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Abstract

Named entity recognition (NER) is the back-
bone of many NLP solutions. F1 score, the
harmonic mean of precision and recall, is often
used to select/evaluate the best models. How-
ever, when precision needs to be prioritized
over recall, a state-of-the-art model might not
be the best choice. There is little in the litera-
ture that directly addresses training-time mod-
ifications to achieve higher precision informa-
tion extraction. In this paper, we propose a
neural semi-Markov structured support vec-
tor machine model that controls the precision-
recall trade-off by assigning weights to differ-
ent types of errors in the loss-augmented infer-
ence during training. The semi-Markov prop-
erty provides more accurate phrase-level pre-
dictions, thereby improving performance. We
empirically demonstrate the advantage of our
model when high precision is required by com-
paring against strong baselines based on CRF.
In our experiments with the CoNLL 2003
dataset, our model achieves a better precision-
recall trade-off at various precision levels.

1 Introduction

Named Entity Recognition (NER) is the task of
locating and categorizing phrases into a closed set
of classes, such as organizations, people, and loca-
tions. NER is an information extraction task that
is important for understanding large bodies of text
and is an essential component for many natural
language processing (NLP) pipelines. The most
common evaluation metric for information extrac-
tion tasks is F1, which is the harmonic mean be-
tween precision and recall: that is, false positives
and false negatives are weighted equally.

In certain real-world applications (e.g.,
medicine and finance), extracting wrong informa-
tion is much worse than extracting nothing: hence,
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in such domains, high precision is emphasized.
Trade-offs between precision and recall have
been well researched for classification (Joachims,
2005; Jansche, 2005; Cortes and Mohri, 2004).
However, barring studies on inference-time
heuristics, there is limited work on training
precision-oriented sequence tagging models. In
this paper, we present a method for training
precision-driven NER models.

By defining custom loss objectives for the
structured SVM (SSVM) model, we extend cost-
sensitive learning (Domingos, 1999; Margineantu,
2001) to sequence tagging problems. A difficulty
in applying cost-sensitive learning to NER is that
the model needs to operate on segmentations of
the input sentence and the labels of the segments.
Inspired by semi-Markov CRF (Sarawagi and Co-
hen, 2005), we propose a semi-Markov SSVM
model that scores and labels consecutive tokens
together, which allows us to directly interact with
the segment-level errors in the precision-beneficial
loss of the SSVM model.

We compare our semi-Markov SSVM model
with several competitive inference-time baselines
that have been proposed for high-precision NER.
Our results show that our model outperforms com-
petitive baselines on organization names, and is at
least as good as the best inference-time approaches
at some precision levels for other NER classes.

2 Related Work

For classification, several papers try to optimize
different evaluation metrics directly. Joachims
(2005) proposes an SSVM model for optimizing
multivariate performance measures of binary clas-
sification tasks. Fβ is one of the metrics in their
example. Similarly, Jansche (2005) maximizes ex-
pected F-measure, Cortes and Mohri (2004) and
Narasimhan and Agarwal (2013) optimize AUC
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Figure 1: Semi-Markov SSVM model architecture.

and partial AUC, respectively. However, these
cannot be directly applied to sequence tagging as
labels are assigned at the token or segment level.

Cost-sensitive classification (Domingos, 1999;
Margineantu, 2001; Elkan, 2001; Zadrozny et al.,
2003) is another body of work where different
mis-classification errors have different costs and
one attempts to minimize the total cost that a
model incurs on the test data. Our approach uses
similar ideas – we make the costs of false posi-
tive prediction higher than the false-negative costs
– and therefore can be viewed as a cost-sensitive
model for sequence tagging problems.

For sequence tagging problems, inference-time
heuristics for tuning the precision-recall trade-off
for information extraction models have been pro-
posed. Culotta and McCallum (2004) calculate
confidence scores of the extracted phrases from
a CRF model: these scores are used for sort-
ing and filtering extractions. Similarly, Carpenter
(2007) computes phrase-level conditional proba-
bilities from an HMM model, and try to increase
the recall of gene name extraction by lowering the
threshold on these probabilities. Given a trained
CRF model, Minkov et al. (2006) hyper-tune the
weight for the feature which indicates the token is
not a named entity. Changing this weight could
encourage or discourage the CRF decoding pro-
cess to extract entities. We compare our model
with these inference-time approaches.

3 Models

We adopt the BiLSTM-CNNs architecture (Ma
and Hovy, 2016) to extract features from a se-
quence of words for all models in this paper. 1

Each word is passed through character-level CNN,
and the result is concatenated with Glove word

1Our implementation is based on NCRF++ (Yang and
Zhang, 2018).

embedding (Pennington et al., 2014) to form the
input of Bi-directional LSTM. To map the word
representation obtained from BiLSTM into k (la-
bel) dimensions, one layer of feed-forward neural
network is applied.

At the output layer, instead of using a CRF (Laf-
ferty et al., 2001) to capture the output label de-
pendencies, we use the SSVM objective (Tsochan-
taridis et al., 2004). While CRFs have consistently
given state-of-the-art NER results, their objective
function is difficult to directly modify for high-
precision extraction. Hence, we select the SSVM
formulation as it allows us to directly modify the
loss function for high precision. Given training se-
quences (xi,yi), i = 1 . . .m, the loss function for
SSVM is:
m∑
i=1

argmaxy∈Yxi
(∆(yi,y)+s(y,xi)−s(yi,xi)),

where ∆ is the Hamming loss between two se-
quences, Yxi contains all possible label assign-
ments for the sentence xi, and s is the decoding
score between input sentence x and label sequence
y.

3.1 High-Precision SSVM
Without modifications, the SSVM performs simi-
lar to the CRF. However, the presence of ∆(yi,y)
in the SSVM loss allows us to design custom loss
functions for high precision NER. No inference-
time changes are introduced.

Class-specific Token-level Loss The first mod-
ification we make is to pick a target entity class
and modify ∆(yi,y) to have word-wise loss of
`tgt for false positives on the target class and loss
of ` ˜tgt for false positives on other classes. That is,
let yji be j-th element of sequence yi, we define
∆(yi,y) =

∑
j wj , where

wj =


0, if yji = yj

`tgt, if yji 6= yj and yj = target class
` ˜tgt, if yji 6= yj and yj 6= target class

Note that the target class in the above equation
contains all the labels related to the target entity
type; that is, if the target class is ORG, we con-
sider B-ORG and I-ORG to be the related labels.
Typically `tgt � ` ˜tgt so that the false positives
on the target class will generate more loss, thereby
discouraging the model from making such deci-
sions. Both `tgt and ` ˜tgt are determined through
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hyper-parameter tuning. Setting `tgt = ` ˜tgt = 1
falls back to the standard Hamming loss.

Semi-Markov SSVM A problem with token-
level loss is that it does not always reflect phrase-
level errors accurately; it may over generate loss
since a phrase could consist of multiple tokens.
It is unclear how individual token false positives
contribute to phrase-level false positives.

Therefore, we try a semi-Markov variation of
the SSVM following (Sarawagi and Cohen, 2005).
The semi-Markov formulation groups consecutive
tokens into segments. Whole segments are con-
sidered as a single unit and only transitions be-
tween segments are modeled. We ignore all intra-
segment transition probabilities, effectively col-
lapsing the number of labels to 5 (ORG, PER,
LOC, MISC, O instead of the BIO labelling
scheme for CoNLL data). The scores of each seg-
ment are obtained by summing up the word-level
class scores of words present in the segment (Ye
and Ling, 2018). We restrict segments to be ≤ 7
tokens long, and we do not use any additional seg-
ment level features. During decoding, all possible
segmentations of a sentence (≤ 7) will be con-
sidered. The architecture of our BiLSTM semi-
Markov SSVM model is shown in Figure 1.

To tune the semi-Markov SSVM model to high
precision for a specific class, a segment will con-
tribute `tgt to the loss if it is predicted as the target
class and this segment does not exist in the gold
segmentation. Other types of errors in the pre-
diction have a loss of ` ˜tgt. This is similar to the
class-specific loss used on the token-level in the
SSVM formulation. In our experiments, we refer
to the token-level model simply as SSVM, and the
segment-level model as semi-Markov SSVM.

4 Results

All experiments were conducted on the CoNLL
2003 English dataset. We first show the perfor-
mance of CRF, SSVM, and semi-Markov SSVM
models without tuning for high precision in Ta-
ble 1. We see that all three models perform simi-
larly, with CRF being slightly better. These num-
bers are the starting points for the rest of the ex-
periments. We compare the proposed models with
the following inference-time baselines:2

2Results of Minkov et al. (2006) are given in the Appendix
as the performance is worse than the other methods.

ORG PER LOC MISC ALL

CRF
P. 89.5 96.3 91.8 81.1 91.06
R. 87.7 95.4 93.8 81.3 90.88
F1 88.6 95.8 92.8 81.2 90.97

SSVM
P. 90.0 95.7 91.0 80.4 90.75
R. 87.7 95.5 93.7 80.5 90.79
F1 88.8 95.6 92.4 80.4 90.77

Semi.
SSVM

P. 89.3 96.0 92.3 80.1 90.92
R. 87.2 95.2 93.2 81.9 90.60
F1 88.2 95.6 92.8 81.0 90.76

Table 1: Performance of the baseline and proposed
models without tuning for high precision. These num-
bers are on the CoNLL 2003 English test set. The de-
velopment set is not included in training.

ORG (Precision: 94.5)

Ment. Length 1(65.1%) 2(24.3%) ≥ 3(10.6%)

Thres. CRF 84.94 78.16 75.57
Semi. SSVM 84.57 80.40 83.52

LOC (Precision: 95.5)

Ment. Length 1(86.1%) 2(12.4%) ≥ 3(1.5%)

Thres. CRF 92.90 90.82 60.00
Semi. SSVM 92.06 91.79 64.00

PER (Precision: 97.9)

Ment. Length 1(32.8%) 2(63.0%) ≥ 3(4.2%)

Thres. CRF 81.73 97.74 91.18
Semi. SSVM 81.54 99.02 95.59

Table 2: Recall of the thresholded CRF and semi-
Markov SSVM for different mention lengths at the
same precision level. The chosen precision levels are
listed right next to the entity types. The percentages in
parenthesis are of the gold mentions.

Thresholded CRF We compute the probabil-
ity of each extracted phrase by Constrained
Forward-Backward algorithm (Culotta and Mc-
Callum, 2004). An extraction is dropped if its
phrase probability is lower than a given threshold,
a tunable hyper-parameter.

Bootstrap CRF By generating bootstrap sam-
ples of the CoNLL training set, we generate 100
BiLSTM CRF models. To increase precision over
a single CRF, we decode each sentence with each
of the 100 models and compute the votes for each
proposed named entity. The threshold (percent of
votes) for a candidate entity is hyper-tuned.

Using the dev set, we tune the hyper-parameters
of each model at which the desired precision is
achieved. For our proposed SSVM-based mod-
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Figure 2: Precision-recall trade-off of the proposed SSVM model versus baselines: semi-Markov SSVM outper-
forms all models for ORG, is on par with Thresholded CRF for LOC, and is competitive for the PER class. The
detailed numbers are listed in the Appendix.

els, the hyper-parameters are `tgt and ` ˜tgt.
3 To

speed up training, we initialize the parameters of
the entire model (neural network and SSVM) us-
ing a pre-trained model with `tgt = 1, ` ˜tgt = 1,
and train further for 20 epochs.

We set several precision levels from 90 to 100.
For each precision level, we choose the hyper-
parameters which have precision higher than the
target precision level and obtain the maximum F1

score on the dev set, and report the corresponding
test performance. The results are shown in Fig-
ure 2. Threshold CRF can achieve a wider range of
precision than SSVM-based models. In this figure,
we only focus on the range which SSVM-based
models can achieve.

We can see that semi-Markov SSVM clearly
outperforms all the other models for ORG, is
on par with Thresholded CRF for LOC, and has
some strong points in the high precision region for
PER. The good performance on ORG is consistent
with the observation in Ye and Ling (2018) that
semi-Markov models have advantages in longer
phrases because labels are assigned at the seg-
ment level directly. Since longer mentions tend
to have a smaller phrase probability and the length
of ORG mentions varies more than the length of
the other two types, Thresholded CRF is less ro-
bust for ORG. The token-based SSVM is consis-
tently worse than semi-Markov SSVM and fails to
achieve higher precision, especially for PER. This
shows that the semi-Markov property penalizes
false positives at the phrase-level more accurately.
Bootstrap CRF does not perform well for ORG
and LOC, but is pretty strong for PER at some pre-
cision levels. We believe higher performance of
bootstrap CRF on PER class comes from the fact

3`tgt is searched in the range between 1 and 5, and ` ˜tgt is
between 0.0001 and 0.1.

that the baseline CRF model itself achieves very
high precision for this class, which allows boot-
strapping technique reduce the variance on pre-
dictions accurately. This makes bootstrapping ap-
proach more promising to situations where models
have already achieved very high precision.

4.1 Error Analysis

We perform error analysis for the two main meth-
ods: Thresholded CRF and semi-Markov SSVM.
We pick model settings such that both mod-
els achieve the same precision level (ORG:94.5
PER:97.9 LOC:95.5) for a given class. Table 2 il-
lustrates the recall values achieved by these mod-
els for different entity mention lengths. We can
see that semi-Markov SSVM clearly outperforms
Thresholded CRF on multi-token mentions, espe-
cially for long organization names. The high per-
centage of long mentions in ORG explains semi-
Markov SSVM’s superior performance in Fig-
ure 2. However, we also see that semi-Markov
SSVM produces more “larger predicted span” er-
rors. Therefore the recall of unit-length mentions
is lower than Thresholded CRF. This we believe is
a side effect of semi-Markov models being more
willing to predict longer length segments.

These two methods can be applied together to
achieve even better results. For example, thresh-
olding and bootstrap techniques can be applied to
semi-Markov SSVM models as well. In this work,
we focus on showing the performance of individ-
ual approaches.

Another question is what types of errors are re-
duced when tuning towards precision? We find
that precision tuning reduces all error types, but
especially the MISC type errors for all 3 classes
(i.e., MISC being classified as one of the other 3
classes).
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5 Conclusion

We proposed a semi-Markov SSVM model for
high-precision NER. To our best knowledge, it
is the first training-time model for high precision
structured prediction. Experiment results show
that our model performs better than inference-time
approaches at several precision levels, especially
for longer mentions. The proposed model offers
promising future extensions in terms of directly
optimizing other metrics such as Recall and Fβ .
This work also opens up a range of questions from
modeling to evaluation methodology.
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