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Abstract

While the role of humans is increasingly rec-
ognized in machine learning community, rep-
resentation of and interaction with models in
current human-in-the-loop machine learning
(HITL-ML) approaches are too low-level and
far-removed from human’s conceptual models.
We demonstrate HEIDL, a prototype HITL-
ML system that exposes the machine-learned
model through high-level, explainable linguis-
tic expressions formed of predicates represent-
ing semantic structure of text. In HEIDL,
human’s role is elevated from simply eval-
uating model predictions to interpreting and
even updating the model logic directly by en-
abling interaction with rule predicates them-
selves. Raising the currency of interaction
to such semantic levels calls for new interac-
tion paradigms between humans and machines
that result in improved productivity for text
analytics model development process. More-
over, by involving humans in the process, the
human-machine co-created models generalize
better to unseen data as domain experts are
able to instill their expertise by extrapolating
from what has been learned by automated al-
gorithms from few labelled data.

1 Introduction

Machine learning (ML) is an inherently iterative
process where humans, ML experts, play a cen-
tral role. Experts decide which features to include,
hyperparameters to tune, metrics to evaluate, and
whether the desired level of quality has been at-
tained, failing which they iterate all over. Tradi-
tionally, to understand a predictive model one usu-
ally begins by examining the model’s predictions
with little understanding of the inner workings of
the learned, black-box model. More transparent
representations of predictive models, such as first-
order logic (a dialect with human-interpretable se-
mantics), allows understanding the inner work-

ings of the learned model, but traditional tech-
niques (Muggleton, 1996) to learning these are too
brittle for real-world data, as they fail to learn any-
thing unless there exists a logic program that can
perfectly separate the data according to its labels.
Deep learning has been used to successfully learn
rule-based predictive models (Cohen et al., 2017;
Yang et al., 2017; Evans and Grefenstette, 2018)
from data with noisy labels. Besides interpretabil-
ity and explainability, other advantages of learn-
ing a logical model include the promise of im-
proved generalization to unseen data due to the
strong inductive bias provided by the predicates
employed (Evans and Grefenstette, 2018).

Human-in-the-loop machine learning (HITL-
ML) approaches aim to provide humans with the
ability to interact with the model that goes be-
yond simply examining model predictions. Hu-
mans need to be able to interpret, explain, and rea-
son about models throughout the model develop-
ment cycle, especially in domains where labeled
training data is too limited to learn a model that
generalizes well to unseen data, we need to be able
to interpret and examine machine learning mod-
els. The above-mentioned works that utilize deep
learning to learn a logical theory raise new oppor-
tunities and challenges since their precise syntax is
more readily interpretable by humans that allows
for new ways for humans to interact with machine
learned models at levels that go far beyond just in-
specting predictions.

In this demo, we describe a HITL-ML ap-
proach for text analytics that exposes the machine-
learned model through abstract, semantic, explain-
able rules, and allows humans and domain experts
to examine, interact, and even modify the model
logic directly. We present HEIDL (Human-in-the-
loop linguistic Expressions wIth Deep Learning),
a system designed to help domain experts ac-
cess the linguistic expressions or rules learned
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with deep learning for text analytics, inspect them,
show their inner workings by exposing how they
operate on examples, and even breaking them
apart into their constituent predicates and adding
new ones to create new expressions in the process.
HEIDL enables domain experts to instill their ex-
pertise into a machine-learned model thus result-
ing in a co-created one that has superior general-
ization performance than what is achievable by hu-
mans or machine learning optimization algorithms
alone while incurring a fraction of human labor
thus increasing the productivity of the overall text
analytics model development process.

To evaluate HEIDL’s efficacy, we conducted
a user study where IBM’s data scientists used
HEIDL to improve linguistic expressions for clas-
sifying sentences extracted from real-world, le-
gal contracts. Since contracts may be proprietary,
the initial learned linguistic expressions fed as in-
put to HEIDL were trained on IBM procurement
contracts while the test set consisted of non-IBM
procurement contract sentences. Within 30 min-
utes, each data scientist produced linguistic ex-
pressions with training set precision, recall up-
wards of 75% representing a significant reduction
in model development time since trawling through
> 28, 000 training sentences to construct linguis-
tic expressions from scratch would require multi-
ple weeks of effort. In terms of prediction quality,
while a black-box long short-term memory net-
work trained by replacing tokens with GloVe em-
beddings (Pennington et al., 2014) produces 44%
F1 on held out non-IBM procurement contract
sentences, the linguistic expressions modified by
data scientists via HEIDL produces 55% F1 trans-
lating to a 25% improvement in out-of-domain
generalization performance. We emphasize that
HEIDL is not specific to the task described here
and may be useful for learning linguistic expres-
sions for any classification task. Moreover, the
main ideas embodied in HEIDL may be helpful
for building tools to learn explainable models for
applications beyond classification.

2 Related Work

Human computation integrates human effort into
computational processes to complete tasks that
cannot yet be done by computer. Prior work has
focused on using crowdsourcing to facilitate and
scale human computation. For instance, crowd-
powered systems have been developed to sup-

Figure 1: Overview of our approach

port continuous conversations (Lasecki et al.), edit
rules governing UI behaviors described in natu-
ral language (Lee et al.), support natural language
editing of papers (Bernstein et al.), and create
novel stories (Kim et al.). There is also work on
evaluating task design tradeoffs on crowdsourced
text annotations(Snow et al.) and (Jiang et al.).
Our approach draws on human computation by
leveraging domain experts to create a more gen-
eralizable model even when data is scarce.

Prior work in HITL-ML has focused on elicit-
ing knowledge from people to create more power-
ful models. For example, research has introduced
ways to solicit examples from people for labels to
strengthen the training data, e.g., through active
learning (Settles and Craven) queries that select
the most informative item from an oracle to re-
duce labeling effort. In SEER (Hanafi et al., 2017),
people select few examples for the system to learn
information extraction rules. In AnchorViz (Chen
et al.), people explore semantically related exam-
ples to find feature blinded items. Other work
has focused on interactive clustering where people
guide the model by changing the clusters (Smith
et al.) and providing keywords (Sherkat et al.),
and on eliciting feedback from experts to select
relevant features (Micallef et al.). We also elicit
user input to improve a model, but our approach
presents understandable output, allowing users to
directly modify it by selecting trusted rules.

3 Approach

Fig.1 shows an overview of our approach where
we begin by learning linguistic expressions from
labeled data using deep learning followed by us-
ing our system to explain said expressions to do-
main experts so they can verify and modify these.
We briefly explain how to derive predicates from
semantic linguistic structures, then describe how
deep learning is used to construct linguistic ex-
pressions before describing our system.

3.1 Semantic Linguistic Structure (SLS)
Each SLS refers to the shallow semantic represen-
tations corresponding to each sentence and gen-
erated automatically with natural language pro-
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Figure 2: UI allows users (1) to get an overview of linguistic expressions (2) filter by precision, recall, and F1, (3)
rank, (4,5) filter by predicates, (6) remove expressions by predicate, (7) examine metrics and (8) examples for each
expression, (9) monitor overall progress as users add and remove expressions to their collection, and (10) provide
a ‘playground’ allowing users to examine and modify expressions.

cessing techniques such as semantic role labeling
and syntactic parsing. It captures “who is doing
what to whom, when, where and how” described
in a sentence as depicted by the following example
(simplified for readability).

John︸ ︷︷ ︸
agent

bought︸ ︷︷ ︸
action

daisy︸ ︷︷ ︸
theme

for Mary︸ ︷︷ ︸
beneficiary

yesterday︸ ︷︷ ︸
context:temporal

.

SLSs may be used as predicates to form linguistic
expressions. For sentence classification, we ex-
tract SLSs using SystemT’s (Krishnamurthy et al.,
2009) semantic role labeler including but not lim-
ited to actions/verbs and various arguments of the
action such as agent (doer of the action), ob-
ject of the action and manner in which it is per-
formed. From these, we construct: 1) predicates
that test properties of the action such as tense, as-
pect, mood, modalclass, voice and polarity, and 2)
predicates generated by looking up the extracted
verb (bases), agents, objects etc. in dictionaries.
For the user study task, we have access to a multi-
tude of hand-crafted dictionaries that contain sur-
face forms for verb (bases), objects, themes etc.
We emphasize that HEIDL is not specific to a par-
ticular set of predicates and can work with any set
of predicates that allow us to learn initial, high
quality linguistic expressions. Just like many other
text analytics applications, and particularly for the
domain of legal contracts, dictionary match predi-
cates offer one way to achieve this.

3.2 Deep Learning Linguistic Expressions
As mentioned in Section 1, recent works use
neural networks to learn a logical theory. Two
powerful and extremely general formulations that
can learn from noisy labeled data virtually any
kind of logic program, including linguistic ex-
pressions for classification, are TensorLog (Co-
hen et al., 2017) and ∂ILP (Evans and Grefen-
stette, 2018). Describing the accompanying learn-
ing algorithms is out of scope for this demo pro-
posal but we describe the weighted rules model
representation to ground our system and better
describe the input to HEIDL. Given predicates
P = {pred1, . . . predm} and binary class labeled
data D = {(x1, y1), . . . (xn, yn)} such that each
label yi ∈ {0, 1} and xi denotes a sentence, the
weighted rules model associates a non-negative
weight with each rule or linguistic expression1:

w1 : `(x)← pred11(x) ∧ . . . pred1k1(x)
...

wN : `(x)← predN1 (x) ∧ . . . predNkN (x)

Intuitively, if sentence x satisfies a linguistic ex-
pression then x inherits the corresponding weight;
the higher the weight the greater the chance of
the sentence being assigned the label, i.e. `(x)

1Weighted rules are also popular in statistical relational
learning (e.g., Markov logic networks (Richardson and
Domingos, 2006)) and for learning closed paths in knowledge
graphs (Yang et al., 2017), the latter being based on Tensor-
Log (Cohen et al., 2017).
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is true. While learning a model based on logic
provides strong inductive bias that can help reg-
ularize the learned model and better generalize to
unseen data, due to limited labeled data in many
real-world applications (e.g., enterprise settings
where privacy and proprietary ownership restricts
the size of the training set) the risk of overfitting
is not completely eliminated. Moreover, the pres-
ence of weights can hamper explainability since
humans are much better at interpreting logical ex-
pressions. Our goal is to take a weighted rules
model such as described above and modify it to
a fully explainable, more generalizable model that
consists of a set of linguistic expressions follow-
ing simple yet powerful disjunctive semantics, in
other words, sentence x is assigned the label if any
of the expressions hold true for it, which is where
HEIDL comes into the picture.

3.3 User Experience

Unlike classical HITL-ML, our approach allows
people to interact with machine-learned linguistic
expressions and facilitate co-operative model de-
velopment. There are two primary challenges: (1)
present users with a quick overview of learned ex-
pressions; enable them to organize, order, and nav-
igate expressions effectively, (2) help understand
each expression’s semantics and quality through
examples and statistics; deepen understanding by
providing a ‘playground’ to verify and modify ex-
pressions while examining impact (see Fig.2). Be-
low we describe some of the user experience fea-
tures in more detail to address these challenges.

3.3.1 Overview, Rank, Filter
Initially, the system presents all machine-learned
linguistic expressions along with their precision,
recall, and F1 measures (relevant for classification
tasks). Users can rank and filter to organize the ex-
pressions to process them. Ranking allows users to
quickly see the expressions with high performance
on training data and is especially useful when the
list of expressions is large. Filtering allows users
to narrow down to a small set of similar expres-
sions without being overwhelmed. Users can fil-
ter expressions by setting a minimum threshold
on multiple performance measures. Users can
also filter expressions by their constituent predi-
cates. Filtering by predicate is useful when the
users reckon an expression potentially generaliz-
able, and would like to see similar expressions that
share common predicates.

3.3.2 Linguistic Expression Selection
The end goal of the system is to create a col-
lection of trusted linguistic expressions. To do
so, after evaluating an expression, users would
add it to the ‘approved’ or ‘disapproved’ collec-
tion. When an expression is approved, the com-
bined performance of all approved expressions is
recomputed. This helps users to keep track of
their overall progress. To help users assess expres-
sions, HEIDL provides a random sample of up to
4 true positive and 4 false positive matching ex-
ample sentences. Each example is decorated with
annotations highlighting the constituent predicates
that form part of the expression when the cursor
hovers on it (Fig. 2).

While HEIDL shows the performance of each
linguistic expression individually, they may be
misleading as the sentences retrieved by the ex-
pression may be already covered by other expres-
sions that have already been approved. HEIDL
provides a ‘look ahead’ feature to see the potential
‘delta’ effect of adding the expression to the ap-
proved collection so users can see if approving the
expression would be beneficial, in which case they
can take a closer look by reading its associated ex-
amples, or examine it in ‘Playground’ mode.

3.3.3 Playground
HEIDL provides a Playground mode that allows
users to inspect and modify linguistic expressions
by adding or dropping predicates, and examine the
effects. While playing with expressions, users can
also examine the ‘delta’ examples. If a predicate is
dropped, then the expression becomes more gen-
eral, thus retrieving more sentences than it pre-
viously did. Conversely, if a predicate is added
fewer sentences are retrieved and HEIDL shows
examples of the difference. This is beneficial be-
cause it allows users to see the effect of individual
predicates. Adding new predicates is especially
useful if experts have a sense for which predicates
are potentially good. Performance measures and
examples are updated accordingly, helping users
decide whether or not to keep the modification.

4 Salient Results from a User Study

To evaluate HEIDL’s efficacy, we conducted a user
study among IBM data scientists with NLP ex-
pertise and knowledge of legal contracts. We re-
cruited 4 data scientists – a relatively large number
given most teams in industry include only 1-2 data
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scientists. The task was to label sentences with
Communication which implies some form of com-
munication between the two parties involved in the
contract. The training data consists of 28, 174 sen-
tences extracted from 149 IBM procurement con-
tracts and the held out, test data consists of 1259
sentences extracted from 11 non-IBM procure-
ment contracts. The initial set of 188 weighted
linguistic expressions learned using deep learning
performed at 67% F1 (the harmonic mean of pre-
cision and recall) on the test set. Note that, as
mentioned in Section 3.2, weights can lead to lack
of explainability. Thus the data scientist’s task is
to use HEIDL to generate from this initial set of
linguistic expressions, a smaller set expressed in
pure first-order logic that achieves maximal per-
formance on the out-of-domain test set. For each
data scientist, we initialize HEIDL with the initial
linguistic expressions, the training set sentences,
and the corresponding predicates and dictionaries.
Our baseline is a well established sentence clas-
sification neural network, based on bi-directional
long short-term memory (LSTM). More precisely,
the LSTM replaces the tokens in the input sentence
with their corresponding 300-dimensional GloVe
embedding, computes an intermediate hidden state
which are then max-pooled, fed into a fully con-
nected layer and ReLU activation before passing
it through sigmoid activation to get a probability
of predicting the label. To improve training of the
LSTM, we employed a variety of dropout regular-
izations: variational dropout after the embedding
lookup layer, weight dropout in the LSTM layer,
and dropout in the fully connected layer.

Each user took roughly 30 minutes to build a
model that performed to their satisfaction on the
training set (recall that, data scientists did not have
access to the held out test set) which is far less
effort than what would be required if writing lin-
guistic expressions from scratch (by our estimates,
person-weeks to cover the close 30, 000 sentences
in the training set). Moreover, users selected fewer
expressions compared to deep learning’s weighted
rules (5-8 vs. 188) indicating that HEIDL helps
learn parsimonious models thus aiding explain-
ability. Most importantly, HEIDL improves gen-
eralization. We did a post-hoc analysis, measur-
ing F1 for all combinations of sets of rules learned
by the 4 participants. We report the averages and
standard deviations respectively for teams sizes:
1: .32(SD=.17), 2: .46(SD=.1), 3: .52(SD=.06),

and 4: .55(SD=0), showing that F1 increases with
team size. On average, teams of 3 produced a
F1 of .52 on the test set, as compared to .44 pro-
duced by the LSTM, which lacks explainability.
We can potentially create a model with less hu-
man effort if high expertise exists (i.e., one of our
participants subsumed the others in all combina-
tions), if we can determine expertise beforehand.
We also chose the top-K best rules from the initial
set of linguistic expressions (where K was deter-
mined by optimizing over the training set) which
produced .41 on the test set. These results indi-
cate that using HEIDL, data scientists can instill
their domain expertise into learned linguistic ex-
pressions and achieve superior out-of-domain gen-
eralization than using supervised learning alone
while incurring far less human effort than writing
rules from scratch.

5 Demo Overview

Besides Communication, other useful labels for la-
beling sentences in legal contracts include Term &
Termination (sentences that state contract termi-
nation clauses) and Payment Terms (sentences that
mention payments). The demo will provide an op-
portunity for attendees to use HEIDL to solve such
classification tasks by developing binary classi-
fiers in the form of linguistic expressions. Atten-
dees will be able to access the 28, 000 sentences
extracted from IBM procurement contracts and ex-
plore the initial 188 linguistic expressions learned
using deep learning formed out of 183 predicates
along with their associated dictionaries to get a
feel for what it takes for a data scientist to develop
linguistic expressions for such a challenging real-
world domain. In our experience, the first good
linguistic expressions usually takes a few seconds
of exploration to identify using HEIDL’s ranking
and filtering features. For example, consider the
line: Notices may be transmitted electronically

Clearly, this sentence is referring to exchang-
ing notices between the two parties involved in
the contract and hence communication. Such sen-
tences can be labeled with Communication via
dictionary matching predicates where the dictio-
nary checks for relevant verb (bases) such as such
as ‘notify’ and ‘transmit’. More complex lin-
guistic expressions may require combining mul-
tiple predicates and entering ‘Playground’ mode
or understanding how expressions work through
examples shown by HEIDL. The accompanying
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video (https://youtu.be/kicfGDMKu-w)
shows HEIDL in action.

6 Conclusion

Our taxonomy contains many more labels rele-
vant to the contracts domain, each requiring de-
velopment of linguistic expressions. Testimonies
from data scientists confirm that for all labeling
tasks, HEIDL was extremely useful. HEIDL is not
specifically designed to work with a specific set
of predicates nor with rules learned solely using
deep learning. As long as the text analytics clas-
sification task provides a set of dictionary match-
ing predicates from which a learner can produce
accurate initial linguistic expressions, HEIDL can
help domain experts instill further domain exper-
tise into them. Even if the domain expert does
not modify the linguistic expressions, tools such
as HEIDL provide a useful control point that al-
lows humans to verify the model before deploying
it which should prove useful in enterprise settings.
HEIDL’s rule-centric interface provides an inter-
esting counter-point to other HITL-ML methods
such as active learning and SEER which are more
example-centric. HEIDL is meant to improve pro-
ductivity of domain experts and while we hope
to perform further evaluations in future (on other
tasks e.g., sentiment labeling), initial results have
yielded promising results.
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