
MODULAR LOGIC GRAMMARS

Michael C. McCord
IBM Thomas J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY 10598

ABSTRACT

This report describes a logic grammar formalism,
Modular Logic Grammars, exhibiting a high degree
of modularity between syntax and semantics. There
is a syntax rule compiler (compiling into Prolog)
which takes care of the building of analysis
structures and the interface to a clearly separated
semantic interpretation component dealing with
scoping and the construction of logical forms. The
whole system can work in either a one-pass mode or
a two-pass mode. [n the one-pass mode, logical
forms are built directly during parsing through
interleaved calls to semantics, added automatically
by the rule compiler. [n the two-pass mode, syn-
tactic analysis trees are built automatically in
the first pass, and then given to the (one-pass)
semantic component. The grammar formalism includes
two devices which cause the automatically built
syntactic structures to differ from derivation trees
in two ways: [I) There is a shift operator, for
dealing with left-embedding constructions such as
English possessive noun phrases while using right-
rezursive rules (which are appropriate for Prolog
parsing). (2) There is a distinction in the syn-
tactic formalism between strong non-terminals and
weak non-terminals, which is important for distin-
guishing major levels of grammar.

I. INTRODUCTION

l'he term logic grammar will be used here, in
the context of natural language processing, to mean
a logic programming system (implemented normally
in P£olog), which associates semantic represent-
ations Cnormally in some version of preaicate logic)
with natural language text. Logic grammars may have
varying degrees on modularity in their treatments
of syntax and semantics. Th, ere may or may not be
an isolatable syntactic component.

In writing metamorpilosis grammars (Colmerauer,
1978), or definite clause grammars, DCG's, (a spe-
cial case of metamorphosis grammars, Pereira and
Warren. 1980), it is possible to build logical forms
directly in the syntax rules by letting non-
terminals have arguments that represent partial
logical forms being manipulated. Some of the ear-
ties= logic grammars (e.g., Dahl, 1977) used this
approach. There is certainly an appeal in being
dicect, but there are some disadvantages in this
lack of modularity. One disadvantage is that it
seems difficulZ to get an adequate treatment of the

scoping of quantifiers (and more generally
focalizers, McCord, 1981) when the building of log-
ical forms is too closely bonded to syntax. Another
disadvantage is just a general result of lack of
modularity: it can be harder to develop and un-
derstand syntax rules when too much is going on in
them.

The logic grammars described in McCord (1982,
1981) were three-pass systems, where one of the main
points of the modularity was a good treatment of
scoping. The first pass was the syntactic compo-
nent, written as a definite clause grammar, where
syntactic structures were explicitly built up in
the arguments of the non-terminals. Word sense
selection and slot-filling were done in this first
pass, so that the output analysis trees were actu-
ally partially semantic. The second pass was a
preliminary stage of semantic interpretation in
which the syntactic analysis tree was reshaped to
reflect proper scoping of modifiers. The third pass
took the reshaped tree and produced logical forms
in a straightforward way by carrying out modification
of nodes by their daughters using a modular system
of rules that manipulate semantic items -- consist-
ing of logical forms together with terms that de-
termine how they can combine.

The CHAT-80 system (Pereira and Warren, 1982,
Pereira, 1983) is a three-pass system. The first
pass is a purely syntactic component using an
extrapositJon grammar (Pereira, 1981) and producing
syntactic analyses in righ~ost normal form. The
second pass handles word sense selection and slot-
filling, and =he third pass handles some scoping
phenomena and the final semantic interpretation.
One gets a great deal of modularity between syntax
and semantics in that the first component has no
elements of semantic interpretation at all.

In McCocd (1984) a one-pass semantic inter-
pretation component, SEM, for the EPISTLE system
{Miller, Heidorn and Jensen, 1981) was described.
SEM has been interfaced both to the EPISTLE NLP
grammar (Heidorn, 1972, Jensen and Heidorn, 1983),
as well as to a logic grammar, SYNT, written as a
DCG by the author. These grammars are purely syn-
tactic and use the EPISTLE notion (op. cir.) of
approximate parse, which is similar to Pereira's
notzon of righ~s~ normal form, but was developed
independently. Thus SYNT/SEM is a two-pass system
with a clear modularity between syntax and seman-
tics.

104

In DCG's and extraposition grammars, the
building of analysis structures .(either logical
forms or syntactic trees) must be specified ex-
plicitly in the syntax rules. A certain amoun~ of
modularity is then lost, because the grammar writer
must be aware of manipulating these structures, and
the possibility of using the grammar in different
ways is reduced. [n Dahl and McCord (1983), a logic
grammar formalism was described, modifier structure
grammars (HSG's), in which structure-building (of
annotated derivation trees) is implicit in the
formalism. MSG's look formally like extraposition
grammars, with the additional ingredient that se-
mantic items (of the type used in McCord (1981))
can be indicated on the left-hand sides of rules,
and contribute automatically to the construction
of a syntactico-semantic tree much like that in
HcCord (1981). These MSG's were used interpretively
in parsing, and then (essentially) the two-pass
semantic interpretation system of McCord (1981) was
used to get logical forms. So, totally there were
three passes in this system.

[n this report, [wish t o describe a logic
grammar system, modular logic grammars (MLG's),
with the following features:

There is a syntax rule compiler which takes care
of the building of analysis structures and the
interface to semantic interpretation.

There is a clearly separated semantic inter-
pretation component dealing with scoping and
the construction of logical forms.

The whole system (syntax and semantics) can work
optionally in either a one-pass mode or a two-
pass mode.

In the one-pass mode, no syntactic structures
are built, but logical forms are built directly
during parsing through interleaved calls to the
semantic interpretation component, added auto-
matically by the rule compiler.

in the two-pass mode, the calls to the semantic
interpretation component are not interleaved,
but are made in a second pass, operating on
syntactic analysis trees produced (automat-
ically) in the first pass.

The syntactic formalism includes a t device,
called the shift operator, for dealing with
left-embedding constructions such as English
possessive noun phrases ("my wife's brother's
friend's car") and Japanese relative clauses.
~ne shift operator instructs the rule compiler
to build the structures appropriate for left-
embedding. These structures are not derivation
trees, because the syntax rules are right-re-
cursive, because of the top-down parsing asso-
ciated with Prolo E.

There is a distinction in the syntactic
formalism between strong non-terminals and weak
non-terminals, which is important for distin-
guishing major levels of grammar and which
simplifies the. working of semantic interpreta-
tion. This distinction also makes the (auto-

matically produced) syntactic analysis trees
much more readable and natural linguistically.
In the absence of shift constructions, these
trees are like derivation trees, but only with
nodes corresponding to strong non-terminals.

[n an experimental MLG, the semantic component
handles all the scoping phenomena handled by
that in McCord (1981) and more than the semantic
component in McCord (1984). The logical form
language is improved over that in the previous
systems.

The MLG formalism allows for a great deal of modu-
larity in natural language grammars, because the
syntax rules can be written with very little
awareness of semantics or the building of analysis
structures, and the very same syntactic component
can be used in either the one-pass or the two-pass
mode described above.

Three other logic grammar systems designed with
modularity in mind are Hirschman and Puder (1982),
Abramson (1984) and Porto and Filgueiras (198&).
These will be compared with MLG's in Section 6.

2. THE MLG S Y N T A C T I C FORMALISM

The syntactic component for an MLG consists
of a declaration of the s t r o n g non-terminals, fol-
lowed by a sequence of MLG syntax rules. The dec-
[aration of strong non-terminals is of the form

strongnonterminals(NTI.NT2 NTn.nil).

where the NTi are the desired strong non-terminals
(only their principal functors are indicated).
Non-terminals that are not declared strong are
called weak. The significance of the strong/weak
distinction will be explained below.

MLG s y n t a x rules are of the form

A ~---> B

where A is a n o n - t e r m i n a l and B is a ru le b o d y . A
ru le b o d y is any comb ina t i on o f surlCace t e r m i n a l s ,
logical terminals, goals, sh i f t ed n o n - t e r m i n a l s ,
non-tprminals, the symbol 'nil', and the cut symbol
'/', using the sequencing operator ':' and the 'or'
symbol 'l' (We represent left-to-right sequencing
with a colon instead of a comma, as is often done
in logic grammars.) These rule body elements are
Prolog terms (normally with arguments), and they
are distinguished formally as follows.

A su~e terminal is of the form +A, where A
is any Prolog term. Surface terminals corre-
spond to ordinary terminals in DCG's (they match
elements of the surface word string), and the
notation is often [A] in DCG's.

A log ica l t e rm ina l is o f the form 0p-L~, where
Op is a mod i f i ca t i on o p e r a t o r and LF is a l o g i c a l
form. Logical terminals a r e special cases of
semant ic i tems, the significance of which will
be explained below. Formally, the rule compiler

105

recognizes them as being terms of the form A-B.
There can be any number of them in a rule body.

A goal is of the form $A, where A is a term re-
presenting a Prolog goal. (This is the usual
provision for Prolog procedure calls, which are
often indicated by enclosure in braces in
DCG's.)

A s h i f t e d non-terminal is either of the form%A,
or of the form F%A, where A i s a weak non-
terminal and F is any ~erm. (In practice, F
will be a list of features.) As indicated in
the introduction, the shift operator '~' is used
to handle left-embedding constructions in a
right-recursive ~ule system.

Any rule body element not of the above four
forms and not 'nil' or the cut symbol is taken
to be a non-terminal.

A terminal is either a surface terminal or a
logical ~erminal. Surface ~erminals are building
blocks for the word string being analyzed, and
logical terminals are building blocks for the
amalysis structures.

A syntax rule is called strong or weak, .,u-
cording as the non-terminal on its left-hand side
is strong or weak.

It can be seen that on a purely formal level,
the only differences between HLG syntax rules and
DCG's are (1) the appearance of logical terminals
in rule bodies of MLG's, (2) the use of ~he shift
operator, and (3) the distinction between strong
and weak non-terminals. However, for a given lin-
guistic coverage, the syntactic component of an MLG
will normally be more compact than the corresponding
DCG because structure-building must be ,~xplicit in
DCG's. In this report, the arrow '-->' (as opposed
to ':>') will be used for for DCG rules, and the
same notation for sequencing, terminals, etc.. will
be used for DCG's as for MLG's.

What is the significance of the strong/weak
distinction for non-terminals and rules? Roughly,
a strong rule should be thought of as introducing
a new l®vel of grammar, whe[eas a weak rule defines
analysis within a level. Major categories like
sentence and noun phrase are expanded by strong
rules, but auxiliary rules like the reoursive rules
that find the postmodifiers of a verb are weak
rules. An analogy with ATN's (Woods, 1970) is t~at
strong non-tecminals are like the start categories
of subnetworks (with structure-building POP arcs
for termination), whereas weak non-terminals are
llke internal nodes.

In the one-pass mode, the HLG rule compiler
makes the following distinction for strong and weak
rules. In the Horn clause ~ranslatiDn of a strong
~11e, a call to the semantic interpretation compo-
nent is compiled in at the end of the clause. The
non-terminals appearing in rules (both strong and
weak) are given extra arguments which manipu!aKe
semantic structures used in the call to semantic
interpretation. No such call to semantics is com-
piled in for weak rules. Weak rules only gather

information to be used in the call to semantics made
by the next higher strong rule. (Also, a shift
generates a call to semantics.)

In the two-pass mode, where syntactic analysis
trees are built during the first pass, the rule
compiler builds in the construction of a tree node
corresponding to every strong rule. The node is
labeled essentially by the non-terminal appearing
on the left-hand side of the strong rule. (A shift
also generates the construction of a tree node.)
Details of rule compilation will be given in the
next section.

As indicated above, logical terminals, and more
generally semantic items, are of the form

Operator-LogicalForm.

The Operator is a term which determines how the
semantic item can combine with other semantic items
during semantic interpretation. (In this combina-
tion, new semantic items are formed which ;ire no
longer logical terminals.) Logical terminals are
most typically associated with lexical items, al-
though they ar~ also used to produc~, certain non-
lexical ingredients in logical form ana lys i s . An
example for the lexical item "each" might be

Q/P - e a c h (P , Q) .

Here the operator Q/P is such that when the "each"
item modifies, say, an item having logical form
man(X), P gets unified with man(X), and the re-
sulting semantic item is

@Q - each(~.an(X),Q)

w h e r e @q is an operator which causes Q t o get uni-
fied wi~h the logical form of a further modificand.
Details ,Jr the dse of semantic items will be given
in Section A.

Now let us look at the syntactic component of
a sample HLG which covers the same ground as a
welt-known DCG. The following DCG is taken essen-
tially from Pereira and Warren (1980). It is the
sort of DCG that builds logical forms directly Dy
manipulating partial logical forms in arguments of
the grammar symbols.

sentfP) --> np(X,PI,P): vp(X,Pl).
np(X,P~,P) --~ detfP2,PI,P): noun(X,P3):

r e l c l a u s e (X , P 3 , P 2) .
n p (X , P , P) - - > name(X) .
v p (X , P) - -> t r a n s v e r b f X , Y , P l) : n p (Y , P l , P) .
vpfX,P~ - - > i n t r a n s v e r b (X , P) .
r e l c b t u s e (X , P l , P l & P 2) - - > + t h a t : v p (X , P 2) .
r e l c ~ a u s e (* , P , P) - - > n i l .
d e t (P I , P 2 , P) - -> +D: $ d t ~ D , P I , P 2 , P) .
nounfX,P) --> +N: SnfN,X,P).
name(X) - - > +X: $nm(X).
t r a n s v e r b (X , Y , P) - - > +V: $ t v (V , X , Y , P) .
i n t r a n s v e r b (X , P) - - > +V: $ i v (V , X , P) .

/ ~ Lex icon * /

n(maa,X,man(X)). n(woman, X,woman (X)) .
~ (j o h n) . nm(mary).

106

d t (e v e r y , P 1 , P 2 , a l l (P 1 , P 2)) .
dt(a,PI,P2,ex(Pl,P2)).
tv(loves,X,Y,love(X,Y)).
iv(lives,X,live(X)).

The syntactic component of an analogous HLG is as
follows. The lexicon is exactly the same as that
of the preceding DCG. For reference below, this
grammar will be called MLGRAH.

strongnonterminals(sent.np.relclause.det.nil).

sent ~> np(X): vp(X).
np(X) => dec: noun(X): relclause(X).
np(X) ~> name(X).
vp(X) ~> transverb(X,Y): np(Y).
vp(X) ~> intransverb(X).
relclause(X) ~> +that: vp(X).
relclause(*) ~> nil.
d e t ~ > +O: S d t (D , P 1 , P 2 , P) : P Z / P I - P .
noun(X) ----> +N: S n (N , X , P) : I - P .
name(X) ~> +X: Snm(X).
transverb(X,Y) :> +V: $tv(V,X,Y,P): I-P.
intransverb(X) = > +V: $iv(V,X,P): l-P

This small grammar illustrates all the ingredients
of HLG syntax rules except the shift operator. The
shift will be illustrated below. Note that 'sent'
and 'np' are strong categories but 'vp' is weak.
A result is that there will be no call to semantics
at the end of the 'vp' rule. Instead, the semantic
structures associated with the verb and object are
passed up to the 'sent' level, so that the subject
and object are "thrown into the same pot" for se-
mantic combination. (However, their surface order
is not forgotten.)

There are only two types of modification op-
erators appearing in the semantic items of this MLG:
'I' and P2/PI. The operator 'i' means 'left-
conlotn . Its effect is to left-conjoin its asso-
ciated logical form to the logical form of the
modificand (although its use in this small grammar
is almost trivial). The operator P2/PI is associ-
ated with determiners, and its effect has been il-
lustrated above.

The semantic component will be given below in
Section &. A sa~_ple semantic analysis for the
sentence "Every man that lives loves a woman" is

all(man(Xl)&live(Xl),ex(woman(X2),love(Xl,X2))).

This is the same as for the above DCG. We will also
show a sample parse in the next section.

A fragment of an MLG illustrating the use of
the shift in the treatment of possessive noun
phrases is as follows:

np ~---> deC: n p l .
np l = > premods: noun: np2.
vp2 ~ > pos tmods .
np2 ~ > poss : %npl .

_The idea of this fragment can be described in a
rough procedural way, as follows. In parsing an
np, one reads an ordinary determiner (deC), then

goes t o n p l . In n p l , one r e a d s several premodifiers
(premods), say adjectives, then a head noun, then
goes to np2. [n np2, one may either finish by
reading postmodifiers (postmods), OR one may read
an apostrophe-s (poss) and then SHIFT back to npl.
Illustration for the noun phrase, "the old man's
dusty hat":

the old man 's
np det npl premods noun np2 poss %npl

dusty hat (nil)
premods noun np2 postmods

When the shift is encountered, the syntactic
structures (in the two-pass mode) are manipulated
(in the compiled rules) so that the initial np ("the
old man") becomes a left-embedded sub-structure of
the larger np (whose head is "hat"). But if no
apostrophe-s is encountered, then the structure for
"the old man" remains on the top level.

3. C O M P I L A T I O N OF MLG S Y N T A X R U L E S

In describing rule compilation, we will first
look at the two-pass mode, where syntactic struc-
tures are built in the first pass, because the re-
lationship of the analysis structures to the syntax
rules is more direct in this case.

The syntactic structures manipulated by the
c o m p i l e d rules are represented as s y n t a c t i c i t ems ,
wh ich a re terms o f the form

syn(Features,Oaughters)

where Features is a feature list (to be defined), and
Daughters is a list consisting of syntactic items
and terminals. Both types of terminal (surface and
logical) are included in Daughters, but the dis-
playing procedures for syntactic structures can
optionally filter out one or the other of the two
types. A f e a t u r e l i s t is of the form nt:Argl, where
nt is the principal fun=tot of a strong non-terminal
and Argl is its first argument. (If nt has no ar-
guments, we take Argl=nil.) It is convenient, in
large grammars, to use this first argument Argl to
hold a list (based on the operator ':') of gram-
matical features of the phrase analyzed by the
non-terminal (like n u m b e r and p e r s o n for noun
phrases).

[n compiling DCG rules into Prolog clauses,
each non-terminal gets two extra arguments treated
as a difference list representing the word string
analyzed by the non-terminal. In compiling MLG
rules, exactly the same thing is done to handle word
strings. For handling syntactic structures, the
MLG rule compiler adds additional arguments which
manipulate 'syn' structures. The number of addi-
tional arguments and the way they are used depend
on whether :he non-terminal is strong or weak. If
the original non-terminal is strong and has the form

nt(Xl , Xn)

then in the compiled version we will have

107

nt(Xl Xn, Syn, Strl,Str2).

Here there is a single syntactic structure argument,
Syn, representing the syntactic structure of the
phrase associated by nt with the word string given
by the difference list (Strl, Sir2).

On the other hand, when the non-terminal nt
is weak, four syntactic structure arguments are
added, producing a compiled predication of the form

nt(Xl, Xn, SynO,Syn, Hodsl,Hods2, Strl,Str2).

Here t h e pair (Hodsl, Hods2) holds a difference list
for the sequence of structures analyzed by the weak
non-terminal nt. These structures could be 'syn'
structures or terminals, and they will be daughters
(modifiers) for a 'syn' structure associated with
the closest higher call to a strong non-terminal
-- l e t us call this higher 'syn structure the ma-
t r i x 'syn' s t ruc tu re . The other pa i r (SynO, Syn)
represents the changing view o f what the matr ix
'syn' s t ruc tu re ac tua l l y should be, a view that may
change because a s h i f t is encountered whi le s a t i s -
fy ing nt. SynO represents the version before sat -
i s f y i ng nt , and Syn represents the vers ion a f t e r
satisfying nt. If no shift is encountered while
satisfying nt, then Syn will just equal SynO. But
if a shift is encountered, the old version SynO will
become a daughter node in the new version Syn.

In compiling a rule with several non-terminals
in the rule body, linked by the sequencing operator
':', the argument pairs (SynO, Syn) and (Hodsl,
Hods2) for weak non-terminals are linked, respec-
tively, across adjacent non-terminals in a manner
similar to the linking of the difference lists for
word-string arguments. Calls to strong non-
terminals associate 'syn' structure elements with
the modifier lists, just as surface terminals are
associated with elements of the word-string lists.

Let us look now at the compilation of a set
of rules. We will take the noun phrase grammar
fragment illustrating the shift and shown above in
Section 2, and repeated for convenience here, to-
gether with declarations of strong non-terminals.

strongnon~erminals(np.det.noun.poss.nil).

np => det: npl.
npl => premods: noun: np2.
np2 ----~-> postmods.
rip2 => poss: %npl.

The compiled rules are as follows:

np[Syn, Strl,Str3) <-
det(Hod, Strl,Str2) &
npl(syn(np:nil,Hod:Hods),Syn,

Hods,nil, Str2,Str3).

npl(Synl,Syn3, Hodsl,Hods3, Strl,Str4) <-
premods(Synl,Syn2, Hodsl,Hod:Hods2,

Strl,Str2) &
noun(Hod, Str2,Str3) &
np2(Syn2,Syn3, Hods2,Hods3, Str3,Str4).

np2(Synl,Syn2, Hodsl,Hods2, Strl,Str2) < -

postmods(Synl,Syn2, Hodsl,Hods2, Strl,Str2).

np2(syn(Feas,HodsO),Syn, Hod:Hodsl,Hodsl,
Strl,Str3) <-

p o s s (M o d , Strl,Str2) &
npl(syn(Feas,syn(Feas,HodsO):Hods2),Syn,

Hods2,nil, Str2,Str3).

In the first compiled rule, the structure Syn
to be associated with the call to 'np' appears again
in the second matrix structure argument of 'npl'
The first matrix structure argument of 'npl' is

syn(np:n i l ,Mod:Hods) .

and this will turn out to be the value of Syn if
no shifts are encountered. Here Hod is the 'syn'
structure associated with the determiner 'det', and
Hods is the list of modifiers determined further
by 'npi'. The feature list np:nil is constructed
from the leading non-terminal 'np' of this strong
rule. (It would have been np:Argl if np had a
(first) argument Argl.)

[n the second and third compiled rules, the
matrix structure pairs (first two arguments) and
the modifier difference list pairs are linked in a
straightforward way to reflect sequencing.

]'be fourth rule shows the effect of the shift.
Here syn(Feas,HodsO), the previous "conjecture" for
the matrix structure, is now made simply the first
modifier in the larger structure

syn(Feas,syn(Feas,HodsO):Hods2)

which becomes the new "conjecture" by being placed
in the first argument of the further call to 'npl'.
If the shift operator had been used in its binary
form FO%npl, then the new conjecture would be

syn(NT:F,syn(NT:FO,Mods0):Hods2)

where the old conjecture was syn(NT:F,HodsO). [n
larger grammars, this allows one to have a com-
pletely correct feature list NT:FO for the left-
embedded modifier.

To illustrate the compilation of terminal
symbols, let us look at the rule

det => +O: Sdt(D,PI,P2,P): P2/Pt-P.

from the grammar HLGRAM in Section 2. The compiled
rule is

det(syn(det:nil,+D:P2/PI-P:nil), D.Str,Str) <-
dt(D,PI,P2,P).

Note that both the surface terminal +D and the
logical terminal P2/PI-P are entered as modifiers
of the 'det' node. The semantic interpretation
component looks only at the logical terminals, but
in certain applications it is useful to be able to
see the surface terminals in the syntactic struc-
tures. As mentioned above, the display procedures
for syntac=i¢ structures can optionally show only
one type of terminal.

108

The display of the syntactic structure of the
sentence "Every man loves a woman" produced by
MLGRAM is as follows.

sentence:nil
np:Xl

det:nil
X2/X3-alI(X3,X2)

l-man(Xl)
l-love(Xl,XA)
np:XA

det:nil
XS/X6-ex(X6,XS)

l-woman(X&)

Note that no 'vp' node is shown in the parse tree;
'vp' is a weak non-terminal. The logical form
produced for this tree by the semantic component
given in the next section is

all(man(Xl), ex(woman(X2),love(XI,X2))).

Now let us look at the compilation of syntax
rules for the one-pass mode. In this mode, syn-
tactic structures are not built, but semantic
structures are built up directly. The rule compiler
adds extra arguments to non-terminals for manipu-
lation of semantic structures, and adds calls to
the top-level semantic interpretation procedure,
'semant'.

The procedure 'semant' builds complex semantic
structures out of simpler ones, where the original
building blocks are the logical terminals appearing
in the MLG syntax rules. In this process of con-
struction, it would be possible to work with se-
mantic items (and in fact a subsystem of the rules
do work directly with semantic items), but it ap-
pears to be more efficient to work with slightly
more elaborate structures which we call augmented
semantic items. These' are terms of the form

sem(Feas,Op,LP),

where Op and [2 are such that Op-LF is an ordinary
semantic item, and Fees is either a feature list
or the list terminal:nil. The latter form is used
for the initial augmented semantic items associated
with logical terminals.

As in the two-pass mode, the number of analysis
structure arguments added to a non-terminal by the
compiler depends on whether the non-terminal is
strong or weak. If the original non-terminal is
strong and has the form

nt(Xl, . . . , Xn)

then in the compiled version we will have

nt(Xl, ..., Xn, Semsl,Sems2, Strl,Str2).

Here (Semsl, Sems2) is a difference list of aug-
mented semantic items representing the list of se-
mantic s~ruotures for the phrase associated by n~

with the word s~ring given by the difference list
(Strl, Sir2). In the syntactic (two-pass) mode,
only one argument (for a 'syn') is needed here, but

now we need a list of structures because of a
raising phenomenon necessary for proper scoping,
which we will discuss in Sections A and 5.

When the non-terminal nt is weak, five extra
arguments are added, producing a compiled predi-
cation of the form

nt(Xl, ..., Xn, Fees, SemsO,Sems, Semsl,Sems2,
Strl,Str2).

Here Fees is the feature list for the matrix strong
non-terminal. The pair (SemsO, Sems) represents
the changing "conjecture" for the complete list of.
daughter (augmented) semantic items for the matrix
node, and is analogous to first extra argument pair
in the two-pass mode. The pair (Semsl, Sems2) holds
a difference list for the sequence of semantic items
analyzed by the weak non-terminal nt. Semsl will
be a final sublist of SemsO, and Sems2 will of
course be a final sub|ist of Semsl.

For each strong rule, a cal-i to 'semant' is
added at the end of the compiled form of the rule.
The form of the call is

semant(Feas, Sems, Semsl,Sems2).

Here teas is the feature list for the non-terminal
on the left-hand side of the rule. Sems is the final
version of the list of daughter semantic items
(after all adjustments for shifts) and (SemsL,
Sems2) is the difference list of semantic items
resulting from the semantic interpretation for this
level. (Think of Fees and Sems as input to
'semant', and (Semsl, Sems2) as output.) CSemsl,
Sems2) will be the structure arguments for the
non-terminal on the left-hand side of the strong
rule. A call to 'semant' is also generated when a
shift is encountered, as we will see below. The
actual working of 'semant' is the topic of the next
section.

For the shift grammar fragment shown above,
the compiled rules are as follows.

np(Sems,Sems0, Strl,Str3) <-
det(Semsl,Sems2, Strl,Str2) &
npl(np:nil, Semsl,Sems3, Sems2,nil, Str2,Scr3) a
semant(np:nil, Sems3, Sems,SemsO).

npl(Feas, Semsl,Sems3, Semsa,Sems7, Strl,St[~) <-
premods(Feas, Semsl,Sems2, SemsA,Sems5,

Strl,Str2) &
noun(Sems5,Sems6, Str2,Str3) &
np2(Feas, Sems2,Sems3, Sems6,SemsT, Str3,StrA).

np2(Feas, Semsl,Sems2, Sems3,Semsd, Strl,Str2) <-
postmods(Feas, Semsl,Sems2, Sems3,SemsA,

Strl,Str2).

npE(Feas, Semsl.SemsA, SemsS,Sems6, Strl,Str3) <-
poss(SemsS,Sems6, Strl,Str2) &
semant(Feas, Semsl, Sems2,Sems3) &
npl(Feas, Sems2,Sems~, Sems3,nil, Str2,Str3).

In the first compiled rule (a strong rule), the pair
(Seres, SemsO) is a difference list of the semantic
items analyzing the noun phrase. (Typically there

109

will just be one element in this list, but there
can be more when modifiers of the noun phrases
contain quantifiers that cause the modifiers to get
promoted semantically to be sisters of the noun
p h r a s e .) T h i s d i f f e r e n c e l i s t i s t h e o u t p u t o f t h e
c a l l to ' s e m a n t ' c o m p i l e d in a t t h e end o f t h e f i r s t
rule. The input to this call is the list Sems3
(along with the feature list np:nil). We arrive
at Sems3 as follows. The list Semsl is started by

, !

the call to det ; its first element is the
determiner (if there is one), and the list is con-
tinued in the list Sems2 of modifiers determined
further by the call to 'npl'. In this call to 'npl',
the initial list Semsl is given in the second ar-
gument of 'npl' as the "initial verslon for the
final list of modifiers of the noun phrase. Sems3,
being in the next argument of 'npl', is the "final
version" of the np modifier list, and this is the
list given as input to 'semant'. [f the processing
of 'npl' encounters no shifts, then Sems3 will just
equal 5ems I.

[n the second compiled rule (for 'npl'), the
"versions" of the total list of modifiers are [inked
in a chain

(Semsl, 5ems2, Sems3)

in the second and third arguments of the weak non-
terminals. The actual modifiers produced by this
rule are linked in a chain

(SemsA, Sems51 Sems6, SemsT)

in the fourth and fifth arguments of the weak non-
terminals and the first and second arguments of the
strong non-terminals. A similar situation holds
for the first of the 'np2' rules.

[n the second 'npZ' rule, a shift is encount-
ered, so a call to 'semant' is generated. This is
necessary because of the shift of levels; the mod-
ifiers produced so far represent all the modifiers
in an np, and these must be combined by 'semant'
to get the analysis of this np. As input to this
call to 'semant', we take the list Semsl, which is
the current version of the modifiers of the matrix
np. The output is the difference list .(Sems2,
gems3). Sems2 is given to the succeeding call to
'npl' as the new current version of the matrix
modifier list. The tail Sems3 of the difference
list output by 'semant' is given to 'npl' in its
fourth argument to receive further modifiers. SemsA
is the f~.nal uersion of the matrix modifier list,
determined by 'npi I , and this information is also
put in the third a,'gument of 'np2'. The difference
list (Sems5, Semsb) contains the single element
produced by 'poss', and this list tails off the list
Semsl.

When a semantic item Op-LF occurs in a rule
body, the rule compiler inserts the augmented se-
mantic item sem(terminal:nil,Op,LF). As an example,
the weak rule

transverb(X,Y) ~ > +V: $tv(V,X,Y,P): I-P.

compiles into the clause

transverb(X,Y, Feas, Semsl,Semsl,
sem(terminal:nil,l,P):Sems2,Sems2,

V.Str,Str) <-
tv(V,X,Y,P).

The strong rule

det -----> +D: Sdt(D,PI,P2,P): P2/PI-P.

compiles into the clause

det(Semsl,Sems2, D.SemsA,Sems&)<-
dt (D,P1,P2,P) &
semant(det:nil,

sem(terminal:nil,P2/PI,P):nil,
Semsl,Sems2).

4. SEMANTIC INTERPRETATION FOR MLG'S

The semantic interpretation schemes for both
the one-pass mode and the two-pass mode share a
large core of common procedures; they differ only
at the top level. In both schemes, augmented se-
mantic items are combined with one another, forming
more and more complex items, until a single item
is constructed which represents the structure of
the whole sentence. In this final structure, only
the logical form component is of interest; the other
two components are discarded. We will describe the
top levels for both modes, then describe the common

core.

The top level f o r the one-pass mode is simpler,
because semantic interpretation works in tandem with
the parser, and does not itself have to go through
the parse tree. The procedure 'semant', which has
interleaved calls in the compiled syntax rules,
essentially is the top-level procedure, but there
is some minor cleaning up that has to be done. If
the top-level non-terminal is 'sentence' (with no
arguments), then the top-level analysis procedure
for the one-pass mode can be

analyzeCSent) <-
sentence(Sems,nil,Sent,nil) &
semant(top:nil,Sems,sem(*,e,iF):nil,nil) &
outlogform(LF).

Normally, the first argument, Sems, of 'sentence'
will be a list containing a single augmented se-
mantic item, and its logical form component will
be the desired logical form. However, for some
grammars, the ~dditional call to 'semant' is needed
to complete the modification process. The procedure
'outlogform' simplifies the logical form and outputs
it.

~ne definition of 'semant' itself is given in
a single clause:

s e m a n t (F e a s , S e m s , S e m s 2 , S e m s 3) <-
r e o r d e r (S e m s , S e m s l) &
modlist(Semsl,sem(Feas,id,t),

Sem,Sems2,Sem:Sems3).

Here , t h e p r o c e d u r e ' r e o r d e r ' t a k e s t h e l i s t Sems
of augmented semantic items to be combined and re-

110

orders it (permutes it), to obtain proper (or most
likely) scoping. This procedure belongs to the
common core of the two methods of semantic inter-
pretation, and will be discussed further below.
The procedure 'modlist' does the following. A call

modlist(Sems,SemO,Sem,Semsl,Sems2)

takes a list Sems of (augmented) semantic items and
combines them with (lets them modify) the item SemO,
producing an item Sem (as the combination), along
with a difference list (Semsl, Sems2) of items which
are promoted to be sisters of gem. The leftmost
member of Sems acts as the outermost modifier.
Thus, in the definition of 'semant', the result list
Semsl of reordering acts on the trivial item
sem(Feas,id,t) to form a difference list (gems2,
Sem:Sems3) where the result Sem is right-appended
to its sisters. 'modlist' also belongs to the
common core, and will be defined below.

The top level for the two-pass system can be
defined as follows.

analyze2(Sent) <-
sentence(gyn,Sent,nil) &
synsem(Syn,Sems,nil) &
semant(top:nil,gems,sem(*,e,LF):nit,niI) &
outlogform(LF).

The only difference between this and 'analyze' above
is that the call to 'sentence' produces a syntactic
item Syn, and this is given to the procedure
'synsem'. The latter is the main recursive proce-
dure of the two-pass system. A call

synsem(Syn,SemsI,Sems2)

takes a syntactic item Syn and produces a difference
list (Semsl, Sems2) of augmented semantic items
representing the semantic structure of Syn. (Typ-
i c a l l y , this list will just have one element, but
it can have more if modifiers get promoted to sis-
ters of the node.)

The definition of 'synsem' is as follows.

synsem(syn(Feas,Mods),Sems2,Sems3) <-
synsemlist(Mods,Sems) &
reorder(Sems,Semsl) &
modlist(Semsl,sem(Feas,id,t),

Sem,Sems2,Sem:Sems3).

Note that this differs from the definition of
'semant' only in that 'synsem' must first
recursively process the daughters Mode of its input
syntactic item before calling 'reorder' and
'modlist' The procedure 'synsemlist' that proc-
esses the daughters is defined as follows.

synsemlist(syn(Feas,Mods0):Mods,Semsl) <- /&
synsem(syn(Feas,ModsO),SemsI,Sems2) &
synsemlist(Mods,Sems2).

synsemlist((Op-LF):Mods,
sem(terminal:nil,Op,LF):Sems) <- /&

synsemlist(Mods,Sems).
synsemlist(Nod:Mods,Sems) <-

synsemlist(Mods,Sems).
synsemlist(nil,nil).

The first clause calls 'synsem' recursively when
the daughter is another 'syn' structure. The second
clause replaces a logical terminal by an augmented
semantic item whose feature list is terminal:nil.
The next clause ignores any other type of daughter
(this would normally be a surface terminal).

Now we can proceed to the common core of the
two semantic interpretation systems. The procedure
'modlist' is defined recursively in a straightfor-
ward way:

modlist(Sem:Sems, Sem0, Sem2, Semsl,Sems3) <-
modlist(Sems, SemO, Seml, Sems2,Sems3) &
modify(Sem, Seml, Sem2, Semsl,Sems2).

modlist(nil, Sem, gem, Sems,Sems).

Here 'modify' takes a single item Sem and lets it
operate on Seml, giving Sem2 and a difference list
(Semsl, Sems2) of sister items. Its definltion is

modify(Sem, Seml, Seml, Sem2:Sems,Sems~ <-
raise(Sem,Seml,Sem2) &/.

modify(sem(*,Op,LF),
sem(Feas,Opl,LFI),
sem(Feas,Op2,LF2), Sems,Sems) <-

mod(Op-LF, OpI-LFI, Op2-LF2).

Here 'raise' is responsible for raising the
item Seml so that it becomes a sister of the item
Seml; gem2 is a new version of Seml after the
raising, although in most cases, gem2 equals geml.
Raising occurs for a noun phrase like "a chicken
in every pot", where the quantifier "every" has
higher scope than the quantifier "a". The semantic
item for "every pot" gets promoted to a left sister
of that for "a chicken". 'raise' is defined bas-
ically by a system of unit clauses which look at
specific types of phrases. For the small grammar
MLGRAM of Section 2, no raising is necessary, and
the definition of 'raise' can just be omitted.

The procedures 'raise' and 'reorder' are two
key ingredients of reshaping (the movement of se-
mantic items to handle scoping problems), which was
discussed extensively in McCord (1982, 1981). [n
those two systems, reshaping was a separate pass
of semantic interpretation, but },ere, as in McCord
(198&), reshaping is interleaved with the rest of
semantic interpretation. In spite of the new top-
level organization for semantic interpretation of
MLG's, the low-level procedures for raising and
reordering are basically the same as in the previous
systems, and we refer to the previous reports for
further discussion.

The procedure 'mod', used in the second clause
for 'modify', is the heart of semantic interpreta-
tion.

mod(Sem, Seml, Sem2)

means that the (non-augmented) semantic item Sem
modifies (combines with) the item Semi to give the
item Sem2. 'mod' is defined by a system consisting
basically of unit clauses which key off the mod-
ification operators appearing in the semantic items.

111

In the experimental MLG described in the next sec-
tion, there are 22 such clauses. For the grammar
MLGRAM of Section 2, the following set of clauses
suffices.

mod(id -~, Sem, Sem) <- / .
mod(Sem, id -~, Sem) <- /.
mod(l-P, Op-Q, Op-R) <- and(P,Q,R).
mod(P/Q-R, Op-Q, @P-R).
mod(@P-Q, Op-P, Op-Q).

The first two clauses say that the operator 'id'
acts like an identity. The second clause defines
'i' as a left-conjoining operator (its corresponding
logical form gets left-conjoined to that of the
modificand). The call and(P,Q,R) makes R=P&Q, ex-
cept that it treats 't' ('true') as an identity.
The next clause for 'mod' allows a quantifier se-
mantic item like P/Q-each(Q,P) to operate on an item
like I-man(X) to give the item @P-each(man(X),P).
The final clause then allows this item to operate
on I-live(X) to give l-each(man(X),live(X)).

The low-level procedure 'mod' is the same (in
purpose) as the procedure 'trans' in HcCord (1981),
amd has close similarities to 'trans' in McCord
(1982) and 'mod' in McCord (198&), so we refer to
this previous work for more illustrations of this
approach to modification.

For MLGRAH, the only ingredient of semantic
interpretation remaining to be defined is 'reorder'.
We can define it in a way that is somewhat more
general than is necessary for this small grammar,
but which employs a technique useful for larger
grammars. Each augmented semantic item is assigned
a precedence number, and the reordering (sorting)
is done so that wh@n item B has higher precedence
number than item A, then B is ordered to the left
of A; otherwise items are kept in their original
order. The following clauses then define 'reorder'
in a way suitable for MLGRAM.

reorder(A:L,H) <-
reorder(L,Ll) & insert(A,Li,M).

reordef(nit,n£1).

insert(A,B:L,S:Ll) <-
prec(A,PA) & prec(B,PB) & gt(PB,PA) &/&
insert(A,L,Li).

insert(A,L,a:L~.

prec(sem(term~nal:*,e,~),2) <- /.
pruc(sem(relc!ause:e,e,e),l) <- /.
prec(e,3).

~nus terminals are ordered to the end, excep t not
after relative clauses. In particular, the subject
and object of a sentence are ordered before the verb
(~ terminal in the sentence), and this allows the
ssraightforward process of modification in :mod'
to scope the quantifiers of the subject and object
over the material of the verb. One can alter the
definition of 'prec' to get finer distinctions in
~coping, and for this we refer to McCord (1982,
1981).

For a grammar as small as MLGRAM, which has
no treatment of scoping phenomena, the total tom-

plexity of the MLG, including the semantic inter-
pretation component we have given in this Section,
is certainly greater than that of the comparable
DCG in Section 2. However, for larger grammars,
the modularity is definitely worthwhile -- concep-
tually, and probably in the total size of the sys-
tem.

5. AN E X P E R I M E N T A L MLG

This section describes briefly an experimental
MLG, called HODL, which covers the same linguistic
ground as the grammar (called HOD) in HcCord (198l).
The syntactic component of HOD, a DCG, is essen-
tially the same as that in HcCord (1982). One
feature of these syntactic components is a system-
atic use of slot-filling to treat complements of
verbs and nouns. This method increases modularity
between syntax and lexicon, and is described in
detail in McCord (1982).

One purpose of HOD, which is carried over to
MODL, is a good treatment of scoping of modifiers
and a good specification of logical form. The
logical form language used by >IODL as the target
of semantic interpretation has been improved some-
what over that used for HOD. We describe here some
of the characteristics of the new logical form
language, called LFL, and give sample LFL analyses
obtained by MODL, but we defer a more detailed de-
scription of LFL to a later report.

The main predicates of LFL are word-senses for
words in the natural language being analyzed, for'
example, believel(X,Y) in the sense "X believes that
Y holds". Quantifiers, like 'each', are special
cases of word-senses. There are also a small number
of non-lexJcal predicates in LFL, some of which are
associated with inflections of words, like 'past'
for past tense, or syntactic constructions, like
'yesno' for yes-no questions, or have significance
at discourse level, dealing for instance with
topic/comment. The arguments for predicates of LFL
can be constants, variables, or other logical forms
(expressions of LFL).

Expressions of LFL are either predications (in
the sense just indicated) or combinations of LFL
expressions using the conjunction '&' and the in-
dexing operator ':'. Specifically, if P is a log-
ical form and E is a variable, then P:E (read "P
indexed by E"~ is also a logical form. When an
indexed logical form P:E appears as part of a larger
logical form Q, and the index variable E is used
elsewhere in Q. then E can be thought of roughly
as standing for P together with its "context".
Contexts include references to time and place which
are normally left implicit in natural language.
When P specifies an event, as in see(john,mary),
writing P:E and subsequently using E will guarantee
that E refers to the same event. In the logical
form language used in McCord (1981), event variables
(as arguments of verb and noun senses) were used
for indexing. But the indexing operator is more
powerful because it can index complex logical forms.
For some applications, it is sufficient to ignore
contexts, and in such cases we just think of P:E
as verifying P and binding E to an instantiation

112

of P. In fact, for PROLOG execution of logical
forms without contexts, ':' can be defined by the
single clause: P:P <- F.

A specific purpose of the MOD system in McCord
(1981) was to point out the importance of a class
of predicates called focai izers, and to offer a
method for dealing with them in semantic interpre-
tation. Focalizers include many determiners,
adverbs, and adjectives (or their word-senses), as
well as certain non-lexical predicates like 'yesno'.
Focalizers take two logical form arguments called
the base and the fOCUS:

focalizer(Base,Focus).

The Focus is often associated with sentence stress,
hence the name. The pair (Base, Focus) is called
the SCOpe of the focalizer.

The adverbs 'only' and 'even' are focalizers
which most clearly exhibit the connection with
stress. The predication only(P,Q) reads "the only
case where P holds is when Q also holds". We get
different analyses depending on focus.

John only buys books at Smith's.
only(at(smith,buy(john,X1)), book(X1)).

John only buys books at Smith's.
only(book(Xl)&at(X2,buy(john,Xl)), X2=smith).

quantificational adverbs like 'always' and
'seldom', studied by David Lewis (1975), are also
focalizers. Lewis made the point that these
quantifiers are properly considered unseJKtJve, in
the sense that they quantify over all the free
variables in (what we call) their bases. For ex-
ample, in

John always buys books at Smith's.
always(book(Xl)&at(X2,buy(john,Xl)), X2=smith) •

the quantification is over both X1 and X2. (A
paraphrase is "Always, if X1 is a book and John buys
X1 at X2, then X2 is Smith's".)

Quantificational determiners are also
focalizers (and are unselective quantifiers); they
correspond closely in meaning to the
quantificational adverbs ('all' - 'always', 'many'

'often', 'few' - 'seldom', etc.). We have the
paraphrases:

Leopards often attack monkeys in trees.
often(leopard(Xl)&tree(X2)&in(X2,attack(Xl,X3)),

monkey(X3)).

Many leopard attacks in trees are (attacks)
on monkeys.

many(leopard(Xl)&tree(X2)&in(X2,attack(Xi,X3)),
monkey(X3)).

Adverbs and adjectives involving comparison
or degree along some scale of evaluation (a wide
class) are also focalizers. The base specifies the
base of comparison, and the focus singles out what

is being compared to the base. This shows up most
clearly in the superlative forms. Consider the
adverb "fastest":

John ran fastest yesterday.
fastest(run(john):E, yesterday(E)).

John ran fastest yesterday.
fastest(yesterday(run(X)), X=john).

In the first sentence, with focus on "yesterday",
the meaning is that, among all the events of John's
running (this is the base), John's running yesterday
was fastest. The logical form illustrates the in-
dexing operator. [n the second sentence, with focus
on "John", the meaning is that among all the events
of running yesterday (there is an implicit location
for these events), John's running was fastest.

As an example of a non-lexical focalizer, we
have yesno(P,q), which presupposes that a case of
P holds, and asks whether P & Q holds. (The pair
(P, Q) is like Topic/Comment for yes-no questions.)
Example:

Did John see M@ry yesterday?
yesno(yesterday(see(john,X)), X=mary).

It is possible to give Prolog definitions for
most of the focalizers discussed above which are
suitable for extensional evaluation and which amount
to model-theoretic definitions of them. This will
be discussed in a later report on LFL.

A point of the grammar HODL is to be able to
produce LFL analyses of sentences using the modular
semantic interpretation system outlined in the
preceding section, and to arrive at the right (or
most likely) scopes for focalizers and other modi-
fiers. The decision on scoping can depend on
heuristics involving precedences, on very reliable
cues from the syntactic position, and even on the
specification of loci by explicit underlining in
~he input string (which is most relevant for
adverbial focalizers). Although written text does
not often use such explici~ specification of
adverbial loci, it is important that the system can
get the right logical form after having some spec-
ification of the adverbial focus, because this
specification might be obtained from prosody in
spoken language, or might come from the use of
discourse information. [t also is an indication
of the modularity of the system that it can use the
same syntactic rules and parse path no matter where
the adverbial focus happens to lie.

Most of the specific linguistic information
for semantic interpretation is encoded in the
procedures 'mod', 'reorder', and 'raise', which
manipulate semantic items. In MODL there are 22
clauses for the procedure 'mod', most of which are
unit clauses. These involve ten different modifi-
cation operators, four of which were illustrated
in the preceding section. The definition of 'mo<l'
in MODL is taken fairly directly from the corre-
sponding procedure 'trans' in HOD (McCord, 1981),
although there are some changes involved in handling
the new version of the logical form language (LFL),

113

especially t h e indexing operator. The definitions
of 'reorder' and 'raise' are essentially the same
as for procedures in HOD.

An illustration of analysis in the two-pass
mode in HODL is now given. For the sentence
"Leopards only attack monkeys in trees", the syn-
tactic analysis tree is as follows.

sent
nounph

l-leopard(X)
avp

(P<Q)-only(P,Q)
l-attack(X,Y)
nounph

l-monkey(Y)
prepph

@@R-in(Z,R)
nounph

l-tree(Z)

Here we display complete logical terminals in the
leaf nodes of the tree. An indicat[on of the
meanings of the operators (P<Q) and @@R will be
given below.

[n the semantic interpretation of the prepo-
sitional phrase, the 'tree' item gets promoted (by
'raise') to be a left-sister of the the 'in' item,
and the list of daughter items (augmented semantic
items) of the 'sent' node is the following.

nounph i leopard(X)
avp P<Q only(P,Q)
terminal I attack(X,Y)
nounph 1 monkey(Y)
nounph I tree(Z)
prepph @@R in(Z,R).

Here we di~:play each augmented semantic item
sem(nt:Feas,Op,LF) simply in the form nt Op LF.
The material in the first field of the 'monkey' item
actually shows that it is stressed. The reshaping
p~ocedure 'reorder' rearran6es these items into the
order:

nounph I leopard(X)
nounph 1 tree(Z)
prepph @@R in(Z,R)
terminal I attack(X,Y)
avp P<Q only(P,Q)
nounph 1 monkey(Y)

Next, these items successively modify (according
to the rules for 'mod') the matrix item, sent id
t, with the rightmost daughter acting as innermost
oodifier. The rules for 'mod' involving the oper-
ator (P<Q) associated with only(P,Q) are designed
so that the logical form material to the right of
'only' goes into the focus Q of 'only' and the ma-
terial to the left goes into the base P. The ma-
terial to the right is just monkey(Y). The items
on the left ('leopard', 'tree', 'in', 'attack') are
allowed to combine (through 'mod') in an independent
way before being put into the base of 'only'. The
operator ~@R associated with in(Z,R) causes R to
be botmd to the logical form of the modificand --

attack(X,Y). The combination of items on the left
of 'only' is

leopard(X)&tree(Z)&in(Z,attack(X,Y))

This goes into the base, so the whole logical form
is

only(leopard(X)&tree(Z)&in(Z,attack(X,Y)),
monkey(Y)).

For detailed traces of logical form construction
by this method, see McCord (1981).

An illustration of the treatment of left-
embedding in HODL in a two-pass analysis of the
sentence "John sees each boy's brother's teacher"
is as follows.

sent
nounph

[-(X=john)
l-see(X,W)
nounph

nounph
nounph

determiner
Q/P-each(P,Q)

l-boy(Y)
l-poss

l-brother(Z,Y)
1-poss

1-teacher(W,Z)

Logical form...

each(boy(Y),the(brother(Z,Y),
the(teacher(W,Z),see(john,W)))).

The MODL noun phrase rules include the shift (in a
way that is an elaboration of the shift grammar
fragment in Section 2), as well as rules for slot-
filling for nouns like 'brother' and 'teacher' which
have more than one argument in logical form. Ex-
actly the same logical form is obtained by MODL for
the sentence "John sees the teacher of the brother
of each boy". Both of these analyses involve
raising. [n =he first, the 'poss' node resulting
from the apostrophe-s is raised to become a definite
article. In the second, the prepositional phrases
(their semantic structures) are promoted to be
sisters of the "teacher" node, and the order of the
quantlfiers ts (correctly) reversed.

The syntactic component of MODL was adapted
as closely as possible from that of HOD (a DCG) in
order to get an idea of the efficiency of HLG's.
The fact that the MLG rule compiler produces more
structure-building arguments than are in the DCG
would tend to |engthen analysis times, but it is
hard to predic~ the effect of the different organ-
ization of the semantic interpreter (from a three-
pass system to a one-pass and a two-pass version
of MODL). 7"no followin E five sentences were used
for timing tests.

Who did John say that the man introduced Mary to?
Each book Mary said was given to Bill

114

was written by a woman.
Leopards only attack monkeys in trees.
John saw each boy's brother's teacher.
Does anyone wanting to see the teacher know

whether there are any hooks left in this room?

Using Waterloo Prolog (an interpreter) on an IBM
3081, the following average times t o get the logical
forms for the five sentences were obtained (not
including ~ime for [/0 and initial word separation):

MODL, one-pass mode - 40 milliseconds.
MODL, two-pass mode - 42 milliseconds.
MOD - 35 milliseconds.

So there was a loss of speed, but not a significant
one. MODL has also been implemented in PSC Prolog
(on a 3081). Here the average one-pass analysis
time for the five sentences was improved to 30
milliseconds per sentence.

On the other hand, the MLG grammar (in source
form) ls more compact and easier to understand.
The syntactic components for MOD and MODL were
compared numerically by a Prolog program that totals
up the sizes of all the grammar rules, where the size
of a compound term is defined to be I plus the sum
of the sizes of its arguments, and the size of any
other term is I. The total for MODL was l&33, and
for MOD was 1807, for a ratio of 79%.

So far, nothing has been said in this report
about semantic constraints in HODL. Currently, MODL
exercises constraints by unification of semantic
types. Prolog terms representing type requirements
on slot-fillers must be unified with types of actual
fillers. The types used in MODL are t%/pe trees.
A type tr~ is either a variable {unspecified type)
or a term whose principal functor is an atomic type
(like 'human'), and whose arguments are subordinate
type trees. A type tree T1 is subordinate to a type
tree T2 if either T1 is a variable or the principal
functor of T1 is a subtype (ako) of the principal
functor of T2. Type trees are a generalization of
the t y p e l is ts used by Dahl (1981), which are lists
of the form TI:T2:T3:..., where T1 is a supertype
of T2, T2 is a supertype of TS, ..., and the tail
of the list may be a variable. The point of the
generalization is to allow cross-classification.
Multiple daughters of a type node cross-classify
it. The lexicon in MODL includes a preprocessor
for lexical entries which allows the original lex-
ical entries to specify type constraints in a com-
pact, non-redundant way. There is a Pro|o K
representation for type-hierarchies, and the [exi-
cal preprocessor manufactures full type trees from
a specification of their leaf nodes.

[n the one-pass mode for analysis with MLG's,
logical forms get built up during parsing, so log-
ical forms are available for examination by semantic
checking procedures of the sort outlined in McCord
(198&). If such methods are arguably best, then
there may be more argument for a one-pass system
(with interleaving of semantics). The general
question of the number of passes in a natural lan-
guage understander is an interesting one. The MLG
formalism makes this easier to investigate, because

the same syntactic component can he used with one-
pass or two-pass interpretation.

In MODL, there is a small dictionary stored
directly in Prolog, but MODL is also interfaced to
a large dictionary/morphology system (Byrd, 1983,
1984) which produces syntactic and morphological
information for words based on over 70,000 lemmata.
There are plans to include enough semantic infor-
mation in this dictionary to provide semantic con-
straints for a large MLG.

Alexa HcCray is working on the syntactic com-
ponent for an MLG with very wide coverage. I wish
to thank her for useful conversations about the
nature of the system.

6. COMPARISON WITH OTHER SYSTEMS

The Restriction Grammars (RG's) of HLrschman
and Puder (1982) are logic grammars that were de-
signed with modularity [n mind. Restriction Gram-
mars derive from the Linguistic String Project
{Sager, 1981). An RG consists of conLexE-free
phrase structure rules t o which restrictions are
appended. The rule compiler {written in ProIo K and
compiling into Prolog), sees to it that derivation
trees are constructed automatically during parsing.
The restrictions appended to the rules are basically
Prolog procedures which can walk around, during the
parse, in the partially constructed parse tree, and
can look at the words remaining in the input stream.
Thus there is a modularity between the phrase-
structure parts of the syntax rules and the re-
strictions. The paper contains an interesting
discussion of Prolog representations of parse trees
that make it easy to walk around in them.

A disadvantage of RG's is that the automat-
ically constructed analysis tree is just a deriva-
tion tree. With MLG's, the shift operator and the
declaration of strong non-terminals produce analy-
sis structures which are more appropriate seman-
tically and are easier to read for large grammars.
[n addition, MLG analysis trees contain logical
terminals as building blocks for a modular semantic
interpretation system. The method of walking about
in the partially constructed parse tree is powerful
and is worth exploring further; but the more common
way of exercising constraints in logic grammars by
parameter passing and unification seems to be ade-
quate linguistically and notationally more compact,
as well as more efficient for the compiled Prolog
program.

Another type of logic grammar developed with
modularity in mind is the Definite Clause Trans-
lation Grammars (DCTG's) of Abramson (1984). These
were inspired partially by RG's (Hirschman and
Puder, 1982), by MSG's {Dahl and McCord, 1983), and
by Attribute Grammars (Knuth, 1968). A DCTG rule
is like a DCG rule with an appended list of clauses
which compute the semantics of the node resulting
from use of the rule. The non-terminals on the
right-hand side of the syntactic portion of the rule
can be indexed by variables, and these index vari-
ables can be used in the semantic portion to link
to the syntactic portion. For exa~le, the DCG rule

115

sent(P) --> np(X,P1,P): vp(X,Pl).

from the DCG in Section 2 has the DCTG equivalent:

sent ::= np@N: vp@V <:>
logic(P) ::- N@Iogic(X,PI,P) & V@logic(X,Pl).

(Our notation is slightly different from Abramson's
and is designed to fit the Prolog syntax of this
report.) Here the indexing operator is '@'. The
syntactic portion is separa ted from the semantic
portion by the operator '<:>'. The non-terminals
in DCTG's can have arguments, as in DCG's, which
could be used to exercise constraints (re-
strictions), but it is possible to do everything
by referring to the indexing variables. The DCTG
rule compiler sees to the automatic construction
of a derivation tree, where each node is labeled
not only by the expanded non-terminal but also by
the list of clauses in the semantic portion of the
expanding rule. These clauses can then be used in
computing the semantics of the node. When an in-
dexed non-terminal NT@X appears on the right-hand
side of a rule, the indexing variable X gets
iastantiated to the tree node corresponding to the
expansion of NT.

There is a definite separation of DCTG rules
into a syntactic portion and a semantic portion,
with a resulting increase of modularity. Procedures
involving different sorts of constraints can be
separated from one another, because of the device
of referring to the indexing variables. However,
it seems that once the reader (or writer) knows that
certain variables in the DCG rule deal with the
construction of logical forms, the original DCG rule
is just as easy (if not easier) to read. The DCTG
rule is definitely longer than the DCG rule. The
corresponding MLG rule:

sent : > np(X): vp(X).

is shorter, and does not need to mention logical
forms a t all. Of course, there are relevant
portions of the semantic component that are applied
in connection with this rule, but many parts of the
semantic component are relevant to several syntax
rules, thus reducing the total size of the system.

A claimed advantage for DCTG's is that the
semantics for each rule is listed locally with each
rule. There is certainly an appeal in that, because
with MLG's (as well as the methods in McCord (1982,
lq81)), the semantics seems to float off more on
its own. Semantic items do have a life of their
own, and they can move about in the tree (implic-
itly, in some versions of the semantic interpreter)
because of raising and reordering. This is not as
neat theoretically, but it seems more appropriate
fur capturing actual natural language.

Another disadvantage of DCTG's (as with RG~s)
is that the analysis trees that are constructed
automatically are derivation trees.

The last system to be discussed here, that in
P o r t o and F i l g u e i r a s (1 9 8 &) , d o e s n o t i n v o l v e a new
grammar f o r m a l i s m , b u t a m e t h o d o l o g y f o r w r i t i n g

DCG's. The authors define a notion of i n te rmed ia te
semantic r ep resen ta t i on (I S R) including en t i t i es and
predications, where the p r e d i c a t i o n s can be viewed
as l o g i c a l forms. In w r i t i n g DCG r u l e s , one sys-
t e m a t i c a l l y inc ludes at the end o f the r u l e a c a l l
to a semantic procedure (s p e c i f i c to the g iven r u l e)
which combines ISR's ob ta ined in arguments o f the
non- te rm ina ls on the r i g h t - h a n d s ide o f the r u l e .
Two DCG ru les in t h i s s t y l e (g iven by the au thors)
a re as f o l l o w s :

sent(S) --> np(N): vp(V): $ssv(N,V,S).
vp(S) --> verb(V,trans): np(N): Ssvo(V,N,S).

Here 'ssv' and 'svo' are semantic procedures that
are specific to the 'sent' rule and the 'vp' rule,
respectively. The rules that define 'ssv' and 'svo'
can include some general rules, but also a mass of
very specific rules tied t o specific words. Two
specific rules given by the authors for analyzing
"All Viennese composers wrote ~ waltz" are as fol-
lows.

svo(wrote,M:X,wrote(X)) <- is_a(M,music).
ssv(P:X,wrote(Y),author_of(Y,X)) <-

is_a(P,person).

Note that the verb 'wrote' changes from the surface
form 'wrote', to the intermediate form wrote(X),
then to the form author of(Y,X). [n most logic
grammar systems (including MOD and MODL), some form
of argument filling is done for predicates; infor-
mation is added by binding argument variables,
rather than changing the whole form of the predi-
cation. The authors claim that it is less efficient
to do argument filling, because one can make an
early choice of a word sense which may lead to
failure and backtracking. An intermediate form like
wrote(X) above may only make a partial decision
about the sense.

The value of the "changing" method over the
"adding" method would appear to hinge a lot on the
question of parse-time efficiency, because the
"changing" method seems more complicated conceptu-
ally. I t . seems simpler to have the notion that
there are word-senses which are predicates with a
certain number of arguments, and to deal only with
these, rather than inventing intermediate forms that
help in discrimination during the parse. So it is
partly an empirical question which would be decided
after logic grammars dealing semantically with
massive dictionaries are developed.

.There is modularity in rules written in the
style of Porto and Filgueiras, because all the se-
mantic structure-building is concentrated in the
semantic procedures added (by the grammar writer)
at the ends of the rules, in MLG's, in the one-pass
mode, the same semantic procedure call, to 'semant',
is added at the ends of strong rules, automatically
by the compiler. The diversity comes in the an-
ciliary procedures for ' semant ' , especially 'mod'.
In fact, 'mod' (or 'trans' in McCord, 1981) has
something in common with the Porto-Filgueiras pro-
cedures in that it takes two intermediate repres-
entations (semantic items) in its first two
arguments and produces a new intermediate repre-
sentation in its third argument. However, the

116

changes that 'mod' makes all involve the
modification-operator components of semantic items,
rather than the logical-form components. It might
be interesting and worthwhile to look at a combi-
nation of the two approaches.

Both a strength and a weakness of the Porco-
Filgueiras semantic procedures (compared with
'mod') is that there are many of them, associated
with specific syntactic rules. The strength is that
a specific procedure knows that it is looking at
the "results" of a specific rule. But a weakness
is that generalizations are missed. For example,
modification by a quantified noun phrase (after
slot-filling or the equivalent) is often the same,
no matter where it comes from. The method in MLG's
allows semantic items to move about and then act
by one 'mod' rule. The reshaping procedures are
free to look at specific syntactic information, even
specific words when necessary, because they work
with augmented semantic items. Of course, another
disadvantage of the diversity of the Porto-
Filgueiras procedures is that they must be explic-
itly added by the writer of syntax rules, so that
there is not as much modularity as in MLG's.

REFERENCES

Abramson, H. (1984) "Definite clause translation
grammars," Proc. 1984 International Symposium on
Logic Prograem, ing, pp. 233-240, Atlantic City.

Byrd, R. J. (1983) "Word formation in natural lan-
guage processing systems," Proc. 8th International
Joint Conference on Artificial [ntelli~ence, pp.
704-706, Karlsruhe.

Byrd, R. J. (1984) "The Ultimate Dictionary Users'
Guide," IBM Research Internal Report.

Colmerauer, A. (1978) "Metamorphosis grammars," in
L. Bolt (Ed.), Natural Language Communication with
Computers, Springer-Verlag.

Dahl, V. (1977) "Un systeme deductif d'interrogation
de banques de donnees en espagnol," Groupe
d'Intelligence Artificielle, Univ. d'Aix-Marseille.

Dahl, V. (1981) "Translating Spanish into logic
through logic," American Journal of Computational
Linguistics, vol. 7, pp. 149-164.

Dahl, V, and HcCord, M. C. (1983) "Treating coor-
dination in logic grammars," American Journal of
Computational Linguistics , vol. 9, pp. 69-91.

Heidorn, G. E. (1972) Natural Language Inputs t o a
Simulation Programming System, Naval Postgraduate
School Technical Report No. NPS-55HD7210IA.

Hirschman, ~. and Puder, K. (1982) "Restriction
grammar in Prolog," Proc. First International Logic
Programming Conference, pp . 85-90, Marseille.

Jensen, K. and Heidorn, G. E. (1983) "The fitted
parse: 100% parsing capability in a syntactic
grammar of English," IBM Research Report RC 9729.

Knuth, D. E. (1968) "Semantics of context-free
languages," Mathematical Systems Theory, vol. 2,
pp. 127-145.

Lewis, D. (1975) "Adverbs of quantification," In
E.L. Keenan (Ed.), Formal Semantics of Natural
Language, pp. 3-15, Cambridge University Press.

McCord, M. C. (1982) "Using slots and modifiers in
logic grammars for natural language," Artificial
Intelli~ence, vol 18, pp. 327-367. (Appeared first
as 1980 Technical Report, University of Kentucky.)

McCord, M. C. (1981) "Focalizers, the s c o p i n g
problem, and semantic interpretation rules in logic
grammars," Technical Report, University of
Kentucky. To appear in Logic Programming and its
Applications, D. Warren and M: van Caneghem, Eds.

McCord, M. C. (1984) "Semantic interpretation for
the EPISTLE system," Proc. Second International
Logic Programming Conference, pp. 65-76, Uppsala.

Miller, L. A., Heidorn, G. E., and Jensen, K.
(1981) "Text-critiquing with the EPISTLE system:
an author's aid to better syntax," AFIPS Conference
Proceedings, vol. 50, pp. 649-655.

Pereira, F. (1981) "Extraposition grammars," Amer-
ican Journal of Computational Linguistics, vol. 7,
pp. 243 -256 .

Pereira, F. (1983) "Logic for natural language
analysis," SRI International, Technical Note 275.

Pereira, F. and Warren, D. (1980) "Definite clause
grammars for language analysis - a survey of the
formalism and a comparison with transition net-
works," Artificial Intelligence , vol. 13, pp.
231-278.

Pereira, F. and Warren, D. (1982) "An efficient
easily adaptable system for interpreting natural
language queries," American Journal of Computa-
tional Linguistics, vol. 8, pp. 110-119.

Porto, A. and Filgueiras, M. (1984) "Natural lan-
guage semantics: A logic programming approach,"
Proc. 198A International Symposium on Logid Pro-
gramming, pp. 228-232, Atlantic City.

Sager, N. (1981) Natural Language Information
Processing: A Computer Grammar of English and Its
Applications, Addison-Wesley.

Woods, W. A. (1970) "Transition network grammars
for natural language analysis," C. ACM, vol. 13,
pp. 591-606.

117

