
USING %-CALCULUS TO REPRESENT MF~kNINGS IN LOGIC GRAMMARS*

David Scott Warren

Computer Science Department
SUNY at Stony Brook

Stony Brook, NY 11794

ABSTRACT

This paper descrlbes how meanings are repre-
sented in a semantic grammar for a fragment of
English in the logic programming language Prolog.
The conventions of Definite Clause Grammars are
used. Previous work on DCGs with a semantic com-
ponent has used essentially first-order formulas
for representing meanings. The system described
here uses formulas of the typed ~-calculus. The
first section discusses general issues concerning
the use of first-order logic or the h-calculus to
represent meanings, The second section describes
how h-calculus meaning representations can be con-
structed and manipulated directly in Prolog. This
'programmed' representation motivates a suggestion,
discussed in the third section, for an extension
to Prolog so that the language itself would include
a mechanism for handling the ~-formulas directly.

I h-CALCULUS AND FOL AS MEANING
REPRESENTATION LANGUAGES

The initial phase of most computer programs
for processing natural language is a translation
system. This phase takes the English text input
and transforms it into structures in some internal
meaning-representation language. Most of these
systems fall into one of two groups: those that
use a variant of first-order logic (FOL) as their
representation language, and those that use the
typed h-calculus (LC) for their representation
language. (Systems based'on semantic nets or con-
ceptual dependency structures would generally be
calsslfied as using variants of FOL, but see
[Jones and Warren, 1982] for an approach that views
them as LC-based.)

The system considered here are several highly
formalized grammar systems that concentrate on the
translation of sentences of logical form. The
first-order logic systems are exemplified by those
systems that have developed around (or gravitated
to) logic programming, and the Prolog language in
particular. These include the systems described
ill [Colmerauer 1982], [Warren 1981], [Dahl 1981],
[Simmons and Chester 1982], and [McCord 1982].
The systems using the ~- calculus are those that

* This material is based upon work supported by the
National Science Foundation under grant ~IST-80-
10834

developed out of the work of Richard Montague.
They include the systems described in [Montague
1973], [Gawron et al. 1982], [Rosenschein and
Sheiber 1982], [Schubert and Pelletier 1982], and
[Warren and Friedman 1981]. For the purposes of
this paper, no distinction is made between the
intensional logic of Montague grammar and the
typed h-calculus. There is a mapping from inten-
sional logic to a subset of a typed h-calculus
[Gallin 1975], [Clifford 1981] that shows they are
essentially equivalent in expressive power.

All these grammar systems construct a formula
to represent the meaning of a sentence composi-
tionally over the syntax tree for the sentence.
They all use syntax directed translation. This is
done by first associating a meaning structure with
each word. Then phrases are constructed by syntac-
tically combining smaller phrases together using
syntactic rules. Corresponding to each syntactic
rule is a semantic rule, that forms the meaning
structure for a compound phrase by combinging the
meanin~ structures of the component phrases. This
is clearly and explicitly the program used in
Montague grammar. It is also the program used in
Prolog-based natural language grammars with a
semantic component; the Prolog language itself
essentially forces this methodology.

Let us consider more carefully the meaning
structures for the two classes of systems of inter-
est here: those based on FOL and those based on
LC.

Each of the FOL systems, given a declarative
sentence as input, produces a well-formed formula
in a first-order logic to represent the meaning of
the sentence. This meaning representation lo~ic
will be called the MRFOL. The MILFOL has an
intended interpretation based on the real world.
For example, individual variables range over ob-
jects in the world and unary predicate symbols are
interpreted as properties holding of those real
world objects.

As a particular recent example, consider
Dahl's system [1981]. Essentially the same
approach was used in the Lunar System [Woods, et
al. 1972]. For the sentence 'Every man walks',
Dahl's system would produce the expression:

for(X,and(man(X),not walk(X)),
equal(card(X),0))

where X is a variable that ranges over real-world

51

individuals. This is a formula in Dahl's MRFOL,

and illustrates her meaning representation lang-
uage. The formula can be paraphrased as "the X's
which man is true of and walk is not true of have
¢ardinality zero." It is essentially first-order
because the variables range over individuals.
(There would need to be some translation for the
card function to work correctly.) This example
also shows how Dahl uses a formula in her MRFOL as
the meaning structure for a declarative sentence.
The meaning of the English sentence is identified
with the meaning that the formula has in the in-
tended interpretations for the MRFOL.

Consider mow the meaning structure Dahl uses
for phrases of a category other than sentence, a
noun phrase, for example. For the meaning of a
noun phrase, Dahl uses a structure consisting of
three components: a variable, and two 'formulas'.
As an example, the noun phrase 'every man' has the
following triple for its meaning structure:

[X1,X/,for(Xl,and(man(Xl),not(X2)),
eqnal(card(Xl),0))].

We can understand this structure informally by
thinking of the third component as representing
the meaning of 'every man'. It is an object that
needs a verb phrase meaning in order to become
a sentence. The X2 stands for that verb-phrase
meaning. For example, during constz~ction of the
meaning of a sentence containing this noun phrase
as the subject, the meaning of the verb-phrase of
the sentence will be bound to X2. Notice that the
components of this meaning structure are not them-
selves formulas in the MRFOL. They look very much
like FOL formulas that represent meanings, but on
closer inspection of the variables, we find that
they cannot be. X2 in the third component is in
the position of a formula, not a term; 'not'
applies to truth values, not to individuals. Thus
X2 cannot be a variable in the M1%FOL, because X2
would have to vary over truth values, and all FOL
variables vary over individuals. So the third
Component is not itself a MIRFOL formula that (in
conjunction with the first two components) repre-
sents the meaning of the noun phrase, 'every man'.

The intuitive meaning here is clear. The
third compdnent is a formula fragment that partici-
pates in the final formula ultimately representing
the meaning of the entire sentence of which this
phrase is a subpart. The way this fragment Dartic-
ipates is indicated in part by the variable X2.
It is important to notice that X2 is, in fact, a
syntactic variable that varies over formulas, i,e.,
it varies over certain terms in the MRFOL. X2 will
have as its value a formula with a free variable in
it: a verb-phrase waiting for a subject. The X1
in the first component indicates what the free
variable must become to match this noun phrase
correctly. Consider the operation of putting XI
into the verb-phrase formula and this into the
noun-phrase formula when a final sentence meaning
is constructed. In whatever order this is done,
there must be an operation of substitution a for-
mula with a free variable (XI) in it, into the
scope of a quantifier ('for') that captures it.
Semantically this is certainly a dubious operation.

The point here is not that this system is
wrong or necessarily deficient. Rather the repre-
sentation language used to represent meanings for
subsentential components is not precisely the
MRFOL. Meaning structures built fo~ subcomponents
are, in general, fra~rments of first-order formulas
with some extra notation to be used in further
formula construction. This means, in general, that
the meanings of subsentential phrases are not given
a semantles by first-order model theory; the
meanings of intermediate phrases are (as far as
traditional first-order logic is concerned) merely
uninterpreted data structures.

The point is that the system is building terms,
syntactic objects, that will eventually be put to-
gether to represent meanings of sentences. This
works because these terms, the ones ultimately
associated with sentences, always turn out to be
formulas in the MRFOL in just the right way. How-
ever, some of the terms it builds on the way to a
sentence, terms that correspond to subcomponents of
the sentence, are not in the MRFOL, and so do not
have a interpretation in its real world model.

Next let us move to a consideration of those
systems which use the typed l-calculus (LC) as
their meaning representation language. Consider
again the simple sentence 'Every man walks'. The
grammar of [Montague 1973] associates with this
sentence the meaning:

forail(X,implies(man(X),waik(X)))

(We use an extensional fragment here for simplic-
ity.) This formula looks very much like the first-
order formula given above by the Dahl system for
the same sentence. This formula, also, is a for-
mula of the typed X-calculus (FOL is a subset of
LC). Now consider a noun phrase and its associated
meaning structure in the LC framework. For 'every
man' the meanin~ structure is:

X(P,forall(X,implies(man(X),P(X))))

This meaning structure is a formula in the k-
calculus. As such it has an interpretation in the
intended model for the LC, just as any other for-
mula in the language has. This interpretation is
a function from properties to truth-values; it
takes properties that hold of every man to 'true'
and all other properties to 'false'. This shows
that in the LC framework, sentences and subsenten-
tial phrases are given meanings in the same way,
whereas in FOL systems only the sentences have
meanings. Meaning structures for sentences are
well-formed LC formulas of type truth-value; those
for other phrases are well-formed LC terms of
other types.

Consider this k-formula for 'every man' and
compare it with the three-tuple meaning structure
built for it in the Dahl system. The ~-variable
P plays a corresponding role to the X2 variable of
the triple; its ultimate value comes from a verb-
phrase meaning encountered elsewhere in the
sentence.

First-order logic is not quite expressive

52

enough to represent directly the meanings of the
categories of phrases that can be subcomponents of
sentences. In systems based on first-order logic,
this limitation is handled by explicitly construc-
ting fragments of formulas, with extra notation to
indicate how they must later combine with other
fragments to form a true first-order formula that
correctly represents the meaning of the entire
sentence. In some sense the construction of the
semantic representation is entirely syntactic until
the full sentence meaning structure is constructed,
at which point it comes to a form that does have a
semantic interpretation. In contrast, in systems
that use the typed l-calculus, actual formulas of
the formal language are used at each step, the
language of the l-calculus is never left, and the
building of the semantic representation can actu-
ally be understood as operations on semantic
objects.

The general idea of how to handle the example
sentence 'Every man walks' in the two systems is
essentially the same. The major difference is how
this idea is expressed in the available languages.
The LC system can express the entire idea in its
meaning representation language, because the typed
l-calculus is a more expressive language.

The obvious question to ask is whether there
is any need for semantically interpretable meaning
representations at the subsentential level. One
important reason is that to do formal deduction on
subsentential components, their meanings must be
represented in a formal meaning representation
language. LC provides such a language and FOL
does not. And one thing the field seems to have
learned from experience in natural language proc-
essing is that inferencing is useful at all levels
of processing, from words to entire texts. This
points us toward something like the LC. The
problem, of course, is that because the LC is so
expressive, deduction in the full LC is extremely
difficult. Some problems which are decidable in
FOL become undecidable in the l-calculus; some
problems that are semi-decidable in FOL do not
even have partial decision procedures in the LC.
It is certainly clear that each language has limi-
tations; the FOL is not quite expressive enough,
and the LC is much too powerful. With this in
mind, we next look at some of the implications of
trying to use the LC as the meanin~ representation
language in a Proiog system.

II LC IN PROLOG

PROLO~ is extremely attractive as a lan~uaFe
for expressinE grammars. ~tamorphosis ~rammars
[Colmerauer 197g] and Definite Clause Grammars
(DCGs) [Pereira and ICarren 1980] are essentially
conventions for representing grammars as logic
programs. DCGs can perhaps most easily be under-
stood as an improved cersion of the Augmented
Transition Network language [Woods 1970]. Other
work on natural language in the PROLOG framework
has used firs$-order meaning representation lang-
uages. The rest of this paper explores the impli-
cations of using the l-calculus as the meaning

representation language for a system written in
PROLOG using the DCG conventions.

The followin~ paragraphs describe a system
that includes a very small grammar. The point of
this system is to investigate the use of PROLOG to
construct meanings with the %-calculus as the
meaning representation language, and not to
explore questions of linRulstic coverage. The
grammar is based on the grammar of [Montague 1973],
but is entirely extensional. Including inten-
sionality would present no new problems in
principle.

The idea is very simple. Each nonterminal
in the grammar becomes a three-place predicate in
the Prolog program. The second and third places
indicate locations in the input string, and are
normally suppressed when DCGs are displayed. The
first piece is the LC formula representing the
meaning of the spanned syntactic component.

Lambda-formulas are represented by Prolo~
terms. The crucial decision is how to represent
variables in the h-formulas. One 'pure' way is to
use a Prolog function symbol, say ivar, of one
argument, an integer. Then Ivar(37) would repre-
sent a l-variable. For our purposes, we need not
explicitly encode the type of %-terms, since aii
the formulas that are constructed are correctly
typed. For other purposes it might be desirable
to encode explicitly the type in a second argument
of ivar. Constants could easily be represented
using another function symbol, icon. Its first
argument would identify the constant. A second
argument could encode its type, if desired. Appli-
cation of a l-term to another is represented using
the Prolog function symbol lapply, which has two
argument places, the first for the function term,
the second for the argument term. Lambda abstrac-
tion is represented using a function symbol ~ with
two arguments: the ~-variable, and the function
body. Other commonly used connectives, such as
'and' and 'or', are represented by similarly named
function symbols with the appropriate number of
argument places. With this encoding scheme, the
h-term:

%P(3x(man(x) & P(x))

would be represented by the (perhaDs somewhat
awkward-looking) Prolo~ term:

lambda(Ivar(3),Ithereis(ivar(1),land(
lapply(icon(man),l~r(1))
lapply(ivar(3),ivar(1))

)))

~-reduction would be coded as a predicate ireduce
(Form, Reduced), whose first argument is an arbi-
trary %-formula, and second is its ~-reduced form.

This encoding requires one to generate new
variables to create variants of terms in order to
avoid collisions of %-variables. The normal way
to avoid collisions is with a global 'gensym'
counter, to insure the same variable is never used
twice. One way to do this in Prolog is to include

53

a place for the counter in each grarmnar predicate.
This can be done by including a parameter which
will always be of the form gensym(Left,Right),
where Left is the value of the gensym counter at
the left end of the phrase spanned by the predicate
and Right is the value at the right end. Any use
of a k-variable in building a l-formula uses the
counter and bumps it.

An alternative and more efficient way to en-
code k-terms as Prolog terms involves using Prolog
variables for l-variables. This makes the substi-
tution trival, essentially using Prolog's built-ln
facility for manipulating variables. It does, how-
ever, require the use of Prolog's meta-logical
predicate var to test whether a Prolog variable is
currently instantiated to a variable. This is
necessary to prevent the k-varlables from being
used by Prolog as Prolog variables, In the example
below, we use Prolog variables for X-varlables and
also modify the Icon function encoding of con-
s=ants, and let constants stand for themselves.
This results in a need to use the meta-logical
predicate atom. This encodin E scheme might best
be considered as an efficiency hack to use Prolog's
built-in variable-handllng facilities to speed the
A-reduction.

We give below the Prolog program that repre-
sents a small example grammar with a few rules.
This shows how meaning structures can be repre-
sented as l-formulas and manipulated in Prolog.
Notice the simple, regular structure of the rules.
Each consists of a sequence of grammar predicates
that constructs the meanings of the subcomponents,
followed by an instance of the ireduce predicate
that constructs the compound meaning from the com-
ponent meanings and l-reduces the result. The
syntactic manipulation of the formulas, which re-
sults for example in the relatively simple formula
for the sentence 'Every man walks' shown above, is
done in the h-reductlon performed by the ireduce
predicate.

/*
*/

tS(M,X,Y) :-
te(Ml,X,Z).
iv(M2,Z,Y),
ireduce(lapply(Mi,M2),M).

te(M,X,Y) :-
det(Mi,X,Z),
cn(M2,Z,Y),
lreduce(lapply(}~,M2),M).

te(lambda(P,lapply(P,j)),[johnIX],X).

cn(man,[manlX],X).
cn(woman,[womanIX],X).

det(lambda(P,lambda(Q,iforall(Z,
limplies(lapply(P,Z),lapply(Q,Z))))),
[everyIX],X)

iv(M,X,Y) :-
tv(MI,X,Z),
te(M2,Z,Y),
ireduce(lapply(Mi,M2),M).

*/

iv(walk,[walkslX],X).

tv(lambda(P,lambda(Q,lapply(P,
lambda(Y,lapply(lapply(love,Y),Q))))),
[loves[X],X).

/*

III I-CAT.CULUS IN THE PROLOG INTERPRETER

There are several deficiencies in this Prolog
implementation of grammars using the X-calculus as
a meaning representation language.

First, neither of the suggested implementa-
tions of X-reduction in Prolog are particularly
attractive. The first, which uses first-order
constants to represent variables, requires the
addition of a messy gensym argument place to every
predicate to simulate the global counter, This
seems both inelegant and a duplication of effort,
since the Prolog interpreter has a similar kind of
variable-handling mechanism built into it. The
second approach takes advantage of Prolog's built-
in variable facilities, but requires the use of
Prolog's meta-logical facilities to do so. This
is because Prolog variables are serving two func-
tions, as Prolog varlabies and as h-variables.
The two kinds of variables function differently
and must be differentiated.

Second, there is a problem with invertibility.
Many Prolog programs are invertible and may be run
'backwards'. We should be able, for example, to
evaluate the sentence grammar predicate giving the
meaning of a sentence and have the system produce
the sentence itself. This ability to go from a
meaning formula back to an English phrase that
would produce it is one of the attractive proper-
ties of logic grammars. The grammar presented
here can also be run this way. However, a careful
look at this computation process reveals that with
this implementation the Prolog interpreter performs
essentially an exhaustive search. It generates
every subphrase, h-reduces it and checks to see if
it has the desired meaning. Aside from being theo-
retically unsatisfactory, for a grammar much larger
than a trivially-small one, this approach would not
be computationally feasible.

So the question arises as to whether the
Prolog interpreter might be enhanced to know about
l-formulas andmanipulate them directly. Then the
Prolog interpreter itself would handle the X-reduc-
tion and would be responsible for avoiding variable
collisions. The logic grammars would look even
simpler because the ireduce predicate would not
need to be explicitly included in each grammar
rule. For example, the ts clause in the grammar in
the figure above would become:

ts(lapply(MI,M2),X,Y)
te(MI,X,Z),
iv(M2,Z,Y).

54

Declarations to the Prolog interpreter could
be included to indicate the predicate argument
places that contain l-terms. Consider what would
be involved in this modification to the Prolog sys-
tem. It might seem that all that is required is
just the addition of a l-reduction operator
applied to l-arguments. And indeed when executing
in the forward direction, this is essentially all
that is involved.

Consider what happens, however, if we wish
to execute the grammar in the reverse direction,
i.e., give a l-term that is a meaning, and have
the Prolog system find the English phrase that has
that meaning. Now we find the need for a 'l-expan-
sion' ability.

Consider the situation in which we present
Prolog with the following goal:

ts(forall(X,implies(man(X),walk(X))),S,[]).

Prolog would first try to match it with $he head
of the ts clause given above. This would require
matching the first terms, i.e.,

forall(X,implies(lapply(man,X),lapply(walk,X)))

and

lapply(Mi,M2)

(using our encoding of l-terms as Prolog terms.)
The marcher would have available the types of the
variables and terms. We would like it to be able
to discover that by substituting the right terms
for the variables, in particular substituting

lambda(P,forall(X,implies(
lapply(man,X),lapply(P,X))))

and

walk for M2

for M1

in the second term, it becomes the same as the
first term (after reduction). These MI and M2
values would then be passed on to the te and iv
predicates. The iv predicate, for example, can
easily find in the facts the word to express the
meaning of the term, walk; it is the work 'walks'
and is expressed by the fact iv(walk,[walksIX],X),
shown above. For the predicate re, given the value
of MI, the system would have to match it against
the head of the te clause and then do further
computation to eventually construct the sentence.

~at we require is a general algorithm for
matching l-terms. Just as Prolog uses unification
of first-order terms for its parameter mechanism,
to enhance Prolog to include l-terms, we need
general unification of l-~erms. The problem is
that l-unlficatlon is much more complicated than
first-order unification. For a unifiable pair of
first-order terms, there exists a unique (up to
change of bo~md variable) most general unifier
(mgu) for them. In the case of l-terms, this is
not true; there may be many unifiers, which are
not generalizations of one another. Furthermore
unification of l-terms is, in general, undecidable.

These facts in themselves, while perhaps dis-
couraging, need not force us to abandon hope. The
fact that there is no unique mgu just contributes
another place for nondeterminism to the Prolog
interpreter. And all interpreters which have the
power of a universal Turing machine have undecid-
able properties. Perhaps another source of unde-
cidability can be accommodated. Huet [197~] ',-s
given a semi-decision procedure for unification in
the typed l-calculus. The question of whether this
approach is feasible really comes down to the finer
properties of the unification procedure. It seems
not unreasonable to hope that in the relatively
simple cases we seem to have in our grammars, this
procedure can be made to perform adequately.
Notice that, for parsing in the forward direction,
the system will always be unifying a l-term with a
variable, in which case the unification problem is
trivial. We are in the process of programming
Huet's algorithm to include it in a simple Prolog-
like interpreter. We intend to experiment with it
to see how it performs on the l-terms used to
represent meanings of natural language expressions.

Warren [1982] points out how some suggestions
for incorporating l-calculus into Prolog are moti-
vated by needs that can easily and naturally be
met in Prolog itself, unextended. Following his
suggestions for how to represent l-expressions in
in Prolo~ directly, we would represent the meaning
of a sentence by a set of asserted Prolog clauses
and an encoding atomic name, which would have to
be generated. While this might be an interesting
alternate approach to meaning representations, it
is quite different from the ones discussed here.

IV CONCLUSIONS

We have discussed two alternatives for meaning
representation languages for use in the context of
lo~ic grammars. We pointed out how one advantage
of the typed l-calculus over first-order logic is
its ability to represent directly meanings of
phrases of all syntactic cateBories. We then
showed how we could implement in Prolog a logic
grammar using the l-calculus as the meaning repre-
sentation languaEe. Finally we discussed the
possibility and some of the implications of trying
to include part of the l-calculus in the logic pro-
gramming system itself. We suggested how such an
integration might allow grammars to be executed
backwards, generating English sentences from input
logical forms. ~ intend to explore this further
in future work. If the l-calculus can be smoothly
incorporated in the way suggested, then natural
language grammar writers will find themselves
'programming' in two languages, the first-order
language (e.g. Prolog) for syntax, and the typed
l-calculus (e.g. typed LISP) for semantics.

As a final note regarding meaning representa-
tion languages: we are still left with the feeling
that the first-order languages are too weak to
express the meanings of phrases of all categories,
and that the l-calculus is too expressive to be

55

computatlonally tractable. There is a third class
of languages that holds promise of solving both
these difficulties, the function-level languages
that have recently been developed in the area of
progranm~ing languages [Backus 1978] [$hultis 1982].
These languages represent functions of various
types and thus can be used to represent the mean-
ings of subsentential phrases in a way similar to
the l-calculus. Deduction in these languages is
currently an active area of research and much is
beginning to be known about their algebraic prop-
erties. Term rewriting systems seem to be a
powerful tool for reasoning in these languages.
I would not be surprised if these functlon-level
languages were to strongly influence the formal
meaning representation languages of the future.

V REFERENCES

Backus, J. [1978] Can Programming Be liberated
from the yon Neumann Style? A Functional Style
and Its Algebra of Programs, Co~unicatlons of
the ACM, Vol 21, No 8, (Aug 1978), 613-641.

Clark, K.L and S.-A. T~rnlund (eds.) [1982] Logic
Programming, Academic Press, New York, 366 pp.

Clifford, J. [1981] ILs: A formulation of
Montague's intenslonal logic that includes
variables and constants over indices. TR#81-029,
Department of Computer Science, SUNY, Stony
Brook, New York.

Colmerauer, A. [1978] Metamorphosis Grammars, in
Natural Language Conm~unication with Computers,
Vol i, Sprlnger Verlag, 1978, 133-189.

Colmerauer, A. [1982] An Interesting Subset of
Natural Language, in Logic Pro~rarming, Clark,
K.L and 3.-A T~rnlund (eds.), 45-66.

Dahl, Veronica [1981] Translating Spanish into
Logic through Logic, American Journal of
Computational Linguistics, Vol 7, No 3, (Jul-
Sep 1981), 149-164.

Gallln, D. [1975] Intensional and Higher-order
Modal Logic , North-Holland Pubilshing Company,
Amsterdam.

Gawron, J.M., et.al. [1982] The GPSG Linguistic
System, Proceedings 20th Annual Meetin~ of the
Association for Computational Linguistics, 74-81.

Huet, G.P. [1975] A Unification Algorithm for Typed
l-Calculus, Theoretical Computer Science, Vol i,
No i, 22-57.

Jones, M.A., and Warren, D.S. [1982] Conceptual
Dependency and Montague Grammar: A step toward
conciliation, Proceedings of the National
Conference #nn A~tificial Intelli~ence, AAAI-82,
79-83.

McCord, M. [1982] Using Slots and Modifiers in
Logic Grammars for Natural Language, Artifical

Intelligence, Vol 18, 327-367.

Montague, Richard [1973] The proper treatment of
quantification in ordinary English, (PTQ),
reprinted in Montague [1974], 246-270.

Montague, Richard [1974] Formal Philosophy:
Selected Paper of Richard Montague, edited and
with an introduction by R. Thomason, Yale
University Press, New Haven.

Pereira, F.C.N. and Warren, D.H.D. [1980] Definite
Clause Grammars for Language Analysis - A survey
of the formalism and a Comparison with Augmented
Transition Networks. Artificial Intelligence
13,3 (May 1980) 231-278.

Rosenschein, S.J. and Shieber, S.M. [1982]
Translating English into Logical Form,
Proceedings of the 20th Annual Meeting of the
Association for Comp-~ational Linguistics,
June 1982, Toronto, 1-8.

Schubert L.K. and Pelletier F.J. [1982] From
English to Logic: Context-free Computation of
'Conventional' Logical Translation, American
Journal of Computational Linguistics, Vol 8,
NO 1, (Jan-Mar 1982), 27-44.

Shultls, J. [1982] Hierarchical Semantics,
Reasoning, and Translation, Ph.D. Thesis,
Department of Computer Science, SUNY, Stony
Brook, New York.

Simmons, R.F. and Chester, D. [1982] Relating
Sentences and Semantic Networks with Procedural
Logic, Communications of the ACM, Vol 25, Num 8,
(August, 1982), 527-546.

Warren, D.H.D. [1981] Efficient processing of
interactive relational database queries
expressed in logic, Proceedings of the 7th
Conference on Very Large Data Bases, Cannes,
~72-281,

Warren, D.H.D. [1982] Higher-order extensions to
PROLOG: are they needed? Machine Intelligence i~
Ilayes, Michie, Pao, eds. Ellis Horwood Ltd.
Chlchester.

Warren, D.S. and Friedman, J. [1981] Using
Semantics in Noncontext-free Parsing of Montague
Grammar, TR#81-027, Department of Computer
Science, SUNY, Stony Brook, New York, (to
appear).

Woods, W.A. [1970] Transition Network Grammars for
Natural Language Analysis, Communications of the
ACM, Vol i, No I0, (Oct 1970).

Woods, W.A., Kaplan, R.M., and Nash-Webber, B.
[19721 The Lunar Science Natural Language
Information System: Final Report, BBN Report
No. 2378, Bolt Baranek and Newman, Cambridge,

56

