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Abstract

This work proposes a novel framework for en-
hancing abstractive text summarization based
on the combination of deep learning tech-
niques along with semantic data transfor-
mations. Initially, a theoretical model for
semantic-based text generalization is intro-
duced and used in conjunction with a deep
encoder-decoder architecture in order to pro-
duce a summary in generalized form. Sub-
sequently, a methodology is proposed which
transforms the aforementioned generalized
summary into human-readable form, retaining
at the same time important informational as-
pects of the original text and addressing the
problem of out-of-vocabulary or rare words.
The overall approach is evaluated on two pop-
ular datasets with encouraging results.

1 Introduction

Text Summarization (TS) aims at composing a
concise version of an original text, retaining its
salient information. Since manual TS is a de-
manding, time expensive and generally laborious
task, automatic TS is gaining increasing popular-
ity and therefore constitutes a strong motivation
for further research.

Current efforts in automatic TS mainly focus
on summarizing single documents (e.g. news, ar-
ticles, scientific papers, weather forecasts, etc.)
and multi-documents (e.g. news from different
sources, user reviews, e-mails etc.), reducing the
size of the initial text while at the same time pre-
serving key informational elements and the mean-
ing of content.

Two main approaches to automatic TS have
been reported in the relevant literature; extractive
and abstractive (Gambhir and Gupta, 2017; Allah-
yari et al., 2017). In the former case, those sen-
tences of original text that convey its content are
firstly identified and then extracted in order to con-
struct the summary. In the latter case, new sen-

tences are generated which concatenate the over-
all meaning of the initial text, rephrasing its con-
tent. Abstractive TS is a more challenging task;
it resembles human-written summaries, as it may
contain rephrased sentences or phrases with new
words (i.e. sentences, phrases and words that do
not appear in the original text), thereby improv-
ing the generated summary in terms of cohesion,
readability or redundancy.

The main contribution of this work is a novel
abstractive TS technique that combines deep
learning models of encoder-decoder architecture
and semantic-based data transformations. Since
the majority of literature in abstractive TS focuses
in either of the aforementioned parts, the proposed
approach tries to bridge this gap by introducing a
framework that combines the potential of machine
learning with the importance of semantics. The
said framework is comprised of three components;
(i) a theoretical model for text generalization (Sec-
tion 3) (ii) a deep learning network whose input is
the text and its output a summary in generalized
form (Section 4) and (iii) a methodology of trans-
forming the “generalized” summary into a hu-
man-readable form, containing salient information
of the original document (Section 5). Additionally,
the proposed framework is capable of coping with
the problem of out-of-vocabulary (OOV) words
(or words of limited occurrences), thereby achiev-
ing semantic content generalization. The overall
architecture is evaluated on Gigaword (Napoles
et al., 2012; Rush et al., 2015) and Duc 2004
(Over et al., 2007), two popular datasets used in
TS tasks, with the obtained results being promis-
ing, outperforming the current state-of-the-art.

The rest of this paper is organized as follows;
Section 2 overviews the related work and Sections
3-5 outline the components of the proposed frame-
work. Section 6 describes the experimental proce-
dure in detail and discusses the obtained results.
Finally, the paper concludes in Section 7, where
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possible future extensions are examined.

2 Related work

Abstractive TS methods can be broadly classi-
fied into structure and semantic based approaches
(Moratanch and Chitrakala, 2016). The former
make use of pre-defined structures (e.g. ontolo-
gies, trees, templates, graphs and rules), whereas
the latter utilize the semantic representation of text
along with natural language generation systems
(based on information items, predicate arguments
and semantic graphs). Recently, deep learning ar-
chitectures have been widely adopted in abstrac-
tive TS and they have since become the state-
of-the-art (Gupta and Gupta, 2019), especially in
short text summarization (Paulus et al., 2017) that
is the focus of the current work. The proposed ap-
proach further extends the said architectures with
semantic-based concept generalization, in an ef-
fort to improve the overall system performance.

In particular, semantic-based approaches utiliz-
ing (semantic) graphs produce the desired sum-
maries through the extraction of ontological and
syntactical relations in text, mainly by reducing
the graph or by locating its key concepts (Khan
et al., 2018; Joshi et al., 2018; Moawad and Aref,
2012). Item-based solutions, on the other hand,
employ the notion of information item (the small-
est unit of coherent textual information such as
subject, verb and object triplets) in order to gen-
erate the summary out of the top-rated sentences.
For example, the information items, along with
temporal and spatial characteristics, are used in
(Genest and Lapalme, 2011) in order to produce
the abstractive summary.

Predicate argument-based approaches merge
the respective structures of text (i.e. verbs, sub-
jects and objects) and the summary is being
formed from the top-ranked such structures (Al-
shaina et al., 2017; Zhang et al., 2016). Never-
theless, semantic-based methods are not able to
achieve comparable performance to deep learning
approaches (Gupta and Gupta, 2019) and for this
reason, a framework utilizing semantic-based data
generalization for the enhancement of sequence-
to-sequence (seq2seq) deep learning abstractive
summarization is presented in this work. Seq2seq
architectures require a sequence of words at their
input and also emit a different, in the general case,
sequence of words at their output.

An early approach to using semantic resources

for the generalization of concepts connected with
a conjunctive or disjunctive relation is due to
(Belkebir and Guessoum, 2016), which replaces
two or more consecutive concepts by one more
general word, entailing the meaning of the initial
ones (e.g. the phrase “apples and oranges” may
be replaced by the word “fruits”). Our proposed
methodology, however, is not limited to conjunc-
tive and disjunctive relations and can, therefore,
generalize every concept of a text.

The state-of-the-art in abstractive TS deep
learning systems employ seq2seq models of
encoder-decoder architectures along with atten-
tion mechanisms, primarily based on recurrent
neural networks (RNNs) and especially on long
short-term memory networks (LSTMs) and gated
recurrent units (GRUs) (Chopra et al., 2016; Nal-
lapati et al., 2016; See et al., 2017; Song et al.,
2018; Chen et al., 2016; Gupta and Gupta, 2019).
In these cases, the encoder input is a sequence
of words which are subsequently converted into a
vector representation and the decoder, assisted by
the attention mechanism which focuses on specific
words at each step of the input sequence (Bah-
danau et al., 2014), determines the output, emit-
ting the next word of the summary based on the
previous ones.

The methodology described above is further
extended in (Rush et al., 2015), where a neural
attention-based model is trained end-to-end on a
large amount of data (article-summary pairs) that
learns to produce abstractive summaries. Sim-
ilarly, Nallapati et al. (2016) and See et al.
(2017) train encoder-decoder models with atten-
tion mechanisms in order to face the problem of
unseen (out-of-vocabulary) words, incorporating a
pointer generator network in their system. Fur-
thermore, See et al. (2017) avoid repetition of the
same words in the summary through the inclusion
of a coverage mechanism, while Lin et al. (2018)
address the same problem by proposing a model
of a convolutional gated unit that performs global
encoding for the improvement of the representa-
tion of the input data. Finally, Song et al. (2018)
propose a deep LSTM-CNN (convolutional neu-
ral network) framework, which generates sum-
maries via the extraction of phrases from source
sentences.

The presented approach in this work is also
based on a seq2seq deep learning model (See et al.,
2017). In contrast to the systems outlined above,
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the novelty of our technique lies in the device of a
semantic-based methodology for text generaliza-
tion, which is going to be presented in detail in the
forthcoming sections.

3 Text generalization

The basic assumption of text generalization is the
existence of a taxonomy of concepts that can be
extracted from text (Definition 3.1). More specif-
ically, the said taxonomy contains concepts and
their hypernyms (Definition 3.2) in a hierarchical
structure. Once the concepts have been extracted,
the taxonomy path (Definition 3.3), containing the
ordered sequence of concepts according to their
taxonomy depth (Definition 3.4), is used for gen-
eralizing text. Figure 1 illustrates an example tax-
onomy of five concepts, where concept c4 has a
taxonomy depth equal to 3 and a taxonomy path
Pc4 = {c4, c2, c1, c0}.

c0: entity

c1: food

c2: fruit

c4: banana

c3: cheese

Figure 1: A taxonomy of concepts.

Definition 3.1 (Taxonomy of concepts) A taxon-
omy of concepts consists of a hierarchical struc-
ture of concepts which are related with an is-a type
of a relationship.

Definition 3.2 (Hypernym) Given a taxonomy of
concepts, concept cj is a hypernym of ci if and
only if ci semantically entails cj (ci |= cj).

Definition 3.3 (Taxonomy path of concept)
Given a taxonomy of concepts, a taxonomy path
Pca of ca is an ordered sequence of concepts
Pca = {ca, ca+1, . . . , cn} where ci |= cj , ∀i < j
and cn is the root concept of the taxonomy.

Definition 3.4 (Taxonomy depth of concept)
Given a taxonomy path of concepts
Pca = {ca, ca+1, . . . , ci, . . . , cn}, the taxon-
omy depth of concept ci is the number of concepts
from ci to the root concept cn in the path of
concepts (dci = n− i). By definition, the depth of
the root concept is equal to zero.

A piece of text can be generalized only when it
contains generalizable concepts (Definition 3.5).
A concept ci with a taxonomy path Pci is said to
have been generalized when it has been replaced
by a concept cj ∈ Pci such that dcj < dci . Ac-
cordingly, a text excerpt is said to have been gen-
eralized when it contains at least one generalized
concept (Definition 3.6). The minimum taxonomy
depth of a generalized concept constitutes the level
of generalization of the given text (Definition 3.7).

Definition 3.5 (Generalizable concept) A con-
cept ci of taxonomy depth dci is said to be
generalizable when at least one concept of its
taxonomy path has a taxonomy depth less than
dci .

Definition 3.6 (Generalizable text) A text ex-
cerpt is said to be generalizable when it contains
at least one generalizable concept.

Definition 3.7 (Level of generalization) The
level of generalization of a text excerpt is equal to
the minimum depth of its generalized concepts.

3.1 Text generalization strategies
Given the above definitions, two novel strategies
for text generalization are presented, which take
into account the frequency of a concept in the
source text. The intuition behind this transforma-
tion is the fact that machine learning systems tend
to require a sufficient number of training samples
prior to producing accurate predictions. There-
fore, low-frequency terms should ideally be re-
placed by respective high-frequency hypernyms
that semantically convey the original meaning.

Text generalization strategies are used to gener-
alize both the training set (i.e. the articles and their
respective summaries) as well as the test set (i.e.
the unseen text). As it shall be described next, the
machine learning model of Section 4 generates a
generalized summary that is transformed to a read-
able text through the post-processing methodology
of Section 5.

3.1.1 Named Entities-driven Generalization
(NEG)

NEG only generalizes those concepts whose tax-
onomy path contains particular named entities
(NEs) such as location, person and organization
(Algorithm 1). For example, given the set of
named entities E = {location, person}, the sen-
tence “John has been in Paris” can be generalized
to “ person has been in location ”, where NEs



5085

are enclosed in underscores in order to be distin-
guished from the corresponding words that may
appear in the dataset.

Algorithm 1 requires: (i) the input text,
(ii) the taxonomy of concepts T , (iii) the set C of
tuples of extracted concepts ci along with their
respective taxonomy paths Pi and frequency fi
(C = {(c1, P1, f1), (c2, P2, f2), . . . , (cn, Pn, fn)}),
(iv) the setE of named entities (E = {e1, e2, . . .})
and (v) the threshold θf of the minimum number
of occurrences of a concept. In lines 2 − 4 of
Algorithm 1, a term can be generalized when
both its frequency in the input text is less than the
specified threshold θf and its taxonomy path Pi

contains a named entity c ∈ E. In this case, ci is
replaced by its hypernym c (line 4). The output of
the algorithm is a generalized version of the input
text (genText). It should be noted that when
θf = ∞, the operation of the NEG algorithm
resembles that of named entity anonymization
(Hassan et al., 2018).

Algorithm 1 Named entities-driven text general-
ization (NEG)
Require: text, T, C, E, θf

1: genText← text
2: for all (ci, Pi, fi) ∈ C do
3: if fi ≤ θf and ∃c ∈ Pi s.t c ∈ E then
4: genText← replace ci with c
5: end if
6: end for
7: return genText

3.1.2 Level-driven Generalization (LG)
LG generalizes the concepts according to the given
level of generalization d (Definition 3.7), as illus-
trated in Algorithm 2. For instance, given the tax-
onomy of Figure 1 and d = 1, the sentence “ba-
nana is nutritious” may be generalized to “food is
nutritious”.

Similarly to Algorithm 1, Algorithm 2 requires
(i) the input text, (ii) the taxonomy T , (iii) the set
of tuples C, (iv) the threshold θf and (v) the level
of generalization d. In lines 6 − 25, a term ci is
candidate for generalization when its frequency fi
is below the specified threshold θf (line 7). More
specifically, ci is replaced by its hypernym ch (line
11) only when the depth dch of the latter is at least
equal to d (line 9).

When a term is generalized, the set of concepts
C is either updated by merging ci with its hyper-

nym ch (lines 14 − 18) or a new entry is added in
C, if ch is not already a member of the set (lines
20− 21). Both the outer while-loop and the inner
for-loop are terminated when no more generaliza-
tion can be applied to the text because either the
frequency of all concepts is greater than θf or all
concepts have a taxonomy depth less or equal to d.
In this case, the algorithm returns the generalized
version of the input text (line 27) and terminates.

Algorithm 2 Level-driven text generalization
(LG)
Require: text, T, C, d, θf

1: genText← text
2: inLoop← true
3: while inLoop do
4: Cnew ← C
5: inLoop← false
6: for all (ci, Pi, fi) ∈ Cnew do
7: if fi ≤ θf then
8: ch ← hypernym of ci from Pi

9: if dch ≥ d then
10: inLoop← true
11: genText← replace ci with ch
12: C ← C \ {(ch, Ph, fh)}
13: if ∃ch ∈ C then
14: Ph ← get Ph from C
15: fh ← get fh from C
16: fhnew ← fh + fi
17: C ← C \ {(ch, Ph, fh)}
18: C ← C∪{(ch, Ph, fhnew)}
19: else
20: Ph ← get Ph from T
21: C ← C ∪ {(ch, Ph, fi)}
22: end if
23: end if
24: end if
25: end for
26: end while
27: return genText

The strategies described above are not limited to
a single text; they may also be applied to datasets
of concatenated documents.

4 Deep learning model

After the text generalization phase outlined in the
previous section completes, the summaries are
produced by an encoder-decoder deep learning
model, inspired from the “Sequence-to-sequence
attentional model” (See et al., 2017). The en-
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coder consists of a bi-directional LSTM (Graves
et al., 2013), the decoder of a unidirectional LSTM
and the attention mechanism employed is simi-
lar to that of Bahdanau et al. (2014). Words are
represented using a neural language model like
word2vec (Mikolov et al., 2013) and the over-
all model is trained on article-summary pairs.
Once the training phase is over, the model is ex-
pected to predict an output vector of tokens Y ′ =
(y′1, y

′
2, ...) (summary) given an input vector of to-

kens X = (x1, x2, ...) (text).
During training, the sequence of tokens

(word embeddings) of the source text X =
(x1, x2, . . . , xn) is given to the encoder one-by-
one in forward and reverse order, producing a hid-
den state hi = bi lstm(xi, hi−1) for each em-
bedding xi. Then, the target sequence of tokens
Y = (y1, y2, . . . , ym) is given to the decoder,
which learns to predict the next word yt given
the previous one yt−1, the state of the decoder
st = lstm(st−1, yt−1, ct) and the context vector
ct, as computed by the attention mechanism. More
specifically, the context vector ct is computed as a
weighted sum of the encoder hidden states hi, ac-
cording to the Equations 1-3 below

ct =

|X|∑
i=1

atihi (1)

ati = softmax(eti) (2)

eti = tanh(Whhi +Wsst−1 + b) (3)

where ati is the weight, at each time step t, of the
hidden state of the encoder hi (i.e. ati indicates the
importance of hi), eti indicates how well the out-
put of step t matches with the input around word
xi, st−1 is the previous state of decoder, Wh, Ws

and b are the weights and bias, respectively.
Summary prediction is achieved using beam

search (Graves, 2012; Boulanger-Lewandowski
et al., 2013); for each time step of the beam search-
based decoder, the w candidate tokens with the
highest log-probability are kept in order to deter-
mine the best output summary, where w is the
beam width.

5 Post-processing of the predicted
summary

Since the output of the deep learning model de-
scribed in Section 4 is in generalized form, a
post-processing technique for determining the spe-
cific meaning of each general concept is necessary.

More specifically, a method should be devised that
would match the generalized concepts of the pre-
dicted summary with the appropriate tokens of the
original text.

Essentially, this is a problem of optimal bipar-
tite matching, between the general concepts of the
(generalized) summary and candidate concepts of
the original text. To address this issue, Algorithm
3 is proposed, which performs the best matching
based on the similarity of the context around the
generalized concepts of the summary and the can-
didate concepts of the text.

Algorithm 3 Matching Algorithm
Require: genSum, text, T

1: cr ← {} . candidate replacements of
generalized concepts

2: gc← {} . generalized concepts
3: summary ← genSum
4: for all tokens ∈ genSum do
5: if tokens is generalized then
6: gc← gc ∪ {tokens}
7: for all tokena ∈ text do
8: if ∃c ∈ Ptokena

s.t. tokens = c then
9: s← similarity(tokens, tokena)

10: cr ← cr ∪ {(tokens, tokena, s)}
11: end if
12: end for
13: end if
14: end for
15: sort cr in descending order of s
16: for all (tokens, tokena, s) ∈ cr do
17: if tokens ∈ gc then
18: summary ← replace tokens with tokena
19: gc← gc \ tokens
20: end if
21: end for
22: return summary

Algorithm’s 3 input is the generalized sum-
mary genSum, the original text text and the tax-
onomy of concepts T . In the first loop (lines
4 − 14), the similarity s between the context of
each generalized token tokens and each token
tokena of the source text that has a hypernym c
similar to tokens is computed (line 9) and the tu-
ple {(tokens, tokena, s)} is added to the set cr
of candidate replacements of the generalized con-
cepts (line 10). When all the generalized concepts
of the (generalized) summary have been exam-
ined, cr is sorted in descending order according
to s (line 15). In the second loop (lines 16 − 21),
tokens is replaced by tokena of maximum s (line
18) and is subsequently removed from gc (line
19). Eventually, Algorithm 3 returns the final
summary summary (line 22) in human-readable
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form, which also contains specific information ac-
cording to the source text.

Algorithm 3 works for both strategies of Section
3.1. In the LG strategy (Section 3.1.2), it is trivial
to check whether tokens exists in the taxonomy
path of tokena and therefore become candidate for
replacement. In the case of NEG (Section 3.1.1),
tokens (e.g. a general concept of the summary
such as location or person) may be replaced by a
concept of the article, when the taxonomy path of
the latter contains the former.

Finally, an important aspect affecting the per-
formance of Algorithm 3 is the choice of the sim-
ilarity function (line 9), which is a hyperparame-
ter of the approach. Candidate similarity functions
range from some well established indices like the
cosine distance or the Jaccard coefficient to more
complex measures like the word mover distance
(Kusner et al., 2015) and the Levenshtein edit dis-
tance (Yujian and Bo, 2007). Of course, the op-
timal choice is highly dependant on the available
data and we further reason on this subject on the
experimental part of this submission.

6 Experiments & Results

The experimental methodology followed in this
work is in accordance with some widely-adopted
practices in the relevant literature (Rush et al.,
2015; Nallapati et al., 2016; Chopra et al., 2016;
See et al., 2017; Gao et al., 2019).

6.1 Datasets

Two popular datasets used in automatic TS tasks
have been selected; Gigaword (Napoles et al.,
2012) and DUC 2004 (Over et al., 2007). The
first dataset, Gigaword, is obtained as it is de-
scribed by Rush et al. (2015) and further pre-
processed in order to remove duplicate entries,
punctuation and summaries whose length is either
greater than or equal to the length of the articles
they summarize. Moreover, the dataset has been
normalized by expanding the contractions in the
text (e.g. “I’ve” to “I have”)1. After the comple-
tion of this step, the training set contains about
3 million article-summary pairs which consist of
99, 224 unique words (out of a total of 110 million
words). The average article and summary length
is 28.9 and 8.3 words, respectively. Finally, 4, 000
pairs have been selected randomly from the test set

1Expanding of contractions is performed by pycontrac-
tions package: https://pypi.org/project/pycontractions/

to form the validation set and another 4.000 pairs
were also randomly selected to form the final test
vectors as it is commonly done in the relevant lit-
erature (Rush et al., 2015; Nallapati et al., 2016;
Chopra et al., 2016; Gao et al., 2019).

The DUC 2004 dataset, on the other hand, con-
tains 500 news articles and 4 human-generated
summaries for each one of them. The same pre-
processing methodology is applied to this dataset
as well, but since it contains very few instances
it is solely used for evaluation purposes (and not
during model training). As it is a common prac-
tice in relevant experimental procedures, only the
first sentence of the articles is used and the sum-
maries are set to have a maximum length of 75
bytes (Rush et al., 2015; Nallapati et al., 2016; Gao
et al., 2019).

6.2 Baseline and competitive approaches
The deep learning model outlined in Section 4
serves as the baseline approach. Its optimal hyper-
parameters are reported in the subsequent sec-
tion; however, no generalization scheme is used.
The baseline approach is tested on both datasets
(Gigaword and DUC 2004).

Additionally, the results of some other ap-
proaches (ABS+ (Rush et al., 2015), RAS-Elman
(Chopra et al., 2016), words-lvt5k-1sent (Nallap-
ati et al., 2016) and GLEAM (Gao et al., 2019)) are
also reported on the DUC 2004 dataset. A direct
comparison is possible, since the same evaluation
methodology is adopted.

Such a direct comparison is not possible for the
Gigaword dataset, due to the extra preprocessing
steps of our approach and the random sampling of
the testing data.

6.3 Parameter tuning
The methodology outlined in this work is de-
pendant on a number of parameters and hyper-
parameters. Initially, the neural language model
for the vector representation of words must be de-
cided upon; after a brief experimentation with var-
ious representations and vector-spaces, pre-trained
word2vec embeddings of size 300 were selected
(Mikolov et al., 2013).

Following, a suitable similarity function for Al-
gorithm 3 (line 8) must be specified. Several
notions of word similarity have been considered,
ranging from simple indices in-between single
words (e.g. cosine similarity, Jaccard coefficient)
to more advanced measurements like the word
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mover distance (Kusner et al., 2015) and the Lev-
enshtein Edit distance (Yujian and Bo, 2007). The
approach that achieved the best result was that of
the combination of cosine similarity of averaged
word2vec vectors and cosine similarity based on
bag of words. In particular, the best performance
was achieved when the windows around the can-
didate and the generalized concepts were set to 10
and 6, respectively.

The optimal hyper-parameters of the deep learn-
ing model (Section 4) have been determined to
be as follows; The encoder (bi-directional LSTM)
consists of two layers (of size 200 each), while the
decoder (unidirectional LSTM) is single-layered,
again of size 200. The batch size has been set to
64, the learning rate to 0.001 and the training data
were randomly shuffled at each epoch. The em-
ployed optimization method has been the Adam
algorithm (Kingma and Ba, 2014), with gradient
norm clipping (Pascanu et al., 2013) and cross-
entropy as the loss function (Golik et al., 2013).
Finally, all words of the vocabulary have been con-
sidered in the training phase and a beam search of
width equal to 4 has been used in the evaluation
phase.

In order to assess the effect of the two general-
ization strategies discussed in Section 3.1, three
distinct system configurations have been evalu-
ated. The first one is the baseline approach of Sec-
tion 6.2. The second system is an extension of the
baseline, using NEG as the generalization method-
ology and the third one is also an extension of the
baseline, employing the LG strategy.

police raided several locations near
Input nobe after receiving word of a threat
text but no evidence of a planned attack

was found
police raided several locations near

Generalized location after receiving word of a
text threat but no evidence of a planned

attack was found
Generalized police raided several locations near
summary location
Output police raided several locations near
summary nobe

Table 1: An example of NEG strategy from the input
text to the output summary

6.4 Procedure
As it has been discussed above, the experimen-
tal procedure includes three sets of experiments in

for the second day in a row astronauts
Input boarded space shuttle endeavour on
text friday for liftoff on nasa first space

station construction flight
for the second day in a row astronauts

Generalized boarded space equipment endeavour
text on friday for rise on nasa first space

station construction flight
Generalized astronauts boarded spacecraft for
summary rise
Output astronauts boarded spacecraft for
summary liftoff

Table 2: An example of LG strategy from the input text
to the output summary

total, with two of them based on the generaliza-
tion strategies of Section 3.1. The WordNet tax-
onomy of concepts has been used (Miller, 1995;
Fellbaum, 1998), out of which the hypernyms and
the taxonomy paths have been extracted. To se-
lect the appropriate synset for extracting its taxon-
omy path, we use the WordNet first sense, as it has
proved to be a very hard baseline in knowledge-
based word sense disambiguation approaches (Ra-
ganato et al., 2017). Both generalization strategies
are only applied to nouns in text, which are iden-
tified by the application of part-of-speech tagging
and more specifically, the Stanford log-linear part-
of-speech tagger (Toutanova et al., 2003).

The set of named entities used in
NEG strategy (Section 3.1.1) is E =
{Location, Person, Organization}, as
the datasets contain news articles which are
dominated by relevant entities. The named
entities are extracted from the text using a named
entity recognizer (NER) (specifically, the Stanford
NER, Finkel et al., 2005) in conjunction with the
WordNet taxonomy. Firstly, the pre-trained NER
is executed and then the remaining named entities
are extracted from WordNet; when a term in the
text has a hypernym in the predefined set of named
entities E, this word is annotated as a named
entity. The performance of this generalization
strategy is assessed for various thresholds of word
frequency θf (as stated in the respective Section,
a word is generalized only if its frequency in the
dataset is less than θf ).

The level of generalization (i.e. the taxonomy
depth of a generalized concept) used in LG (Sec-
tion 3.1.2) has been determined to be d = 5. This
level has been chosen as the concepts become very
general when d < 5, rendering the production of



5089

Model θf ROUGE-1 ROUGE-2 ROUGE-L
NEG-100 100 45.95 23.52 43.30
NEG-200 200 46.20 23.86 43.45
NEG-500 500 46.30 23.88 43.94
NEG-1k 1000 46.14 23.31 43.35
NEG-infinity ∞ 44.45 21.91 41.34
LG-100 100 46.34 24.02 43.65
LG-200 200 46.09 23.91 43.34
LG-500 500 46.04 23.64 43.25
LG-1k 1000 45.57 23.09 42.77
LG-infinity ∞ 42.49 19.52 39.53
Baseline - 44.35 22.43 41.87

Table 3: ROUGE scores on the Gigaword dataset.

the final summary a difficult task (Section 5). In
a similar fashion to the NEG strategy, the perfor-
mance of the LG approach is assessed for various
thresholds of word frequency θf .

The overall architecture and all model config-
urations were trained on single Titan XP GPU2.
Each training epoch took approximately 3.5 hours
and all models converged around epoch 15.

Finally, the performance of all systems is mea-
sured on the official ROUGE package (Lin, 2004)
of ROUGE-1 (word overlap), ROUGE-2 (bigram
overlap) and ROUGE-L (longest common se-
quence). More specifically, for Gigaword testing
data the F-measure of ROUGE score is reported
while for the DUC dataset the evaluation metric is
the standard ROUGE recall (Nallapati et al., 2016;
Chopra et al., 2016; Gao et al., 2019).

Table 1 illustrates an example NEG approach
which includes the input text, the generalized
text (after the application of the NEG algorithm),
the predicted generalized summary and the out-
put summary (after post-processing the predicted
summary). The underlined words are those that
have been generalized and vice versa. Similarly,
Table 2 outlines an example LG approach.

6.5 Results
Table 3 illustrates the ROUGE scores on the
Gigaword dataset for both generalization strate-
gies (NEG, LG) and various thresholds of word
frequency θf . Similarly, Table 4 contains the
ROUGE scores on the DUC 2004 dataset. Apart
from the NEG-infinity and LG-infinity configura-
tions (which over-generalize), the other configu-
rations of our model outperform the baseline ap-
proach on both datasets.

2Source code: https://github.com/pkouris/abtextsum

Intuitively, improved results were expected es-
pecially in the generalization of low-frequency
words, as machine learning approaches typically
require a sufficient number of samples in or-
der to be trained properly. This is exactly the
case for the LG strategy, as the best results
are obtained when generalizing words that have
at most 100 occurrences (θf = 100) in the
Gigaword dataset. Similarly, the best ROUGE-
1 and ROUGE-2 scores for the LG strategy in
the DUC 2004 dataset are also obtained when
θf = 100. However, the NEG strategy exhibits its
best performance at θf = 500 on the Gigaword
dataset and at θf = 1000 on the DUC 2004
dataset, with the exception of the ROUGE-2 met-
ric which is maximized at θf = 500.

Therefore, the LG strategy seems to be more fit
in improving the performance of the deep learning
system when generalizing low-frequency words.
On the other hand, the NEG strategy has a pos-
itive effect on system performance, even though
frequent words (θf ≥ 500) are generalized to the
predefined named entities. This may be happening
because most words describing named entities (es-
pecially those inE) have a specific function within
the text and the reduction of their number (through
the generalization to named entities) may lead to a
more accurate prediction.

In both strategies, the configurations that gen-
eralize all concepts regardless of their frequency
(θf = ∞), exhibit the worst performance. In
these cases of over-generalization, the deep learn-
ing model fails to learn the particular function of
each word, as the generalized terms have a wide
range of uses in the text. Another possible ex-
planation of this failure is that the post-processing
task of producing the final summary is not able
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Model θf ROUGE-1 ROUGE-2 ROUGE-L
NEG-100 100 27.85 9.74 25.79
NEG-200 200 27.80 9.57 25.23
NEG-500 500 28.50 10.07 26.11
NEG-1k 1000 28.73 9.87 26.12
NEG-infinity ∞ 27.33 9.01 24.41
LG-100 100 28.89 10.10 24.46
LG-200 200 28.68 9.84 25.76
LG-500 500 28.66 9.32 25.77
LG-1k 1000 28.40 9.21 25.43
LG-infinity ∞ 26.49 7.89 23.72
Baseline - 27.56 8.90 25.20
ABS+ - 28.18 8.49 23.81
RAS-Elman - 28.97 8.26 24.06
words-lvt5k-1sent - 28.61 9.42 25.24
GLEAM - 29.51 9.78 25.60

Table 4: ROUGE scores on the DUC 2004 dataset.

to accurately match the generalized concepts with
specific words, due to a large amount of the for-
mer. Obviously, a trade-off exists between θf and
the obtained performance.

The last lines of Table 4 also exhibit that the best
NEG and LG configurations outperform the other
systems in terms of the ROUGE-2 and ROUGE-
L scores and demonstrate a near-optimal perfor-
mance when the ROUGE-1 score is considered,
thereby indicating the robustness of the proposed
methodology on the DUC 2004 dataset. In case
of the Gigaword dataset, the further preprocess-
ing of data has led to a significant performance im-
provements, especially in comparison to previous
work (Chopra et al., 2016; Gao et al., 2019). Even
though the aforementioned steps have resulted in
more informative and accurate summaries, they do
not permit a direct comparison with previously re-
ported results.

7 Conclusion and Future Work

Even though deep learning approaches have been
widely used in abstractive TS, it is evident
that their combination with semantic-based or
structure-based methodologies needs to be more
thoroughly studied. In this direction, the pro-
posed novel framework combines deep learning
techniques with semantic-based content method-
ologies so as to produce abstractive summaries in
generalized form, which, in turn, are transformed
into the final summaries. The experimental results
have demonstrated that the followed approach en-
hances the performance of deep learning models.

The positive results may be attributed to the

optimization of the parameters of the deep lean-
ing model and the ability of the method to han-
dle OOV and very low frequency words. The
obtained results show that the proposed approach
is an effective methodology of handling OOV or
rare words and it improves the performance of text
summarization.

Of course, certain aspects of the proposed
methodology could be extended. Since currently
only nouns are considered for generalization, an
expansion to verbs could result in additional im-
provement. Moreover, as the ambiguity is a chal-
lenging problem in natural language processing,
it would be interesting to capture the particular
meaning of each word in the text so that our
methodology manages to uncover the specific se-
mantic meaning of words. Finally, the distinct
semantic representation of each word could fur-
ther enhance the performance of the deep learning
model.
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