
LEXICAL SEMANTICS IN HUMAN-COMPUTER C O M M U N I C A T I O N

Jarret t Rosenberg

Xerox Office Systems Division
3333 Coyote Hill Road

PaiD Alto, CA 94304 USA

ABSTRACT

Most linguistic studies of human-computer
communication have focused on the issues of syntax and
discourse structure. However, another interesting and
important area is the lexical semantics of command
languages. The names that users and system designers
give the objects and actions of a computer system can
greatly affect its usability, and the lexical issues involved
are as complicated as those in natural languages. 1"his
paper presents an overview o f the various studies of naming
in computer systems, examining such issues as
suggestiveness, memorability, descriptions of categories.
and the use of non.words as names. A simple featural
framework for the analysis of these phenomena is
presented.

0. Introduction

Most research on the language used in human-computer

communication has focused on issues of syntax and discourse; it is

hoped that eke day computers will understand a large subset of
natural language, and the most obvious problems thus appear to
be in parsing and understanding sequences of utterances. The
constraints provided by the sublanguages used in current natural
language interfaces provide a means for making these issues

tractable. Until computers can easily understand these

sublanguages, we must continue to use artificial command
languages, although the increasing richness of these languages
brings them closer and closer to being sublanguages themselves.
This fact suggests that we might profitably view the command

languages of computer systems as natural languages, having the
same three levels of syntax, semantics, and pragmatics {perhaps

also morpho-phonemics, if one considers the form in which the
interaction takes place with the system: special keys, variant

characters, etc.).

A particularly interesting and, till recently, neglected area of
investigation is the lexical semantics of command languages.
What the objects and actions of a system are called is not only

practically important but also as theoretically interesting as the
lexical phenomena of natural languages. In the field of natural
language interfaces there has been some study of complex
references, such as Appelt's (1983) work on planning referring
expressions, and Finin's (1982) work on parsing complex noun
phrases, but individual lexical items have not been treated in

much detail. In contrast, the human factors research on command

languages and user-interface design has looked at lexical
semantics in great detail, though without much linguistic

sophistication. In addition, much of this research is
psycholinguistic rather than strictly linguistic in character,

involving phenomena such as the learning and remembering of

names as much as their semantic relations. Nevertheless, a
linguistic analysis may shed some light on these psycholinguistic

phenomena. In this paper l will present an overview of the kinds

of research that have been done in this area and suggest a simple

featural framework in which they may be placed.

I. Names for Actions

By far the greatest amount of research on lexical semantics in

command languages has been done with names for actions. It is
easy to find instances of commands whose names are cryptic or
dangerously misleading (such as Unix's cat for displaying a file,

and Tenex's list for printing), or ones which are quite
unmemorable (as are most of those in the EMACS editor).
Consequently, there have been a number of studies examining the

suggestiveness of command names, their learnability and

memorability, their compositional structure, and their interaction
with the syntax of the command language.

Suggestiveness. In my own research (Rosenberg, 1982) [
have looked at how the meaning of a command name in ordinary
English may or may not suggest its meaning in a text editor. This

process of suggestiveness may be viewed as a mapping from the
semantics of the ordinary word to the semantics of the system

action, in which the user, given the name of command, attempts to

predict what it does. This situation is encountered most often
when first learning a system, and in the use of menus. A few

simple experiments showed that if one obtains sets of features for

the names and actions, a straightforward calculation of their
similarity can predict people's guesses of what particular
command names denote.

Memorabi l i ty . If we look at the converse mapping from
actions to names, i.e., when, given a system action, ,me attempts
to remember its name, we find a number of studies reporting
similar results. Barnard et al. (19821 had subjects learn a ~et of
either specific or general commands, and found that suhject~
learning the less distinctive, general names used a help menu of

the commands and their definitions more el'ten, were less
confident in recalling the names, and were less able to recall the
actions of the commands. Black and Moran (1982) found that
high-frequency (and thus more general) words were less well

428

remembered than low-frequency ones, and so were more

"'discriminable" names Iones having a greater s imi lar i ty to their

eorrespondLng actions}. Seapin {1981l also found that general

names like select and read were less well recalled than computer-

oriented ones like search and display. Both Black and Moran

{ 1982} and Landauer et al. (i9831 found that users varied widely in

the names they preferred to give to system actions, and that user-

provided names tended to be more general and thus less

memorable,

Congruence a n d h i e r a r c h i c a l n e s s . Carroll (1982) has

demonstrated two important properties of command name

semantics: congruence and hierarchicalness. Two names are

congruent if their relat ions are the same as those of the actions

onto which they are mapped Thus the inverse actions of adding

and subtract ing text are best named by a pair of inverses such as

insert and delete. As might be expected, then, Carroll found that

congruent names like raise-lower are easier to learn than non-

congruent ones like reach-down.

Hierarchicalness has to do with the compositionality of

semantic components and their surface realization. System

actions may have common semantic components along with

additional, dis t inguishing, ones (e.g., moving vs. copying, dele t ing

a character vs. delet ing a word}. The degree of commonali ty may

range from none (all actions are mutual ly disjoint} to total (all

actions are vectors in some n-dimensional matrix). Furthermore,

words or phrases naming such hierarchical actions may or may

not have some of their semantic components realized on the

surface: for example, while both advance and move forward may

have the semantic t 'eatures + MOVE and + FORWARD, only the

lat ter has them realized on the surface. Thus, in hierarchical

names the semantic components and their relat ionships are more

readily perceived, thus enhancing their dist inctiveness. Not

surpris ingly, Carroll has found tha t hierarchical names, such as

move forward-move backward, are easier to learn than non-

hierarchical synonyms such as advance-retreat. Similar resul ts

on the effect of hierarchical s t ruc tur ing are reported by Scapin

(1982}.

Names and the command language syntax. There are two

obvious ways in which the choice of names for commands can

interact with the syntax of the command language. The first

involves selection restr ict ions associated with the name. For

example, one usual ly deletes objects, but stops processes: thus one

wouldn't normally expect a command named delete to take both

files and process-identifiers as objects.

The second kind of interact ion involves the syntactic frames

associated with a word. For example, the sentence frame for

substitute {"substitute x for y"} requires that the new information

be specified before the old, while the frame for replace ("replace y

with x") is jus t the opposite. A name whose syntactic frame is

inconsistent with the command language syntax will thus cause

errors. It should be noted that Barnard et al. {1981} have shown

that total syntactic consistency can override this constraint and

allow users to avoid confusion, but their resul ts may be due to the

fact that the set of two-argument commands they studied a lways

had one a rgument in common, thus encouraging a consistent

placement. Landauer et ol. (1983) found tha t using the same

name for semant ical ly s imi la r but syntact ical ly different

commands created problems.

N o n - w o r d s as n a m e s . Some systems use non-words such as

special characters or icons as commands, e i ther part ly or entirely.

Hemenway (1982) has shown tha t the issues involved in

contructing sets of command icons are much the same as with

verbal names. There are two basic types of non-words: those with

some semantics {e.g., '?' or pictorial icons} and those with l i t t le or

none (e.g., control characters or abs t ract icons}. Non-words with

some semantics behave much like words (so, for example, '?' is

usually used as a name for a query command}. Meaningless non-

words must have some surface property such as their shape

mapped onto their actions. For example, an abstract l ine-drawing

icon in a graphics program (a "brush") might have its shape serve

as an indicator of what kind of line it draws. Control characters

are often mapped onto names for actions which begin with the

same letter (e.g., CONTROL-F might mean "move the cursor

Forward one character"}. S imi lar considerat ions hold for the use

of non-words to denote objects.

2. Names for Objects

In addition to studies of command names, there have been a

number of in teres t ing studies of how users (or system designers}

denote objects. One version of this has been called the "Yellow

Pages problem:" how does a user or a computer describe a given

object in a given context?

Naming objects. Furnas et al. (1983} asked subjects to

describe or name objects in various domains so that other people

would be able to identify what they were ta lk ing about. The

subjects were e i ther to use key words or normal discourse. It was

found that the average likelihood of any two people using the

same main content word in describing the same object ranged

from about 0.07 to 0.18 for the different domains studied.

Carroll 11982) studied how people named their files on an [BM

CMS system (CMS fi lenames are l imited to 18 characters and are

thus usually abbreviated). Subjects gave him a list of their files

along with a description of their contents, and from this, Carroll

inferred what the "unabbreviated" f i lenames were. He found that

85 percent of the f i lenames used simple organizing paradigms, two

of which involved the concepts of congruence and hierarchicalness

discussed above.

Naming categories. Dumais and Landauer'11983} describe

two major problems in naming and describing categories in

computer systems. The first is that of inaccurate category names:

a name for a category may not be very descriptive, or people's

interpretat ion of it may differ radically. The second problem is
tha t of inaccurate classification: categories may be fuzzy or

overlapping, or there may be many different dimensions by which

an object may be classified. Dumais and Landauer examined

whether categories which are hard to describe could be bet ter

named simply by giving example of the i r members. They found

tha t present ing three examples worked as well as using a

description, or a description plus examples. In another study

involving people's descriptions of objects (Dumais and Landauer,

1982} they found tha t their subjects' descriptions were often

vague, and rare ly used negations. The most common paradigm for

429

describing objects was to give a superordinate term followed by
several of the item's distinctive features.

Deixis. The pragmatic issue of deixis should be mentioned,

since some systems allow context-dependent references in some

contexts such as history mechanisms. For example, in

INTERLISP the variable IT refers to the value of the user's last
evaluated top-level expression, but sometimes this interpretation
does not map exactly onto the one the user has. Physical pointing
devices such as the "mouse" allow deixis as a more natural way of

denoting objects, actions, and properties in cases where it is
difficult or tedious to indicate the referent by a referring

expression.

There are, of course, many other aspects of the lexica[
semantics of command languages which cannot be covered here,
such as abbreviations {Benbasat and Wand, 1984}, automatic

spelling correction of user inputs (Durham et al., 1983}, and
generic names (Rosenberg and Moran, 1984}.

3. A F e a t u r a l F r a m e w o r k

While the above results are interesting: they are

disappointing in two respects. To the designer of computer
systems they are disappointing because it is not clear how they are

related to each other: there are no general principles to use in
deciding how to name commands or objects, or what similarities or
tradeoffs there are among the different aspects of naming in

computer systems. To the linguist or psycholinguist they are
disappointing because there is no theory or analytic framework for

describing what is happening. In my own work (Rosenberg, 1983}
[have tried to formulate a simple featural framework in which to

place these disparate results. My intention has been to develop a
simple analysis which can be used in design, rather than a
linguistic theory, but linguists will easily recognize its mixed

parentage. At least a framework using semantic features has the
advantage of simplicity, and can be converted into a more
sophisticated theory if desired.

In such a featural approach the features of a name or action

can be thought of as properties falling into four major classes:

Semantic features are those elemental components of

meaning usually treated in discussions of lexical semantics.
For example, insert has the semantic feature + ADD.

Pragmatic features are meaning components which are

context dependent in some sense, involving phenomena
such as deixis or presuppositions. For example, an
anaphorie referent like it has some sort of pragmatic

feature, however one wishes to describe it. [t goes without
saying that the distinction between semantic and
pragmatic features is not a clear one, but for practical

purposes that is not terribly important.

Syntactic features are the sorts of selection restrictions, etc.
which coordinate the lexical item into larger linguistic

units such as entire commands. For example, substitute
requires that the new object be specified before the old one.

t, Surface features are perceptual properties such as sound or
shape. The usefulness of including them in the analyis is
seen in the discussion of non-words as names.

As Bolinger {1965l pointed out long ago, names and actions
have a potentially infinite number of features, but in the

restricted world of command languages we can consider them to

have a finite, even relatively small number. Furthermore, only
some features of a name or action are relevant at given time due to
the particular contexts involved: the task context is that of the task

the user is performing (e.g., text editing vs. database querying);
the name context is that of the other names being used; and the

action context is that of the other actions in the system. These

three kinds of context emphasize some features of the names and
actions and make others irrelevant.

Applying this framework to system naming, we can represent

system actions and objects and their names as sets of features.
The most important aspect of these feature representations is
their similarity (or, conversely, their distinctiveness}. This

featural similarity has been formally defined in work by Tversky
{1977, 1979}.

Within these two domains of names and actions (or objects},

distinctiveness is of primary importance, since it prevents
confusion. Between the two domains, similarity is of primary
importance, since it makes for a better mapping between items in

the two domains. Although the details of this process vary among
the different phenomena, this paradigm serves to unify a number
of different results.

For example, suggestiveness and memorability may both be
interpreted in terms of a high degree of similarity between the
features of a name and its referent, with high distinctiveness

among names and referents reducing the possibilities of confusivn
on either end. And the analysis easily extends to include non-
words, since those without semantics map their surface features
onto the semantic features of their referents.

The role of syntactic and pragmatic features is analogous, but

the issue there is not simply one of how similar the two sets of

features are, but also of how, for example, the selection
restrictions of a name mesh with the rules of the command
language. Where the analysis will lead in those domains is a
question I am currently pursuing.

4. C o n c l u s i o n

Thus it can be seen that, while syntax and discourse structure
are important phenomena in human-computer communication.

the lexical semantics of command languages is of equal
importance and interest. The names which users or system
designers give to the actions and objects in a command language

can greatly faciliate or impair a system's u~efulness.
Furthermore, similar issues of semontic relations, deixis,

ambiguity, etc. occur with the lexical items of command languages
as in natural language. This suggests both that linguistic theory
may be of practical aid to system designers, and that the complex
lexical phenomena of command languages may be of interest to
linguists.

430

References

Appelt, D. 1983. Planning English referring expressions.
Technical Note 312.SRI International.Merilo Park, CA.

Barnard, P., N. Hammond, J. Morton, and J. Long. 1981.
Consistency and compatibility in human-computer
dialogue. Int. J. of Man-Machine Studies. l 5:87-134.

Barnard, P., N. Hammond, A. MacLean, andJ. Morton. 1982
Learning and remembering interactivecommands in a
text-editing task. Behaviour and Information Technology.
1:347-358.

Benbasat, l.. and Y. Wand. 1984. Command abbreviation
behavior in human-computer interaction. Comm. ACM.
27(4): 376-383.

Black, J., and T. Moran. 1982 Learning and remembering
command names. Proc. Conference on Human Factors in
Computing Systems. (Gaithersburg, Maryland). pp. 8-11.

Bolinger D. 1982. The atomization of meaning. Language.
41:555-573.

Carroll. J. 1982. Learning, using, and designing filenames and
command paradigms. Behaviourandlnfbrmation
Technology. 1:327-348.

Dumais, S., and T. Landauer. 1982. Psychological investigations
of natural terminology for.command and query languages.
in A. Badre and B. Shneiderman, eds., Directions in
HumansComputer Interaction. Norwood, NJ: Ablex.

Dumais, S., and T. Landauer. 1983. Using examples to describe
categories. Proc. CIt1"83 Conference on Human Factors in
Computing Systems. (Boston}. pp. 112-115.

Durham, l., D. Lamb, and J. Saxe. 1983. Spellingcorrection in
user interfaces. Comm. ACM. 26(10): 764-773.

Finin, 2'. 1982. The interpretation of nominal compounds in
discourse. Technical Report MS-CIS-82-03. University of
Pennsylvania Dept. of Computer and information Science,
Philadelphia, PA.

Furnas, G., T. Landauer, L.Gomez, and S. Dumais. 1983.
Statistical semantics: analysis of the potential
performance ofkey-word information systems. Bell
System Technical Journal. 62(6}:1753-1806.

Hemenway, K. 1982. Psychological issues in the use of icons in
command menus. Proe. Conference on Human Factors in
Computing Systems. (Gaithersburg, Maryland). pp. 20-24.

Landauer, T., K. Galotti, and S. Hartwell. 1983. Natural
command names and initial learning: a study of text-
editing terms. Comm. ACM. 26(7): 495-503.

Rosenberg, J. 1982. Evaluating the suggestiveness of command
names. Behaviour and Information Technology. 1:371-400.

Rosenberg, J. 1983. A featural approach to command names.
Proc. CHI'83 Conference on Human Factors in Computing
Systems. (Boston). pp. 116-119.

Rosenberg, J., and T. Moran. 1984. Generic commands. Proe.
First IFIP Conference on Human.Computer Interaction.
London, September r984.

Scapin, D. 1981. Computer commands in restricted natural
language: some aspects of memory and experience.
Human Factors. 23:365-375.

Scapin, D. 1982. Generation effect, structuring and computer
commands. Behaviour and Information Technology.
1:401-410.

Tversky, A. 1977. Features ofsimilarity. Psychological Review.
84:327-352.

Tversky, A. 1979. Studies in similarity. In E. Rosch and B. Lloyd,
eds., Cognition and Categorization. Hillsdale, NJ:
Erlbaum.

431

