ditional interpretation rules developed by Pollack 
and Pereira (1988), but avoids that system's use 
of formal conditions on the order of assumption 
discharge. 

2 Cur ry ' s  Calculus of Func- 
t ional i ty  

Work in combinatory logic and the A-calculus is 
concerned with the elucidation of the basic notion 
of functionality: how to construct functions, and 
how to apply functions to their arguments. There 
is a very large body of results in this area, of which 
I will need only a very small part. 
• One of the simplest and most elegant accounts 

of functionality, originally introduced by Curry 
and Feys (1968) and further elaborated by other 
authors (Stenlund, 1972; Lambek, 1980; Howard, 
1980) involves the use of a logical calculus to de- 
scribe the types of valid functional objects. In a 
natural deduction format (Prawitz, 1965), the cal- 
culns can be simply given by the two rules in Fig- 
ure 1. The first rule states that the result of ap- 
plying a function from objects of type A to objects 
of type B (a function of type A --* B) to an ob- 
ject of type A is an object of type B. The second 
rule states that if from an arbitrary object of type 
A it is possible to construct an object of type B, 
then one has a function from objects of type A 
to objects of type B. In this rule and all that fol- 
low, the parenthesized formula at the top indicates 
the discharge of an assumption introduced in the 
derivation of the formula below it. Precise defini- 
tions of assumption and assumption discharge are 
given below. 

The typing rules can be directly connected to 
the use of the A-calculus to represent functions by 
restating the rules as shown in Figure 2. That  is, 
if u has type A and v has type A ~ B then v(u) 
has type B, and if by assuming that  z has type 
A we can show that u (possibly containing z) has 
type B, then the function represented by Ax.u has 
type A ~ B. 



A A - - * B  

(A) 
B 

B A....*B 

Figure 1: Curry Rules 

(x : A) 

[app] : u :  A v :  A--* B [abs]: u :  B 
v(u) : B Az,u : A - -  B 

Figure 2: Curry Rules for Type Checking 

To understand what inferences are possible with 
rules such as the ones in Figure 2, we need a precise 
notion of derivation, which is here adapted from 
the one given by Prawitz (1965). A derivation 
is a tree with each node n labeled by a formula 
¢(n) (the conclusion of the node) and by a set 
r (n)  of formulas giving the =ss.mpiions of $(n). 
In addition, a derivation D satisfies the following 
conditions: 

i. For each leaf node n E D, either ~b(n) is an 
axiom, which in our case is a formula giving the 
type and interpretation of a lexical item, and 
then r (n )  is empty, or @(n) is an assumption, 
in which case r(.) = { , ( . ) }  

ii. Each nonleaf node n corresponds either to an 
application of lapp], in which case it has two 
daughters m and m' with ¢(m) - u : A, 
, ( m ' )  - - .  : A - .  B .  ÷ ( , )  = v(u)  : B and 
r ( . )  = r (m)  u r (m ' ) ,  or to an application of 
[abs], in which case n has a single daughter m, 
and , ( m )  =- u : B.  ~ ( , )  = Ax.u : A - .  B .  and 
r ( . )  = r c m ) -  {~: A} 

If n is the root node of a derivation D, we say that 
D is a derivation of ¢(n) from the assumptions 
r(~). 

Notice that condition (ii) above allows empty 
abstraction, that is, the application of rule labs] 
to some formula u : B even if z : A is not 
one of the assumptions of u : B. This is neces- 
sary for the Curry calculus, which describes all 
typed A-terms, including those with vacuous ab- 
straction, such as the polymorphic K combinator 
Az.Ay.z : A ~ (B ~ A). However, in the present 
work, every abstraction needs to correspond to 
an actual functional dependency of the interpre- 
tation of a phrase on the interpretation of one of 
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its constituents. Condition (ii) can be easily modi- 
fied to block vacuous abstraction by requiring that 
z : A e r(m) for the application of the labs] rule 
to a derivation node m. 3 

The definition of derivation above can be gener- 
alized to arbitrary rules with n premises and one 
conclusion by defining a rule of inference as a n+l- 
place relation on pairs of formulas and assumption 
sets. For example, elements of the [app] relation 
would have the general form ((u : A, r l ) ,  (v : A 
B, r~), {v(u) : B, r, v r~)), while elements of the 
[abs] rule without vacuous abstraction would have 
the form ({u: B, r) ,  (Ax.u : A - -  B, r - {x :  A})) 
whenever z : A E r .  This definition should be 
kept in mind when reading the derived rules of 
inference presented informally in the rest of the 
paper. 

3 Semantic Combinations 

and the Curry Calculus 

In one approach to the definition of allowable se- 
mantic combinations, the possible meanings of a 
phrase are exactly those whose type can be de- 
rived by the rules of a semantic calculus from ax- 
ioms giving the types of the lexical items in the 
phrase. However, this is far too liberal in that 

3Without this restriction to the abstraction rule, the 
types derivable using the rules in Figure 2 are exactly the 
consequences of the three axioms A -+ A, A --* (B --~ A) 
and (A -* (S -. C)) -* ((A -* S) -* (A -* C)), w~ch 
are the polymorphic types of the three combinators I, K 
and S that  generate all the dosed typed A-calculus terms. 
Furthermore, if we interpret -* as implication, these theo- 
rems are exactly those of the pure implicational fragment 
of intuitlonlstic propositional logic (Curry and Feys, 1968; 
Stenlund, 1972; Anderson and Be]nap, 1975). In contrast, 
with the restriction we have the weaker system of pure rel- 
evant implication R -  (Prawitz, 1965; Anderson and Bel- 
nap, 1975). 



the possible meanings of English phrases do not 
depend only on the types involved but also on 
the syntactic structure of the phrases. A possible 
way out is to encode the relevant syntactic con- 
straints in a more elaborate and restrictive system 
of types and rules of inference. The prime exam- 
ple of a more constrained system is the Lambek 
calculus (Lambek, 1958) and its more recent elab- 
orations within categorial grammar and semantics 
(van Benthem, 1986a; van Benthem, 1986b; Hen- 
driks, 1987; Moortgat, 1988). In particular, Hen- 
driks (1987) proposes a system for quantifier rais- 
ing, which however is too restrictive in its coverage 
to account for the phenomena of interest here. 

Instead of trying to construct a type system 
and type rules such that free application of the 
rules starting from appropriate lexical axioms will 
generate all and only the possible meanings of a 
phrase, I will instead take a more conservative 
route related to Montague grammar and early ver- 
sions of GPSG (Gazdar, 1982) and use syntactic 
analyses to control semantic derivations. 

First, a set of derived rules will be used in addi- 
tion to the basic rules of application and abstrac- 
tion. Semantically, the derived rules will add no 
new inferences, since they will merely codify infer- 
ences already allowed by the basic rules of the cal- 
culus of functionality. However, they provide the 
semantic counterparts of certain syntactic rules. 

Second, the use of some semantic rules must 
be l icensed by a particular syntactic rule and the 
premises in the antecedent of the semantic rule 
must correspond in a rule-given way to the mean- 
ings of the constituents combined by the syntactic 
rule. As a simple example using a context-free 
syntax, the syntactic rule S - ,  NP VP might li- 
cense the function application rule [app] with A 
the type of the meaning of the NP and A --* B 
the type of the meaning of the VP. 

Third, the domain of types will be enriched with 
a few new type constructors, in addition to the 
function type constructor --*. From a purely se- 
mantic point of view, these type constructors add 
no new types, but allow a convenient encoding of 
rule applicability constraints motivated by syntac- 
tic considerations. This enrichment of the formal 
universe of types for syntactic purposes is famil- 
iar from Montague grammar (Montague, 1973), 
where it is used to distinguish different syntac- 
tic realizations of the same semantic type, and 
from categorial grammar (Lambek, 1958; Steed- 
man, 1987), where it is used to capture syntactic 
word-order constraints. 

Together, the above refinements allow the syn- 

x : trace) 

[trace+]. z- trace [trace-]" r: I; 
z:e ,~z.r : e --* I; 

Figure 3: Rules for Relative Clauses 

[pron+] : 

(X : pron) 

Z : pron [p ron- ]  : s : A y : B 
z : e  (Ax . s ) ( y )  : A 

Figure 4: Bound Anaphora Rules 

tax of language to restrict what potential semantic 
combinations are actually realized. Any deriva- 
tions will be sound with respect to [app] and [abs], 
but many derivations allowed by these rules will 
be blocked. 

4 D e r i v e d  R u l e s  
In the rules below, we will use the two basic 
types • for individuals and t for propositions, 
the function type constructor --* associating to 
the right, the formal type constructor qua,at(q), 
where q is a quantifier, that is, a value of type 
(e --~ t )  -* t ,  and the two formal types pron for 
pronoun assumptions and t r a c e  for traces in rel- 
ative clauses. For simplicity in examples, I will 
adopt a "reverse Curried" notation for the mean- 
ings of verbs, prepositions and relational nouns. 
For example, the meaning of the verb ~o love will 
be LOVe. : • ~ • ~ t ,  with z the lover and y the 
loved one in LOVE(y)(z). The assumptions corre- 
sponding to lexical items in a derivation will be 
appropriately labeled. 

4 .1  T r a c e  I n t r o d u c t i o n  a n d  A b -  
s t r a c t i o n  

The two derived rules in Figure 3 deal with traces 
and the meaning of relative clauses. Rule [trace+] 
is licensed by the the occurrence of a trace in the 
syntax, and rule [trace-] by the construction of a 
relative clause from a sentence containing a trace. 
Clearly, if n : • --* t can be derived from some as- 
sumptions using these rules, then it can be derived 
using rule labs] instead. 

For an example of use of [trace+] and [trace-], 
assume that the meaning of relative pronoun that 

is THAT ~ A r . A n . A z . n ( x ) & r ( z )  : (e  --* t )  --* (e - -*  
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[trace] y : 1;race 
I 

[ t r a c e + ]  Z/"  e [ l e x i c a l ]  O W N  : • - - *  e ~ 1: 

l a p p ]  OWN(y)  : e - - *  1; [ [ e x i c a [ ]  JOHN : e 

[app] O W N ( y ) ( J O H N ) :  ~, 
/ 

[ t race- - ]  ) t y . O W N ( y ) ( J O H S )  I e --+ l; [[exical] T H A T :  (e  --+ 1;) --+ ( e  --+ 1;) ---+ ( e  ---+ t )  

[app] An.,,\z.n(z)~OWN(z)(JOHN): ( e  -'+ 1;) - '* (e  ---* I;) [lexlcal] C A R :  e ~ 1; 

[app] ~ k z . C A R ( Z ) ~ O W N ( z ) ( J O H N )  " e -'~ 1; 

Figure 5: Using Derived Rules 

z) ~ (e --* t). Given appropriate syntactic licens- 
ing, Figure 5 shows the derivation of a meaning 
for car tha~ John o~#ns. Each nonleaf node in the 
derivation is labeled with the rule that was used 
to derive it, and leaf nodes are labeled accord- 
ing to their origin (lexical entries for words in the 
phrase or syntactic traces). The assumptions at 
each node are not given explicitly, but can be eas- 
ily computed by looking in the subtree rooted at 
the node for undischarged assumptions. 

4 .2  B o u n d  A n a p h o r a  I n t r o d u c t i o n  
a n d  E l i m i n a t i o n  

Another pair of rules, shown in Figure 4, is re- 
sponsible for introducing a pronoun and resolving 
it as bound anaphora. The pronoun resolution rule 
[pron-] applies only when B is t r a c e  or quant(q) 
for some quantifier q. Furthermore, the premise 
y : B does not belong to an immediate constituent 
of the phrase licensing the rule, but rather to some 
undischarged assumption of s : A, which will re- 
main undischarged. 

These rules deal only with the construction 
of the meaning of phrases containing bound 
anaphora. In a more detailed granunar, the li- 
censing of both rules would be further restricted 
by linguistic constraints on coreference - -  for in- 

stance, those usually associated with c-command 
(Reinhart, 1983), which seem to need access to 
syntactic information (Williams, 1986). In partic- 
ular, the rules as given do not by themselves en- 
force any constraints on the possible antecedents 
of reflexives. 

The soundness of the rules can be seen by noting 
that the schematic derivation 

(z : pron) 
z.'e 

s : A  y:B 
: A 

to a special case of the schematic corresponds 
derivation 

2 : e)  

s : A  
y : e  Az.s : e ---. A 

( A x . s ) C y )  : A 

The example derivation in Figure 7, which will be 
explianed in more detail later, shows the applica- 
tion of the anaphora rules in deriving an interpre- 
tation for example sentence (2). 
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[quant+] : q:  (e --* 10 --* t z :  quant(q) 
~ g : e  

[quant--] : 

( = :  q u a n t ( ~ ) )  
s : t  

q(A=.s) : t 

Figure 6: Quantifier Rules 

4 . 3  Q u a n t i f i e r  R a i s i n g  

The rules discussed earlier provide some of the 
auxiliary machinery required to illustrate the free- 
variable constraint. However, the main burden of 
enforcing the constraint falls on the rules responsi- 
ble for quantifier raising, and therefore I will cover 
in somewhat greater detail the derivation of those 
rules from the basic rules of functionality. 

I will follow here the standard view (Montague, 
1973; Barwise and Cooper, 1981) that natural- 
language determiners have meanings of type (e --* 
t )  --* (e --* 10 ---+ ¢. For example, the mean- 
ing of every might be Ar.As.Vz.r(z)  ~ s(z), and 
the meaning of the noun phrase every man will be 
As.Vz.MAN(z) =~ s(z). To interpret the combina- 
tion of a quantified noun phrase with the phrase 
containing it that forms its scope, we apply the 
meaning of the noun phrase to a property s de- 
rived from the meaning of the scope. The pur- 
pose of devices such as quantifying-in in Montague 
grammar, Cooper storage or quantifier raising in 
transformational grammar is to determine a scope 
for each noun phrase in a sentence. From a se- 
mantic point of view, the combination of a noun 
phrase with its scope, most directly expressed by 
Montague's quantifying-in rules, 4 corresponds to 
the following schematic derivation in the basic cal- 
culus (rules lapp] and labs] only): 

( = :  e) 

# : 'G  

Az.s : e ---, l; q : (e ---, l:) ---, t 
q ( t = . s )  : ~ • 

where the assumption z : • is introduced in the 
derivation at a position corresponding to the oc- 
currence of the noun phrase with meaning q in 
the sentence. In Montague grammar, this corre- 
spondence is enforced by using a notion of syn- 
tactic combination that does not respect the syn- 

4I!1 gmaered, quantifyilMg-in has  to apply not only t o  
proposition-type scopes but  ahto to property-type scopes 
(meAnings of common-noun phrases and verb-phrases). Ex- 
tending the argument  tha t  foUows to those cases offers no 
difficulties. 
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tactic structure of sentences with quantified noun 
phrases. Cooper storage was in part developed 
to cure this deficiency, and the derived rules pre- 
sented below address the same problem. 

Now, the free-variable constraint is involved in 
situations in which the quantifier q itself depends 
on assumptions that must be discharged. The rel- 
evant incomplete schematic derivation (again in 
terms of [app] and labs] only) is 

(a )  (z : e) (b )  Y:  • 

s : t q : ( e  - - ,  t )  --+ t (5 )  
~ x . s  : e-.-+ t ? 

q ( A z . s )  : t 
? 

Given that the assumption y : • has not been dis- 
charged in the derivation of q : (e ---, ~) ---, t, 
that is, y : • is an undischarged assumption of 
q : (e ---, t) -* t, the question is how to com- 
plete the whole derivation. If the assumption were 
discharged before q had been combined with its 
scope, the result would be the semantic object 
Ay.q : • --, (e --, t )  ---, t ,  which is of the wrong 
type to be combined by lapp] with the scope Az.s. 
Therefore, there is no choice but to discharge (b) 
after q is combined with its scope. Put in an- 
other way, q cannot be raised outside the scope 
of abstraction for the variable y occurring free in 
q," which is exactly what is going on in Example 
(4) ('An author who John has read every book by 
arrived'). A correct schematic derivation is then 

(a )  (=  : 0) 
: (b) (V:  0) 

8 : t  

Az., : • - .  t ~ : (e ~ t )  ----+ t 
q ( ~ z . s )  : ¢ 

u : A  
Ay.u : e--+ A 

In the schematic derivations above, nothing en- 
sures the association between the syntactic posi- 



EVERY MAN 

EVERY(MAN) (a) ~n: quant(EVERY(MAN)) (b) h :pron 

[quant-I-] rrt : e FRIEND-OF [pron-I-] h : e 

SAw(1)( ) 
I 

[quant--] A(FRIEND-OF(h))(Af.SAW(f)(m)) 

[pron--] A (FRIEND-OF (Ira)) (~f.SAW ( f ) ( rn ) )  

I 
[quant--] EVERY(MAN)(Am.A (FRIEND-OF(m))(Af.SAW (f)(m))) 

Most interpretation types and the inference rule label on uses of [app] have been omitted for simplicity. 

Figure 7: Derivation Involving Anaphora and Quantification 

tion of the quantified noun phrase and the intro- 
duction of assumption (a). To do this, we need 
the the derived rules in Figure 6. Rule [qusnt-t-] 
is licensed by a quantified noun phrase. Rule 
[qusnt-] is not keyed to any particular syntactic 
construction, but instead may be applied when- 
ever its premises are satisfied. It is clear that  any 
use of [quant+] and [quant--] in a derivation 

z : e  

s : t  
q(Ax.s)  : 

can be justified by translating it into an instance 
of the schematic derivation (5). 

The situation relevant to the free-variable con- 
straint arises when q in [quant+] depends on as- 
sumptions. It is straightforward to see that  the 
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constraint on a sound derivation according to the 
basic rules discussed earlier in this section turns 
now into the constraint that an assumption of the 
form z : quant(q) must be discharged before any 
of the assumptions on which q depends. Thus, the 
free-variable constraint is reduced to a constraint 
on derivations imposed by the basic theory of func- 
tionality, dispensing with a logical-form represen- 
tation of the constraint. Figure 7 shows a deriva- 
tion for the only possible scoping of sentence (2) 
when erery man is selected as the antecedent of 
his. To allow for the selected coreference, the pro- 
noun assumption must be discharged before the 
quantifier assumption (a) for every man. Further- 
more, the constraint on dependent assumptions 
requires that  the quantifier assumption (c) for a 
friend of his be discharged before the pronoun as- 
sumption (b) on which it depends. It then follows 
that  assumption (c) will be discharged before as- 
sumption (a), forcing wide scope for every man. 



5 Discussion 

The approach to semantic interpretation outlined 
above avoids the need for manipulations of log- 
ical forms in deriving the possible meanings of 
quantified sentences. It also avoids the need for 
such devices as distinguished variables (Gazdar, 
1982; Cooper, 1983) to deal with trace abstrac- 
tion. Instead, specialized versions of the basic rule 
of functional abstraction are used. To my knowl- 
edge, the only other approaches to these problems 
that do not depend on formal operations on log- 
ical forms are those based on specialized logics 
of type change, usually restrictions of the Curry 
or Lambek systems (van Benthem, 1986a; Hen- 
driks, 1987; Moortgat, 1988). In those accounts, 
a phrase P with meaning p of type T is consid- 
ered to have also alternative meaning t¢ of type 
T', with the corresponding combination possibil- 
ities, if p' : T' follows from p : T in the chosen 
logic. The central problem in this approach is to 
design a calculus that will cover all the actual se- 
mantic alternatives (for instance, all the possible 
quantifier scopings) without introducing spurious 
interpretations. For quantifier raising, the system 
of Hendriks (1987) seems the most promising so 
far, but it is at present too restrictive to support 
raising from noun-phrase complements. 

An important question I have finessed here is 
that of the compositionality of the proposed se- 
mantic calculus. It is clear that the application of 
semantic rules is governed only by the existence of 
appropriate syntactic licensing and by the avail- 
ability of premises of the appropriate types. In 
other words, no rule is sensitive to the form of any 
of the meanings appearing in its premises. How- 
ever, there may be some doubt as to the status 
of the basic abstraction rule and those derived 
from it. After all, the use of A-abstraction in the 
consequent of those rules seems to imply the con- 
straint that the abstracted object should formally 
be a variable. However, this is only superficially 
the case. I have used the formal operation of A- 
abstraction to represent functional abstraction in 
this paper, but functional abstraction itself is in- 
dependent of its formal representation in the A- 
calculus. This can be shown either by using other 
notations for functions and abstraction, such as 
that of de Bruijn's (Barendregt, 1984; Huet, 1986), 
or by expressing the semantic derivation rules in A- 
Prolog (Miller and Nadathur, 1986) following ex- 
isting presentations of natural deduction systems 
(Felty and Miller, 1988). 
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