
Semantic Caseframe Parsing and Syntactic Generality
Phil ip J. Hayes. Peggy M. Andersen. and Scott Saf ier

Carnegie Group Incorporated
Commerce Court at Station Square

Pittsburgi'~. PA 15219 USA

Abstract

We nave implemented a restricted .:lommn parser called

Plume "M Building on previous work at Carneg=e-Mellon
Unfvers=ty e.g. [4, 5. 81. Plume s approacn to oars=ng ~s
based on semantic caseframe mstant~a~on Th~s nas the
advantages of effic=ency on g r i n ~at ical ,nput. and
robustness in the face of ungrammatmcal tnput Wh~le Plume
~s well adapted to s=mpte ,:;~ectaratwe and ~mperat=ve
utterances, it handles 0ass=yes relatmve clauses anti
=nterrogatives in an act noc manner leading to patciny
syntact=c coverage Th~s paOe, oulhnes Plume as =t
Currently exfsts and descr,Oes our detaded des=gn for
extending Plume to handle passives rela|~ve clauses, and
=nterrogatlves ~n a general manner

1 The Plume Parser

Recent work at Carnegie-Mellon Umvers=ly eg . [4. 51 has

sinown semanttc caseframe =nstant~ation to be a n,ghly robust

and efficient method of parsing restricted domain ~n0ut. In

tn~S approach ~0 parsing, a caseframe grammar contains lhe

doma~n-soecific semantic informat=on, ana" the pars=ng

program contains general syntact=c knowledge Input ,s

mapped onto me grammar using m=s budt-~n syntact=c

knowledge We nave chosen m=s approach for Plume ":'M a

commercial restricted domam parser ~ because of ~ts

advantages =n efficfency and robustness

Let us take a simple example from a natural language

interface, called NLVMS. thai we are developing under a

1 More 0:eccselv. P h j m e TM ,s m e n 4 m e ,)t l ne run-h l t le ~vstem
TM assoc la lec l N~m L a n g u a g e Craf t an mlegra lerJ e n v l r o l l m e n l for m e

o e v e t o o m e n l of na lura I l a n g u a g e ,n teHaces " h e PlUm? 10arser Nnlch
t ransla{es Eng#lsl' l lil~UI qnto case t rame ,ns lances , .s a ma lo t comDone i I t
ot tt~=s rur l - t lme system The d iner malOr -,3111OG~te~H t rat is la les i r e
case f rame ~nslance~ into aoDIica|lofl specifIC !anguaqes . in JlOOlhon to
the Plume run-brae system, ta.guaqe Craft ,nc!uoes grammar

d e v e l o p m e n t ~OOlS ,ncludlng -.1 -;lrH,:hJreO edl lOr .ln~l t rac ing ,1ha
,~ert.3rmance r n e a s u t e m e n l rOi)~S ~r~ln P l u m e Ji~a ~Jltq,iaqe Craft ate
crOOuctS ,It C a r n e g i e G r o u p .~.d ,Jle u , t e l l t l y i,I re '~ l r l r leO r~tease
Plume .]n~ Language CI,I f t It@ ,,,Id~,,Idr v'~ ,',t]ot.1.+gle :3~,)HO
' nco toora fe~ l

contract with Digital Equipment Corporation NLVMS ,s an

tnterface to Digltal's VMS ~ operating system for './AX ~

computers 2 The Plume grammar for .th~s ,ntertace contains

the follow=ng semantic caseframe 3 correspond=ng ¢o the copy

command of VMS:

[*copy*
:cf-type clausal
:header copy
:cases

(f i le-to-copy
:filler *file*
:positional Direct-Object)

(source
:filler *directory*
:marker from I out of)

(destination
:filler *file* I *directory*
:marker to I into I in l onto)

]

This defines a caseframe called "copy" w~th mree cases:

file-to-copy, source, and destination The hie-to-copy case ,s

filled by an oioiect of type "file" and appears =n the input

as a direct ob lec t Source ,s filled 0y a "d~rectory" and

should appear in me ~nput as a preposmonal phrase

preceded or marked by the prepos,t~ons "from" or 'out of"

Oestinat=on is filled by a "fi le" or "clirectory" and ~s marked

by " to ' . " in to ' . or "onto" Finally the copy command itself

is recognized by the header word ,ndicated above (by

header) as " c o p y "

Using mis caseframe. Plume can parse ,n0uts like:

Copy fop Oar out ot [x/ ,nro [y~
From [x] to [yJ cooy fop oar
too oar coDy /rom [x/ ro [y/

2 V M S anO VAX are ¢raOemark5 of Olg=tal EQu.omen! CorDora l l on

]Th.s is a s.npiltleO .:e,slols ,~t rne r.L~e,, ~.~ e .I..'~,.IIh/ ~ fne gralnmar.

153

In essence. Plume's parsing algorithm +S tO find a caseframe

header, in this case " copy " and use the associated

caseframe, "copy" to guide the rest of the parse. Once

the caseframe has been identified Plume looks for case

markers, and then parses the associated case filler directly

following the marker Plume also tnes to parse pomtionally

specified cases, like direct ObleCt. in the usual position in

the sentence - immediately following the header for direct

object. Any input not accounted for at the end of this

procedure is matched against any unfilled cases, so that

cases that are supposed to be marked can be recognized

without their markers and pos=tionally indicated cases can be

recognized out of their usual positions, This flemble.

interpretive style of matching caseframes against the input

allows Plume to deal with the kind of variation in word order

illustrated in the examples above.

The above examples implied there was some method to

recognize files and directones They showed only atomic

file and directory descriptions, but Plume can also deal with

more complex ObleCt descnptions In fact, in Plume

grammars, obiects as well as actions can be described by

caseframes. For instance, here =s the caseframe s used to

define a file for NLVMS

[*f~le*
:.c f- type nominal
:header file '

:name ?(%period ~extension)
: cases

(name
: assignedp t name)

(extension
: assignedp t extension
:marker written in
:adjective <language>
:filler <language>)

(creator
:filler *person*
:marker created by)

(directory
:filler *directory*
:marker in)

]

4 n rme syntax used ,.',,.n V M S . chrector les are ,ncl.calecl Dy sauare
Dtackefs.

5~qa~,~ ~,mOl,hed

~l~lUtl~e ,.]ulOmall< al lv +e,:oqn,zes " l~ . te ,mmer ¢, 4rl,1 :lual~hl,er~; asSoc la led

• .,fn ~totnmal , a~| f '~t f~e5

This caseframe allows Plume to recogn,ze file descriptions

like: 6

fop
fop.Par
The file created Oy John
The fortran file in ix/ created Oy Joan

The caseframe notation and parsing algorithm used here are

very similar to those described above for clause level input.

The significant differences are additions related to the

:adiective and :assignedp attributes of some of the cases

above. While Plume normally only looks for fillers after the

header in nominal caseframes an adiective attnbute of a

slot tells Plume that the SlOt f i l l e tmay appear before the

header.

An :assignedp attribute allows cases to be filled through

recognition of a header+ This is generally useful for proper

names, such as fop and foo.bar. In the example above.
the second alternatwe header contmns two '.,ar~ables name

and 'extension. that can each match any s=ngJe .vorcI. The

ClUeSt=on mark Indicates opt=onal~ty, so that me header can

be either a single word or a word followed Dv a per=pal and

another word. The first wOrd ,s asmgned to the ~'anaOle

'name. and IRe second (if =t =s mere~ to the vanaOle

!extension If 'name or 'extension are matched ,,vnde

recognizing a file header, their values are placed ,n the

name and extenmon cases of "hie"

w,ln the above mod,ficat,ons P~ume can parse nomqna,

caseframes umng the same algor~ttnm that ~t uses for clausal

caseframes that account for complete sentences. However

there are some interactions between the two levels of

parsing. In particular, mere can be ambiguity about where

to attach marked cases• For anstance. In:

Copy me fortran file ,n [,:/ to [y/

"~n [xr" could e,her fill the directory case of the hie

described as ' the fortran h ie or could fill the dest+natBon

case of the whole copy command. The second

interpretation does not work at the global level because the

only place to put "to [y}" ,s tn that same destination case

However. at the time the file descrlpt,on ts parsed, tins

information is not avadable and so both possible

attachments must be considered In general, if Plume is

able to fill a case of a nora,hal caseframe from a

154

prepositional phrase, it also splits off an alternative parse in

which that at tachment is not made. When all input has

I~een parsed. Plume retains only t~ose parses t~at succeed

at the global level, i.e.. consume all of the input. Others

are discarded.

The current implementat ion of Plume is based on the

nominal and clausal level caseframe instant=ation algorithms

descnPed above. Us=ng these algor=thms and a restr=cted

clommn grammar of caseframes like the ones ShOWn above.

Plume can parse a w~de variety of ~mDerat~ve and

declarative sentences relevant to that doma=n. However.

there remain significant gaps ,n ~ts coverage. Interrogatives

are not handled at all: + passives are covered only if mey

are explicitly specif ied =n the grammar ancl relative clauses

can only be handled by pretending they are a form of

prepos=t=onal phrase

The regular and predictable relattonsn~p between s~mple

statements. ¢~uestions and relalwe clauses and between

act=ve and passive sentences ~s ,veil known A parser wmcil

purports to tnterpret a dohlaln specific tanguage specif ication

using a built-in knowledge of symax ShOuld account for tills

regularity =n a general way The current implementer=on of

Plume ilas no mecnamsm for doing tn~s. Eacil ~ndividual

possiDdity for quest ions relative c lauses and passives must

be explicitly specif ied ,n the grammar For instance, to

handle reduced relative clauses as =n " the file created by

j im created by" ~s hSted as a case marker (compound

prepositlorll tn the creator slot of file. mark+ng a description

of the creator To handle full relat=ves the case marker

must be specif ied as something hke "3(which < be >)

created by". '3 Wh=ie mis allows Plume to recognize +the file

which was created by Jim", " the file created by J im". or

even "the file created by Jim on M o n d a v ~t breaks down

on something like "the file created on Monday by Jim '

because the case marker "created by' {s no longer a un l l

Moreover using the current techniques. Plume S abdtly to

? r h R C u r r e n ! , r n o l e f t l ~ n t ; ~ l l o n ,)1 PII I I I I@ ".* a }s -.~ l e f / l ~ ,) r,~tV t'nF, i I ' l ,)d OI
,, ,I , . a s e f t ,) m e

,, 1 .-. ~ .t i11 la i i ,-~ ~1

recognize the above inputs =s complete ly unrelated tO =ts

abdity tO recognize inputs like:

the fi/e Jim created on Mon(Tay
the person that the file was crearect ov on Monday
the day on which Jim created rne me

If an interface could recogmze any of these examptes +t

might seem unreasonable to a uSer that ~t could not

recognize all of the o thers Moreover g~ven any of the

above examples, a user might reasonaPly expect recogmt=on

of related sentence level inputs hke

Create the hie on Monday '
J~m created the hie on Monday
Dt~ J~m create the hie on Moneay ?
Was the hie create(l Ioy J~m on Monclay ~
Who created the hie on Monday ?
What day was the hie created on?

The current ,mplememation of Plume has no means of

guaranteeing such regularity of coverage. Of course, this

problem of patcl~y syntactic coverage is not new for

restricted doma=n parsers. The lack Of syntactic general i ty

of the original semantic grammar {3] for the Sophie s y s t e m

{21 led tO the concept of cascaded ATNs {10} and the

RUS parser {1 I, A progress=on w=tln s=milar goals occurred

from the LIFER system [91 to TEAM {6] and KLAUS [7].

The bas=c oDstacle to ach~evmg Syntactic generality ~n

these network-based approaches was me way syntactic and

semantic information was m=xed together +n the grammar

networks. The sOlutions, therefore, rested on separating the

syntact=c and semanttc reformat=on. Plume already

incorporates just me separation of syntax and semantics

necessary for syntactic generahly general syntactic

knowledge resides in the parser whde semantic =nformat=on

resides ~n the grammar This suggests that syntactic

generahty ~n a System like Plume can be acnreved Qv

,morowng the parser s caseframe ,nstanttatJon algOrithms

.vHnou{ 3n~,. malor changes to arammar Content ,n terms of

me above examples =nvo~wng ; r e a f e =t suggests .."Je can

use a s4ngle "create" ,,:3seframe to nandte .~11 the examples

We Simply need to prowde suHable extensions to the

existing caseframe nslantlatton algoNthms In the next

section we present a detaded deszgn for such extensaons

2. Providing Plume wtth Syntactic Generality
As descr=bed above. Plume can currently use clausal

155

caseframes only to recognize s,ngle clause imperative and

declaratwe utterances in the active voice. This section

describes our design for extending Plume so that relative

and interrogative uses of clausal caseframes in passive as

well as active voice can also De recognized from the same

information.

We will present our general design by showing how it

operates for the following "create" caseframe in the context

of NLVMS

[*create*
: cf-type clausal
:header <create>
: cases

(creator
:filler *person*
:positional Subject)

(createe
:filler *file*
:positional Direct-Object)

(creat ion-date
:filler *date*
:marker on)

]

Note tNat symbols in angle brackets represent non-terminals

,n a conmxt-free grammar (recogmzed by Plume using

oattern matching techn,ques) In Ine caseframe defin,tlon

above <c rea te> matches all morDnologlcal vat=ants of the

verio 'c reate" ,ncluding "create ' 'creates ' 'created" and

'creat ing" impugn not combound tenses +~ke .s : rea l ,ng '

see below). Using me ex,st=ng Plume :n,s .':ouid 3olv 9.1lOW

uS tO recognize simple ~mperallves and actwe ~eclarat,ves

l lke

Create ~oo Oar on Moniaav
2m crealecI tot)oar on Mor~Uay

2. I Passives

Plume recogn,zes pasture sentences lhrough ~tS processing

of the]erO cluster +e the ma~n verb plus me sequence of

modal and auxiliary .'erD ,mmedlalely preceding it. Once

me main verb has been located a sl0ecsal verb cluster

processing mechanvsm reads me verb cluster and determines

from il whether me sentence ts acttve or passive 'j The

parser records tills =nformaticn in a special case called

"%voice".

If a sentence is found to be achve the standard parsing

algor,hm described above ,s used If =t is found to be

passive, the standard algorithm ~s used with the modification

that the parser looks for the direct object or the indirect

object ~° in the subject positron, and for the subject as an

optional marked case with the case marker "by". Thus.

given the "create" caseframe above, the follow,rig passive

sentences could be handled as well as their active

counterparts.

Fop oar was creamd by Jim
FOO oar COuto /'lave dee t~ rFateo ov j ,m
FO0 oar ,s Oe,ng (reate~l ~v ~,m
Fop Oar was created on MGnclay

22. Relative clauses

The detailed design presented below allows Plume to use

the "create" caseframe to parse nominals hke:

the tile J~m crearecl on Monclav
the person tna~ the tile was created oy on Monday
the day on vvn~ch Jtm create(:/ tl~e hie

TO do tins. we ~ntroduce the conceDt of a relative case A

relative case is a link back from the caseframes for the

objects that fill the cases of a clausal caseframe to mat

clausal caseframe. A grammar preprocessor generates a

relatwe case automatically from each case of a clausal

caseframe, associating ,t 'Nlth the nominal caseframe .~at

fills the case in me clausal caseframe. Relative cases rio

not need to be spemfied by the grammar wri ter For

instance, a relative case ,s generaled from the createe case

of "create" and rnctuded in the "hie" caseframe. It lOOkS

like this:

[*file*

(:relative-cf *create*
:relative-case-name createe
:marker <create>

]

911 a l s o c l e l e r r r l l n e s I~le l e n s e o l m e s e n t e n c e a n d w h e l n e ¢ ,l s

,J l l f l t r r ta l lve o r n e q a l l V e

I O S n ,I u~ere ,s a c a s e .~ , ln a O o S l h O . a l m q . e c b o i o l e c I $1ol m e

,¢ lGi tec! .~DleCt is d l l o w e O lo i Jass l v , ze N e . :air t h u s u o d e r s l a n o -;e~le,~<'es

!IW~ " M a I V ,VaS ~ i V e l l a b o o w " , iO ln I " ,~ ive ' . I s e ! ~ , 3 m e ,-,¢11 13oln a

f] i f~ , - ' , ~ l e c l ,l lt(~ ,] i i , i t(~it 'ecl) l} lel,~l ' ~'~ie

156

Note thai :marker is the same as :header of "create"

Similar relative cases are generated in the "person"

caseframe for the creator case. and in the "da te "

caseframe for the creat ion-date case. di f fer ing only in

: re lat ive-case-name

Relative cases are used s~mdarly to the ordinary marked

cases of nominal caseframes. In essence, ff the parser ~s

parsmg a non ,na t caseframe ~nd finds the marker of one

of ~ts relative cases, then it tries to instanhate the :relative-

c f It per forms tms instantlatlon ~n the same way as ,f me

re la twe.cf were a top-level clausal casef rame and the word

that matched the header were ,is main verb. An ~mportan!

d=fference ~s that it never tries to fill the case ,,,,nose name

~s g=ven by re lat ive-case-name That case =s hlled by the

nommal casef rame which contams the relative case For

mstance, suppose the parser =s tryCng to process.

7"he file J~m createcl on MonclaV

And suppose that ~t has already located "fi le ' and used

that to determine ,t ,s ~nstanhat,ng a "fi le" nominal

caseframe It ~s able to match {aga,nst ' c rea ted"~ me

• marker of the relative caseframe of "h ie ' shown above. It

then ~ries to ~nstanhate me relatwe.cf "c reate" using ~tS

standard tecnmdues except real ~! does not try to fill

c r ea tee the case of "create" specff=eo as the relallve-case-

n a m e Th~s mstanr~at~on succeeds wllh " J i m ' g o n g =nip

c rea to r and "on Monday" bemg used to hll creatmn-date

The parser then uses (a pomter to) the nommat caseframe

current ly being instant~ated. "f i le" to fill createe, the

:relat ive-case-name case of "create" and the newly created

instance of "c reate" is at tached to this mstance of "f i le" as

a modif ier

a

b.

~t never looks any further left ,n the ~nout than
the header of the nom=r'al casef rame or ,f ,t

~as already parsed any omer Oos'.-r~ommat
cases of the nommal casef rame no further left
than the r~ght hand end ot; them

it COnsumes. but Otherwise ignores any relatwe
pronouns iwno .,vn~;.m ~,.,n~n rr~ar ~ that

~mmediately p recede the segment used to
instantiate the relatwe-cf Tnlg ~neans rna~ 3/i
words, inc lud ing " thar" .~vdl ~e 3ccounrec #or ~n
"t/ le file tt lat J im createc .:.)t~ ~/lonclay"

it does not try to fill the case specif ied by the
relat ive-case-name ~n the relative-of: =nstead

tms case is filled by (a Oomter to) the Or~g=nal
nommal caseframe tnstance:

d. ff the relal=ve-case.name specif ies a marked
case rather than a posit ional one tn the
relative.of then ~ts case marker can De

consumed, but omerwtse ~gnored. durmg
mstanhataon of me relatwe.cf This 3110w3 US
tO deal wl ln " o n ~n m e .gate Jim created ~he
hie on" or "the care un whlcn j i m created the
file '

3 Passwe relalave clauses (e g. " Ihe file that was
created on Monday " t can general ly be handled using
the same mechanisms used Ior passwes at the main
clause level Howeve r tn relative clauses, passives
may somet imes be recIucec/ by om~thng the usual
auxihary verb to be (and the relat=ve pronoun) as ~n:

the file create(l on Monday

To account for such reduced relative clauses, the
verb cluster processor will p roduce approonate
addit ional readings of the verio clusters ,n relahve
clauses for which the relative pronoun JS m~ssmg
This may lead to multlOle oarses, mcludmg one for
the above example s~mdar to the correct one for:

the file Jot~n crea[e~ on Monclay

These amb=guaties wdl De taken care of by Plume s
standard ambigui ty reduct ion methods

More comotetely. P l umes atgor~mm for relattve clauses ~s:

1. When processing a nommal caseframe. Plume scans
for the ;markers of lhe rela{tve cases of the nominal
casef rame at the same t~me as [t scans for the
regular case markers ol: that nominal casef rame

2. If it f inds a marke r of a relatwe case. ~t rues to
inst~ilntlate the relaltve.cf lust as though if were the
Top-level clausal case| tame and the header were ~ts
mmn '/erb. ~.xcept mat:

2] interrogat ives

in addmon to handl ing passaves 3no -e¢ahve : lauses.

also wish {he =nformatlon ~n me " c ' e a t e -"aseframe

hanclle ~nterrogatlves tnvolvlng " c rea te ' ~ c n 3s

,re

to

~1C Jim create me hl~. {~n MG;I,I]V '
W,aS r/le /lie cre3teo OV J~m or} '.4L,",I.]/~
,/I/ho c.reare(~ the hie On ~f,unc,av '
What clay was the hie c re j l eC ,:

The prtmary diffiCulty for Plume .,.,~ln mterrogatwes ~s tha t 3S

these examoles ShOw me number of variations in stanclard

COnStituent order is much greater than for tmperatives and

157

dectaratJves. Interrogatives come in a w~de variety of forms.

depending on whether the question is yes/no or wh: on

which auxiliary verb ~s used: on whether the voice is active

or passive: and for wh questions, on which case is queried.

On the other hand. apart from var)ations in the order ancl

placement of marked cases, there is only one standard

constituent order for =mperatives and only two for

declaratives (corresponding to active and passive voice). We

have exl~lO=tecl th=s low variability by building knowledge of

the imperative and declarative order into Plumes parsing

algorithm. However this is impractical for the larger

number of variations associalecl with interrogatives.

Accordingly, we have designed a more data,driven approach

This approach involves two Passes through the inpul: the

first categorizes the input into one on several primary input

categories incluOing yes-no questions, several kinds of wh-

cluestions, statements, or ~mperat=ves. The second Pass

performs a detaded parse of me input based on the

ctassfficat=on made in the first Pass. The rules used contam

bas=c syntactic ~nformat=on al3out Enghsn. and will rema,n

constant for any of Plumes restricted domam grammars of

semantic caseframes for Enghsh

The first level of process=rig +nvolves an ordered set of

r~D-/evel patterns. Each too.level pattern corresponds tO one

of the primary =nput categor=es ment~onecl adore Th=s

classificatory matchmg c~oes not attempt to match every

+,vord +n the input sentence but only to do the ram=mum

necessary to make the classdicat=on. Most of the relevant

,nformat~on is found at the beg=nnmg of the ~nDuts. In

ioart=cular, the top-level patterns make use of the fronted

aux=liary verb and wh-worcls tn questions.

AS well as classffymg the input, th~s top-level match ,s

also useci to determme the iclenttty of the caseframe To be

=nstant=ated. Th=s =S =moortant to dO at this stage because

the deta,led recognmon Ln the seconcl phase ts neav=ly

de~enclent on the ~clent=ty of h is top-level casetrame The

special symbol. SverO. that appears exactly once =n all top-

level patterns, matches a heacler of any clausal caseframe

We call trte caseframe whose heacler is matcnecl by SverO

the primary casetrame for that input.

The second more detailed parsing phase is organized

relative to the primary caseframe Associated with each top-

level pattern, there is a corresponding parse femo/ate. A

parse template specifies which parts of the primary

caseframe wil l ' be found in unusual positions and which

parls the default parsing process (the one for declarat=ves

and imperatives) can be used for.

A simplified example of a top-level pattern for a yes-no

question is: ~

< a u x > (- ($verD !! <aux>)~ (&s SverOj Srest

This top.level pattern w=ll match inputs hke. me followmg:

D~ Jim create fop ~
Was fop creafecl Oy J~m ?

The first element of the above top-level pattern ~s an

auxiliary verlo, represented Dy me non-termmal <aux> Th~s

auxdiary ~s remembered and used by the veto cluster

processor (as though ~t were the first auxd~ary ~n the cluster)

to determine tense and voice. AcCOrChng tO the next part

of the pattern, some word that ts not a verb or an aux~hary

must appear after the fronted auxdiary and before the mare

verb (is the negation operator, and !! marks a

dislunction). Next. the scanmng operator &,~ tetls the

hatcher to scan until it finds $vero which matches the

header of any clausal caseframe F~nally. Srest matches

the remaimng ~nDut.

If the top-level pattern successfully matches. Plume uses

the assoc~atecl Parse template to clirect ~ts more detaded

processmg of the ~npul. The goal of this second pass

through the input ~s to mstantiate the caseframe

corresponding to the heacler matched by Sverlo in the top-

level pattern, The concept of a kernel-casetrame is

important to this stage of processmg. A kemel-caseframe

Corresponcls to that part of an ~nput that can be processect

according to the algorithm already budt into Plume for

declarative and imperative Sentences,

P Ih l fh l~ ~a l l e rn . .'~nly ii1OuIS wr le fe tl~e tronfecl aux l l l a rv .¢+ ,'he first
worO ,~ rh~ s e n t e n c e are a l l o w e o t 'he rrl()re ",'+=nplex ~anerr ; ~ a l ,s

achJal ly .lsecI P)v PfLIIn~ dl lc)ws ofeuu~lf iol)dl l .~/ i~l,|fke 0 "ases ',~ i o n e a r
i~l ihal iv as ,,felt

158

The parse template associated with the above top-level

pattern for yes/no questions is:

aux kernel-casetrame
+ (:query)

This template tells the parser that the input consists of the

auxiliary verb matched in the first pass followed by a

:kernel-caseframe. For example. ~n:

O;d J~m create fop ~

the auxtliary verb. " d i d " appears hrst followed by a kernel-

caseframe. "Jim create fop" Note ~ow the kernel-

caseframe looks exactly like a declarative sentence, and so

can be parsed according to the usual declarative/imperative

parsing algorithm

In addition to spec:ficatJon of where to find components of

the primary caseframe a parse lemplate ~ncludes

annotations (indicated by a plus sign) in the above

template for yes/no questions, there =S lust one annotatton -

~uery. Some annotations, hke thiS one ,ndlcate what type

of input has been found, while others direct the processing

of the parse template. Annotations o! the first type record

which case is being queried ~n wn questfons, mat ~s. which

case ,s associated w,m the wh word. Wh questions thus

include one of the following annotatTons SuOlect-query.

Prelect-query. and mar~ea-case-que~ Marked case queries

correspond to examples like:

On what day d~d J~m create too °
What day d~d Jim create /oo on ~

in which a case marked by a preposition iS 13eing asked

aPout. AS illustrated here me case-marker in such queries

can either precede the wn word or appear somewhere .after

the verO. To deal w;m this, me parse template for marked

case quenes has the annotation t loa~na-case-marker. This

annotation ~s of the second type thai ,s =t affects the way

Plume processes the associated parse template.

Some top-level patterns result ~n two poss=bdmlles for parse

templates, For example, the follow=no top-level pattern

< , ' / n . ' N o r O > < a t . i x > i (S v ~ r t o i i .-- a t . i x > ~ $v f~ r t~ $',f=.~t

could match an ObleCt query or a marked case query,

~ncluding the following:

What did Jsm create ~

By whom was fop created? sz
Who was fop created Oy ?

These ~nputs cannot be satisfactordy discriminated Oy a top-

level pattern, so the above top-level pattern has twO different

parse templates associated with it:

wt~-ob/ect aux kemel-caseframe
÷ (oOlecr.query~

wig-marked-case-tiller aux kernel-caseframe
+ (roamed-case-query float~ng-case-mar~er} .

When the above top-level pattern matches. Plume tries to

parse the input using both of these parse templates, in

general, only one wil! succeed Ln accounting for all me

input, so the amb~gudy wdl De eliminated by the methods

already built ~nto Plume.

The method of parsing interrogatives presented above

allows Plume to handle a wide variety of interrogatwes ~n a

very general way using domain specific semantic caseframes.

The writer of the caseframes does not have to worry about

whether they will ioe used for ~mperative. declarative, or

interrogative sentences. (or in relatwve clauses). He is free

to concentrafe on the domain-specific grammar. In addition.

the concept of the kernel-caseframe allows Plume to use

the same efficient caseframe-based parsing algorithm that =t

used for declarative and imperative sentences to parse

malor subparts of questions.

3. Conclusion

Prey,puS work (e.g. [4. 5. 81 / 3no exoer,ence .,vdh our

current rmolementat~on of Plume. Carnegie 'Group s semantic

caseframe parser, has ~nown semantic caseframe

instanl=ation to be an efficient and mgnly roloust method of

parsing restnctecl dommn tnout However hke other

methods of parsing tleawly deoendent on restricted domain

semantics these ,nmal attempts at parsers based on

semantic caseframe =nslant;al~on suffer from palcny syntactic

coverage.

159

After first describing the current ~mplementation of Plume,

this paper presented a detaded design for endowing Plume

with much broader syntact=c coverage including passives.

interrogatives, and relat=ve clauses. Relative clauses are

accommodated through some grammar preprocessing and a

minor change in the processing of nominal caseframes

Handling of interrogatives relies on a set of rules for

classifying inputs into one of a limited number of types.

Each of these types has one or more associated parse

templates which guide the subsequent detai led parse of the

sentence, As the final version of this paper is prepared

(late April, 1985). the handling of passives and interrogatives

has already been implemented in an internal development

version of Plume. and relative clauses are expected to follow

SOOn

Though the above methods of incorporating syntactic

generality into Plume do not Cover all of English syntax.

t rey show that a s=gnfficant degree of syntactic generality

can Ioe provided straightforwardly t:)y a domain specific

parser drtven from a semantic caseframe grarpmar

References

1. Bobrow. R J. The RUS System 8BN Report 3878.
Bolt. Beranek. and Newman. 1978

2. Brown. J. S and Burton, R R Multiple
Representations of Knowledge for Tutorial Reasomng. In
Representation and Understanding Bobrow. 0 G and
Collins, A.. Ed., Academic Press. New York. 1975. pp.
311-349.

3. Burton, R. R. Semantic Grammar An Engineering
Technique for Constructing Natural Language Understanding
Systems. BBN Report 3453. Bolt. 8eranek, and Newman.
Inc.. Cambridge. Mass.. Oecember. 1976.

4. Carbonell. J. G.. Boggs. W. M. Mauldin, M. L.. and
Anick, P. G. The XCALIBUR Prolect: A Natural Language
Interface to Expert Systems. Proc. Eighth Int. Jr. Conf on
Artificial Intelligence. Karlsruhe. August. 1983.

5. Carbonetl. J. G. and Hayes P J. "Recovery Strategies
for Parsing Extragrammatical Language" Comoutat~ona/
Lingulstscs 10 (1984).

6. Grosz, B. J. TEAM: A Transportable Natural Language
Interface System Proc. Conf on Applied Natural Language
Processing, Santa Mon,ca. February 1983

7. Haas. N and Hendnx. G G. An Approach to AccluJrmg
and Applying Knowledge Proc. Nattonat Conference of the
American Assoc=ation for Artific=al Intelligence. Stanford
University. August. 1980. pp. 235-239

8. Hayes, P J. and Carbonetl. J G. Multt-Strategy
Parsing and its Role ~n Robust Man-Machine Commun=cat=on.
Carneg=e-Metlon Umvers=ty Computer Sc=ence Oepartment,
May, 1981.

9. Hendnx. G. G. Human Engineering for Applied Natural
Language Process=ng. Proc Fift~ Int. Jr. Conf on Art=fvctai
Intelligence, MIT. 1977. pp. 183-191

10. Woods. W. A, "Cascaded ATN Grammars' Arnertc3r~
Journal of Computational Linguistics 6. 1 (August 1980Y 1-t2

160

