
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4442–4453
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

4442

Language Modeling with Shared Grammar

Yuyu Zhang
College of Computing

Georgia Institute of Technology
yuyu@gatech.edu

Le Song
College of Computing

Georgia Institute of Technology
lsong@cc.gatech.edu

Abstract

Sequential recurrent neural networks have
achieved superior performance on language
modeling, but overlook the structure informa-
tion in natural language. Recent works on
structure-aware models have shown promis-
ing results on language modeling. However,
how to incorporate structure knowledge on
corpus without syntactic annotations remains
an open problem. In this work, we propose
neural variational language model (NVLM),
which enables the sharing of grammar knowl-
edge among different corpora. Experimen-
tal results demonstrate the effectiveness of
our framework on two popular benchmark
datasets. With the help of shared grammar, our
language model converges significantly faster
to a lower perplexity on new training corpus.

1 Introduction

Language modeling has been a long-standing fun-
damental task in natural language processing. In
recent years, sequential recurrent neural networks
(RNNs) based language models have made aston-
ishing progress, which achieve remarkable results
on various benchmark datasets (Mikolov et al.,
2010a; Jozefowicz et al., 2016; Melis et al., 2017;
Elbayad et al., 2018; Gong et al., 2018; Takase
et al., 2018; Dai et al., 2019). Despite the huge
success, the structure information in natural lan-
guage is largely overlooked due to the structural
limit of sequential RNN-based language models.

Recently, researchers have explored to ex-
plicitly exploit the latent structures in natu-
ral language, such as recurrent neural network
grammars (RNNGs; Dyer et al., 2016; Kuncoro
et al., 2017) and parsing-reading-predict networks
(PRPNs; Shen et al., 2017). These structure-
aware models have shown promising results on
language modeling, demonstrating that the latent
nested structure in language indeed helps improve

sequential language models. Models like RNNG
exploit treebank data with syntactic annotations
to learn grammar, which is then used to improve
language model performance by a significant mar-
gin. This is definitely intriguing, but we have to
pay the cost: accurate syntactic annotation is very
costly, and treebank data such as the Penn Tree-
bank (Marcus et al., 1993) is typically small-scale
and not open to the public for free.

On new corpus which has no syntactic anno-
tations, how to improve language modeling with
grammar knowledge? This is an important and
challenging open problem. As a motivating ex-
ample, we conduct a simple experiment by train-
ing a RNN language model on one corpus and
testing it on another, and report the results in Ta-
ble 1. The RNN language model performs terri-
bly when training and testing on different datasets,
which is reasonable since the data distribution may
vary dramatically on different corpora. Training
from scratch on every new corpus is obviously not
good enough: 1) it is computationally expensive
and not data-efficient; 2) the size of target cor-
pus may be too small to train a decent RNN-based
language model; 3) the common grammar is not
leveraged. Some recent works on transfer learn-
ing have made attempts on language model adap-
tation (Yoon et al., 2017; Ma et al., 2017; Chen
et al., 2015), however, none of them explicitly ex-
ploits the common grammar knowledge shared be-
tween corpora.

To bridge the gap of language modeling on dif-
ferent corpora, we believe that grammar is the
key since all corpora are in the same language
and should share the same grammar. Motivated
by that, we propose neural variational language
model (NVLM). Specifically, our framework con-
sists of two probabilistic components: a con-
stituency parser and a joint generative model of
sentence and parse tree. When treebank data is

4443

Train on PTB Train on OBWB

Test on PTB 112.3 419.9
Test on OBWB 242.2 139.3

Table 1: Test perplexity of RNN language model,
which performs terribly when training and testing on
different datasets.

available, we can separately train both compo-
nents. On new corpus without tree annotations,
we fix the pre-trained parser and train the gen-
erative model either from scratch or with warm-
up. The pre-trained parser is armed with grammar
knowledge, thus it boosts up our language model
to land on new corpus. Our proposed frame-
work also supports end-to-end joint training of
the two components, so that we can fine-tune the
language model. Experimental results show that
our proposed framework is effective in all lean-
ing schemes, which achieves good performance on
two popular benchmark datasets. With the help of
shared grammar, our language model converges
significantly faster to a lower perplexity on new
corpus.

Our contributions in this paper are summarized
as follows:

• Grammar-sharing framework: We propose
a framework for grammar-sharing language
modeling, which incorporates the common
grammar knowledge into language model-
ing. With the shared grammar, our frame-
work helps language model efficiently trans-
fer to new corpus with better performance
and using shorter time.

• End-to-end learning: Our framework can be
end-to-end trained without syntactic annota-
tions. To tackle the technical challenges in
end-to-end learning, we use variational meth-
ods that exploit policy gradient algorithm for
joint training.

• Efficient software package: We provide a
highly efficient implementation of our work
on GPUs. Our parser is capable of parsing
one million sentences per hour on a single
GPU. See Appendix D for details.

2 Model
In this section, we first provide an overview of the
proposed framework, then briefly introduce how

components work together, and finally present the
probabilistic formulation of each component.

2.1 Framework
As shown in Figure 1, neural variational language
model (NVLM) consists of two probabilistic com-
ponents: 1) a constituency parser P✓1(y|x) which
models the conditional probability of the parse tree
y (a syntax tree without terminal tokens) given the
input sentence x (a sequence of terminal tokens);
2) a joint generative model P✓2(x, y) which mod-
els the joint probability of the sentence and the
parse tree.
Constituency Parsing. Our parser can work inde-
pendently, which takes as input a sentence x and
parses x according to

argmax
y02Y(x)

P✓1(y
0|x), (1)

where Y(x) denotes the collection of all possible
parses of x. Our parser can also cooperate with the
joint generative model as

argmax
y0⇠P✓1

(y|x)
P✓2(x, y

0), (2)

where the parsing candidates y
0 sampled from

P✓1(y|x) are fed into the generative model
P✓2(x, y) to be reranked.
Language Modeling. Statistical language models
are typically formulated as

P (x) = P (x1, x2, . . . , xLx)

=
LxY

t=1

P (xt|x<t), (3)

where xt denotes the t-th token in the sentence
x, the length of x is denoted as Lx, and x<t in-
dicates all tokens before xt. To evaluate NVLM
as a language model, we need to marginalize the
joint probability as P (x) =

P
y02Y(x) P (x, y0).

This is extremely hard to compute due to the ex-
ponentially large space of Y(x). We use impor-
tance sampling technique to overcome this com-
putational intractability, which is detailed in Sec-
tion 4.

With treebank data such as Penn Tree-
bank (Marcus et al., 1993), we have pairs of (x, y)
to train the two components respectively, and get
high-quality language model with the parser pro-
viding grammar knowledge. However, due to
the expensive cost of accurate parsing annotation,

4444

sentence !

parse tree "

#$%(!, ")#$)("|!)

mixed tree +

John has a dog .

.

S

NP VP

NNP VBZ NP

DT NN

Encoder Decoder

Joint
Generative Model

merge

Parser

.

S

NP VP

NNP VBZ NP

DT NNhasJohn

a dog

.

Figure 1: Overall framework of neural variational language model (NVLM). It consists of two probabilistic compo-
nents: a constituency parser P✓1(y|x) and a joint generative model P✓2(x, y). The parser takes as input a sentence
x and predicts the corresponding parse tree y. Specifically, we use an encoder-decoder structure to parameterize
the parser. The joint generative model defines a joint distribution on parse trees (y) and sentences (x). When tree-
bank data is available, we can learn the parameters ✓1 and ✓2 for each component respectively. To train language
model on new corpus, we fix the pre-trained ✓1 and only update ✓2. Our framework can also be end-to-end jointly
trained to fine-tune the language model, where ✓1 and ✓2 are co-updated together.

treebank data is typically scarce. For new corpus
without parsing annotations, our proposed frame-
work can still leverage the parser to train high-
quality language model adapted to the new corpus.
Also, we can co-train the two components together
to fine-tune the language model on new corpus.

In the rest of this section, we present our param-
eterization of the two probabilistic components
P✓1(y|x) and P✓2(x, y). To avoid notational clut-
ter, we use standard RNN as the basic building
block in the rest of this section.1

2.2 Constituency Parser
To parameterize the constituency parser P✓1(y|x),
it is natural to first encode the input sentence x

into an embedding vector, then pass the vector
to a decoder to generate the parse tree y. There
are quite a few choices for both encoder and
decoder, among which recurrent neural network
(RNN) and convolutional neural network (CNN)
are the most popular ones, since they are power-
ful to capture the structural patterns in natural lan-
guage (Sutskever et al., 2014; Zhang et al., 2015).
Vinyals et al. (2015) have found that the RNN-
powered sequence-to-sequence (Seq2Seq) archi-
tecture with attention mechanism achieves state-
of-the-art parsing performance. This architecture

1The proposed neural variational language model is in-
dependent of any specific implementation of the recurrent
unit such as LSTM (Hochreiter and Schmidhuber, 1997),
GRU (Cho et al., 2014) and SRU (Lei and Zhang, 2017), and
can be directly applied to their deep and bi-directional vari-
ants.

is conceptually simple yet powerful and of large
model capacity.

In this paper, we adapt the sequence-to-
sequence architecture for NVLM. We linearize
a parse tree as a bracket representation (a se-
quence of nodes and brackets ordered by a pre-
order traversal of the tree), which is a one-to-
one mapping of the tree structure. For exam-
ple, the parse tree shown in Figure 1 can be
linearized as (S (NP NNP) (VP VBZ (NP

DT NN)) .). Interestingly, the parser is
now similar to a neural translation model (Bah-
danau et al., 2014), which translates a sentence
into a linearized parse tree. Next we show how
the parser computes P✓1(y|x) in detail.

Formally, the input sentence x is fed into the
encoder, and is encoded as a sequence of hid-
den states H = {h1, h2, . . . , hLx}, where Lx

is the length of x, and hi = RNNenc
�
xi, hi�1

�

where xi is first embedded into a vector (word
embedding) and then fed into the recurrent unit,
and h0 is a learnable vector for the special start-
of-sentence token <SOS>. The decoder uses
a separate RNN to calculate the hidden states
sj = RNNdec

�
[yj�1; cj], sj�1

�
, where y0 is set as

<SOS>, s0 is set as hLx (the last hidden state of
the encoder), and yj�1 is the decoder’s previous
output token sampled from the categorical distri-
bution of the decoder’s softmax layer (or speci-
fied in teacher-forcing training mode), embedded
and then concatenated with the context vector cj

4445

to serve as the RNN input. The context cj is
calculated as cj =

PLx
i=1 ↵i,jhi, where ↵i,j =

exp

⇣
h>
i sj�1

⌘

PLx
i0=1

exp

⇣
h>
i0 sj�1

⌘ . This is a simplified version of

the conventional attention mechanism (Bahdanau
et al., 2014) used in the Seq2Seq parser (Vinyals
et al., 2015). Our parser is designed to be lighter
and faster so that it can efficiently work together
with the NVLM joint generative model.

Finally, the likelihood P✓1(y|x) is computed as

P✓1(y|x) =
LyY

t=1

P (yt|x, y<t)

=

LyY

t=1

"
softmax

⇣
f
�
[st; ct]

�⌘
#

yt

, (4)

where f(·) refers to a fully-connected layer with
tanh activation, and the subscript yt is to select
its probability in the categorical distribution. Ly

denotes the length of y, which is determined by the
decoder itself. Once the decoder emits the special
end-of-sentence token <EOS>, the decoding phase
is terminated.

The trainable parameters ✓1 in the parser com-
ponent P✓1(y|x) include the weights (and biases)
in RNNenc and RNNdec, and all word embeddings.
We use separate weights and word embeddings for
the encoder and the decoder.

2.3 Joint Generative Model
Similar to the parser, the joint generative model
P✓2(x, y) can also be parameterized in various
ways. For example, Choe and Charniak (2016)
uses a LSTM language model trained on the parser
output (with terminal words), which is then used
to rerank an existing parser and achieves state-of-
the-art parsing performance. Inspired by that, we
parameterize the joint generative model as

P✓2(x, y) = P (z) =
LzY

t=1

P (zt|z<t), (5)

where z is the mixed parse tree of x and y, which is
then mapped to a sequential representation follow-
ing a pre-order traversal. Figure 1 illustrates how a
sentence x and its parse tree y can be merged into
a mixed tree. We use another RNNgen to compute
the likelihood P (zt|z<t), and finally get P✓2(x, y)
using Eq. (5).

Algorithm 1: Sentence word attaching
input : sentence x; parser output tokens y
output: mixed tree tokens z

1 if y is not balanced then
2 y BalanceTree(y)

3 z Ø
4 j 1
5 Lx Length of x
6 Ly Length of y
7 for i 1, . . . , Ly do
8 if yi 2 LeafNode(y) ^ j <= Lx then
9 z z [{“(” + yi}

10 z z [{xj}
11 z z [{“)” + yi}
12 j j + 1

13 else
14 z z [{yi}

The trainable parameters ✓2 in the joint genera-
tive model P✓2(x, y) include the weights (and bi-
ases) in RNNgen and all word embeddings.

In Choe and Charniak (2016), the parser is
fixed and well-trained before training the gen-
erative model. Unlike that, our parser can be
jointly trained with the generative model, where
the parser may not be fully trained yet. Therefore,
the generated parse tree can be malformed, which
mismatches the sentence with incorrect number of
leaves. An even worse case is when the parser’s
output is not balanced and not able to form a le-
gitimate tree. To handle these cases, we propose a
sentence word attaching algorithm, which guaran-
tees to generate a well-formed mixed tree. We de-
scribe our algorithm for mixed tree generation in
Algorithm 1. This algorithm takes as input a sen-
tence and its parse tree, and generates a mixed tree
by attaching the sentence words to the leaf nodes
of the parse tree. To handle unbalanced parse tree,
which is rare case but happens due to the nature of
sequential parser, we simply add brackets to either
the head or tail to make the parse tree balanced.

3 Learning

In this section, we describe our algorithms for
learning the model parameters in the constituency
parser P✓1(y|x) and the joint generative model
P✓2(x, y).

4446

3.1 Learning Schemes
NVLM can be trained in three different schemes:
1) fully supervised learning, where sentences (x)
and their corresponding parse trees (y) are avail-
able; 2) distant-supervised learning, where we
have a pre-trained parser and a new corpus without
parsing annotations; 3) semi-supervised learning,
where we have no parsing annotations available.

Let DXY = {(x(i), y(i))}ni=1 denote the anno-
tated training data, where each sentence is paired
with a parse tree. Let DX = {x(i)}mi=1 denote the
unannotated training data, where only sentences
are available. Next, we show how to train NVLM
under each setting respectively.
Supervised: In the fully supervised setting, we
use DXY to separately train the parser and the gen-
erative model, by maximizing their respective data
log likelihood

J✓1(DXY) =
1

n

nX

i=1

logP✓1(y
(i)|x(i)), (6)

J✓2(DXY) =
1

n

nX

i=1

logP✓2(x
(i)
, y

(i)), (7)

where P✓1(·) and P✓2(·) are defined in Eq. (4) and
Eq. (5). We obtain the gradientsr✓1J1 andr✓2J2

by chain rule, and iteratively update ✓1 and ✓2 with
standard optimizers.
Distant-supervised: In distant-supervised learn-
ing, we have pre-trained the parser on corpus
DXY , and fix the parser to train the joint gener-
ative model on new corpus DX . The generative
model can be either trained from scratch on DX

or warmed-up on DXY . This setting is of practical
importance, since we often need a language model
on new corpus without annotations, and the parser
pre-trained on treebank data can help since it en-
codes common grammar knowledge of the lan-
guage.

Under this setting, the pre-trained parser gen-
erates parse trees using Eq. (4) for unannotated
sentences, and form (x, y) pairs to train the joint
generative model throughr✓2J2. The parser’s pa-
rameters ✓1 remain fixed.
Semi-supervised: NVLM can be end-to-end
trained with only unannotated data DX . This is
extremely hard if we train everything from scratch.
However, it is very useful to fine-tune the language
model on new corpus. Unlike distant-supervised
learning, we now train the parser and the joint gen-
erative model together, and co-update the param-

Algorithm 2: Semi-supervised learning
input : annotated training data DXY ;

unannotated training data DX ;
optimizer G(·)

1 Initialize ✓1 with DXY using Eq. (6)
2 Initialize ✓2 with DXY using Eq. (7)
3 while model not converged do
4 Sample a sentence x

(i) from DX

5 Sample a parse tree y
(i) from P✓1(y|x(i))

6 Standardize the signal A(x(i), y(i))

7 Update the baseline function with b(x(i))

8 ✓1 ✓1+G
�
r✓1J̃ (DX)

�
using Eq. (12)

9 ✓2 ✓2+G
�
r✓2J̃ (DX)

�
using Eq. (10)

eters ✓1 and ✓2. Here we also maximize the data
log likelihood

J (DX) =
1

m

mX

i=1

log

X

y2Y(x(i))

P✓2(x
(i)
, y)

!
.

(8)
Unfortunately, the derivative of J (DX) is com-
putationally intractable due to the large space of
Y . To tackle this challenge, we use variational
methods to maximize the lower bound of J (DX),
and exploit policy gradient algorithm to update the
parser’s parameters. Details are described in Sec-
tion 3.2 and Section 3.3. Our algorithm for semi-
supervised learning is summarized in Algorithm 2,
where we assume mini-batch size as 1 to avoid no-
tational clutter.

3.2 Variational EM

As described above, to overcome the compu-
tational intractability of maximizing J (DX)
directly, we use variational expectation-
maximization (EM) algorithm to maximize
the evidence lower bound (ELBO):

J̃ (DX) =
1

m

mX

i=1

EP✓1
(y|x(i))

h

logP✓2(x
(i)
, y)� logP✓1(y|x(i))

i
,

(9)

where we use our parser as the variational poste-
rior P✓1(y|x). For readability, from now on we
assume m = 1 and omit summing over training
samples. With the Monte Carlo method, we ob-

4447

tain the unbiased gradient

r✓2J̃ (DX) = EP✓1
(y|x)

h
r✓2P✓2(x, y)

i
. (10)

3.3 Policy Gradient

To get the gradient of J̃ (DX) w.r.t. the parser
parameters ✓1, we need more work since y is
sampled from a series of categorical distributions.
Here we use policy gradient algorithm (Williams,
1992) to get an unbiased estimator of the gradient

r✓1J̃ (DX) =EP✓1
(y|x)

h
r✓1P✓1(y|x)A(x, y)

i
,

(11)

where A(x, y) = logP✓2(x, y) � logP✓1(y|x) is
used as the learning signal. Due to the limit of
space, we provide detailed derivation of Eq. (11)
in Appendix E. In order to stabilize the learning
process, we use standard variance reduction tech-
niques to reduce the variance of gradient (Green-
smith et al., 2004; Mnih and Gregor, 2014; Zhang
et al., 2017). Specifically, we first standardize the
signal (rescaling it to zero mean and unit variance)
and then subtract a baseline function b(x). Then
we use a separate GRU as the baseline function
and fit the centered signal by minimizing the mean
square loss. Finally, the gradient can be approxi-
mated as

r✓1J̃ (DX) ⇡EP✓1
(y|x)

"
r✓1P✓1(y|x)

✓
A(x, y)� µ̃

�̃
� b(x)

◆#
, (12)

where µ̃ is the sample mean and �̃ is the sample
standard deviation, which estimate the mean and
standard deviation of the learning signal A(x, y).

4 Inference

With the two components in NVLM, a parser
P✓1(y|x) and a joint generative model P✓2(x, y),
we can do three types of inference:

• Parsing, where we sample the parser with
greedy decoding to generate the parse tree for
input sentence;

• Evaluating P✓2(x, y), which is obtained from
the joint generative model, and can be used to
help rerank parsing candidates;

• Estimating P (x) =
P

y02Y(x) P (x, y0) and
evaluating the model perplexity, which is in-
tractable due to the exponentially large space
of Y(x). Similar to Dyer et al. (2016), we
use importance sampling technique to esti-
mate P (x).

Specifically, we use our parser P✓1(y|x) as the
proposal distribution. The estimator of P (x) is de-
rived as

P (x) =
X

y02Y(x)

P✓1(y
0|x)P✓2(x, y

0)

P✓1(y
0|x)

= EP✓1
(y0|x)

P✓2(x, y
0)

P✓1(y
0|x) . (13)

5 Experiments

5.1 Settings
Datasets. We conduct experiments on two pop-
ular datasets for language modeling: Penn Tree-
bank (PTB; Marcus et al., 1993) and One Billion
Word Benchmark (OBWB; Chelba et al., 2013).2

The PTB dataset has parsing annotations, while
OBWB dataset has no annotations. For the PTB
dataset, we adopt the standard train / validation /
test split. We build the vocabulary based on PTB,
using one unknown token for singleton words. For
the OBWB dataset, we use the original train/test
split, and subsample each to have similar size of
PTB (50K sentences for training, and 2.5K sen-
tences for test). The subsampling is for the effi-
ciency of evaluating perplexity using importance
sampling, which requires to sample multiple (we
use 100) parse trees for each sentence. The train-
ing of our framework is actually much more scal-
able than the perplexity evaluation, and not re-
stricted to the size of downsampled dataset. Note
that our data preprocessing scheme follows what is
standard in parsing instead of language modeling,
since parsing typically requires more information
(such as capital letters) and larger vocabulary. The
vocabulary size for text is 26,620, and we have
a separate vocabulary of size 74 for nonterminal
nodes of parsing, such as (NP and NNP. Refer to
Appendix A for more data preprocessing details.
Tasks. We work on three different tasks: 1) super-

vised learning: we separately train both the parser

2The treebank data is publicly available through
the Linguistic Data Consortium (LDC): Penn Treebank
(LDC99T42). The original OBWB dataset is downloaded
from http://www.statmt.org/lm-benchmark/.

4448

and the joint generative model on PTB; 2) distant-

supervised learning: we pre-train the parser on
PTB, and then fix the parser to train the joint gen-
erative model on OBWB either from scratch or
with PTB warmed-up model; 3) semi-supervised

learning: we jointly train the parser and the gen-
erative model together on OBWB to fine-tune the
language model.
Evaluation. We mainly focus on language model-
ing, and use per-word perplexity to evaluate our
framework and competitor models. As for the
parser, we compare with state-of-the-art parsers in
terms of training and testing speed.
Baselines. On the PTB dataset, we compare our
language model with the following baselines: 1)
Kneser-Ney 5-gram language model; 2) LSTM
language model; 3) GRU language model im-
plemented by ourselves; 4) recent state-of-the-art
language models that also incorporate grammar
to improve language modeling, including RNNG,
SO-RNNG and GA-RNNG (Dyer et al., 2016;
Kuncoro et al., 2017). On OBWB dataset, since
there is no parsing annotations available, we com-
pare with GRU language model as a strong base-
line.
Optimization. All our models are trained on a
single NVIDIA GTX 1080 GPU. For all NVLM
models, we use Adam optimizer (Kingma and Ba,
2014) for the parser, and standard SGD for the
joint generative model. Gradients are clipped at
0.25. See Appendix B for more details.

5.2 Supervised Learning

We first experiment on PTB dataset in the super-
vised learning setting. We separately train our
parser and joint generative model on PTB train-
ing dataset, and then evaluate our language model
on PTB test dataset. Table 2 lists the perfor-
mance of our framework and competitor models.
GRU-256 LM is our implemented language model
using 2-layer GRU with hidden size 256, which
is also used in other experiments. Parsing an-
notations are used by RNNG, SO-RNNG, GA-
RNNG and NVLM. These grammar-aware models
achieve significantly better performance compared
to state-of-the-art sequential RNN-based language
models, showing that grammar indeed helps lan-
guage modeling. NVLM substantially improves
over the current state of the art, by 10% reduction
on test perplexity.

With respect to our parser, instead of pursu-

Model Perplexity

KN-5-gram (Kneser and Ney, 1995) 169.3
LSTM-128 LM (Zaremba et al., 2014) 113.4
GRU-256 LM 112.3
RNNG (Dyer et al., 2016) 102.4
SO-RNNG (Kuncoro et al., 2017) 101.2
GA-RNNG (Kuncoro et al., 2017) 100.9

NVLM 91.6

Table 2: Test perplexity on PTB §23. KN-5-gram
refers to Kneser-Ney 5-gram LM. Note that, since pars-
ing typically requires more information (e.g., capi-
tal letters), we follow the standard data preprocessing
of syntax-aware language modeling as in Dyer et al.
(2016), thus the vocabulary size (⇠27K) is much larger
than the capped vocabulary size (10K) in standard lan-
guage modeling setting. Therefore, all the perplexity
results reported in this paper are not directly compara-
ble to that achieved by syntax-agnostic language mod-
els with a much smaller vocabulary, such as the per-
plexity 57.3 reported in Merity et al. (2017) and 54.5
reported in Dai et al. (2019). This also applies to the
perplexity results on the OBWB dataset.

ing state-of-the-art parsing performance, it is de-
signed to be light and fast to efficiently work to-
gether with the NVLM joint generative model.
Our parser achieves 90.7 F1 accuracy on PTB test
dataset, which is comparable to state-of-the-art
parsers. Due to the page limit, we report the de-
tailed parsing performance in Appendix C.

5.3 Distant-supervised Learning
We then experiment on learning language model
on new corpus without tree annotations. This is
to verify whether the learned parser can help lan-
guage model softly land on new corpus. We use
the subsampled OBWB dataset for model train-
ing and evaluation. GRU-256 LM is used as a
strong baseline. We have two different settings
for both GRU LM and our framework: 1) from-

scratch: For GRU LM, we randomly initialize it
before training on OBWB. For NVLM, we train
the parser on PTB and fix it, and randomly initial-
ize the joint generative model; 2) warmed-up: For
GRU LM, we pre-train GRU LM on PTB before
training it on the OBWB dataset. For NVLM, we
train the parser on PTB and fix it, and pre-train
the joint generative model on PTB as warm-up. In
both cases, NVLM uses its parser (trained on PTB)
to generate parse trees for the OBWB dataset, and
train the joint generative model with these silver-

4449

standard parse trees.
Figure 2(a) shows the test perplexity curves

along with number of training epochs. In both
from-scratch and warmed-up settings, NVLM per-
forms significantly better than GRU LM by 22.7
and 7.8 points in perplexity reduction. The
warmed-up NVLM converges fast and achieves
the lowest perplexity. Even when trained from
scratch, NVLM achieves better performance than
the warmed-up GRU LM, though it takes longer
to converge. Note that the warm-up of GRU LM
is directly training P (x) with more data, while
the warm-up of NVLM is only for P (x, y). This
explains why GRU LM seems to benefit more
from warm-up at beginning, and why NVLM from
scratch takes longer to converge.

Unlike the supervised learning setting, NVLM
can now be trained on new corpus without pars-
ing annotations, and still leverages the common
grammar knowledge. To further study the adap-
tation speed of NVLM on new corpus, we train
NVLM with variant proportion of training data in
both from-scratch and warmed-up settings. We
also train GRU LM as a strong baseline. Results
are reported in Table 3.

As shown in Table 3, with smaller amount of
data, NVLM outperforms GRU LM even more
significantly. We find that with only 20% of train-
ing data, the warmed-up NVLM achieves test per-
plexity 140.6, which is comparable to GRU LM
trained with full data from scratch (139.3). This
demonstrates that our framework is data-efficient,
and can quickly adapt to new corpus without pars-
ing annotations. Moreover, we notice that even
without looking at the new corpus (0% train-
ing data), the warmed-up NVLM achieves rea-
sonable perplexity (151.8) which is substantially
lower than the warmed-up GRU LM (242.2). This
agrees with our conjecture that grammar knowl-
edge is sharable among different corpora. Fig-
ure 2(b) plots the test perplexity curves using 20%
OBWB training data. The warmed-up NVLM
quickly converges, and achieves much lower per-
plexity compared to the warmed-up GRU LM.

5.4 Semi-supervised Learning

In distant-supervised setting, the parser is fixed
when training NVLM on new corpus. We can ac-
tually continue training the parser together with
the generative model, so that the language model
can be fine-tuned in end-to-end fashion. This is es-

(a) 100% training data (b) 20% training data

Figure 2: Test perplexity curves on the subsampled
OBWB dataset. Models are trained respectively on
100% and 20% training data. Models randomly initial-
ized are marked as “scratch”, while models pre-trained
on the PTB dataset are marked as “warmed”.

Training
Data

GRU LM NVLM

scratch warmed scratch warmed

0% >1000 242.2 >1000 151.8
20% 298.8 173.1 168.2 140.6
40% 210.3 147.3 143.3 138.5
60% 177.6 136.5 135.8 133.5
80% 152.5 130.5 128.6 125.6
100% 139.3 121.7 116.6 113.9

Table 3: Test perplexity on the subsampled OBWB
dataset. Models are trained on variant proportion of
training data. Models randomly initialized are marked
as “scratch”, while models pre-trained on the PTB
dataset are marked as “warmed”.

sentially semi-supervised learning: the parser has
to be updated without parsing annotations, and the
generative model will be updated together. Due
to the exponentially large space of parse trees,
such joint training is computationally intractable.
To tackle the challenge, we use variational EM
(Section 3.2) and exploit policy gradient (Sec-
tion 3.3) algorithm to co-update both components
of NVLM.

Technically, when the parser is fixed, the model
is also maximizing the lower bound of data log
likelihood. This empirically works well, as shown
in the distant-supervised setting. With joint train-
ing, the model is essentially trying to find a bet-
ter posterior on the new corpus and maximize a
tighter lower bound. Therefore, the data log like-
lihood in Eq. (8) can be better optimized. In semi-
supervised setting, we use full OBWB training
data (subsampled). As reported in Table 4, NVLM
achieves the lowest perplexity (110.2) with joint
training. We also evaluate the parser on PTB after
joint training. It couldn’t get improved since it has

4450

Model Perplexity

GRU LM – from scratch 139.3
GRU LM – warmed-up on PTB 121.7

NVLM – from scratch 116.6
NVLM – warmed-up on PTB 113.9
NVLM – fine-tuned by joint training 110.2

Table 4: Test perplexity on the subsampled OBWB
dataset. All models are trained with 100% training
data.

been fine-tuned on new corpus, and we have no
annotations to evaluate the parser on new corpus.

6 Related Work and Discussion

Due to the remarkable success of RNN-based lan-
guage models (Mikolov et al., 2010b,a; Jozefow-
icz et al., 2016; Yang et al., 2017; Merity et al.,
2017; Elbayad et al., 2018; Gong et al., 2018;
Takase et al., 2018; Dai et al., 2019), not too
much attention has been paid to incorporate syn-
tactic knowledge into language model. Although
RNN-based models achieve impressive results on
language modeling and other NLP tasks such as
machine translation (Cho et al., 2014; Bahdanau
et al., 2014; Xia et al., 2016) and parsing (Vinyals
et al., 2015; Dyer et al., 2015; Choe and Char-
niak, 2016), it is far from perfect since it overlooks
the language structure and simply generates sen-
tence from left to right. The words in natural lan-
guage are largely organized in latent nested struc-
tures rather than simple sequential order (Chom-
sky, 2002).

Our work is related to syntactic language mod-
els, which has a long history. Traditional syn-
tactic language models jointly generate syntactic
structure with words using either bottom-up (Je-
linek and Lafferty, 1991; Emami and Jelinek,
2004, 2005; Henderson, 2004), or top-down strat-
egy (Charniak, 2000; Roark, 2001). Recently,
some studies show the benefits of incorporat-
ing language structure into RNN-based language
model, such as RNNG (Dyer et al., 2016; Kuncoro
et al., 2017). Different from our work, these mod-
els mainly focus on parsing instead of language
modeling, and cannot be trained without parsing
annotations. Works on programming code gener-
ation (Rabinovich et al., 2017; Yin and Neubig,
2017) demonstrate that grammar is the key of ef-
fective code generation. Compared to natural lan-

guage, programming code is more regulated and
typically has well-defined grammar, thus it is more
challenging to exploit the grammar knowledge in
natural language.

Our work is also related to transfer learning
of deep learning models (Bengio, 2012). There
are some recent studies on neural language model
adaptation (Yoon et al., 2017; Ma et al., 2017;
Chen et al., 2015). However, none of them ex-
ploits grammar knowledge. There exists other
lines of work on a broad field of general text
generation (not for language modeling), such as
GAN-based methods (Guo et al., 2017; Li et al.,
2017) and VAE-based ones (Hu et al., 2017). It
is a promising direction to incorporate syntac-
tic knowledge into these generative models. Our
work is also inspired by works on syntactical
structured RNNs, such as tree LSTM (Tai et al.,
2015), hierarchical RNNs (Chung et al., 2016)
and doubly RNNs (Alvarez-Melis and Jaakkola,
2016).

Language models are widely used in a broad
range of applications. We believe that a high-
quality language model can benefit many down-
stream tasks, such as machine translation, dia-
logue systems, and speech recognition. We con-
sider to explore whether our framework can be
seamlessly used in those applications, and leave
it as future work.

7 Conclusion

In this work, we aim to improve language model-
ing with shared grammar. Our framework contains
two probabilistic components: a constituency
parser and a joint generative model. The parser
encodes grammar knowledge in natural language,
which helps language model quickly land on new
corpus. We also propose algorithms for jointly
training the two components to fine-tune the lan-
guage model on new corpus without parsing anno-
tations. Experiments demonstrate that our method
improves language modeling on new corpus in
terms of both convergence speed and perplexity.

Acknowledgements

This project was supported in part by NSF IIS-
1218749,NIH BIGDATA 1R01GM108341, NSF
CAREER IIS-1350983, NSF IIS-1639792 EA-
GER, NSF IIS-1841351 EA-GER, NSF CNS-
1704701, ONR N00014-15-1-2340, IntelISTC,
NVIDIA, Google and Amazon AWS.

4451

References
David Alvarez-Melis and Tommi S Jaakkola. 2016.

Tree-structured decoding with doubly-recurrent
neural networks.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint

arXiv:1409.0473.

Yoshua Bengio. 2012. Deep learning of representa-
tions for unsupervised and transfer learning. In Pro-

ceedings of ICML Workshop on Unsupervised and

Transfer Learning, pages 17–36.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st North American

chapter of the Association for Computational Lin-

guistics conference, pages 132–139. Association for
Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd annual meet-

ing on association for computational linguistics,
pages 173–180. Association for Computational Lin-
guistics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv

preprint arXiv:1312.3005.

Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin,
Moquan Wan, Mark JF Gales, and Philip C Wood-
land. 2015. Recurrent neural network language
model adaptation for multi-genre broadcast speech
recognition. In Sixteenth Annual Conference of the

International Speech Communication Association.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint

arXiv:1406.1078.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016

Conference on Empirical Methods in Natural Lan-

guage Processing, pages 2331–2336.

Noam Chomsky. 2002. Syntactic structures. Walter de
Gruyter.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2016. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704.

Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. arXiv

preprint arXiv:1901.02860.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT, pages
199–209.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
2018. Token-level and sequence-level loss smooth-
ing for RNN language models. In Proceedings of the

56th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages
2094–2103, Melbourne, Australia. Association for
Computational Linguistics.

Ahmad Emami and Frederick Jelinek. 2004. Exact
training of a neural syntactic language model. In
Acoustics, Speech, and Signal Processing, 2004.

Proceedings.(ICASSP’04). IEEE International Con-

ference on, volume 1, pages I–245. IEEE.

Ahmad Emami and Frederick Jelinek. 2005. A neural
syntactic language model. Machine learning, 60(1-
3):195–227.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2018. Frage: frequency-agnostic
word representation. In Advances in Neural Infor-

mation Processing Systems, pages 1334–1345.

Evan Greensmith, Peter L Bartlett, and Jonathan Bax-
ter. 2004. Variance reduction techniques for gradi-
ent estimates in reinforcement learning. Journal of

Machine Learning Research, 5(Nov):1471–1530.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2017. Long text generation via
adversarial training with leaked information. arXiv

preprint arXiv:1709.08624.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proceedings of

the 42nd Annual Meeting on Association for Compu-

tational Linguistics, page 95. Association for Com-
putational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In International Confer-

ence on Machine Learning, pages 1587–1596.

Frederick Jelinek and John D Lafferty. 1991. Compu-
tation of the probability of initial substring genera-
tion by stochastic context-free grammars. Computa-

tional Linguistics, 17(3):315–323.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint

arXiv:1602.02410.

4452

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-

ings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Pa-

pers), pages 2676–2686, Melbourne, Australia. As-
sociation for Computational Linguistics.

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the

41st annual meeting of the association for compu-

tational linguistics.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In
Acoustics, Speech, and Signal Processing, 1995.

ICASSP-95., 1995 International Conference on, vol-
ume 1, pages 181–184. IEEE.

Lingpeng Kong and Noah A Smith. 2014. An empiri-
cal comparison of parsing methods for stanford de-
pendencies. arXiv preprint arXiv:1404.4314.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings of

the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume

1, Long Papers, pages 1249–1258, Valencia, Spain.
Association for Computational Linguistics.

Tao Lei and Yu Zhang. 2017. Training rnns as fast as
cnns. arXiv preprint arXiv:1709.02755.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter,
and Dan Jurafsky. 2017. Adversarial learning
for neural dialogue generation. arXiv preprint

arXiv:1701.06547.

Min Ma, Michael Nirschl, Fadi Biadsy, and Shankar
Kumar. 2017. Approaches for neural-network lan-
guage model adaptation. Proc. Interspeech 2017,
pages 259–263.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-

tional linguistics, 19(2):313–330.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2017. On
the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010a. Re-
current neural network based language model. In
Eleventh Annual Conference of the International

Speech Communication Association.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010b. Recur-
rent neural network based language model. In Inter-

speech, volume 2, page 3.

Andriy Mnih and Karol Gregor. 2014. Neural vari-
ational inference and learning in belief networks.
arXiv preprint arXiv:1402.0030.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st

International Conference on Computational Lin-

guistics and the 44th annual meeting of the Associa-

tion for Computational Linguistics, pages 433–440.
Association for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code gen-
eration and semantic parsing. arXiv preprint

arXiv:1704.07535.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational linguistics,
27(2):249–276.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2017. Neural language model-
ing by jointly learning syntax and lexicon. arXiv

preprint arXiv:1711.02013.

Richard Socher, John Bauer, Christopher D Manning,
et al. 2013. Parsing with compositional vector gram-
mars. In Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (Vol-

ume 1: Long Papers), volume 1, pages 455–465.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-

ing systems, pages 3104–3112.

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto
Morishita, and Masaaki Nagata. 2018. An empir-
ical study of building a strong baseline for con-
stituency parsing. In Proceedings of the 56th An-

nual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 612–
618, Melbourne, Australia. Association for Compu-
tational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Sho Takase, Jun Suzuki, and Masaaki Nagata. 2018.
Direct output connection for a high-rank language
model. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Process-

ing, pages 4599–4609, Brussels, Belgium. Associ-
ation for Computational Linguistics.

4453

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural

Information Processing Systems, pages 2773–2781.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages
5–32. Springer.

Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai
Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual
learning for machine translation. arXiv preprint

arXiv:1611.00179.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W Cohen. 2017. Breaking the softmax bot-
tleneck: a high-rank rnn language model. arXiv

preprint arXiv:1711.03953.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Seunghyun Yoon, Hyeongu Yun, Yuna Kim, Gyu-tae
Park, and Kyomin Jung. 2017. Efficient transfer
learning schemes for personalized language model-
ing using recurrent neural network. arXiv preprint

arXiv:1701.03578.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-

cessing systems, pages 649–657.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J Smola, and Le Song. 2017. Variational reason-
ing for question answering with knowledge graph.
arXiv preprint arXiv:1709.04071.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the

51st Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 434–443.

