
C O N S T R A I N T P R O P A G A T I O N I N K I M M O S Y S T E M S
G. Edward Barton, Jr.

M.I.T. Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139

A B S T R A C T

Taken abstractly, the two-level (Kimmo) morphological
framework allows computat ionally difficult problems to
arise. For example, N + 1 small au tomata are sufficient
to encode the Boolean satisfiability problem (SAT) for for-
mulas in N variables. However, the suspicion arises that
natural-language problems may have a special structure - -
not shared with SAT - - that is not directly captured in
the two-level model. In part icular, the natural problems
may generally have a modular and local nature that dis-
tinguishes them from more "global" SAT problems. By
exploiting this structure, it may be possible to solve the
natural problems by methods that do not involve combi-
natorial search.

We have explored this possibility in a preliminary way
by applying constraint propagation methods to Kimmo gen-
eration and recognition. Constraint propagation can suc-
ceed when the solution falls into place step-by-step through
a chain of limited and local inferences, but it is insuffi-
ciently powerful to solve unnatural ly hard SAT problems.
Limited tests indicate that the constraint-propagation al-
gori thm for Kimmo generation works for English, Turkish,
and Warlpiri. When applied to a Kimmo system that en-
codes SAT problems, the algorithm succeeds on "easy"
SAT problems but fails (as desired) on "hard" problems.

I N T R O D U C T I O N

A formal computat ional model of a linguistic process
makes explicit a set of assumptions about the nature of the
process and the kind of information that it fundamentally
involves. At the same time, the formal model will ignore
some details and introduce others that are only artifacts
of formalization. Thus, whenever the formal model and
the actual process seem to differ markedly in properties, a
natural assumption is that something has been missed in
formalization - - though it may be difficult to say exactly
what.

When the difference is one of worst-case complexity,
with the formal framework allowing problems to arise that
are too difficult to be consistent with the received diffi-
culty of actual problems, one suspects that the natural
computat ional task might have significant features that

the formalized version does not capture and exploit ef-
fectively. This paper introduces a constraint propagation
method for "two-lever ' morphology that represents a pre-
l iminary a t tempt to exploit the features of local in]orrna-
tion flow and linear separability that we believe are found
in natural morphological-analysis problems. Such a local
character is not shared by more difficult computat ional
problems such as Boolean satisfiability, though such prob-
lems can be encoded in the unrestricted two-level model.
Constraint propagation is less powerful than backtracking
search, but does not allow possibilities to build up in com-
binatorial fashion.

T W O - L E V E L

MORPHOLOGY
The mod~l of morphology developed by "two-level"

Kimmo Koskenniemi is att~'active for put t ing morphological
knowledge to use in processing. Two-level rules mediate
the relationship between a lexieal string made up of mor-
phemes from the dictionary and a surface string corre-
sponding to the form a wo~d would have in text. Equiva-
lently, the rules correspond, jto finite-state transducers that

• • • ~ ~) " ÷ s , .

r

1
• . . t z ' l e s . . .

Figure 1: The automaton component of the Kimmo sys-
tem consists of several two-headed finite-state au tomata
that inspect the lexical/surface correspondence in paral-
lel. The au tomata move together from left to right. (From
Kart tunen, 1983:176.)

45

ALPHABET x y z T F -

ANY =
END

Figure 2: This is the complete Kimmo genera-
tor system for solving SAT problems in the vari-
ables x, y, and z. The system includes a con-
sistency automaton for each variable in addition
to a satisfaction automaton that does not vary
from problem to problem.

"x-consistency" 3 3
x x =
T F =

1: 2 3 1
2 : 2 0 2
3: 0 3 3

"y-consistency" 3 3

1: 2 3 1
2: 2 0 2
3: 0 3 3

"z-consistency" 3 3
Z Z =

T F =
I: 2 3 1
2: 2 0 2
3: 0 3 3

"satisfaction" 3 4
= _-

T F
i. 2 1 3
2: 2 2 2 1
3. 1 2 0 0

END

can be used in generation and recognition algorithms as
implemented in Kart tunen 's (1983) Kimmo system (and
others). As shown in Figure 1, the transducers in the "au-
tomaton component" (~ 20 for Finnish, for instance) all
inspect the lexical/surface correspondence at once in order
to implement the insertions, deletions, and other spelling
changes that may accompany affixation or inflection. In-
sertions and deletions are handled through null characters
that are visible only to the automata. A complete Kimmo
system also has a "dictionary component" that regulates
the sequence of roots and affixes at the lexical level.

Despite initial appearances to the contrary, the straight-
forward interpretation of the two-level model in terms of
finite*state transducers leads to generation and recogni-
tion algorithms that can theoretically do quite a bit of
backtracking and search. For illustration we will consider

the Kimmo system in Figure 2, which encodes Boolean
satisfiability for formulas in three variables x, y, and z.
The Kimmo generation algorithm backtracks extensively
while determining truth-assignments for formulas accord-
ing to this system. (See Barton (1986) and references cited
therein for further details of the Kimmo system and of the
system in Figure 2.)

Taken in the abstract, the two-level model allows com-
putationally difficult situations to arise despite initial ap-
pearances to the contrary, so why shouldn't they also turn
up in the analysis of natural languages? It may be that

they do turn up; indeed, the relevant mathematical re-
ductions are abstractly based on the Kimmo treatment of
vowel harmony and other linguistic phenomena. Yet one
feels that the artificial systems used in the mathematical
reductions are unnatural in some significant way - - that
similar problems are not likely to turn up in the analysis
of Finnish, Turkish, or Warlpiri. If this is so, then the re-
ductions say more about what is thus-far unexpressed in
the formal model than about the difficulty of morphological
analysis; it would be impossible to crank the difficult prob-
lems through the formal machinery, if the machinery could
be infused with more knowledge of the special properties
of natural language. 1

M O D U L A R

I N F O R M A T I O N S T R U C T U R E

The ability to use particular representations and pro-
cessing methods is underwritten by what may be called the
"information structure" of a task - - more abstract than a
particular implementation, and concerned with such ques-
tions as whether a certain body of information suffices for
making certain decisions, given the constraints of the prob-
lem. What is it about the information structure of morpho-
logical systems that is not captured when they are encoded

1The systems under consideration in this paper deal with ortho-
graphic representations, which are somewhat remote from the "more
natural" linguist~ level of phonology and contain both more and less
information than phonological representations.

46

as Kimmo systems? Are there significant locality princi-
ples and so forth that hold in natural languages but not in
mathematical systems that encode CNF Boolean satisfac-
tion problems (SAT)? Y'erhaps a better understanding of
the information relationships of the natural problem can
lead to more specialized processing methods that require
less searching, allow more parallelism, run more efficiently,
or are more satisfying in some other way.

A lack of modular information structure may be one
way in which SAT problems are unnatural compared to
morphological-analysis problems. Making this idea precise
is rather tricky, for the Kimmo systems that encode SAT
problems are modular in the sense that they involve vari-
ous independent Kimmo automata assembled in the usual
way. However, the essential notion is that the Boolean sat-
isfaction problem has a more interconnected and "global"
character than morphological analysis. The solution to
a satisfaction problem generally cannot be deduced piece
by piece from local evidence. Instead, the acceptability
of each part of the solution may depend on the whole

problem. In the worst case, the solution is determined
by a complex conspiracy among the problem constraints
instead of being composed of independently derivable sub-
parts. There is little alternative to running through the
possible cases in a combinatorial way.

In contrast to this picture, in a morphological analy-
sis problem it seems more likely that some pieces of the
solution can be read off relatively directly from the input,
with other pieces falling into place step-by-step through
a chain of limited and local inferences and without the
kind of "argument by cases" that search represents. We
believe the usual situation is for the various complicating
processes to operate in separate domains - - defined for in-
stance by separate feature-groups - - instead of conspiring
closely together.

The idea can be illustrated with a hypothetical
language that has no processes affecting consonants but
several right-to-left harmony processes affecting different
features of vowels. By hypothesis, underlying consonants
can be read off directly. The right-to-left harmony pro-
cesses mean that underlying vowels cannot always be iden-
tified when the vowels are first seen. However, since the
processes affect different features, uncertainty in one area
will not block conclusions in others. For instance, the pro-
cessing of consonants is not derailed by uncertainty about
vowels, so information about underlying consonants can
potentially be used to help identify the vowels. In such a
scenario, the solution to an analysis problem is constructed
more by superposition than by trying out solutions to in-
tertwined constraints.

A SAT problem can have either a local or global infor-
mation structure; not all SAT problems are difficult. The

unique satisfying assignment for the formula (~ v z)&(x v
y)&:5 is forced piece by piece; the conjunct ~ forces x to
be false, so y must be true, so finally z must be true. In
contrast, it is harder to see that the formula

is unsatisfiable. The problem is not just increased length;
a different method of argument is required. Conclusions
about the difficult formula are not forced step by step as
with the easy formula. Instead, the lack of "local informa-
tion channels" seems to force an argument by cases.

A search procedure of the sort used in the Kimmo sys-
tem embodies few assumptions about possible modularity
in natural-language phonology. Instead, the implicit as-
sumption is that any part of an analysis may depend on
anything to its left. For example, consider the treatment of
a right-to-left long-distance harmony process, which makes
it impossible to determine the interpretation of a vowel
when it is first encountered in a left-to-right scan. Faced

with such a vowel, the current Kimmo system will choose
an arbitrary possible interpretation and arrange for even-
tual rejection if the required right context never shows up.
In the event of rejection, the system will carry out chrono-
logical backtracking until it eventually backs up to the er-
roneous choice point. Another choice will then be made,
but the entire analysis to the right of the choice point will
be recomputed - - thus revealing the implicit assumption
of possible dependence.

By making few assumptions, such a search procedure
is able to succeed even in the difficult case of SAT prob-
lems. On the other hand, if modularity, local constraint,
and limited information flow are more typical than difficult

global problems, it is appropriate to explore methods that
might reduce search by exploiting this aspect of informa-
tion structure.

We have begun exploring such methods in a prelim-
inary and approximate way by implementing a modular,
non-searching constraint-propagation algorithm (see Win-
ston (1984) and other sources) for Kimmo generation and
recognition. The deductive capabilities of the algorithm
are limited and local, reflecting the belief that morpho-
logical analyses can generally be determined piece by piece
through local processes. The automata are largely decou-
pied from each other, reflecting an expectation that phono-
logical constraints generally will not conspire together in
complicated ways.

The algorithm will succeed when a solution can be
built up, piece by superimposed piece, by individual au-
tomata - - but by design, in more difficult cases the con-
straints of the automata will be enforced only in an approx-
imate way, with some nonsolutions accepted (as is usual

47

with this kind of algorithm). In general, the guiding as-
sumption is that morphological analysis problems actually
have the kind of modular and superpositional information
structure that will allow constraint propagation to suc-
ceed, so that the complexity of a high-powered algorithm
is not needed. (Such a modular structure seems consonant
with the picture suggested by autosegmental phonology,
in which various separate tiers flesh out the skeletal slots
of a central core of CV timing slots; see Halle (1985) and
references cited thereQ

S U M M A R I Z I N G C O M B I N A T I O N S

O F P O S S I B I L I T I E S

The constraint-propagation algori thm differs from the
Kimmo algorithms in its t reatment of nondeterminism. In
terms of Figure 1, nondeterminism cannot arise if both
the lexical surface strings have already been determined.
This is true because a Kimmo automaton lists only one

next s tate for a given lexical/surface pair. However, in the
more common tasks of generation and recognition, only
one of the two strings is given. The generation task that
will be the focus here uses the automata to find the surface
string (e.g. t r i e a) that corresponds to a lexical string (e.g.
t ry+a) that is supplied as input.

As the Kimmo automata progress through the input,
they step over one lexical/surface pair at a time. Some
lexical characters will uniquely determine a lexical/surface
pair; in generation from t r y + a the first two pairs must be
t / t and r / r . But at various points, more than one lex-
ical/surface pair will be admissible given the evidence so
far. If y / y and y /± are both possible, the Kimmo search
machinery tries both pairs in subcomputat ions that have
nothing to do with each other. The choice points can po-
tentially build on each other to define a search space that
is exponential in the number of independent choice points.
This is true regardless of whether the search is carried out
depth-first or breadth-first. ~

For example, return to the artificial Kimmo system
that decides Boolean satisfiability for formulas in variables
x, y, and z (Figure 2). When the initial y of the for-
mula yz . x - y - z , - x . - y is seen, there is nothing to decide
between the pairs y/T and y/F. If the system chooses y/T
first, the choice will be remembered by the y-consistency
automaton, which will enter state 2. Alternatively, if the
possibility y /F is explored first, the y-consistency automa-
ton will enter s tate 3. After y z . x . . , has been seen, the
x-, y-, and z-consistency automata may be in any of the

2See Karttunen {1983:184} on the difference in search order be-
tween Karttunen's Kimmo algorithms and the equivalent procedures
originally presented by Koskenniemi.

following state-combinations:

(3,3,2) (2,3,2)
(3,2,3) (2,2,3)
<3,2,2) (2,2,2)

(The combinations (3, 3, 3) and (2, 3, 3) are not reachable
because the disjunction yz that will have been processed
rules out both y and z being false, but on a slightly dif-
ferent problem those combinations would be reachable as
well.) The search mechanism will consider these possible
combinations individually.

Thus, the Kimmo machinery applied to a k-variable
SAT problem explores a search space whose elements are
k-tuples of truth-values for the variables, represented in the
form of k-tuples of automaton states. If there are k = 3
variables, the search space distinguishes among (T, T, T),
(T, T, F) , and so forth - - among 2 k elements in general.
Roughly speaking, the Kimmo machinery considers the el-
ements of the search space one at a time, and in the worst
case it will enumerate all the elements.

Instead of considering the tuples in this space indi-
vidually, the constraint-propagation algorithm summarizes
whole sets of tuples in slightly imprecise form. For exam-
ple, the above set of state-combinations would be summa-
rized by the single vector

<{2,3}, {2,3}, {2,3)>

representing the truth-assignment possibilities

(x Z {T ,F} ,y • {T ,F} , z • {T,F}) .

The summary is less precise than the full set of state-tuples
about the global constraints among the automata; here,
the summary does not indicate that the state-combinations
(3, 3, 3) and (2, 3, 3) are excluded. The constraint-propa-
gation algorithm never enumerates the set of possibilities
covered by its summary, but works with the summary it-
self.

The imprecision that arises from listing the possible
states of each automaton instead of listing the possible
combinations of states represents a decoupling of the au-
tomata. In addition to helping avoid combinatorial blowup,
this decoupling allows the state-possibilities for different
au tomata to be adjusted individually. We do not expect
that the corresponding imprecision will mat ter for natural
language: instead, we expect that the decoupled automata
will individually determine unique states for themselves, a
si tuation in which the summary is precise. 3 For instance,

aObviously, this can be true ill a recognition problem only if the
input is morphologically unambiguous, in which case it can still fail to
hold if the constraint-propagation method is insufficiently powerful to

48

x-consistency 1 ...

y-consistency 1 " "

z-consistency 1

s a t i s f a c t i o n 1 ""

" " 1 " ' "

• " 1 2,3-..

• -'1,2 ~,2""

I

.... 1 ""t

.... 2,3""
x / T

' / ' x/F

input y z , x

""2,3""

" '2,3""

" '2,3""

""1,2"..

F igure 3: The const ra in t -propagat ion a lgor i thm produces this representat ion when processing

the first few characters of the formula y z . x - y - z . - x , - y using the a u t o m a t a from Figure 2. At

this point no t ruth-values have been definitely determined.

in the case of generat ion involving right-to-left vowel har-

mony, only the vowel harmony au tomaton should exhibit

nondeterminism, which should be resolved upon process-
ing of the necessary right context. The imprecision also

will not ma t t e r if two constraints are so independent that

their solutions can be freely combined, since the summary

will not lose any information in tha t case.

C O N S T R A I N T P R O P A G A T I O N
Like the K immo machinery, the const ra in t -propagat ion

machinery is concerned with the states of the a u t o m a t a at

in tercharacter positions. But when nonde te rmin i sm makes

more than one s ta te-combinat ion possible at some posit ion,

the const ra in t -propagat ion method summarizes the possi-

bilities and continues instead of t rying a single guess. The

result is a two-dimensional mult i -valued tableau containing

one row for each au tomaton and one column for each inter-

character posit ion in the i n p u t) Figure 3 shows the first

few columns that are produced in generat ing from the SAT

rule out invalid possibilities. Note that many cases of morphological
ambiguity involve bracketing (e.g. un[loadableJ/[unloadJable)
rather than the identity of lexical characters. Though the matter is not
discussed here, we propose to handle bracketing ambiguity and lexical-
string anabiguity by different mechanisms. In addition, for discussions
of morphological ambiguity, it becomes very important whether the
input representation is phonetic or non-phonetically orthographic,

4An extra column is needed at each position where a null might be
inserted.

formula yz , x - y - z , - x . - y . The initial y can be interpreted

as ei ther y /T or y /F , and consequently the y-consistency

au tomaton can end up in ei ther s ta te 2 or s tate 3. Simi-
larly, depending on which pair is chosen, the satisfaction

au toma ton can end up in ei ther s ta te 1 (no t rue value seen)
or s ta te 2 (a t rue value seen).

In addi t ion to the states of the au tomata , the tableau

contains a pair set for each character , init ialized to con-

tain all feasible lexical /surface pairs (el. Gajek et al., 1983)

that match the input character . As Figure 3 suggests, the

pair set is common to all the au tomata ; each pair in the

pair set must be acceptable to every au tomaton . If one

au tomaton has concluded tha t there cannot be a surface

g at the current position, it makes no sense to let another

au tomaton assume there might be one. The a u t o m a t a are

therefore not completely decoupled, and effects may prop-

agate to o ther a u t o m a t a when one au tomaton el iminates a
pair from considerat ion. Such propagat ion will occur only

if more than one au toma ton distinguishes among the pos-
sible pairs at a given position. For example, an au tomaton

concerned solely with consonants would be unaffected by

new information about the identi ty of a vowel.

Wahz ' s line-labelling procedure, the best-known early

example of a cons t ra in t -propagat ion procedure (el. Win-

ston, 1984), proceeds from an underconst ra ined initial la-

belling by el iminat ing impossible junct ion labels. A label is

impossible if it is incompat ible with every possible label at
some adjacent junct ion. The cons t ra in t -propagat ion pro-
cedure for Kimrno systems proceeds in much the same way.

49

A possible state of an automaton can be eliminated in four

ways:

• The only possible predecessor of the state (given the
pair set) is ruled out in the previous state set.

• The only possible successor of the state (given the pair
set) is ruled out in the next state set.

• Every pair that allows a transition out of the state is
eliminated at the rightward character position.

• Every pair that allows a transition into the state is
eliminated at the leftward character position.

Similarly, a pair is ruled out whenever any automaton be-
comes unable to traverse it given the possible starting and
ending states for the transition. (There are special rules
for the first and last character position. Null characters
also require special treatment, which will not be described

here.)

The configuration shown in Figure 3 is in need of con-
straint propagation according to these rules. State 1 of the

satisfaction automaton does not accept the comma/comma
pair, so state 1 is eliminated from the possible states { 1,2}
of the satisfaction automaton after z. State 1 has there-
fore been shown as cancelled. However, the elimination of
state 1 causes no further effects at this point.

The current implementation simplifies the checking
of the elimination conditions by associating sets
of triples with character positions. Each triple
(old state, pair, new state) is a complete description of one
transition of a particular automaton. The left, right, and
center projections of each triple set must agree with the
state sets to the left and right and with the pair set for the
position, respectively. Figure 4 shows two of the triple-sets
associated with the z-position in Figure 3.

The nondeterminism of Figure 3 is finally resolved when
the trivial clauses at the end of the formula yz . x - y - z . -x, -y
are processed. After x in the clause -x all of the consistency
automata are noncommittal, i.e. can be in either state 2 or
state 3. The satisfaction automaton was in state 3 before
the x because of the minus sign and it can use either of
the triples (3,x/T, 1) or (3,x/F,2). However, on the next
step it is discovered that only state 2 will allow it to tra-
verse the comma that follows the x. The triple (3,x/T, 1)
is eliminated and the pair x/T goes with it. The elimina-
tion of x/T is propagated to the x-consistency automaton,
which loses the triple (2,x/T,2) and can no longer sup-
port state 2 in the left and right state sets. The loss of
state 2, in turn, propagates leftward on the x-satisfaction
line back to the initial occurrence of x. The possibility x/T
is eliminated everywhere it occurs along the way. Finally,
processing resumes at the right edge.

In similar fashion, the trivial clause -y eliminates the
possibility y/T throughout the formula. However, this time
the effects spread beyond the y-automaton. When the pos-
sibility y/T is eliminated from the first pair-set in Figure 3,
the satisfaction automaton can no longer support state 2
between the y and z. This leaves (1,z/T,2) as the only
active triple for the satisfaction automaton at the second
character position. Thus z/F is eliminated and z is forced

to truth. When everything settles down, the "easy" for-
mula y z , x - y - z , - x , - y has received the satisfying truth-
assignment FT, F-F-T, -F, -F.

A L G O R I T H M

C H A R A C T E R I S T I C S

The constraint-propagation algorithm shares with the
Waltz labelling procedure a number of characteristics that
prevent combinatorial blowup: 5

• The initial possibilities at each point are limited and
non-combinatorial; in this case, the triples at some po-

sition for an automaton can do no worse than to encode
the whole automaton, and there will usually be only a
few triples.]t is particularly significant that the num-
ber of triples does not grow combinatorially as more
automata are added.

• Possibilities are eliminated monotonically, so the lim-
ited number of initial possibilities guarantees a limited
number of eliminations.

• After initialization, propagation to the neighbors of a
visited element takes place only if a possibility is elim-
inated, so the limited number of eliminations guaran-
tees a limited number of visits.

• Limited effort is required for each propagator visit.

However, we have not done a formal analysis of our im-
plementation, in part because many details are subject to
change. It would be desirable to replace the weak notion
of monotonic possibility-elimination with some (stronger)
notion of indelible construction of representation, based if
possible on phonological features. Methods have also been
envisioned for reducing the distance that information must
be propagated in the algorithm.

The relative decoupling of the automata and the gen-
eral nature of constrain~-propagation methods suggests that
a significantly parallel implementation is feasible. How-
ever, it is uncertain whether the constraint-propagation
method enjoys an advanlage on serial machines. It is
clear that the Kimmo machinery does combinatorial search
while the constraint-propagation machinery does not, but

SThroughout this paper, we are ignoring complications related to
the possibility of nulls.

50

y-consistency 2,3""

z-consistency 1 ""

z/T
z /F

.... 2,3 2,3""

• "2,3 1 ""

(2, z/T,2)
<3, z/T,3)
<2, z/F, 2)
(3, z/F,3)

(1,z/T,2)
<1, z/F, 3>

.... 2,3

.... 2,3

Figure 4: When the active transitions of each automaton are represented by triples, it is easy
to enforce the constraints that relate the left and right state-sets and the pair set. The left
configuration is excerpted from Figure 3, while the right configuration shows the underlying
triples. The set of triples for the y-consistency automaton could easily be represented in more
concise form.

we have not investigated such questions as whether an ana-
logue to BIGMACHINE precompilation (Gajek et al., 1983)
is possible for the constraint-propagation method. BIG-
MACHINE precompilation speeds up the Kimmo machin-
ery at a potentially large cost in storage space, though it
does not reduce the amount of search.

The constraint-propagation algorithm for generation
has been tested with previously constructed Kimmo au-
tomata for English, Warlpiri, and Turkish. Preliminary re-
sults suggest that the method works. However, we have not
been able to test our recognition algorithm with previously
constructed automata. The reason is that existing Kimmo
automata rely heavily on the dictionary when used for
recognition. We do not yet have our Kimmo dictionaries
hooked up to the constraint-propagation algorithms, and
consequently an attempt at recognition produces mean-
ingless results. For instance, without constraints from
the dictionary the machinery may choose to insert suffix-
boundary markers + anywhere because the automata do
not seriously constrain their occurrence.

Figure 5 shows the columns visited by the algorithm
when running the Warlpiri generator on a typical example,
in this case a past-tense verb form ('scatter-PAST') taken
from Nash (1980:85). The special lexical characters I and
<u2> implement a right-to-left vowel assimilation process.
The last two occurrences of I surface as u under the influ-
ence of <u2>, but the boundary # blocks assimilation of the

first two occurrences. Here the propagation of constraints
has gone backwards twice, once to resolve each of the two
sets of I-characters. The final result is ambiguous because
our automata optionally allow underlying hyphens to ap-
pear on the surface, in accordance with the way morpheme
boundaries are indicated in many articles on Warlpiri.

The generation and recognition algorithms have also
been run on mathematical SAT formulas, with the de-
sired result that they can handle "easy" but not "diffi-
cult" formulas as described above. ~ For the easy formula
(~ v z)&(x v y)&~ constraint propagation determines the
solution (T V T)&(F V T)&F. But for the hard formula

constraint propagation produces only the wholly uninfor-

mative truth-assignment

({T,F} v {T,F} V {T, F})&({T, F} V {T,F})
&({T,F} v {T,F})a({T,F} V {T,F})

&({T,F} v {T, FI)&({T,F} v {T,F})

Since we believe linguistic problems are likely to be more
like the easy problem than the hard one, we believe the
constraint-propagation system is an appropriate step to-
ward the goal of developing algorithms that exploit the
information structure of linguistic prob]ems.

6Note that the current classification of formulas as "easy" is dif-
ferent from polynomial-time satisfiability. In particular, the restricted
problem 2SAT can be solved in polynomial time by resolution, but not
every 2SAT formula is "easy ~ in the current sense.

51

0 1 2 3 4 5
1 2 3 4

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
7 8 9 1 0 1 1 1 2

8 9 1 0 1 1 1 2 1 3 1 4
pIrrI#kIjI-rn<u2>: result ambiguous, pirri{O,-}kuju{-.O}rnu

Figure 5: This display shows the columns visited by the constraint-propagation algorithm when
the Warlpiri generator is used on the form p l r r I # k I j I - r n < u 2 > 'scatter-PAST'. Each reversal
of direction begins a new line. Leftward movement always begins with a position adjacent to
the current position, but it is an accidental property of this example that rightward movement
does also. The final result is ambiguous because the automata are written to allow underlying
hyphens to appear optionally on the surface.

A C K N O W L E D G E M E N T S
This report describes research done at the Artificial

Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the Laboratory's artificial intel-
ligence research has been provided in part by the Ad-
vanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-
80-C-0505. This research has benefited from guidance and
commentary from Bob Berwick.

R E F E R E N C E S

Barton, E. (1986). "Computational Complexity in Two-
Level Morphology," ACL-86 proceedings (this volume).

Gajek, O., H. Beck, D. Elder, and G. Whittemore (1983).
"LISP Implementation [of the KIMMO system]," Texas
Linguistic Forum 22:187-202.

Halle, M. (1985). "Speculations about the Representa-
tion of Words in Memory," in V. Fromkin, ed., Pho-
netic Linguistics: Essays in Honor of Peter Ladefoged,
pp. 101-114. New York: Academic Press.

Karttunen, L. (1983). "KIMMO: A Two-Level Morpho-
logical Analyzer," Tezas Linguistic Forum 22:165-186.

Nash, D. (1980). Topics in Warlpiri Grammar. Ph.D. the-
sis, Department of Linguistics and Philosophy, M.I.T.,
Cambridge, Mass.

Winston, P. (1984). Artificial Intelligence, second edition.
Reading, Mass.: Addison-Wesley.

52

