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Abstract

Efficiently building an adversarial attacker for
natural language processing (NLP) tasks is a
real challenge. Firstly, as the sentence space
is discrete, it is difficult to make small pertur-
bations along the direction of gradients. Sec-
ondly, the fluency of the generated examples
cannot be guaranteed. In this paper, we pro-
pose MHA, which addresses both problems
by performing Metropolis-Hastings sampling,
whose proposal is designed with the guidance
of gradients. Experiments on IMDB and SNLI
show that our proposed MHA outperforms the
baseline model on attacking capability. Adver-
sarial training with MHA also leads to better
robustness and performance.

1 Introduction

Adversarial learning has been a popular topic in
deep learning. Attackers generate adversarial ex-
amples by perturbing the samples and use these
examples to fool deep neural networks (DNNs).
From the perspective of defense, adversarial ex-
amples are mixed into the training set to improve
performance and robustness of the victim models.

However, building an attacker for NLP mod-
els (such as a text classifier) is extremely chal-
lenging. Firstly, it is difficult to perform gradient-
based perturbations since the sentence space is dis-
crete. However, gradient information is critical – it
leads to the steepest direction to more effective ex-
amples. Secondly, adversarial examples are usu-
ally not fluent sentences. Unfluent examples are
less effective in attacking, as victim models can
easily learn to recognize them. Meanwhile, adver-
sarial training on them usually does not perform
well (see Figure 1 for detailed analysis).

Current methods cannot properly handle the
two problems. Ebrahimi et al. (2018) (HotFlip)
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(a) Adversarial training with
fluent adversarial examples

(b) Adversarial training with
unfluent adversarial exam-
ples

Figure 1: Effect of adversarial training on (a) fluent and
(b) unfluent adversarial examples. ◦ and • represent
positive and negative samples in the training set, while
M and N are the corresponding adversarial examples.
Solid and Dotted lines represent decision boundaries
before and after adversarial training, respectively. As
unfluent adversarial examples are not in the manifold
of real sentences, the victim model only needs to adjust
its decision boundary out of the sentence manifold to
fit them. As a result, fluent adversarial examples may
be more effective than unfluent ones.

propose to perturb a sentence by flipping one of
the characters, and use the gradient of each pertur-
bation to guide sample selection. But simple char-
acter flipping often leads to meaningless words
(eg. “mood” to “mooP”). Genetic attack (Alzantot
et al., 2018) is a population-based word replacing
attacker, which aims to generate fluent sentences
by filtering out the unreasonable sentences with a
language model. But the fluency of examples gen-
erated by genetic attack is still not satisfactory and
it is inefficient as the gradient is discarded.

To address the aforementioned problems, we
propose the Metropolis-Hastings attack (MHA) al-
gorithm in this short paper. MHA is an adversarial
example generator based on Metropolis-Hastings
(M-H) sampling (Metropolis et al., 1953; HAST-
INGS, 1970; Chib and Greenberg, 1995). M-
H sampling is a classical MCMC sampling ap-
proach, which has been applied to many NLP
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Figure 2: A simple example of adversarial attack on a
sentimental classifier by performing word replacement.

tasks, such as natural language generation (Ku-
magai et al., 2016), constrained sentence genera-
tion (Miao et al., 2018), guided open story gener-
ation (Harrison et al., 2017), etc. We propose two
variants of MHA, namely a black-box MHA (b-
MHA) and a white-box MHA (w-MHA). Specifi-
cally, in contrast to previous language generation
models using M-H, b-MHA’s stationary distribu-
tion is equipped with a language model term and
an adversarial attacking term. The two terms make
the generation of adversarial examples fluent and
effective. w-MHA even incorporates adversarial
gradients into proposal distributions to speed up
the generation of adversarial examples.

Our contributions include that we propose an ef-
ficient approach for generating fluent adversarial
examples. Experimental results on IMDB (Maas
et al., 2011) and SNLI (Bowman et al., 2015)
show that, compared with the state-of-the-art ge-
netic model, MHA generates examples faster,
achieving higher success rates with much fewer in-
vocations. Meanwhile, adversarial samples from
MHA are not only more fluent but also more ef-
fective to improve the adversarial robustness and
classification accuracy after adversarial training.

2 Preliminary

Generally, adversarial attacks aim to mislead the
neural models by feeding adversarial examples
with perturbations, while adversarial training aims
to improve the models by utilizing the perturbed
examples. Adversarial examples fool the model
into producing erroneous outputs, such as irrele-
vant answers in QA systems or wrong labels in
text classifiers (Figure 2). Training with such ex-
amples may enhance performance and robustness.

Definitions of the terms in this paper are as fol-
low. The victim models are word-level classi-
fiers, which take in tokenized sentences and output
their labels. The attackers generate sentences by
perturbing the original ones, in order to mislead
the victim model into making mistakes. Adver-
sarial attacks include two categories: (a) black-

box attack only allows the attackers to have ac-
cess to model outputs, while (b) white-box attack
allows full access to the victim model, including
model outputs, gradients and (hyper-)parameters.
For adversarial training, the same victim model
is trained from scratch on an updated training set
with adversarial examples included.

3 Proposed Method: MHA

In this section, we first introduce M-H sampling
briefly, and then describe how to apply M-H sam-
pling efficiently to generate adversarial examples
for natural language.

3.1 Metropolis-Hastings Sampling

The M-H algorithm is a classical Markov chain
Monte Carlo sampling approach. Given the sta-
tionary distribution (π(x)) and transition proposal,
M-H is able to generate desirable examples from
π(x). Specifically, at each iteration, a proposal to
jump from x to x′ is made based on the proposal
distribution (g(x′|x)). The proposal is accepted
with a probability given by the acceptance rate:

α(x′|x) = min{1, π(x′)g(x|x′)
π(x)g(x′|x)

} (1)

Once accepted, the algorithm jumps to x′. Other-
wise, it stays at x.

3.2 Black-Box Attack

In black-box attack (b-MHA), we expect the ex-
amples to meet three requirements: (a) to read flu-
ently; (b) to be able to fool the classifier; (c) to
invoke the classifier for as few times as possible.
Stationary distribution. To meet these require-
ments, the stationary distribution is designed as:

π(x|ỹ) ∝ LM(x) · C(ỹ|x) (2)

where LM(x) is the probability of the sentence
(x) given by a pre-trained language model (LM)
andC(ỹ|x) is the probability of an erroneous label
(ỹ) given by the victim model. LM(x) guarantees
fluency, while C(ỹ|x) is the attack target.
Transition proposal. There are three word-level
transition operations – replacement, insertion and
deletion. Traversal indexing is applied to select
words on which operations are performed. Sup-
pose MHA selects the i-th word (wi) on the t-th
proposal, then on the (t + 1)-th proposal, the se-
lected word (w∗) is:
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w∗ =

{
wi+1, if i 6= n

w1, otherwise

The transition function for replacement is as
Equation 3, where wm is the selected word to be
replaced, and Q is a pre-selected candidate set,
which will be explained later. The insertion oper-
ation (TB

i (x′|x)) consists of two steps – inserting
a random word into the position and then perform-
ing replacement upon it. The deletion operation is
rather simple. TB

d (x′|x) = 1 if x′ = x−m, where
x−m is the sentence after deleting the m-th word
(wm), or TB

d (x′|x) = 0 otherwise.

TB
r (x′|x) = I{wc ∈ Q}· (3)
π(w1, · · · , wm−1, w

c, wm+1, · · · , wn|ỹ)∑
w∈Q π(w1, · · · , wm−1, w, wm+1, · · · , wn|ỹ)

The proposal distribution is a weighted sum of
the transition functions:

g(x′|x) = prT
B
r (x′|x)+piT

B
i (x′|x)+pdT

B
d (x′|x)

where pr, pi and pd are pre-defined probabilities
of the operations.

Pre-selection. The pre-selector generates a
candidate set for TB

r (x′|x) and TB
i (x′|x). It

chooses the most possible words according to the
score (SB(w|x)) to form the candidate word set
Q. SB(w|x) is formulated as:

SB(w|x) = LM(w|x[1:m−1]) · LMb(w|x[m+1:n])

where x[1:m−1] = {w1, · · · , wm−1} is the pre-
fix of the sentence, x[m+1:n] is the suffix of the
sentence, and LMb is a pre-trained backward lan-
guage model. Without pre-selection, Q will in-
clude all words in the vocabulary, and the classifier
will be invoked repeatedly to compute the denom-
inator of Equation 3, which is inefficient.

3.3 White-Box Attack

The only difference between white-box attack (w-
MHA) and b-MHA lies in the pre-selector.
Pre-selection. In w-MHA, the gradient is in-
troduced into the pre-selection score (SW (w|x)).
SW (w|x) is formulated as:

SW (w|x) = SB(w|x) · S(
∂L̃
∂em

, em − e)

where S is the cosine similarity function, L̃ =
L(ỹ|x,C) is the loss function on the target label,
em and e are the embeddings of the current word
(wm) and the substitute (w). The gradient ( ∂L̃

∂em
)

leads to the steepest direction, and em−e is the ac-
tual changing direction if em is replaced by e. The
cosine similarity term (S( ∂L̃

∂wm
,∆w)) guides the

samples to jumping along the direction of the gra-
dient, which raises C(ỹ|x) and α(x′|x), and even-
tually makes w-MHA more efficient.

Note that insertion and deletion are excluded
in w-MHA, because it is difficult to com-
pute their gradients. Take the insertion oper-
ation for instance. One may apply a similar
technique in b-MHA, by first inserting a ran-
dom word forming intermediate sentence x∗ =
{w1, · · · , wm, w

∗, wm+1, · · · , wn} and then per-
forming replacement operation upon x∗. Comput-
ing ∂L(ỹ|x∗,C)

∂w∗ is easy, but it is not the actual gradi-
ent. Computing of the actual gradient (∂L(ỹ|x,C)

∂w∗ )
is hard, since the change from x to x∗ is discrete
and non-differential.

4 Experiments

Datasets. Following previous works, we vali-
date the performance of proposed MHA on IMDB
and SNLI datesets. The IMDB dataset includes
25,000 training samples and 25,000 test samples
of movie reviews, tagged with sentimental labels
(positive or negative). The SNLI dataset con-
tains 55,000 training samples, 10,000 validation
samples and 10,000 test samples. Each sample
contains a premise, a hypothesis and an infer-
ence label (entailment, contradiction or neutral).
We adopt a single layer bi-LSTM and the BiDAF
model (Seo et al., 2016) (which employs bidirec-
tional attention flow mechanism to capture rela-
tionships between sentence pairs) as the victim
models on IMDB and SNLI, respectively.
Baseline Genetic Attacker. We take the state-
of-the-art genetic attack model (Alzantot et al.,
2018) as our baseline, which uses a gradient-free
population-based algorithm. Intuitively, it main-
tains a population of sentences, and perturbs them
by word-level replacement according to the em-
bedding distances without considering the vic-
tim model. Then, the intermediate sentences are
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Figure 3: Invocation-success curves of the attacks.

Task Approach Succ(%) Invok# PPL α(%)

IM
D

B Genetic 98.7 1427.5 421.1 –
b-MHA 98.7 1372.1 385.6 17.9
w-MHA 99.9 748.2 375.3 34.4

SN
L

I Genetic 76.8 971.9 834.1 –
b-MHA 86.6 681.7 358.8 9.7
w-MHA 88.6 525.0 332.4 13.3

Table 1: Adversarial attack results on IMDB and SNLI.
The acceptance rates (α) of M-H sampling are in a rea-
sonable range.

filtered by the victim classifier and a language
model, which leads to the next generation.
Hyper-parameters. As in the work of Miao et al.
(2018), MHA is limited to make proposals for at
most 200 times, and we pre-select 30 candidates at
each iteration. Constraints are included in MHA
to forbid any operations on sentimental words (eg.
“great”) or negation words (eg. “not”) in IMDB
experiments with SentiWordNet (Esuli and Sebas-
tiani, 2006; Baccianella et al., 2010). All LSTMs
in the victim models have 128 units. The vic-
tim model reaches 83.1% and 81.1% test accura-
cies on IMDB and SNLI, which are acceptable re-
sults. More detailed hyper-parameter settings are
included in the appendix.

4.1 Adversarial Attack

To validate the attacking efficiency, we randomly
sample 1000 and 500 correctly classified examples
from the IMDB and SNLI test sets, respectively.
Attacking success rate and invocation times (of
the victim model) are employed for testing effi-
ciency. As shown in Figure 3, curves of our pro-
posed MHA are above the genetic baseline, which
indicates the efficiency of MHA. By incorporat-
ing gradient information in proposal distribution,
w-MHA even performs better than b-MHA, as
the curves rise fast. Note that the ladder-shaped

Case 1
Premise: three men are sitting on a beach dressed in or-
ange with refuse carts in front of them.
Hypothesis: empty trash cans are sitting on a beach.
Prediction: 〈Contradiction〉
Genetic: empties trash cans are sitting on a beach.
Prediction: 〈Entailment〉
b-MHA: the trash cans are sitting in a beach.
Prediction: 〈Entailment〉
w-MHA: the trash cans are sitting on a beach.
Prediction: 〈Entailment〉

Case 2
Premise: a man is holding a microphone in front of his
mouth.
Hypothesis: a male has a device near his mouth.
Prediction: 〈Entailment〉
Genetic: a masculine has a device near his mouth.
Prediction: 〈Neutral〉
b-MHA: a man has a device near his car.
Prediction: 〈Neutral〉
w-MHA: a man has a device near his home.
Prediction: 〈Neutral〉

Table 2: Adversarial examples generated on SNLI.

curves of the genetic approach is caused by its
population-based nature.

We list detailed results in Table 1. Success rates
are obtained by invoking the victim model for at
most 6,000 times. As shown, the gaps of suc-
cess rates between the models are not very large,
because all models can give pretty high success
rate. However, as expected, our proposed MHA
provides lower perplexity (PPL) 1, which means
the examples generated by MHA are more likely
to appear in the corpus of the evaluation language
model. As the corpus is large enough and the lan-
guage model for evaluation is strong enough, it in-
dicates the examples generated by MHA are more
likely to appear in natural language space. It even-
tually leads to better fluency.

Human evaluations are also performed. From
the examples that all three approaches success-
fully attacked, we sample 40 examples on IMDB.
Three volunteers are asked to label the generated
examples. Examples with false labels from the
victim classifier and with true labels from the vol-
unteers are regarded as actual adversarial exam-
ples. The adversarial example ratios of the genetic
approach, b-MHA and w-MHA are 98.3%, 99.2%
and 96.7%, respectively, indicating that almost all
generated examples are adversarial examples. Vol-
unteers are also asked to rank the generated exam-
ples by fluency on SNLI (“1” indicating the most

1We use the open released GPT2 (Radford et al.) model
for PPL evaluation.
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Model Attack succ (%)
Genetic b-MHA w-MHA

Victim model 98.7 98.7 99.9
+ Genetic adv training 93.8 99.6 100.0
+ b-MHA adv training 93.0 95.7 99.7
+ w-MHA adv training 92.4 97.5 100.0

Table 3: Robustness test results on IMDB.

Model Acc (%)
Train # = 10K 30K 100K

Victim model 58.9 65.8 73.0
+ Genetic adv training 58.8 66.1 73.6
+ w-MHA adv training 60.0 66.9 73.5

Table 4: Accuracy results after adversarial training.

fluent while “3” indicating the least fluent). 20
examples are sampled in the same manners men-
tioned above. The mean values of ranking of the
genetic approach, b-MHA and w-MHA are 1.93,
1.80 and 2.03, indicating that b-MHA generates
the most fluent samples. Samples generated by
w-MHA are less fluent than the genetic approach.
It is possibly because the gradient introduced into
the pre-selector could influence the fluency of the
sentence, from the perspective of human beings.

Adversarial examples from different models on
SNLI are shown in Table 2. The genetic approach
may replace verbs with different tense or may re-
place nouns with different plurality, which can
cause grammatical mistakes (eg. Case 1), while
MHA employs the language model to formulate
the stationary distribution in order to avoid such
grammatical mistakes. MHA does not have con-
straints that word replacement should have simi-
lar meanings. MHA may replace entities or verbs
with some irrelevant words, leading to meaning
changes of the original sentence (eg. Case 2).
More cases are included in the appendix.

4.2 Adversarial Training

In order to validate whether adversarial training is
helpful for improving the adversarial robustness or
classification accuracy of the victim model, a new
model is trained from scratch after mixing the gen-
erated examples into the training set.

To test the adversarial robustness, we attack the
new models with all methods on IMDB. As shown
in Table 3, the new model after genetic adversar-
ial training can not defend MHA. On the contrary,
adversarial training with b-MHA or w-MHA de-
creases the success rate of genetic attack. It shows

that the adversarial examples from MHA could be
more effective than unfluent ones from genetic at-
tack, as assumed in Figure 1.

To test whether the new models could achieve
accuracy gains after adversarial training, experi-
ments are carried out on different sizes of training
data, which are subsets of SNLI’s training set. The
number of adversarial examples is fixed to 250
during experiment. The classification accuracies
of the new models after the adversarial training by
different approaches are listed in Table 4. Adver-
sarial training with w-MHA significantly improves
the accuracy on all three settings (with p-values
less than 0.02). w-MHA outperforms the genetic
baseline with 10K and 30K training data, and
gets comparable improvements with 100K train-
ing data. Less training data leads to larger accu-
racy gains, and MHA performs significantly better
than the genetic approach on smaller training set.

5 Future Works

Current MHA returns the examples when the la-
bel is changed, which may lead to incomplete sen-
tences, which are unfluent from the perspective
of human beings. Constraints such as forcing the
model to generate 〈EOS〉 at the end of the sentence
before returning may address this issue.

Also, entity and verb replacements without lim-
itations have negative influence on adversarial ex-
ample generations for tasks such as NLI. Limita-
tions of similarity during word operations are es-
sential to settle the problem. Constraints such as
limitation of the embedding distance may help out.
Another solution is introducing the inverse of em-
bedding distance in the pre-selection source.

6 Conclusion

In this paper, we propose MHA, which gener-
ates adversarial examples for natural language by
adopting the MH sampling approach. Experimen-
tal results show that our proposed MHA could
generate adversarial examples faster than the ge-
netic baseline. Obtained adversarial examples
from MHA are more fluent and may be more ef-
fective for adversarial training.
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