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Abstract

It can be challenging to train multi-task neu-
ral networks that outperform or even match
their single-task counterparts. To help address
this, we propose using knowledge distillation
where single-task models teach a multi-task
model. We enhance this training with teacher
annealing, a novel method that gradually tran-
sitions the model from distillation to super-
vised learning, helping the multi-task model
surpass its single-task teachers. We evaluate
our approach by multi-task fine-tuning BERT
on the GLUE benchmark. Our method consis-
tently improves over standard single-task and
multi-task training.

1 Introduction

Building a single model that jointly learns to per-
form many tasks effectively has been a long-
standing challenge in Natural Language Process-
ing (NLP). However, multi-task NLP remains dif-
ficult for many applications, with multi-task mod-
els often performing worse than their single-task
counterparts (Plank and Alonso, 2017; Bingel and
Søgaard, 2017; McCann et al., 2018). Motivated
by these results, we propose a way of applying
knowledge distillation (Bucilu et al., 2006; Ba and
Caruana, 2014; Hinton et al., 2015) so that single-
task models effectively teach a multi-task model.

Knowledge distillation transfers knowledge
from a “teacher” model to a “student” model by
training the student to imitate the teacher’s out-
puts. In “born-again networks” (Furlanello et al.,
2018), the teacher and student have the same neu-
ral architecture and model size, but surprisingly
the student is able to surpass the teacher’s accu-
racy. Intuitively, distillation is effective because
the teacher’s output distribution over classes pro-
vides more training signal than a one-hot label;
Hinton et al. (2015) suggest that teacher outputs
contain “dark knowledge” capturing additional in-
formation about training examples.

 

0 
time training 

distill train 

 

Task 1  
Model 

 

Task 2  
Model 

 

Task k 
Model 

 
 

 
Multi-Task 

Model 

 

Task 1  
Labels 

 
 

Task 2  
Labels 

 

Task k 
Labels 

 

1 

Figure 1: Overview of our method. λ is increased lin-
early from 0 to 1 over the course of training.

Our work extends born-again networks to the
multi-task setting. We compare Single→Multi1

born-again distillation with several other variants
(Single→Single and Multi→Multi), and also ex-
plore performing multiple rounds of distillation
(Single→Multi→Single→Multi). Furthermore,
we propose a simple teacher annealing method
that helps the student model outperform its teach-
ers. Teacher annealing gradually transitions the
student from learning from the teacher to learn-
ing from the gold labels. This method ensures the
student gets a rich training signal early in training,
but is not limited to only imitating the teacher.

Our experiments build upon recent success in
self-supervised pre-training (Dai and Le, 2015;
Peters et al., 2018) and multi-task fine-tune BERT
(Devlin et al., 2019) to perform the tasks from
the GLUE natural language understanding bench-
mark (Wang et al., 2019). Our training method,
which we call Born-Again Multi-tasking (BAM)2,
consistently outperforms standard single-task and
multi-task training. Further analysis shows the
multi-task models benefit from both better regu-
larization and transfer between related tasks.

1We use Single→Multi to indicate distilling single-task
“teacher” models into a multi-task “student” model.

2Code will be released at https://github.com/
google-research/google-research/tree/
master/bam

https://github.com/google-research/google-research/tree/master/bam
https://github.com/google-research/google-research/tree/master/bam
https://github.com/google-research/google-research/tree/master/bam
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2 Related Work

Multi-task learning for neural networks in general
(Caruana, 1997) and within NLP specifically (Col-
lobert and Weston, 2008; Luong et al., 2016) has
been widely studied. Much of the recent work for
NLP has centered on neural architecture design:
e.g., ensuring only beneficial information is shared
across tasks (Liu et al., 2017; Ruder et al., 2019)
or arranging tasks in linguistically-motivated hier-
archies (Søgaard and Goldberg, 2016; Hashimoto
et al., 2017; Sanh et al., 2019). These contribu-
tions are orthogonal to ours because we instead
focus on the multi-task training algorithm.

Distilling large models into small models (Kim
and Rush, 2016; Mou et al., 2016) or ensembles of
models into single models (Kuncoro et al., 2016;
Liu et al., 2019a) has been shown to improve re-
sults for many NLP tasks. There has also been
some work on using knowledge distillation to aide
in multi-task learning. In reinforcement learning,
knowledge distillation has been used to regularize
multi-task agents (Parisotto et al., 2016; Teh et al.,
2017). In NLP, Tan et al. (2019) distill single-
language-pair machine translation systems into a
many-language system. However, they focus on
multilingual rather than multi-task learning, use a
more complex training procedure, and only exper-
iment with Single→Multi distillation.

Concurrently with our work, several other re-
cent works also explore fine-tuning BERT us-
ing multiple tasks (Phang et al., 2018; Liu et al.,
2019b; Keskar et al., 2019; Liu et al., 2019a).
However, they use only standard transfer or multi-
task learning, instead focusing on finding benefi-
cial task pairs or designing improved task-specific
components on top of BERT.

3 Methods

3.1 Multi-Task Setup

Model. All of our models are built on top of BERT
(Devlin et al., 2019). This model passes byte-pair-
tokenized (Sennrich et al., 2016) input sentences
through a Transformer network (Vaswani et al.,
2017), producing a contextualized representation
for each token. The vector corresponding to the
first input token3 c is passed into a task-specific
classifier. For classification tasks, we use a stan-
dard softmax layer: softmax(Wc). For regression

3For BERT this is a special token [CLS] that is
prepended to each input sequence.

tasks, we normalize the labels so they are between
0 and 1 and then use a size-1 NN layer with a sig-
moid activation: sigmoid(wT c). In our multi-task
models, all of the model parameters are shared
across tasks except for these classifiers on top of
BERT, which means less than 0.01% of the pa-
rameters are task-specific. Following BERT, the
token embeddings and Transformer are initialized
with weights from a self-supervised pre-training
phase.4

Training. Single-task training is performed as
in Devlin et al. (2019). For multi-task training,
examples of different tasks are shuffled together,
even within minibatches. The summed loss across
all tasks is minimized.

3.2 Knowledge Distillation
We use Dτ = {(x1τ , y1τ ), ..., (xNτ , yNτ )} to denote
the training set for a task τ and fτ (x, θ) to denote
the output for task τ produced by a neural network
with parameters θ on the input x. Standard super-
vised learning trains θ to minimize the loss on the
training set:

L(θ) =
∑

xiτ ,y
i
τ∈Dτ

`(yiτ , fτ (x
i
τ , θ))

where for classification tasks ` is usually cross-
entropy. Knowledge distillation trains the model
to instead match the predictions of a teacher model
with parameters θ′:

L(θ) =
∑

xiτ ,y
i
τ∈Dτ

`(fτ (x
i
τ , θ
′), fτ (x

i
τ , θ))

Note that our distilled networks are “born-again”
in that the student has the same model architecture
as the teacher, i.e., all of our models have the same
prediction function fτ for each task. For regres-
sion tasks, we train the student to minimize the L2
distance between its prediction and the teacher’s
instead of using cross-entropy loss. Intuitively,
knowledge distillation improves training because
the full distribution over labels provided by the
teacher provides a richer training signal than a
one-hot label. See Furlanello et al. (2018) for a
more thorough discussion.

Multi-Task Distillation. Given a set of tasks T ,
we train a single-task model with parameters θτ
on each task τ . For most experiments, we use

4For BERT code and weights, see https://github.
com/google-research/bert.

https://github.com/google-research/bert
https://github.com/google-research/bert
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the single-task models to teach a multi-task model
with parameters θ:

L(θ) =
∑
τ∈T

∑
xiτ ,y

i
τ∈Dτ

`(fτ (x
i
τ , θτ ), fτ (x

i
τ , θ))

However, we experiment with other distillation
strategies as well.

Teacher Annealing. In knowledge distillation,
the student is trained to imitate the teacher. This
raises the concern that the student may be limited
by the teacher’s performance and not be able to
substantially outperform the teacher. To address
this, we propose teacher annealing, which mixes
the teacher prediction with the gold label during
training. Specifically, the term in the summation
becomes

`(λyiτ + (1− λ)fτ (xiτ , θτ ), fτ (xiτ , θ))

where λ is linearly increased from 0 to 1 through-
out training. Early in training, the model is mostly
distilling to get as useful of a training signal as
possible. Towards the end of training, the model
is mostly relying on the gold-standard labels so it
can learn to surpass its teachers.

4 Experiments

Data. We use the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al.,
2019), which consists of 9 natural language under-
standing tasks on English data. Tasks cover tex-
tual entailment (RTE and MNLI) question-answer
entailment (QNLI), paraphrase (MRPC), question
paraphrase (QQP), textual similarity (STS), sen-
timent (SST-2), linguistic acceptability (CoLA),
and Winograd Schema (WNLI).

Training Details. Rather than simply shuffling
the datasets for our multi-task models, we follow
the task sampling procedure from Bowman et al.
(2018), where the probability of training on an
example for a particular task τ is proportional to
|Dτ |0.75. This ensures that tasks with very large
datasets don’t overly dominate the training.

We also use the layerwise-learning-rate trick
from Howard and Ruder (2018). If layer 0 is the
NN layer closest to the output, the learning rate
for a particular layer d is set to BASE LR · αd
(i.e., layers closest to the input get lower learn-
ing rates). The intuition is that pre-trained layers
closer to the input learn more general features, so
they shouldn’t be altered much during training.

Hyperparameters. For single-task models, we
use the same hyperparameters as in the original
BERT experiments except we pick a layerwise-
learning-rate decay α of 1.0 or 0.9 on the dev set
for each task. For multi-task models, we train
the model for longer (6 epochs instead of 3) and
with a larger batch size (128 instead of 32), using
α = 0.9 and a learning rate of 1e-4. All models
use the BERT-Large pre-trained weights.

Reporting Results. Dev set results report the
average score (Spearman correlation for STS,
Matthews correlation for CoLA, and accuracy for
the other tasks) on all GLUE tasks except WNLI,
for which methods can’t outperform a majority
baseline. Results show the median score of at least
20 trials with different randoms seeds. We find us-
ing a large number of trials is essential because re-
sults can vary significantly for different runs. For
example, standard deviations in score are over ±1
for CoLA, RTE, and MRPC for multi-task models.
Single-task standard deviations are even larger.

5 Results

Main Results. We compare models trained with
single-task learning, multi-task learning, and sev-
eral varieties of distillation in Table 1. While stan-
dard multi-task training improves over single-task
training for RTE (likely because it is closely re-
lated to MNLI), there is no improvement on the
other tasks. In contrast, Single→Multi knowledge
distillation improves or matches the performance
of the other methods on all tasks except STS, the
only regression task in GLUE. We believe distil-
lation does not work well for regression tasks be-
cause there is no distribution over classes passed
on by the teacher to aid learning.

The gain for Single→Multi over Multi is larger
than the gain for Single→Single over Single, sug-
gesting that distillation works particularly well
in combination with multi-task learning. Inter-
estingly, Single→Multi works substantially bet-
ter than Multi→Multi distillation. We speculate
it may help that the student is exposed to a diverse
set of teachers in the same way ensembles bene-
fit from a diverse set of models, but future work
is required to fully understand this phenomenon.
In addition to the models reported in the table, we
also trained Single→Multi→Single→Multi mod-
els. However, the difference with Single→Multi
was not statistically significant, suggesting there
is little value in multiple rounds of distillation.
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Model Avg. CoLAa SST-2b MRPCc STS-Bd QQPe MNLIf QNLIg RTEh

|D| = 8.5k 67k 3.7k 5.8k 364k 393k 108k 2.5k

Single 84.0 60.6 93.2 88.0 90.0 91.3 86.6 92.3 70.4
Multi 85.5 60.3 93.3 88.0 89.8 91.4 86.5 92.2 82.1
Single→Single 84.3 61.7∗∗ 93.2 88.7∗ 90.0 91.4 86.8∗∗ 92.5∗∗∗ 70.0
Multi→Multi 85.6 60.9 93.5 88.1 89.8 91.5∗ 86.7 92.3 82.0
Single→Multi 86.0∗∗∗ 61.8∗∗ 93.6∗ 89.3∗∗ 89.7 91.6∗ 87.0∗∗∗ 92.5∗∗∗ 82.8∗

Dataset references: aWarstadt et al. (2018) bSocher et al. (2013) cDolan and Brockett (2005) dCer et al. (2017) eIyer et al. (2017)
fWilliams et al. (2018) gconstructed from SQuAD (Rajpurkar et al., 2016) hGiampiccolo et al. (2007)

Table 1: Comparison of methods on the GLUE dev set. ∗, ∗∗, and ∗∗∗ indicate statistically significant (p < .05,
p < .01, and p < .001) improvements over both Single and Multi according to bootstrap hypothesis tests.4

Model GLUE score

BERT-Base (Devlin et al., 2019) 78.5
BERT-Large (Devlin et al., 2019) 80.5
BERT on STILTs (Phang et al., 2018) 82.0
MT-DNN (Liu et al., 2019b) 82.2
Span-Extractive BERT on STILTs

82.3(Keskar et al., 2019)
Snorkel MeTaL ensemble

83.2(Hancock et al., 2019)
MT-DNNKD* (Liu et al., 2019a) 83.7

BERT-Large + BAM (ours) 82.3

Table 2: Comparison of test set results. *MT-DNNKD

is distilled from a diverse ensemble of models.

Overall, a key benefit of our method is robust-
ness: while standard multi-task learning produces
mixed results, Single→Multi distillation consis-
tently outperforms standard single-task and multi-
task training, resulting in performance competitive
with the current state-of-the-art. We also note that
in some trials single-task training resulted in mod-
els that score quite poorly (e.g., less than 91 for
QQP or less than 70 for MRPC), while the multi-
task models have more dependable performance.

Test Set Results. We compare against recent work
by submitting to the GLUE leaderboard. We use
Single→Multi distillation. Following the proce-
dure used by BERT, we train multiple models and
submit the one with the highest average dev set
score to the test set. BERT trained 10 models for
each task (80 total); we trained 20 multi-task mod-
els. Results are shown in Table 2.

Our work outperforms or matches existing pub-

4For all statistical tests we use the Holm-Bonferroni
method (Holm, 1979) to correct for multiple comparisons.

lished results that do not rely on ensembling.
However, due to the variance between trials dis-
cussed under “Reporting Results,” we think these
test set numbers should be taken with a grain of
salt, as they only show the performance of indi-
vidual training runs. We believe significance test-
ing over multiple trials would be needed to have a
definitive comparison.

Single-Task Fine-Tuning. A crucial difference
distinguishing our work from the STILTs, Snorkel
MeTaL, and MT-DNNKD methods in Table 2 is
that we do not single-task fine-tune our model.
That is, we do not continue training the model on
individual tasks after multi-task training. While
single-task fine-tuning improves results, we think
to some extent it defeats the purpose of multi-task
learning: the result of training is one model for
each task instead of a model that can perform all
of the tasks. Compared to having many single-task
models, a multi-task model is simpler to deploy,
faster to run, and arguably more scientifically in-
teresting from the perspective of building general
language-processing systems.

We evaluate the benefits of single-task fine-
tuning and report results in Table 3. Single-
task fine-tuning initializes models with multi-task-
learned weights and then performs single-task
training. Hyperparameters are the same as for our
single-task models except we use a smaller learn-
ing rate of 1e-5. While single-task fine-tuning un-
surprisingly improves results, the gain on top of
Single→Multi distillation is small, reinforcing the
claim that distillation obviates many of the bene-
fits of single-task training.

Ablation Study. We show the importance of
teacher annealing and the other training tricks in
Table 4. We found them all to significantly im-
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Model Avg. Score

Multi 85.5
+Single-Task Fine-Tuning +0.3

Single→Multi 86.0
+Single-Task Fine-Tuning +0.1

Table 3: Combining multi-task training with single-
task fine-tuning. Improvements are statistically signifi-
cant (p < .01) according to Mann-Whitney U tests.4

Model Avg. Score

Single→Multi 86.0
No layer-wise LRs −0.3
No task sampling −0.4
No teacher annealing: λ = 0 −0.5
No teacher annealing: λ = 0.5 −0.3

Table 4: Ablation Study. Differences from
Single→Multi are statistically significant (p < .001)
according to Mann-Whitney U tests.4

prove scores. Interestingly, using pure distillation
without teacher annealing (i.e., fixing λ = 0) per-
forms no better than standard multi-task learning.

Comparing combinations of tasks. Training on
a large number of tasks is known to help regularize
multi-task models (Ruder, 2017). A related bene-
fit of multi-task learning is the transfer of learned
“knowledge” between closely related tasks. We
investigate these by comparing several models on
the RTE task, including one trained with a very
closely related task (MNLI) and one trained with
fairly unrelated tasks (QQP, CoLA, and SST). We
use Single→Multi distillation (Single→Single in
the case of the RTE-only model). Both sets of
auxilliary tasks improve RTE performance, sug-
gesting that both benefits are playing a role in im-
proving multi-task models. Interestingly, RTE +
MNLI alone slightly outperforms the model per-
forming all tasks, perhaps because training on
MNLI, which has a very large dataset, is already
enough to sufficiently regularize the model.

6 Discussion and Conclusion

We have shown that Single→Multi distillation
combined with teacher annealing produces results
consistently better than standard single-task or
multi-task training. Achieving robust multi-task
gains across many tasks has remained elusive in
previous research, so we hope our work will make

Trained Tasks RTE score

RTE 70.0
RTE + MNLI 83.4
RTE + QQP + CoLA + SST 75.1
All GLUE 82.8

Table 5: Which tasks help RTE? Pairwise differences
are statistically significant (p < .01) according to
Mann-Whitney U tests.4

multi-task learning more broadly useful within
NLP. However, with the exception of closely re-
lated tasks with small datasets (e.g., MNLI help-
ing RTE), the overall size of the gains from our
multi-task method are small compared to the gains
provided by transfer learning from self-supervised
tasks (i.e., BERT). It remains to be fully under-
stood to what extent “self-supervised pre-training
is all you need” and where transfer/multi-task
learning from supervised tasks can provide the
most value.
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