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We show how unification can be used to spec- 
ify the semantic interpretation of natural-language 
expressions, including problematical constructions 
involving long-distance dependencies. We also 
sketch a theoretical foundation for unification- 
based semantic interpretation, and compare the 
unification-based approach with more conven- 
tional techniques based on the lambda calculus. 

1 I n t r o d u c t i o n  

Over the past several years, unification-based for- 
malisms (Shieber, 1986) have come to be widely 
used for specifying the syntax of natural lan- 
guages, particularly among computational lin- 
guists. It is less widely realized by computa- 
tional linguists that unification can also be a pow- 
erful tool for specifying the semantic interpreta- 
tion of natural languages. While many of the 
techniques described in this paper are fairly well 
known among natural-language researchers work- 
ing with logic grammars, they have not been ex- 
tensively discussed in the literature, perhaps the 
only systematic presentation being that of Pereira 
and Shieber (1987). This paper goes into many is- 
sues in greater detail than do Pereira and Shieber, 
however, and sketches what may be the first the- 
oretical analysis of unification-based semantic in- 
terpretation. 

We begin by reviewing the basic ideas behind 
unification-based grammar formalisms, which will 
also serve to introduce the style of notation to be 
used throughout the paper. The notation is that 
used in the Core Language Engine (CLE) devel- 
oped by SKI's Cambridge Computer Science Re- 
search Center in Cambridge, England, a system 
whose semantic-interpretation component makes 
use of many of the ideas presented here. 

Fundamentally, unification grammar is a gener- 
alization of context-free phrase structure grammar 
in which grammatical:category expressions are not 
simply atomic symbols, but have sets of features 
with constraints on their values. Such constraints 
are commonly specified using sets of equations. 

Our notation uses equations of a very simple 
format-- just  ~eal ;ure=value--and permits only 
one equation per feature per constituent, but we 
can indicate constraints that would be expressed 
in other formalisms using more complex equations 
by letting the value of a feature contain a variable 
that appears in more than one equation. The CLE 
is written in Prolog, to take advantage of the effi- 
ciency of Prolog unification in implementing cate- 
gory unification, so our grammar rules are written 
as Prolog assertions, and we follow Prolog con- 
ventions in that constants, such as category and 
feature names, start with lowercase letters, and 
variables start with uppercase letters. As an ex- 
ample, a simplified version of the rule for the basic 
subject-predicate sentence form might be written 
in our notation as 

(1) syn(s_np_vp, 
[s: [type=tensed], 
np: [person=P, hUm=N] , 
vp: [~ype=~ens ed, 

person=P, hum=N] ] ). 

The predicate syn indicates that this is a syntax 
rule, and the first argument s_npovp is a rule iden- 
tifier that lets us key the semantic-interpretation 
rules to the syntax rules. The second argu- 
ment of syn is a list of category expressions that 
make up the content of the rule, the first speci- 
fying the category of the mother constituent and 
the rest specifying the categories of the daugh- 
ter constituents. This rule, then, says that a 
tensed sentence (s: [ type=~ensed] )  can consist 
of a noun phrase (rip) followed by a verb phrase 
(vp), with the restrictions that the verb phrase 
must be tensed ( type=tensed) ,  and that the noun 
phrase and verb phrase must agree in person and 
number-- that  is, the pe rson  and num features of 
the noun phrase must have the same respective 
values as the person  and mm features of the verb 
phrase. 

These constraints are checked in the process of 
parsing a sentence by unifying the values of fea- 
tures specified in the rule with the values of fea- 
tures in the constituents found in the input. Sup- 
pose, for instance, that we are parsing the sentence 
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Mary runs using a left-corner parser. If Mary is 
parsed as a constituent of category 

np:[person=3rd,num=sing], 

then unifying this category expression with 

np : [person=P ,num=N] 

in applying the sentence rule above will force the 
variables P and N to take on the values 3rd and 
s~_ug, respectively. Thus when we try to parse 
the verb phrase, we know that it must be of the 
category 

vp : [type=tensed, person=3rd,num=sing]. 

Our notation for semantic-interpretation rules 
is a slight generalization of the notation for syn- 
tax rules. The only change is that in each position 
where a syntax rule would have a category expres- 
sion, a semantic rule has a pair consisting of a 
"logical-form" expression and a category expres- 
sion, where the logical-form expression specifies 
the semantic interpretation of the corresponding 
constituent. A semantic-interpretation rule cor- 
responding to syntax rule (1) might look hke the 
following: 

(2) sem(s_np_vp, 
[ (apply(Vp,Np) ,  s : [] ) ,  

(~p,np:  [] ) ,  
( V p , v p :  [3 )] ) .  

The predicate sere means that this is a semantic- 
interpretation rule, and the rule identifier s..up_vp 
indicates that this rule applies to structures built 
by the syntax rule with the same identifier. The 
list of pairs of logical-form expressions and cate- 
gory expressions specifies the logical form of the 
mother constituent in terms of the logical forms 
and feature values of the daughter constituents. 
In this case the rule says that the logical form of 
a sentence generated by the s_np_vp rule is an ap- 
plicative expression with the logical form of the 
verb phrase as the functor and the logical form of 
the noun phrase as the argument. (The dummy 
functor apply  is introduced because Prolog syntax 
does not allow variables in functor position.) Note 
that there are no feature restrictions on any of the 
category expressions occurring in the rule. They 
are unnecessary in this case because the semantic 
rule applies only to structures built by the s_np_vp 
syntax rule, and thus inherits all the restrictions 
applied by that rule. 
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2 F u n c t i o n a l  A p p l i c a t i o n  vs .  
U n i f i c a t i o n  

Example (2) is typical of the kind of semantic rules 
used in the standard approach to semantic inter- 
pretation in the tradition established by Pdchard 
Montague (1974) (Dowty, Wall, and Peters, 1981). 
In this approach, the interpretation of a complex 
constituent is the result of the functional applica- 
tion of the interpretation of one of the daughter 
constituents to the interpretation of the others. 

A problem with this approach is that if, in a 
rule like (2), the verb phrase itself is semanti- 
cally complex, as it usually is, a lambda expres- 
sion has to be used to express the verb-phrase in- 
terpretation, and then a lambda reduction must 
be applied to express the sentence interpretation 
in its simplest form (Dowry, Wall, and Peters, 
1981, pp. 98-111). To use (2) to specify the in- 
terpretation of the sentence John likes Mary, the 
logical form for John could simply be john, but 
the logical form for likes Mary would have to be 
something like X\like(X,mary). [The notation 
Var\Bocly for lambda expressions is borrowed from 
Lambda Prolog (Miller and Nadathur, 1988).] The 
logical form for the whole sentence would then 
be apply(Xklike(X,mary),john), which must 
be reduced to yield the simplified logical form 
like(jobn,m~y). 

Moreover, lambda expressions and the ensuing 
reductions would have to be introduced at many 
intermediate stages if we wanted to produce sim- 
plified logical forms for the interpretations of com- 
plex constituents such as verb phrases. If we want 
to accommodate modal auxiliaries, as in John 
might like Mary, we have to make sure that the 
verb phrase might like Mary receives the same 
type of interpretation as like(s) Mary in order to 
combine properly with the interpretation of the 
subject. If we try to maintain functional applica- 
tion as the only method of semantic composition, 
then it seems that the simplest logical form we can 
come up with for might like Mary is produced by 
the following rule: 

(3) sem(vp_aux_vp. 
[(Xkapply (Aux, apply (Vp, X) ), 

vp:  [ ]  ) ,  
(Aux ,  aux  : []  ) ,  
(Vp,vp : [] )] ) .  

Applying this rule to the simplest plausible logical 
forms for migM and like Mary would produce the 
following logical form for might like Mary: 



X\apply(might, 
(apply(Y\like(Y,mary),X))) 

which must be reduced to obtain the simpler ex- 
pression X\might ( l i k e  (X ,mary) ). When this ex- 
pression is used in the sentence-level rule, another 
reduction is required to eliminate the remaining 
lambda expression. The part of the reduction step 
that gets rid of the app ly  functors is to some ex- 
tent an artifact of the way we have chosen to en- 
code these expressions as Prolog terms, but the 
lambda reductions are not. They are inherent in 
the approach, and normally each rule will intro- 
duce at least one lambda expression that needs to 
be reduced away. 

It is, of course, possible to add a lambda- 
reduction step to the interpreter for the semantic 
rules, but it is both simpler and more efficient to 
use the feature system and unification to do ex- 
plicitly what lambda expressions and lambda re- 
duction do implicitly--assign a value to a variable 
embedded in a logical-form expression. According 
to this approach, instead of the logical form for 
a verb phrase being a logical predicate, it is the 
same as the logical form of an entire sentence, but 
with a variable as the subject argument of the verb 
and a feature on the verb phrase having that same 
variable as its value. The sentence interpretation 
rule can thus be expressed as 

(4) sem(s_np_vp, 
[(Vp,,: [] ), 
(Np,np: []), 
(Vp,vp:[subjval=Np])]), 

which says that  the logical form of the sentence is 
just the logical form of the verb phrase with the 
subject argument of the verb phrase unified with 
the logical form of the subject noun phrase. If 
the verb phrase likes Mary is assigned the logical- 
form/category-expression pair 

(like(X,mary),vp:[subjval=X]), 

then the application of this rule will unify the log- 
ical form of the subject noun phrase, say john, 
directly with the variable X in l i ke (X ,mary )  to 
immediately produce a sentence constituent with 
the logical form l i k e ( j o t m , m a r y ) .  

Modal auxiliaries can be handled equally easily 
by a rule such as 

(5) sem(vp_aux_vp, 
[ (Aux, vp: [subj val=S] ), 
(Aux, aux : [argval=Vp] ), 
(Vp, vp : [subj val=S] ) ] ). 

If might is assigned the logical-form/category- 
expression pair 

(might (A), aux : [argval=A] ), 

then applying this rule to interpret the verb phrase 
might like Mary will unify A in mighl;(A) with 
l i ke (X ,mary )  to produce a constituent with the 
logical-form/category-expression pair 

(migh~ (like, X, mary), vp : [subj val=X] ). 

which functions in the sentence-interpretation 
rule in exactly the same way as the logical- 
form/category-expression pair for like Mary. 

3 Are  Lam b d a  Express ions  
Ever Necessary?  

The approach presented above for eliminating tile 
explicit use of lambda expressions and lambda re- 
ductions is quite general, but it does not replace 
all possible uses of lambda expressions in seman- 
tic interpretation. Consider the sentence John and 
Bill like Mary. The simplest logical form for the 
distributive reading of this sentence would be 

and(like(john,mary) ,like(bill ,mary) ). 

If the verb phrase is assigned the logical- 
form/category-expression pair 

(like (X, mary), vp : [subj val=X] ), 

as we have suggested, then we have a problem: 
Only one of john or b i l l  can be directly unified 
with X, but to produce the desired logical form, 
we seem to need two instances of l i ke (X , mary ) ,  
with two different instantiations of X. 

Another problem arises when a constituent that 
normally functions as a predicate is used as an 
argument  instead. Common nouns, for example, 
are normally used to make direct predications, so 
a noun like senator might be assigned the logical- 
form/category-expression pair 

(S enamor (X), nbar: [argval=X] ) 

according to the pattern we have been following. 
(Note that  we do not have "noun" as a syntactic 
category; rather, a common noun is simply treated 
as a lexical "n-bar.") It  is widely recognized, how- 
ever, that  there are "intensional" adjectives and 
adjective phrases, such as former, that  need to be 
treated as higher-level predicates or operators on 
predicates, so that  in an expression like former 
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senator, the noun senator is not involved in di- 
rectly making a predication, but instead functions 
as an argument to former. We can see that  this 
must be the case, from the observation that  a for- 
mer senator is no longer a senator. The logical 
form we have assigned to senator, however, is not 
literally that  of a predicate, however, but rather of 
a complete formula with a free variable. We there- 
fore need some means to transform this formula 
with its free variable into an explicit predicate to 
be an argument of former. The introduction of 
lambda expressions provides the solution to this 
problem, because the transformation we require is 
exactly what is accomplished by lambda abstrac- 
tion. The following rule shows how this can be 
carried out in practice: 

(6) sem(nba~_adj_nba~, 
[ ( A d j p , n b a r :  [argval=A] ), 
(Adjp, adjp: [type=in~ensional, 

a r g v a l  l=X\Nbar,  
argva12=A] ) ,  

(Nbar, nbar: [argval=X] ) ] ). 

This rule requires the logical-form/category- 
expression pair assigned to an intensional adjec- 
tive phrase to be something like 

( fo rmerCP ,¥ ) ,  
adjp: [~ype=intensional, 

argvall--P, argvalg=Y] ), 

where former(P,Y) means that Y is a former P. 
The daughter nbar  is required to be as previously 
supposed. The rule creates a lambda expression, 
by unifying the bound variable with the argument 
of the daughter nba r  and making the logical form 
of the daughter nba r  the body of the lambda ex- 
pression, and unifies the lambda expression with 
the first argument of the adjp.  The second ar- 
gument of the ad jp  becomes-the argument of the 
mother nbar .  Applying this rule to former senator 
will thus produce a constituent with the logical- 
form/category-expression pair 

(former(Xksenator (X) .Y) . 
nbar: [argval=Y] ). 

This solution to the second problem also solves 
the first problem. Even in the standard lambda- 
calculus-based approach, the only way in which 
multiple instances of a predicate expression ap- 
plied to different arguments can arise from a sin- 
gle source is for the predicate expression to ap- 
pear as an argument to some other expression 
that contains multiple instances of that  argument. 

Since our approach requires turning a predicate 
into an explicit lambda expression if it is used 
as an argument, by the time we need multiple 
instances of the predicate, it is a l r eady  in the 
form of a lambda expression. We can show how 
this works by encoding a Montagovian (Dowty, 
Wall, Peters, 1981) t reatment  of conjoined sub- 
ject noun phrases within our approach. The ma- 
jor feature of this t reatment  is that  noun phrases 
act as higher-order predicates of verb phrases, 
rather than the other way around as in the sim- 
pler rules presented in Sections 1 and 2. In 
the Montagovian treatment,  a proper noun such 
as JoAn is given an interpretation equivalent to 
P \ P ( j o t m ) ,  so that  when we apply it to a pred- 
icate like r a n  in interpreting John runs we get 
something like a p p l y ( P \ P ( j o h n ) , r u n )  which re- 
duces to r u n ( j o h n ) .  With this in mind, consider 
the following two rules for the interpretation of 
sentences with conjoined subjects: 

(7) sem(np_np_conj_np 
[(Conj .rip: [a rgva l=P]  ) .  

(Np1 ,np: [axgval=P] ) ,  
( ton i ,  conj : [ a r g v a l l = N p l ,  

argval2=Np2] ), 
(Np2,np: [argval=P] )] ). 

(8) semCs_np_vp, 
[CNp.s: Q). 

CNp.np: [argval=X\Vp] ) ,  
(Vp,vp: [subj  val=X] )]  ) .  

The first of these rules gives a Montagovian 
t reatment  of conjoined noun phrases, and the 
second gives a Montagovian t reatment  of simple 
declarative sentences. Both of these rules assume 
that  a proper noun such as John would have a 
logicai-form/category-expression pair like 

(apply(P, john) .np: [argval=P] ). 

In (7) it is assumed that  the conjunction and 
would have a logicai-form/category-expression 
pair like 

(~dCP1,P2), 
conj : [argvall=Pl, argval2=P2] ). 

In (7) the logical forms of the two conjoined daugh- 
ter nps are unified with the two arguments of the 
conjunction, and the arguments of the daughter 
nps are unified with each other and with the sin- 
gle argument of the mother np. Thus applying 
(7) to interpret John and Bill yields a constituent 
with the logical-form/category-expression pair 

35 



(and(apply(P, j ohm), apply (P, bill) ), 
np: [argval=P] ). 

In (8) an explicit lambda expression is constructed 
out of the logical form of the vp daughter in the 
same way a lambda expression was constructed in 
(6), and this lambda expression is unified with the 
argument of the subject np. For the sentence John 
and Bill like Mary, this would produce the logical 
form 

and (apply (X\like (X,mary), j ohm), 
apply(X\like (X,mary) ,bill)), 

which can be reduced to 

and(like (john,mary) ,like(bill,mary)). 

4 T h e o r e t i c a l  F o u n d a t i o n s  o f  
U n i f i c a t i o n - B a s e d  S e m a n -  
t i c s  

The examples presented above ought to be con- 
vincing that  a unification-based formalism can be 
a powerful tool for specifying the interpretation of 
natural-language expressions. What  may not be 
clear is whether there is any reasonable theoretical 
foundation for this approach, or whether it is just 
so much unprincipled "feature hacking." The in- 
formal explanations we have provided of how par- 
ticular rules work, stated in terms of unifying the 
logical form for constituent X with the appropriate 
variable in the logical form for constituent Y, may 
suggest that  the latter is the case. If no constraints 
are placed on how such a formalism is used, it is 
certainly possible to apply it in ways that have no 
basis in any well-founded semantic theory. Never- 
theless, it is possible to place restrictions on the 
formalism to ensure that the rules we write have a 
sound theoretical basis, while still permitting the 
sorts of rules that seem to be needed to specify the 
semantic interpretation of natural languages. 

The main question that arises in this regard is 
whether the semantic rules specify the interpreta- 
tion of a natural-language expression in a compo- 
sitional fashion. That is, does every rule assign 
to a mother constituent a well-defined interpreta- 
tion that depends solely on the interpretations of 
the daughter constituents? If the interpretation 
of a constituent is taken to be just the interpre- 
tation of its logical-form expression, the answer is 
clearly "no." In our formalism the logical-form 
expression assigned to a mother constituent de- 
pends on both the logical-form expressions and 

the category expressions assigned to its daughters. 
As long as both category expressions and logical- 
form expressions have a theoretically sound basis, 
however, there is no reason that  both should not 
be taken into account in a semantic theory; so, 
we will define the interpretation of a constituent 
based on both its category and its logical form. 
Taking the notion of interpretation in this way, 
we will explain how our approach can be made 
to preserve compositionality. First, we will show 
how to give a well-defined interpretation to every 
constituent; then, we will sketch the sort of re- 
strictions on the formalism one needs to guarantee 
that  any interpretation-preserving substitution for 
a daughter constituent also preserves the interpre- 
tation of the mother constituent. 

The main problem in giving a well-defined inter- 
pretation to every constituent is how to interpret a 
constituent whose logical-form expression contains 
free variables that also appear in feature values in 
the constituent's category expression. Recall the 
rule we gave for combining auxiliaries with verb 
phrases: 

(5) sem(vp_aux_vp, 
[ (Aux, vp : [subj val--S] ), 
(Aux, aux: [argval=Vp] ), 
(Vp,vp: [subj val=S] )] ). 

This rule accepts daughter constituents having 
logical-form/category-expression pairs such as 

(migh~ (A), attz : [argval=A] ) 

and 

(like (X, mary), vp: [subj val=X] ) 

to produce a mother constituent having the 
logical-form~category-expression pair 

(migh~ (like, X, mary), vp: [subj val=X]. 

Each of these pairs has a logical-form expression 
containing a free variable that  also occurs as a fea- 
ture value in its category expression. The simplest 
way to deal with logical-form/category-expression 
pairs such as these is to regard them in the way 
that  syntactic-category expressions in unification 
grammar  can be regarded--as  abbreviations for 
the set of all their well-formed fully instantiated 
substitution instances. 

To establish some terminology, we will say that 
a logical-form/category-expression pair containing 
no free-variable occurrences has a "basic interpre- 
tation," which is simply the ordered pair consist- 
ing of the interpretation of the logical-form ex- 
pression and the interpretation of the category 
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expression. Since there are no free variables in- 
volved, basic interpretations should be unprob- 
lematic. The logical-form expression will simply 
be a closed well-formed expression of some ordi- 
nary logical language, and its interpretation will 
be whatever the usual interpretation of that  ex- 
pression is in the relevant logic. The category ex- 
pression can be taken to denote a fully instantiated 
grammatical  category of the sort typically found 
in unification grammars.  The only unusual prop- 
erty of this category is that  some of its features 
may have logical-form interpretations as values, 
but, as these will always be interpretations of ex- 
pressions containing no free-variable occurrences, 
they will always be well defined. 

Next, we define the interpretation of an arbi- 
t rary logical-form/category-expression pair to be 
the set of basic interpretations of all its well- 
formed substitution instances that  contain no 
free-variable occurrences. For example, the in- 
terpretation of a constituent with the logical- 
form/category-expression pair 

(might (like, X, mary), vp: [subj val=X] ) 

would consist of a set containing the basic inter- 
pretations of such pairs as 

(might (like, john, mary). 
vp : [subj val=j ohn] ). 

(might (like, bill, mary), 
vp : [subj val=bill] ). 

and so forth. 
This provides well-defined interpretation for ev- 

ery constituent, so we can now consider what re- 
strictions we can place on the formalism to guaran- 
tee that  any interpretation-preserving substitution 
for a daughter constituent also preserves the inter- 
pretation of its mother constituent. The first re- 
striction we need rules out constituents that  would 
have degenerate interpretations: No semantic rule 
or semantic lexical specification may contain both 
free and bound occurrences of the same variable 
in a logicai-form/category-expression pair. 

To see why this restriction is needed, consider 
the logical-form/category-expression pair 

( eve ry  (X ,man(X), d ie(X)  ) ,  
np: [boundvar=X, bodyval=die (X) ] ). 

which might be the substitution instance of a 
daughter constituent that  would be selected in 
a rule that  combines noun phrases with verb 
phrases. The problem with such a pair is 
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that  it does not have any well-formed substi- 
tution instances that  contain no free-variable 
occurrences. The variable X must be left 
uninstantiated in order for the logical-form ex- 
pression eve ry (X ,man(X) ,d i e (X) )  to be well 
formed, but this requires a free occurrence of X 
in np: [boundvar=X, bodyva l=d ie  (X) ]. Thus this 
pair will be assigned the empty set as its in- 
terpretation. Since any logical-form/category- 
expression pair that  contains both free and bound 
occurrences of the same variable will receive this 
degenerate interpretation, any other such pair 
could be substi tuted for this one without alter- 
ing the interpretations of the daughter constituent 
substitution instances that  determine the inter- 
pretation of the mother constituent. It is clear 
that  this would normally lead to gross violations of 
compositionality, since the daughter substitution 
instances selected for the noun phrases every man,  

no wo m a n ,  and some  dog would all receive the 
same degenerate interpretation under this scheme. 

This restriction may appear to be so constrain- 
ing as to rule out certain potentially useful ways 
of writing semantic rules, but in fact it is gener- 
ally possible to rewrite such rules in ways that  do 
not violate the restiction. For example, in place of 
the sort of logical-form/category-expression pair 
we have just  ruled out, we can fairly easily rewrite 
the relevant rules to select daughter substitution 
instances such as 

(every (X ,man(X), die (X)), 
np: [bodypred=X\die ( X ) ] ) ,  

which does not violate the constraint and has a 
completely straightforward interpretation. 

Having ruled out constituents with degenerate 
interpretations, the principal remaining problem 
is how to exclude rules that  depend on properties 
of logical-form expressions over and above their in- 
terpretations. For example, suppose that  the or- 
der of conjuncts does not affect the interpretation 
of a logical conjunction, according to the inter- 
pretation of the logical-form language. That  is, 
and(p ,c  1) would have the same interpretation as 
a n d ( q , p ) .  The potential problem that  this raises 
is that  we might write a semantic rule that  con- 
tains both a logicai-form expression like and(P,  Q) 
in the specification of a daughter constituent and 
the variable P in the logical form of the mother 
constituent. This would be a violation of composi- 
tionality, because the interpretation of the mother 
would depend on the interpretation of the left con- 
junct  of a conjunction, even though, according 
to the semantics of the logical-form language, it 



makes no sense to distinguish the left and right 
conjuncts. If order of conjunction does not af- 
fect meaning, we ought to be able to substitute 
a daughter with the logical form and(q,p) for 
one with the logical form and(p,q) without af- 
fecting the interpretation assigned to the mother, 
but clearly, in this case, the interpretation of the 
mother would be affected. 

It is not clear that there is any uniquely optimal 
set of restrictions that guarantees that such viola- 
tions of compositionality cannot occur. Indeed, 
since unification formalisms in general have Tur- 
ing machine power, it is quite likely that there is 
no computable characterization of all and only the 
sets of semantic rules that are compositional. Nev- 
ertheless, one can describe sets of restrictions that 
do guarantee compositionality, and which seem 
to provide enough power to express the sorts of 
semantic rules we need to use to specify the se- 
mantics of natural languages. One fairly natu- 
ral way of restricting the formalism to guarantee 
compositionality is to set things up so that unifi- 
cations involving logical-form expressions are gen- 
erally made against variables, so that it is possible 
neither to extract subparts of logical-form expres- 
sions nor to filter on the syntactic form of logical- 
form expressions. The only exception to this re- 
striction that  seems to be required in practice is 
to allow for rules that  assemble and disassemble 
lambda expressions with respect to their bodies 
and bound variables. So long as no extraction 
from inside the body of a lambda expression is 
allowed, however, compositionality is preserved. 

It  is possible to define a set of restrictions on 
the form of semantic rules that  guarantee that  
no rule extracts subparts (other than the body 
or bound variable of a lambda expression) of a 
logical-form expression or filters on the syntactic 
form of a logical-form expression. The statement 
of these restrictions is straightforward, but rather 
long and tedious, so we omit the details here. We 
will simply note that  none of the sample rules pre- 
sented in this paper involve any such extraction or 
filtering. 

5 The  Semantics  of Long- 
Distance  Dependenc ies  

The main difficulty that  arises in formulating 
semantic-interpretation rules is that  constituents 
frequently appear syntactically in places that  do 
not directly reflect their semantic role. Semanti- 
cally, the subject of a sentence is one of the argu- 

ments of the verb, so it would be much easier to 
produce logical forms for sentences if the subject 
were part  of the verb phrase. The use of features 
such as s u b j v a l ,  in effect, provides a mechanism 
for taking the interpretation of the subject from 
the place where it occurs and inserting it into the 
verb phrase interpretation where it "logically" be- 
longs. 

The way features can be manipulated to accom- 
plish this is particularly striking in the case of the 
long-distance dependencies, such as those in WH- 
questions. For the sentence Which girl might John 
like.C, the simplest plausible logical form would be 
something like 

which(X, girl (X), migh~ (like (john, X) ), 

where the question-forming operator which is 
treated as a generalized quantifier whose "argu- 
ments" consist of a bound variable, a restriction, 
and a body. 

The problem is how to get the variable X to 
link the part  of the logical form that  comes from 
the fronted interrogative noun phrase with the 
argument of l i k e  that  corresponds to the noun 
phrase gap at the end of the verb phrase. To solve 
this problem, we can use a technique called "gap- 
threading." This technique was introduced in uni- 
fication grammar  to describe the syntax of con- 
structions with long-distance dependencies (Kart- 
tunnen, 1986) (Pereira and Sheiber, 1987, pp. 125- 
129), but it works equally well for specifying their 
semantics. The basic idea is to use a pair of fea- 
tures, g a p v a l s i n  and gapva l sou% to encode a list 
of semantic "gap fillers" to be used as the seman- 
tic interpretations of syntactic gaps, and to thread 
that  list along to the points where the gaps occur. 
These gap fillers are often just  the bound variables 
introduced by the constructions that  permit gaps 
to occur. 

The following semantic rules illustrate how this 
mechanism works: 

(9) s em(whq_ynq_np_gap, 
[(Np,s : [gapvalsin= [], 

g a p v a l s o u t  = [7 ] ) ,  
(Np,np : [type=int errog, 

bodypred=A\Ynq] ) ,  
(Ynq, s : [gapvalsin= [A] , 

gapvalsout = [] ] )] ). 

This is the semantic-interpretation rule for a WH- 
question with a long-distance dependency. The 
syntactic form of such a sentence is an interrog- 
ative noun phrase followed by a yes/no question 
with a noun phrase gap. This rule expects the 
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interrogative noun phrase which girl to have a 
logical-form/category-expression pair such as 

(which(X, girl (X), Bodyval), 
np: [type=int errog, 

bodypred=X\Bodyval] ). 

The feature bodypred holds a lambda expression 
whose body and bound variable are unified respec- 
tively with the body and the bound variable of the 
which expression. In (9) the body of this lambda 
expression is unified with the logical form of the 
embedded yes/no question, and the g a p v a l s i n  
feature is set to be a list containing the bound vari- 
able of the lambda expression. This list is actually 
used as a stack, to accomodate multiply nested 
filler-gap dependencies. Since this form of ques- 
tion cannot be embedded in other constructions, 
however, we know that in this case there will be 
no other gap-fillers already on the list. 

This is the rule that  provides the logical form 
for empty noun phrases: 

(I0) sem(empl:y_np, 
[ (Val, np: [gapvalsin= [Val[ ValRest], 

gapvalsout=ValRes~] )] ). 

Notice that it has a mother category, but no 
daughter categories. The rule simply says that 
the logical form of an empty np is the first ele- 
ment on its list of semantic gap-fillers, and that 
this element is "popped" from the gap-filler list. 
That is, the gapvalsoul:  feature takes as its value 
the tail of the value of the gapvalsin feature. 

We now show two rules that illustrate how a list 
of gap-fillers is passed along to the points where 
the gaps they fill occur. 

(II) sem(vp_aux_vp, 
[ (Aux, vp: [subj val=S, gapvals in= In, 

gapvalsouz=Out] ) ,  
(Aux, aux: [argvalfVp] ), 
(Vp, vp: [subj val=S, gapvalsin= In, 

gapvalsou~=Out] ) ] ). 

This semantic rule for verb phrases formed by an 
auxilliary followed by a verb phrase illustrates the 
typical use of the gap features to "thread" the list 
of gap fillers through the syntactic structure of the 
sentence to the points where they are needed. An 
auxiliary verb cannot be or contain a WH-type 
gap, so there are no gap features on the category 
aux. Thus the gap features on the mother vp are 
simply unified with the corresponding features on 
the daughter vp. 

A more complex case is illustrated by the fol- 
lowing rule: 

(12) sem(vp_vp_pp, 
[ (Pp, vp: [subj va1=S, gapvals in=In, 

gapvalsou~=Ou~] ). 
(Vp, vp : [subj val=S, gapvalsin=In, 

gapvalsout =Thru] ), 
(Pp ,pp : [argval=Vp, gapvalsin=Thru, 

gapvalsouZ=Out] ) ] ). 

This is a semantic rule for verb phrases that con- 
sist of a verb phrase and a prepositional phrase. 
Since WH-gaps can occur in either verb phrases 
or prepositional phrases, the rule threads the list 
carried by the g a p v a l s i n  feature of the mother vp 
first through the daughter vp and then through the 
daughter pp. This is done by unifying the mother 
vp's g a p v a l s i n  feature with the daughter vp's 
g a p v a l s i n  feature, the daughter vp's gapva l sou t  
feature with the daughter pp's g a p v a l s i n  feature, 
and finally the daughter pp's gapvalsouz  feature 
with the mother vp's g ap v a l so u t  feature. Since 
a gap-filler is removed from the list once it has 
been "consumed" by a gap, this way of threading 
ensures that fillers and gaps will be matched in 
a last-in-first-out fashion, which seems to be the 
general pattern for English sentences with multi- 
ple filler-gap dependencies. (This does not handle 
"parasitic gap" constructions, but these are very 
rare and at present there seems to be no really 
convincing linguistic account of when such con- 
structions can be used.) 

Taken altogether, these rules push the quan- 
tified variable of the interrogative noun phrase 
onto the list of gap values encoded in the fea- 
ture g a p v a l s i n  on the embedded yes/no question. 
The list of gap values gets passed along by the 
gap-threading mechanism, until the empty-noun- 
phrase rule pops the variable off the gap values list 
and uses it as the logical form of the noun phrase 
gap. Then the entire logical form for the embed- 
ded yes/no question is unified with the body of 
the logical form for the interrogative noun phrase, 
producing the desired logical form for the whole 
sentence. 

This treatment of the semantics of long-distance 
dependencies provides us with an answer to the 
question of the relative expressive power of our 
approach compared with the conventional lambda- 
calculus-based approach. We know that the 
unification-based approach is at least as power- 
ful as the conventional approach, because the 
the conventional approach can be embedded di- 
rectly in it, as illustrated by the examples in 
Section 3. What about the other way around? 
Many unification-based rules have direct lambda- 
calculus-based counterparts; for example (2) is 
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a counterpart of (4), and (3) is the counterpart 
of (5). Once we introduce gap-threading, how- 
ever, the correspondence breaks down. In the 
conventional approach, each rule applies only to 
constituents whose semantic interpretation is of 
some particular single semantic type, say, func- 
tions from individuals to propositions. If every 
free variable in our approach is treated as a lambda 
variable in the conventional approach, then no 
one rule can cover two expressions whose inter- 
pretation essentially involves different numbers of 
variables, since these would be of different seman- 
tic types. Hence, rules like (11) and (12), which 
cover constituents containing any number of gaps, 
would have to be replaced in the conventional ap- 
proach by a separate rule for each possible number 
of gaps. Thus, our formalism enables us to write 
more general rules than is possible taking the con- 
ventional approach. 

6 Conclusions 

In this paper we have tried to show that a 
unification-based approach can provide powerful 
tools for specifying the semantic interpretation 
of natural-language expressions, while being just 
as well founded theoretically as the conventional 
lambda-calculus-based approach. Although the 
unification-based approach does not provide a sub- 
stitute for all uses of lambda expressions in se- 
mantic interpretation, we have shown that lambda 
expressions can be introduced very easily where 
they are needed. Finally, the unification-based ap- 
proach provides for a simpler statement of many 
semantic-interpretation rules, it eliminates many 
of the lambda reductions needed to express seman- 
tic interpretations in their simplest form, and in 
some cases it allows more general rules than can 
be stated taking the conventional approach. 
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