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Abstract

A widespread approach to processing spo-
ken language is to first automatically tran-
scribe it into text. An alternative is to use an
end-to-end approach: recent works have pro-
posed to learn semantic embeddings of spoken
language from images with spoken captions,
without an intermediate transcription step. We
propose to use multitask learning to exploit ex-
isting transcribed speech within the end-to-end
setting. We describe a three-task architecture
which combines the objectives of matching
spoken captions with corresponding images,
speech with text, and text with images. We
show that the addition of the SPEECH/TEXT
task leads to substantial performance improve-
ments on image retrieval when compared to
training the SPEECH/IMAGE task in isolation.
We conjecture that this is due to a strong in-
ductive bias transcribed speech provides to the
model, and offer supporting evidence for this.

1 Introduction

Understanding spoken language is one of the key
capabilities of intelligent systems which need to
interact with humans. Applications include per-
sonal assistants, search engines, vehicle naviga-
tion systems and many others. The standard ap-
proach to understanding spoken language both in
industry and in research has been to decompose
the problem into two components arranged in a
pipeline: Automatic Speech Recognition (ASR)
and Natural Language Understanding (NLU). The
audio signal representing a spoken utterance is
first transcribed into written text, which is subse-
quently processed to extract some semantic rep-
resentation of the utterance. Recent works have
proposed to learn semantic embeddings of spo-
ken language by using photographic images of ev-
eryday situations matched with their spoken cap-
tions, without an intermediate transcription step

(Harwath et al., 2016; Chrupała et al., 2017). The
weak and noisy supervision in these approaches is
closer to how humans learn to understand speech
by grounding it in perception and thus more useful
as a cognitive model. It can also have some practi-
cal advantages: in certain circumstances it may be
easier to find or collect speech associated with im-
ages rather than transcribed speech – for example
when dealing with language whose speakers are il-
literate, or for languages with no standard writing
system (note that even some languages with many
millions of speakers, like Cantonese, may not have
a standardized writing system). On the other hand,
the learning problem in this type of framework is
less constrained, and harder, than standard ASR.

In order to alleviate this shortcoming, we pro-
pose to use multitask learning (MTL) and exploit
transcribed speech within the end-to-end visually-
grounded setting, and thus combine some features
of both the pipeline and end-to-end approaches.
Incorporating speech transcriptions into the end-
to-end architecture via multi-task learning measn
that the amount of transcribed speech and its qual-
ity do not need to be as high as needed for training
an ASR system within the pipeline architecture,
since the role of this data is only to guide the end-
to-end model via an auxiliary task.

We describe a three-task architecture which
combines the main objective of matching speech
with images with two auxiliary objectives: match-
ing speech with text, and matching text with im-
ages.

The plain end-to-end SPEECH/IMAGE match-
ing task, modeled via standard architectures such
as recurrent neural networks, lacks a language-
specific learning bias. This type of model may
discover in the course of learning that speech can
be represented as a sequence of symbols (such as
for example phonemes or graphemes), but it is in
no way predisposed to make this discovery. Hu-
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man learners may be more efficient at least in part
thanks to their innate inductive bias whereby they
assume that language is symbolic. They arguably
acquired such bias via the process of evolution
by natural selection. In the context of machine
learning, inductive bias can instead be injected via
multi-task learning, where supervision from the
secondary task guides the model towards appro-
priately biased representations.

Specifically, our motivation for the
SPEECH/TEXT task is to encourage the model
to learn speech representations which are corre-
lated with the encoding of spoken language as
a sequence of characters. Additionally, and for
completeness, we also consider a second auxiliary
task matching text to images.

Our contribution consists in formulating and an-
swering the following questions:

• Do the auxiliary tasks improve the main
SPEECH/IMAGE task? The SPEECH/TEXT

task helps but we have no evidence of the
TEXT/IMAGE task improving performance.

• If so, is this mainly because MTL allows us
to exploit extra data, or because the additional
task injects an appropriate inductive bias into
the model? The inductive bias is key to the
performance gains of MTL, while extra data
makes no impact.

• Which parameters should be shared between
tasks and which should be task specific? Best
performance is achieved by sharing only the
lower layers of the speech encoder.

• What are the specific effects of the sym-
bolic inductive bias on the learned represen-
tations? SPEECH/TEXT contributes to make
the encoded speech more speaker invariant,
and more strongly correlated to the written
or phonetically represented form of the utter-
ances.

2 Related work

2.1 Visually grounded semantic embeddings
of spoken language

The most relevant strand of related work is on
visually-grounded learning of (spoken) language.
It dates back at least to Roy and Pentland (2002),
but has recently attracted further interest due to
better-performing modeling tools based on neural
networks.

Harwath and Glass (2015) collect spoken de-
scriptions for the Flick8K captioned image dataset
and present a model which is able to map pre-
segmented spoken words to aspects of visual con-
text. Harwath et al. (2016) describe a larger
dataset of images paired with spoken captions
(Places Audio Caption Corpus) and present an
architecture that learns to project images and
unsegmented spoken captions to the same em-
bedding space. The sentence representation is
obtained by feeding the spectrogram to a con-
volutional network. Further elaborations on
this setting include Harwath and Glass (2017),
which shows a clustering-based method to iden-
tify grounded words in the speech-image pairs,
and Harwath et al. (2018b) which constructs a
three-dimensional tensor encoding affinities be-
tween image regions and speech segments.

The work of Chrupała et al. (2017) is similar
in that it exploits datasets of images with spoken
captions, but their grounded speech model is based
around multi-layer Recurrent Highway Networks,
and focuses on quantitative analyses of the learned
representations. They show that the encoding of
meaning tends to become richer in higher lay-
ers, whereas encoding of form tends to initially
increase and then stay constant or decrease. Al-
ishahi et al. (2017a) further analyze the represen-
tations of the same model and show that phonolog-
ical form is reliably encoded in the lower recurrent
layers of the network but becomes substantially at-
tenuated in the higher layers.

Drexler and Glass (2017) also analyze the rep-
resentations of a visually grounded speech model
with view of using such representations for unsu-
pervised speech recognition, and show that they
contain more linguistic and less speaker informa-
tion than filterbank features.

Kamper et al. (2017) use images as a pivot to
learn to associate textual labels with spoken ut-
terances, by mapping utterances and images into
joint semantic space. After labeling the images
with an object classifier, these labels can be fur-
ther associated with utterances, providing bag-of-
words representation of spoken language which
can be useful in speech retrieval.

2.2 Multi-task learning for speech and
language

The concept of multi-task learning (MTL) was in-
troduced by Caruana (1997). Neural architectures
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widely used in the fields of speech and language
processing make it easy to define parameter-
sharing architectures and exploit MTL, and thus
there has been a recent spurt of reports on its im-
pact.

Within Natural Language Processing (NLP),
Luong et al. (2016) explore sharing encoders and
decoders in a sequence-to-sequence architecture
for translation, syntactic parsing, and image cap-
tioning, and show gains on some configurations.
Bingel and Søgaard (2017) investigate which par-
ticular pairs of NLP tasks lead to gains, concluding
that learning curves and label entropy of the tasks
may be used as predictors. McCann et al. (2018)
propose a 10-task NLP challenge, and a single
MTL model which performs reasonably well on
all tasks.

Søgaard and Goldberg (2016) show that which
parameters are shared in a multi-task architecture
matters a lot: they find that when sharing param-
eters between syntactic chunking or supertagging
and POS tagging as an auxiliary task, it was con-
sistently better to only share the lower-layers of
the model. Relatedly, Hashimoto et al. (2017) pro-
pose a method of training NLP tasks at multiple
levels of complexity by growing the depth of the
model to solve increasingly more difficult tasks.
Swayamdipta et al. (2018) use similar ideas and
show that syntactic information can be incorpo-
rated in a semantic task with MTL, using auxiliary
syntactic tasks without building full-fledged syn-
tactic structure at prediction time.

MTL can lead to a bewildering number of
choices regarding which tasks to combine, which
parameters to share and how to schedule and
weight the tasks. Some recent works have sug-
gested specific approaches to deal with this com-
plexity: Ruder et al. (2017) propose to learn from
data which parameters to share in MTL with sluice
networks and show some gains on NLP tasks.
Kiperwasser and Ballesteros (2018) investigate
how to interleave learning syntax and translation
and how to schedule these tasks.

Several works show that exploiting MTL via the
use of multiple language versions of the same or
comparable data leads to performance gains (e.g.
Lee et al., 2017; Johnson et al., 2017; de Lhoneux
et al., 2018). Gella et al. (2017) and Kádár et al.
(2018) learn visual semantic embeddings from
textual-visual datasets and show gains from ad-
ditional languages which reuse the same encoder.

Kádár et al. (2018) additionally show that an extra
objective linking the languages directly rather than
only via the visual modality provides additional
performance gains. In the context of audio-visual
data, Harwath et al. (2018a) applies a type of MTL
in the setting where there are images paired with
descriptions in English and Hindi. They project
the images, English speech and Hindi speech into
a joint semantic space, and show that training
on multiple tasks matching both languages to im-
ages works better compared to only using a single
monolingual task.

MTL has also recently seen some success in
speech processing. Similar to what we see in
machine translation, in ASR parameter sharing
between different languages is also beneficial
(Heigold et al., 2013). More recently, Dalmia et al.
(2018) show that exploiting this effect is especially
useful for low-resource languages.

Seltzer and Droppo (2013) apply MTL for
phone recognition with three lower-level auxiliary
tasks and show noticeable reductions in error rates.
Toshniwal et al. (2017) use MTL for conversa-
tional speech recognition with lower-level tasks
(e.g. phoneme recognition) in an encoder-decoder
model for direct character transcription. Rao and
Sak (2017) learn to align utterances with phonetic
transcriptions in a lower layer and graphemic tran-
scriptions in the final layer, exploiting again the
relation between task level of complexity and lev-
els of neural architecture in a MTL setting. They
also show a benefit of sharing model parameters
between different varieties of the same language,
specifically US, British, Indian and Australian En-
glish. McMahan and Rao (2017) demonstrate the
effectiveness of transfer from generic audio clas-
sification to speech command recognition, which
can also be considered a particular instance of
MTL.

How our work fits in. The current paper uses an
intuition also present in several of the works men-
tioned above: namely that an end-to-end model
which needs to induce several levels of intermedi-
ate latent representations should be guided to find
useful ones by including auxiliary prediction tasks
at the intermediate layers. These auxiliary predic-
tion tasks typically use lower-level linguistically-
motivated structures such as phonemes for end-to-
end ASR, or syntactic trees for semantic parsing.

The present study extends this setting to a full
speech-to-semantics setup: the main task is to take
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spoken language as input and learn a semantic
representation based on feedback from the visual
modality, while an ASR-like task (SPEECH/TEXT

MATCHING) is merely auxiliary. The lower-level
linguistic structures in our case are the sequences
of phoneme-like units approximated by the written
form of the language.

3 Methods

3.1 Models

S2
T

S

S2
I

T
T2S

T2I

Speech/Text

Text/Image

A bird walks on a beam

I2T

I

I2S

Speech/Image

Figure 1: Overview of the task architecture. T: shared
text encoder, S: shared speech encoder, I: shared image
encoder. The notation X2Y stands for an encoder for
input type X which is only used for the loss between
encoded input types X and Y.

The modeling framework uses a multi-task
setup. The core model is a three-task architec-
ture depicted in Figure 1: there are three encoders,
one for each modality: speech, image, and text.
Each modality has a shared encoder which works
directly on the input modality, and two special-
ized encoders which take as input the encoded data
from the shared encoder. The three tasks corre-
spond to three losses (depicted with circles in the
figure): each loss works with a pair of modali-
ties and attempts to minimize the distance between
matching encoded items, while maximizing the
distance between mismatching ones. For a pair of
modalities with encoded objects u and i, the loss
is defined as follows

(1)

∑
u,i

(∑
u′

max[0, α+d(u, i)−d(u′, i)]

+
∑
i′

max[0, α+ d(u, i)− d(u, i′)]

)

where (u, i) are matching objects (for example
an utterance and a matching image), and (u′, i)
and (u, i′) are mismatched objects within a batch,
while d(·, ·) is the cosine distance between en-
coded objects.

The SPEECH/IMAGE part of the architecture is
based on the grounded speech model from Chru-
pała et al. (2017), with the main difference being
that these authors used Recurrent Highway Net-
works (Zilly et al., 2017) for the recurrent layers,
while we chose the simpler Gated Recurrent Unit
networks (Chung et al., 2014), because they have
optimized low-level CUDA support which makes
them much faster to run and enables us to carry
out an at least somewhat comprehensive set of ex-
periments.

3.2 Image Encoders

The shared image encoder I is a pretrained, fixed
Convolutional Neural Network which outputs a
vector with image features; specifically, the activa-
tions of the pre-classification layer. The modality-
specific encoders I2S and I2T are linear mappings
which take the output of I.

3.3 Speech Encoders

The shared encoder S consists of a 1-dimensional
convolutional layer which subsamples the input,
followed by a stack of recurrent layers. The
modality specific encoders S2T and S2I consist of
a stack of recurrent layers, followed by an atten-
tion operator. The encoder S is defined as follows:

S(x) = GRU`(Convs,d,z(x)) (2)

where Conv is a convolutional layer with kernel
size s, d channels, and stride z, and GRU` is a
stack of ` GRU layers. An encoder of modality X

is defined as

S2X(x) = unit(Attn(GRU`(x))) (3)

where Attn is the attention operator and unit is
L2-normalization. Note that for the case ` = 0
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GRU` is simply the identity function. The at-
tention operator computes a weighted sum of the
RNN activations at all timesteps:

Attn(x) =
∑
t

αtxt (4)

where the weights αt are determined by an MLP
with learned parameters U and W, and passed
through the timewise softmax function:

αt =
exp(U tanh(Wxt))∑
t′ exp(U tanh(Wxt′))

(5)

3.4 Text Encoders
The text encoders are defined in the same way as
the speech encoders, with the only difference be-
ing that the convolutional layer is replaced by an
embedding layer, i.e. a lookup table mapping char-
acters to embedding vectors.

3.5 Multi-tasking
The model is trained by alternating between the
tasks, and updating the parameters of each task in
turn. Note that the input data for the three tasks
can be the same, but can also be partly or com-
pletely disjoint. We report two conditions

• ALIGNED: all tasks use the same parallel
data;

• NON-ALIGNED: the data for the
SPEECH/TEXT task is disjoint from the
data for the other two tasks.

We consider the NON-ALIGNED condition
somewhat more realistic, in that it is easier to find
separate datasets for each pair of modalities than it
is to to find a single dataset with all three modal-
ities. However the main reason to including both
conditions is that it allows us to disentangle via
which mechanism MTL contributes: by enabling
the use of extra data, or by enforcing an inductive
bias.

3.6 Architecture variants
There is a multitude of ways in which the details
of the core architecture can be varied. in order to
reduce them to a manageable number we made the
following choices:

• Keep the image encoder simple and fixed.

• Keep the architecture of the encoders fixed,
and only vary encoder depth and the degree
of sharing.

In addition to variants of the full three-task
model, we also have single-task and two-task
baselines which are the three-task model with the
SPEECH/TEXT and TEXT/IMAGE tasks completely
ablated, or with only the TEXT/IMAGE task ab-
lated. Note that we do not include a condition with
only the SPEECH/TEXT task ablated, as the two re-
maining tasks do not share any learnable parame-
ters (since I is fixed).

3.7 Evaluation metrics

Below we introduce metrics evaluating perfor-
mance on the image retrieval task, as well as addi-
tional analytical metrics which quantify some as-
pects of the internal representation learned by the
encoders.

Evaluating image retrieval In order to evaluate
how well the main SPEECH/IMAGE task performs
we report the recall at 10 (R@10) and median rank
(Medr) for the SPEECH/IMAGE task: utterances in
the development set are encoded via S2I and im-
ages via I2S. For each utterance the images are
ranked in order of cosine distance; R@10 counts
the mean proportion of correct images among top
10 ranked images, while Medr gives the median
of the ranks of the correct image (where correct
image counts as image originally paired with the
utterance).

Invariance to speaker We measure how invari-
ant the utterance encoding is to the identity of the
speaker; in principle it is expected and desirable
that the utterance encoding captures the meaning
of the spoken language rather than other aspects
of it such as who spoke it. To quantify this invari-
ance we report the accuracy of an L2-penalized lo-
gistic regression model on the task of decoding the
identity of the speaker from the output of the S2I

encoder. The logistic model is trained on 2
3 of the

development data and tested on the remaining 1
3 .

Representational similarity Representational
Similarity Analysis (Kriegeskorte et al., 2008)
gauges the correlation between two sets of
pairwise similarity measurements. Here we
use it to quantify the correlation of the learned
representation space with the written text space
and with the image space. For the encoder
representations, the pairwise similarities between
utterances are given by the cosine similarities. For
the written form, the similarities are the inverse
of the normalized Levenshtein distance between
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the character sequences encoding each pair of
utterances:

simtext(a, b) = 1− D(a, b)

max(|a|, |b|)
(6)

whereD(a, b) is the Levenshtein distance and |·| is
string length. We compute the Pearson correlation
coefficient between two similarity matrices on the
upper triangulars of the each matrix, excluding the
diagonal.

Phoneme decoding A direct way of measuring
whether neural representations of speech are bi-
ased towards encoding symbols is to try to de-
code the phonemes from the activation patterns
aligned with a phonetic transcription of the ut-
terance. We follow the methodology of Alishahi
et al. (2017b) and train an L2-penalized logistic re-
gression model on the output of the S encoders for
phonemes from 2,500 utterances and report clas-
sification accuracies on data from 2,500 heldout
utterances.

3.8 Experimental settings
Data The SPEECH/IMAGE and TEXT/IMAGE

tasks are always trained on the Flickr8K Audio
Caption Corpus (Harwath et al., 2016), which is
based on the original Flickr8K dataset (Hodosh
et al., 2013). Flickr8K consists of 8,000 pho-
tographic images depicting everyday situations.
Each image is accompanied by five brief En-
glish descriptions produced by crowd workers.
Flickr8K Audio Caption Corpus enriches this data
with spoken versions of these descriptions, read
aloud and recorded by crowd workers. The to-
tal amount of speech in this dataset is approxi-
mately 34 hours. One thousand images are held
out for validation, and another one thousand for
the test set, using the splits provided by Karpa-
thy and Fei-Fei (2015). In the ALIGNED condi-
tion the SPEECH/TEXT task is also trained on this
data. In the NON-ALIGNED condition, we train the
SPEECH/TEXT task on the Libri dataset (Panay-
otov et al., 2015) which consists of approximately
1,000 hours of read English speech, derived from
read audiobooks. There are 291,630 sentences in
the corpus, of which 1,000 are held out for valida-
tion.

We preprocess the audio by extracting 12-
dimensional mel-frequency cepstral coefficients
(MFCC) plus log of the total energy. We use
25 millisecond windows, sampled every 10 mil-
liseconds. The shared image encoder is fixed and

consists of 4096 dimensional activations of the
pre-classification layer of VGG-16 (Simonyan and
Zisserman, 2014) pre-trained on Imagenet (Rus-
sakovsky et al., 2015).

Hyperparameters Most of the hyperparameters
are based from especially Chrupała et al. (2017).
The models are trained for a maximum of 25
epochs with Adam, with learning rate 0.0002, and
gradient clipping at 2.0. The loss function’s mar-
gin parameter is α = 0.2. The GRUs have 1024
dimensions. The convolutional layer has 64 chan-
nels, kernel size of 6 and stride 2. The hidden
layer of the attention MLP is 128. The linear map-
pings I2S and I2T project 4096 dimensions down
to 1024. We apply early stopping and pick the re-
sults of each run after the epoch for which it scored
best on R@10. We run three random initializa-
tions of each configuration.

Multi-task training We use a simple round-
robin training scheme: we alternate between tasks,
and for each task update the parameters of that
task as well as the shared parameters based on su-
pervision from one batch of data. The data or-
dering for each task is independent, both in the
ALIGNED and NON-ALIGNED condition: for each
epoch we reshuffle the dataset associated to each
task and iterate through the batches until the small-
est dataset runs out. This procedure makes sure
that the only difference between the ALIGNED and
NON-ALIGNED conditions is the actual data and
not other aspects of training.

Repository The code needed to repro-
duce our results and analyses is available at
https://github.com/gchrupala/symbolic-bias.

4 Results

Table 1 shows the evaluation results on the vali-
dation data, on the image retrieval task of 13 con-
figurations of the model, including three versions
with one or two tasks ablated.

Table 2 shows the results on the test set with
the 1-task baseline model and the best performing
configuration compared to previously reported re-
sults on this dataset. As can be seen the baseline
model is a bit worse than the best reported result
on this data, while the 3-task model is much better.

5 Discussion

Below we discuss and interpret the patterns in per-
formance on image retrieval as measured by Re-

https://github.com/gchrupala/symbolic-bias
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Data Tasks S T S2I S2T T2S T2I R@10 Medr

1 NA 1 2 . 2 . . . 0.218 63.8
2 Aligned 2 2 1 2 0 0 . 0.279 42.3
3 Non-aligned 2 2 1 2 0 0 . 0.280 41.3

4

Aligned 3

2 1 1 0 0 1 0.280 43.0
5 2 1 1 1 1 1 0.266 44.3
6 2 1 2 0 0 1 0.281 39.7
7 2 1 2 1 1 1 0.270 44.3
8 4 1 0 0 0 0 0.255 48.3

9

Non-aligned 3

2 1 1 0 0 1 0.275 42.8
10 2 1 1 1 1 1 0.257 49.8
11 2 1 2 0 0 1 0.280 41.7
12 2 1 2 1 1 1 0.252 50.7
13 4 1 0 0 0 0 0.223 59.3

Table 1: Results on the validation set with varying model configuration. R@10 is recall at 10 for the Speech/Image
task, Medr is the median rank for the same task. All scores are averages over 3 runs with different random
initializations; models were run for 25 epochs with early stopping with R@10 as a criterion. The numbers (1, 2)
in the columns corresponding to encoders specify the number of RNN layers in each encoder; zero (0) indicates
the encoder only consists of the self-attention with no RNN layers; dot (.) indicates the whole task in which the
encoder participates is ablated.

Data Tasks S T S2I S2T T2S T2I R@10 Medr

NA 1 Harwath and Glass (2015) 0.179 -
NA 1 Chrupała et al. (2017) 0.253 48

NA 1 2 . 2 . . . 0.244 51
Aligned 3 2 1 2 0 0 1 0.296 34

Table 2: Results on the test set, obtained by using the best run/epoch determined on the validation data. The first
two rows show the numbers reported in previous work.

call@10 and median rank.

Impact of tasks The most striking result is the
large gap in performance between the 1-task con-
dition (row 1) and most of the other rows. Com-
paring row 1 versus rows 2 and 3 we see that
adding the SPEECH/TEXT task leads to a substan-
tial improvement. However, comparing rows 2
and 3 versus rows 6 and 11, it seems that the ad-
dition of TEXT/IMAGE task does not seem to have
a major impact on performance, at least to the ex-
tent that can be gleaned from the experiments we
carried out. It is possible that with more effort put
into engineering this component of the model we
would see a better result.

Role of data vs inductive bias The other major
finding is that whether we use the same or differ-
ent data to train the main and auxiliary task has
overall little impact: this is indicated by relatively
small differences between configurations in the

ALIGNED vs NON-ALIGNED condition. The dif-
ferences that are there tend to favor the ALIGNED

setting. This lends supports to the conclusion that
the SPEECH/TEXT auxiliary task contributes to im-
proved performance on the main task via a strong
inductive bias rather than merely via enabling the
use of extra data. This is in contrast to many other
applications of MTL.

Impact of parameter sharing design The third
important effect is about how parameters between
the tasks are shared, specifically how the shared
and task-specific parts of the speech encoder are
apportioned. The configuration with maximum
sharing of parameters among the tasks (rows 8
and 13) performs poorly compared to sharing only
the lower layers of the encoders for speech and
text (i.e. rows 6 and 11). Additionally, we see
that the inclusion of a text-specific speech encoder
S2T degrades performance: compare for exam-
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ple row 6 to 7, and row 11 to 12. Thus it is
best to have a shared speech encoder whose out-
put is directly used by the SPEECH/TEXT task,
while the SPEECH/IMAGE task carries out further
transformations of the input via an image-specific
speech encoder S2I. We can interpret this as the
MTL emulating a pipeline architecture to some
extent: direct connection of the SPEECH/TEXT

task to the shared encoder forces it to come up
with a representation closely correlated with a
written transcription, and then the image-specific
speech encoder takes this as input and maps it to
a more meaning-related representation, useful for
the SPEECH/IMAGE task.

In addition to the above patterns of performance
on image retrieval we now address our further re-
search questions by investigating selected aspects
of the encoder representations.

Speaker invariance Table 3 shows the accuracy
of speaker identification from the activation pat-
terns of the output of encoder S2I for the single
task model, the 2-task model, and for the 3-task
model which achieved the highest recall@10. The
accuracy of the 2 task model is almost three times
worse than for the single task model, indicating
that the inclusion of SPEECH/TEXT strongly drives
the learned representations towards speaker invari-
ance. The TEXT/IMAGE task has only a minor im-
pact.

Model Accuracy

Model 1, S2I 0.297
Model 2, S2I 0.101
Model 6, S2I 0.085

Table 3: Speaker identification accuracy for three
model configurations. Model numbers refer to rows in
Table 1.

RSA with regard to textual and visual spaces
Table 4 shows the RSA scores between the en-
coder representations of utterances and their repre-
sentations in the spoken, written and visual modal-
ities. Comparing the RSA scores between the
S2I encoder of model 1 (single task) and model
6 (3 task) we see that the correlations with the
textual modality and the visual modality are en-
hanced while the correlation with the input au-
dio modality drops. This can be interpreted as
the SPEECH/TEXT task nudging the model to align
more closely with the text, which also ends up

MFCC Text Image

Model 1, S2I 0.043 0.194 0.187
Model 6, S2I 0.030 0.212 0.222
Model 6, S2T 0.099 0.243 0.105
Image 0.008 0.083 1.000

Table 4: Pearson correlation between pairwise utter-
ance similarity matrices, for utterances represented by
Mean MFCC features, written text, three encoders, and
the features of the image corresponding to the utter-
ance. Model numbers refer to rows in Table 1. Anal-
ysis carried out on the single best seed/epoch for each
configuration, according to Recall@10.

contributing to the correlation with the image
space. For model 6 but using the output of the
S2T encoder, we see the correlation with the text
space is even higher while the correlation with the
image space is low. These patterns are what we
would expect if SPEECH/TEXT does indeed inject
a symbolic inductive bias to the model. Finally,
while the RSA score between the textual and vi-
sual modalities is low (0.083), nevertheless model
6’s encoder S2I is moderately correlated with both
of these (0.212 and 0.222 respectively).

Phoneme decoding Table 5 shows how well
phonemes can be decoded from time-aligned
slices of four types of representations: input
MFCC features, the activation patterns of a ran-
domly initialized S encoder, and the activations of
the S encoder for two trained models (1-task and
3-task). Phonemes are most decodable from the
3-task activation patterns, corroborating that the
SPEECH/TEXT task biases the representations to-
wards a symbolic encoding of speech.

Representation Accuracy

MFCC 0.284
Random init, S 0.486
Model 1, S 0.528
Model 6, S 0.578

Table 5: Phoneme decoding accuracy for the four rep-
resentations. Model numbers refer to rows in Table 1.

6 Conclusion

We show that the SPEECH/TEXT task leads to
substantial performance improvements when com-
pared to training the SPEECH/IMAGE task in isola-
tion. Via controlled experiments and analyses we
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show evidence that this is due to the role of induc-
tive bias on the learned encoder representations.

Limitations and future work Our current
model does not include an explicit speech-to-text
decoder, which limits the types of analyses we
can perform. For one, it makes it infeasible to
carry out an apples-to-apples comparison with a
pipeline architecture. Going forward we would
like to go beyond matching tasks and evaluate the
impact of an explicit speech-to-text decoder as an
auxiliary task.

We are also planning to investigate how sensi-
tive our approach is to amount of data for the aux-
iliary task. This would be especially interesting
given that one motivation for a visually-supervised
end-to-end approach is the un-availability of large
amounts of transcribed speech in certain circum-
stances.
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