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Abstract

We consider a novel question answering (QA)
task where the machine needs to read from
large streaming data (long documents or
videos) without knowing when the questions
will be given, which is difficult to solve with
existing QA methods due to their lack of scal-
ability. To tackle this problem, we propose
a novel end-to-end deep network model for
reading comprehension, which we refer to as
Episodic Memory Reader (EMR) that sequen-
tially reads the input contexts into an exter-
nal memory, while replacing memories that
are less important for answering unseen ques-
tions. Specifically, we train an RL agent to
replace a memory entry when the memory is
full, in order to maximize its QA accuracy
at a future timepoint, while encoding the ex-
ternal memory using either the GRU or the
Transformer architecture to learn representa-
tions that considers relative importance be-
tween the memory entries. We validate our
model on a synthetic dataset (bAbI) as well as
real-world large-scale textual QA (TriviaQA)
and video QA (TVQA) datasets, on which it
achieves significant improvements over rule-
based memory scheduling policies or an RL-
based baseline that independently learns the
query-specific importance of each memory.

1 Introduction

Question answering (QA) problem is one of the
most important challenges in Natural Language
Understanding (NLU). In recent years, there has
been drastic progress on the topic, owing to
the success of deep learning based QA mod-
els (Sukhbaatar et al., 2015; Seo et al., 2016;
Xiong et al., 2016; Hu et al., 2018; Back et al.,
2018; Devlin et al., 2018). On certain tasks such
as machine reading comprehension (MRC), where

* Equal contribution

the problem is to find the span of the answer within
a given paragraph (Rajpurkar et al., 2016), the
deep-learning based QA models have even sur-
passed human-level performances.

Despite such impressive achievements, it is still
challenging to model question answering with
document-level context (Joshi et al., 2017), where
the context may include a long document with
a large number of paragraphs, due to problems
such as difficulty in modeling long-term depen-
dency and computational cost. To overcome such
scalability problems, researchers have proposed
pipelining or confidence based selection methods
that combine paragraph-level models to obtain a
document-level model (Joshi et al., 2017; Chen
et al., 2017; Clark and Gardner, 2018; Wang et al.,
2018b). Yet, such models are applicable only
when questions are given beforehand and all sen-
tences in the document can be stored in memory.

However, in realistic settings, the amount of
context may be too large to fit into the system
memory. We may consider query-based context
selection methods such as ones proposed in In-
durthi et al. (2018) and Min et al. (2018), but in
many cases, the question may not be given when
reading in the context, and thus it would be diffi-
cult to select out the context based on the question.
For example, a conversation agent may need to an-
swer a question after numerous conversations in a
long-term time period, and a video QA model may
need to watch an entire movie, or a sports game,
or days of streaming videos from security cameras
before answering a question. In such cases, exist-
ing QA models will fail to solve the problem due
to memory limitation.

In this paper, we target a novel problem of solv-
ing question answering problem with streaming
data as context, where the size of the context could
be significantly larger than what the memory can
accommodate (See Figure 1). In such a case, the
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Figure 1: Concept: We consider a novel problem of learning from streaming data, where the QA model may need to answer
a question that is given after reading in unlimited amount of context. To solve this problem, our Episodic Memory Reader
(EMR) learns to retain the most important context vectors in an external memory, while replacing the memory entries in order
to maximize its accuracy on an unseen question given at a future timestep.

model needs to carefully manage what to remem-
ber from this streaming data such that the memory
contains the most informative context instances in
order to answer an unseen question in the future.
We pose this memory management problem as a
learning problem and train both the memory rep-
resentation and the scheduling agent using rein-
forcement learning.

Specifically, we propose to train the memory
module itself using reinforcement learning to re-
place the most uninformative memory entry in or-
der to maximize its reward on a given task. How-
ever, this is a seemingly ill-posed problem since
for most of the time, the scheduling should be
performed without knowing which question will
arrive next. To tackle this challenge, we imple-
ment the policy network and the value network
that learn not only relation between sentences and
query but also relative importance among the sen-
tences in order to maximize its question answer-
ing accuracy at a future timepoint. We refer to
this network as Episodic Memory Reader (EMR).
EMR can perform selective memorization to keep
a compact set of important context that will be use-
ful for future tasks in lifelong learning scenarios.

We validate our proposed memory network on
a large-scale QA task (TriviaQA) and video ques-
tion answering task (TVQA) where the context is
too large to fit into the external memory, against
rule-based and an RL-based scheduling method
without consideration of relative importance be-
tween memories. The results show that our model
significantly outperforms the baselines, due to its
ability to preserve the most important pieces of in-
formation from the streaming data.

Our contribution is threefold:

• We consider a novel task of learning to re-
member important instances from streaming
data for question answering task, where the
size of the memory is significantly smaller
than the length of the data stream.

• We propose a novel end-to-end memory-
augmented neural architecture for solving
QA from streaming data, where we train a
scheduling agent via reinforcement learning
to store the most important memory entries
for solving future QA tasks.

• We validate the efficacy of our model on real-
world large-scale text and video QA datasets,
on which it obtains significantly improved
performances over baseline methods.

2 Related Work

Question-answering There has been a rapid
progress in question answering (QA) in recent
years, thanks to the advancement in deep learn-
ing as well as the availability of large-scale
datasets. One of the most popular large-scale QA
dataset is Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) that contains
100K question-answering pairs. Unlike Richard-
son et al. (2013) and Hermann et al. (2015) that
provide multiple-choice QA pairs, SQuAD pro-
vides and requires to predict exact locations of
the answers. On this span prediction task, at-
tentional models (Pan et al., 2017; Cui et al.,
2017; Hu et al., 2018) have achieved impressive
performances, with Bi-Directional Attention Flow
(BiDAF) (Seo et al., 2016) that uses bi-directional
attention mechanism for the context and query be-
ing one of the best performing models. Trivi-
aQA (Joshi et al., 2017) is another large-scale QA
dataset that includes 950K QA pairs. Since the
length of each document in Trivia is much longer
than SQuAD, with average of 3K sentences per
document, existing span prediction models (Joshi
et al., 2017; Back et al., 2018; Yu et al., 2018) fail
to work due to memory limitation, and simply re-
sort to document truncation. Video question an-
swering (Tapaswi et al., 2016; Lei et al., 2018),
where video frames are given as context for QA,
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is another important topic where scalability is an
issue. Several models (Kim et al., 2017, 2018;
Na et al., 2017; Wang et al., 2018a) propose to
solve video QA using attentions and memory aug-
mented networks, to perform composite reasoning
over both videos and texts; however, they only fo-
cus on short-length videos. Most existing work on
QA focus on small-size problems due to memory
limitation. Our work, on the other hand, considers
a challenging scenario where the context is order
of magnitude larger than the memory.

Context selection A few recent models propose
to select minimal context from the given document
when answering questions for scalability, rather
than using the full context. Min et al. (2018)
proposed a context selector that generates atten-
tions on the context vectors, in order to achieve
scability and robustness against adversarial in-
puts. Choi et al. (2017) and Indurthi et al. (2018)
propose a similar method, but they use REIN-
FORCE (Williams, 1992) instead of linear classi-
fiers. Chen et al. (2017) selects the most relevant
documents out of the Wikipedia database with re-
spect to the query using TF-IDF matching, and
Wang et al. (2018b) propose to tackle the doc-
ument ranking problem with RL agents. While
these context/document selection methods share
our motivation of achieving scability and select-
ing out the most informative pieces of information
to solve the QA task, our problem setting is com-
pletely different from theirs since we consider a
challenging problem of learning from the stream-
ing data without knowing when the question will
be given, where the size of the context is much
larger than the memory and the question is unseen
when training the selection module.

Memory-augmented neural networks Our
episodic memory reader is essentially a memory-
augmented network (MANN) (Graves et al.,
2014; Sukhbaatar et al., 2015; Xiong et al., 2016;
Kumar et al., 2016) with a RL-based scheduler.
While most existing work on MANN assume that
the memory is sufficiently large to hold all the
data instances, a few tried to consider memory-
scheduling for better scalability. Gülçehre et al.
(2016) propose to train an addressing agent using
reinforcement learning in order to dynamically
decide which memory to overwrite based on the
query. This query-specific importance is similar to
our motivation, but in our case the query is given

after reading in all the context and thus unusable
for scheduling, and we perform hard replacement
instead of overwriting. Differentiable Neural
Computer (DNC) (Graves et al., 2016) extends
the NTM to address the issue by introducing a
temporal link matrix, replacing the least used
memory when the memory is full. However, this
method is a rule-based one that cannot maximize
the performance on a given task.

3 Learning What to Remember from
Streaming Data

We now describe how to solve question answering
tasks with streaming data as context. In a more
general sense, this is a problem of learning from
a long data stream that contains a large portion of
unimportant, noisy data (e.g. routine greetings in
dialogs, uninformative video frames) with limited
memory. The data stream is episodic, where an
unlimited amount of data instances may arrive at
one time interval and becomes inaccessible after-
ward. Additionally, we consider that it is not pos-
sible for the model to know in advance what tasks
(a question in the case of QA problem) will be
given at which timestep in the future (See Figure 1
for more details). To solve this problem, the model
needs to identify important data instances from the
data stream and store them into external memory.
Formally, given a data stream (e.g. sentences or
images) X = {x(1), · · · ,x(T )} where x(t) ∈ Rd
as input, the model should learn a function F :
X 7→ M that maps it to the set of memory en-
tries M = {m1, · · · ,mN} where mi ∈ Rk and
T � N . How can we then learn such a func-
tion that maximizes the performance on unseen fu-
ture tasks without knowing what problems will be
given at what time? We formulate this problem as
a reinforcement learning problem to train a mem-
ory scheduling agent.

3.1 Model Overview

We now describe our model, Episodic Memory
Reader (EMR) to solve the previously described
problem. Our model has three components: (1)
an agent A based on EMR, (2) an external mem-
ory M = [m1, · · · ,mN ], and (3) a solver which
solves the given task (e.g. QA) with the exter-
nal memory. Figure 2 shows the overview of
our model. Basically, given a sequence of data
instances X = {x(1), · · · ,x(T )} that streams
through the system, the agent learns to retain the
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Figure 2: The overview of our Episodic Memory Reader (EMR). EMR learns the policy and the value network to select a
memory entry to replace, in order to maximize the reward, defined as the performance on future QA tasks (F1-score, accuracy).

most useful subset in the memory, by interacting
with the external memory that encodes the rel-
ative importance of each memory entry. When
t ≤ N , the agent simply maps x(t) to m(t).
However, when t > N , when the memory be-
comes full, it selects an existing memory entry to
delete. Specifically, it outputs an action based on
π(i|S(t)), which denotes the selection of ith mem-
ory entry to delete. Here, the state is the con-
catenation of the memory and the data instance:
S(t) = [M (t), e(t)], where e(t) is the encoded in-
put at timestep t. To maximize the performance
on the future QA task, the agent should replace
the least important memory entry. When the agent
encounters the task T (QA problem) at timestep
T + 1, it leverages both the memory at timestep
T , M (T ) and the task information (e.g. question),
to solve the task. For each action, the environ-
ment (QA module) provides the reward R(t), that
is given either as the F1-score or the accuracy.

3.2 Episodic Memory Reader

Episodic Memory Reader (EMR) is composed of
three components: (1) Data Encoder that encodes
each data instance into memory vector represen-
tation, (2) Memory Encoder that generates re-
placement probability for each memory entry, and
the (3) Value Network that estimates the value of
memory as a whole. In some cases, we may use
policy gradient methods, in which case the value
network becomes unnecessary.

3.2.1 Data Encoder

The data instance x(t) which arrives at time t can
be in any data format, and thus we transform it
into a k-dimensional memory vector representa-
tion e(t) ∈ Rk to using an encoder:

e(t) = ψ(x(t))

where ψ(·) is the data encoder, which could be any
neural architecture based on the type of the input
data. For example, we could use a RNN if x(t)

is composed of sequential data (e.g. a sentence
composed of words x(t) = {w1, w2, w3, · · · , ws})
or a CNN if x(t) is an image. After deleting a
memory entry m

(t)
i , we append e(t) at the end of

the memory, which then becomes m(t+1)
N .

3.2.2 Memory Encoder
Using the memory vector representations M (t) =

[m
(t)
1 , · · · ,m(t)

N ] and e(t) generated from the data
encoder, the memory encoder outputs a probabil-
ity for each memory entry by considering its rela-
tive importance, and then replaces the most unim-
portant entry. This component corresponds to the
policy network of the actor-critic method. Now we
describe our EMR models.

EMR-Independent Since we do not have ex-
isting work for our novel problem setting, as
a baseline, we first consider a memory encoder
that only captures the relative importance of each
memory entry independently to the new data in-
stance, which we refer to as EMR-Independent.
This scheduling mechanism is adopted from Dy-
namic Least Recently Use (LRU) addressing in-
troduced in Gülçehre et al. (2016), but different
from LRU in that it replaces the memory entry
rather than overwriting it, and is trained without
query to maximize the performance for unseen fu-
ture queries. EMR-Independent outputs the im-
portance for each memory entry by comparing
them with an embedding of the new data instance
x(t) as a

(t)
i = softmax(m(t)

i ψ(x
(t))T ). To com-
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pute the overall importance of each memory en-
try, as done in Gülçehre et al. (2016), we com-
pute the exponential moving average as v

(t)
i =

0.1v
(t−1)
i + 0.9a

(t)
i . Then, we compute the re-

placement probabilty of each memory entry with
the LRU factor γ(t) as follows:

γ
(t)
i = σ(W T

γ m
(t)
i + bγ)

g
(t)
i = a

(t)
i − γ

(t)
i v

(t−1)
i

π(i|[M (t), e(t)]; θ) = softmax(g(t)
i )

where i ∈ [1, N ] is the memory index, Wγ ∈
R1×d and bγ ∈ R are the weight matrix and the
bias term, σ(·) and softmax(·) are sigmoid and
softmax functions respectively, and π is the pol-
icy of the memory scheduling agent.

EMR-biGRU A major drawback of EMR-
Independent is that the evaluation of each memory
depends only on the input x(t). In other words,
the importance is computed between each memory
entry and the new data instance regardless of other
entries in the memory. However, this scheme can-
not model the relative importance of each mem-
ory entry to other memory entries, which is more
important in deciding on the least important mem-
ory. One way to consider relative relationships be-
tween memory entries is to encode them using a
bidirectional GRU (biGRU) as follows:

−→
h

(t)
i = GRUθfw(m

(t)
i ,
−→
h

(t)
i−1)

←−
h

(t)
i = GRUθbw(m

(t)
i ,
←−
h

(t)
i+1)

h
(t)
i = [

−→
h

(t)
i ,
←−
h

(t)
i ]

π(i|[M (t), e(t)]; θ) = softmax(MLP (h
(t)
i ))

where i ∈ [1, N +1] is the memory index, includ-
ing the index of the encoded input m(t)

N+1 = e(t),
GRUθ is a Gated Recurrent Unit parameterized
by θ, [

−→
h

(t)
i ,
←−
h

(t)
i ] is a concatenation of features.

π is the policy of the agent, and MLP is a multi-
layer perceptron with three layers with ReLU ac-
tivation functions. Thus, EMR-biGRU learns the
general importance of each memory entry in re-
lation to its neighbors rather than independently
computing the importance of each entry with re-
spect to the query, which is useful when selecting
out the most important entries among highly sim-
ilar data instances (e.g. video frames). However,

Figure 3: Detailed architecture of memory encoder in EMR-
Independent and EMR-biGRU/Transformer.

the model may not effectively model long-range
relationships between memory entries in far-away
slots due to the inherent limitation with RNNs.

EMR-Transformer To overcome such subopti-
mality of RNN-based modeling, we further adopt
the self-attention mechanism from Vaswani et al.
(2017). With query Q(t), key K(t), and the value
V (t) we generate the relative importance of the
entries with a linear layer that takes m(t) with
the position encoding proposed in Vaswani et al.
(2017) as input. With multi-headed attention, each
component is projected to a multi-dimensional
space; the dimensions for each componenets are
Q(t) ∈ RH×N× k

H , K(t) ∈ RH×N× k
H , and V (t) ∈

RH×N× k
H , where N is the size of memory and

H is the number of attention heads. Using these,
we can formulate the retrieved output using self-
attention and memory encoding as follows:

A(t) = softmax

(
Q(t)K(t)T√

k/H

)
o(t) = A(t)V (t)

h(t) = W T
o [o

(t)
1 ,o

(t)
2 , · · · ,o(t)

h ]

π(i|[M (t), e(t)]; θ) = softmax(MLP (h
(t)
i ))

where i is the memory index, o
(t)
i ∈ RN× d

h ,
[o

(t)
1 ,o

(t)
2 , · · · ,o(t)

h ] ∈ RN×k is a concatentation
of o

(t)
i , π is the policy of the agent, and MLP

is the same 3-layer multi-layer perceptron used in
EMR-biGRU. Memory encoding h(t) is then com-
puted using linear function Wo ∈ Rd×d with h(t)

as input. Figure 3 illustrates the architecture of the
memory encoder for EMR-Independent and EMR-
biGRU/Transformer.

3.2.3 Value Network
For solving certain QA problems, we need to con-
sider the future importance of each memory entry.
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Figure 4: Example context and QA pair from TriviaQA.

Especially in textual QA tasks (e.g. TriviaQA),
storing the evidence sentences that precede span
words may be useful as they may provide useful
context. However, using only discrete policy gra-
dient method, we cannot preserve such context in-
stances. To overcome this issue, we use an actor-
critic RL method (A3C) (Mnih et al., 2016) to es-
timate the sum of future rewards at each state us-
ing the value network. The difference between the
policy and the value is that the value can be esti-
mated differently at each time step and the needs
to consider the memory as a whole. To obtain
a holistic representation of our memory, we use
Deep Sets (Zaheer et al., 2017). Following Zaheer
et al. (2017) we sum up all h(t)

i and input them into
an MLP (ρ), that consists of two linear layers and
a ReLU activation function, to obtain a set repre-
sentation. Then, we further process the set repre-
sentation ρ(

∑N
i=1 h

(t)
i ) by a GRU with the hidden

state from the previous time step. Finally, we feed
the output of the GRU to a multi-layer perceptron
to estimate the value V (t) for the current timestep.

3.3 Training and test

Training Our model learns the memory
scheduling policy jointly with the model to solve
the task. For training EMR, we choose A3C
(Mnih et al., 2016) or REINFORCE (Williams,
1992). At training time, since the tasks are given,
we provide the question to the agent at every
timestep. At each step, the agent selects the action
stochastically from multinomial distribution based
on π(i|[M (t), e(t)]; θ) to explore various states,
and make an action. Then, the QA model provides
the agent the reward Rt. We use asynchronous
multiprocessing method illustrated in Mnih et al.
(2016) to train several models at once.

Test At test time, the agent deletes the mem-
ory index by following the learned policy π:
argmaxi π(i|[M (t), e(t)]; θ). Contrarily from the
training step, the model observes the question only

at the end of the data stream. When encountering
the question, the model solves the task using the
data instances kept in the external memory.

4 Experiment

We experiment our EMR-biGRU and EMR-
Transformer against several baselines:

1) FIFO (First-In First-Out). A rule-based
memory scheduling policy that replaces the oldest
memory entry.

2) Uniform. A policy that replaces all memory
entries with equal probability at each time.

3) LIFO (Last-In First-Out). A policy that re-
places the newest data instance. That is, it first fills
in the memory and then discards all following data
instances.

4) EMR-Independent. A baseline EMR which
learns the importance of each memory entry only
relative to the new data instance.

5) EMR-biGRU. An EMR implemented using
a biGRU, that considers relative importance of
each memory entry to its neighbors when learning
the memory replacement policy.

6) EMR-Transformer. An EMR that utilizes
Transformer to model the global relative impor-
tance between memory entries.

The codes for the baseline models and our mod-
els are available at https://github.com/
h19920918/emr. In the next subsections, we
present experimental results on bAbI, TriviaQA,
and TVQA datasets. For more experimental re-
sults, please see supplementary file.

4.1 bAbI

Dataset bAbI (Weston et al., 2015) dataset,
which is a synthetic dataset for episodic question
answering, consists of 20 tasks with small amount
of vocabulary, that can be solved by remember-
ing a person or an object. Among the 20 tasks,
we select Task 2, which requires to remember two
supporting facts, to evaluate our model. Addition-
ally, we generate noisy version of this task using
the open-source template provied by Weston et al.
(2015). Each episode of both tasks contains five
questions, where all questions share the same con-
text sentences. For Noisy task, we inject noise sen-
tences that has nothing to do with the given task,
to validate the effitiveness of our model. In this
dataset, 60% of the episodes have no noise sen-
tence, 10% have approximately 30% noise sen-
tences, 10% have approximately 45% noise sen-

https://github.com/h19920918/emr
https://github.com/h19920918/emr
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Figure 5: QA performance of baseline models and EMR-
variants. The reported results are averages over 3 runs.

tences and 10% of dataset have approximately
60% noise sentences. The length of each episode
is fixed to 45 (5 questions + 40 facts), and a ques-
tion appears after the arrival of 8 factual sentences.

Experiment Details We adopted MemN2N
(Sukhbaatar et al., 2015) for this experiment,
which consists of an embedded layer and a multi-
hop mechanism that extracts high-level inference.
We use MemN2N with position encoding repre-
sentation, 3 hops and adjacent weight tying. We
set the dimension of memory representations to
k = 20 and compare our model and the base-
lines on the Original and Noisy tasks. To generate
the memory representation mi, we use the sum
of the three hop value memories from the base
MemN2N. We experiment with varying memory
size: 5, 10 and 15. We train our model and the
baselines using ADAM optimizer (Kingma and
Ba, 2014) with the learning rate 0.0005 for 400K
steps on both tasks.

Results and Analysis In Figure 5, we report
the experiment results for Original and Noisy
tasks. Both our model (EMR-biGRU and EMR-
Transformer) outperform the baselines, especially
with higher gain in the case of Noisy dataset.
EMR-independent, which does not consider rela-
tive importance among the memory entries, per-
forms worse or simlar to FIFO baseline. The re-
sults suggest that our methods are able to retain
the supporting facts even with small number of
memory entries. For further analysis for the ex-
periments on the bAbI dataset, please see supple-
mentary file.

4.2 TriviaQA

Dataset TriviaQA (Joshi et al., 2017) is a real-
istic text-based question answering dataset which
includes 950K question-answer pairs from 662K
documents collected from Wikipedia and the web.
This dataset is more challenging than standard

Figure 6: The histogram of number of answers for each doc-
ument length for TriviaQA dataset.

QA benchmark datasets such as Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016), as the answers for a question may not
be directly obtained by span prediction and the
context is very long (Figure 4). Since conven-
tional QA models (Seo et al., 2016; Back et al.,
2018; Yu et al., 2018; Devlin et al., 2018) are
span prediction models, on TriviaQA they only
train on QA pairs whose answers can be found
in the given context. In such a setting, Trivi-
aQA becomes highly biased, where the answers
are mostly spanned in the earlier part of the doc-
ument (Figure 6). We evaluate our work only on
the Wikipedia domain since most previous work
report similar results on both domains. While
TriviaQA dataset consists of both human-verified
and machine-generated QA subsets, we use the
human-verified subset only since the machine-
generated QA pairs are unreliable. We use the
validation set for test since the test set does not
contain labels.

Experiment Details We employ the pre-trained
model from Deep Bidirectional Transformers
(BERT) (Devlin et al., 2018), which is the cur-
rent state-of-the-art model for SQuAD challenge,
that trains several Transformers in Vaswani et al.
(2017) for pretraining tasks for predicting the in-
dices of the exact location of an answer. We em-
bed 20 words into each memory cell using a GRU
and set the number of cells to 20, thus the memory
can hold 400 words at maximum. This is a reason-
able restriction since BERT limits the maximum
number of word tokens to 512, including both the
context and the query.

Results and Analysis We report the perfor-
mance of our model on the TriviaQA using both
ExactMatch and F1-score in Table 1. We see that
EMR models which consider the relative impor-
tance between the memory entries (EMR-biGRU
and EMR-Transformer) outperform both the rule-
based baselines and EMR-Independent. One in-
teresting observation is that LIFO performs quite
well unlike the other rule-based scheduling poli-
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Figure 7: An example of how our model operates in order to solve the memory retention problem. Episodic Memory Reader
(EMR) sequentially reads the sentences one by one while replacing least important memories. State 1 and State T represent
memory entries in the in the initial state and the last state, respectively. Our EMR retrains the sentences which contain the word
‘France’ (in bold red fonts) in order to answer the given question.

Table 1: Q&A accuracy on the TriviaQA dataset. model.

Model ExactMatch F1
FIFO 24.53 27.22

Uniform 28.30 34.39
LIFO 46.23 50.10

EMR-Independent 38.05 41.15
EMR-biGRU 52.20 57.57

EMR-Transformer 48.43 53.81

cies, but this is due to the dataset bias (See Fig-
ure 6) where most answers are spanned in earlier
part of the documents. To further see whether this
improvement is from its ability to remember im-
portant context, we examine the sentences that re-
main in the memory after EMR finishes reading
all the sentences in Figure 7. We see that EMR
remembered the sentences that contain key words
that is required to answer the future question.

4.3 TVQA

Dataset TVQA (Lei et al., 2018) is a localized,
compositional video question-answering dataset
that contains 153K question-answer pairs from
22K clips spanning over 460 hours of video. The
questions are multiple choice questions on the
video contents, where the task is to find a sin-
gle correct answer out of five candidate answers.
The questions can be answered by examining the
annotated clip segments, which spans around 30
frames per clip (See Figure 8). The average num-
ber of frames for each clip is 229. In addition to
the video frames, the dataset also provides subti-
tles for each video frame. Thus solving the ques-
tions requires compositional reasoning capability
over both a large number of images and texts.

Experiment Details As for the QA module, we
use Multi-stream model for Multi-Modal Video
QA, which is the attention-based baseline model

provided in (Lei et al., 2018). For efficient train-
ing, we use features extracted from a ResNet-101
pretrained on the ImageNet dataset. For embed-
ding subtitles and question-answering pairs, we
use GloVe (Pennington et al., 2014). For train-
ing, we restrict the number of memory entries for
our episodic reader as 20, where each memory en-
try contains the encoding of a video frame and the
subtitle associated with the frame, where the for-
mer is encoded using CNN and the latter using
GRU. We train our model and the baseline mod-
els using the ADAM optimizer (Kingma and Ba,
2014), with the initial learning rate of 0.0001. Un-
like from the experiments on TriviaQA, we use
REINFORCE (Williams, 1992) to train the policy.
This is because TVQA is composed of consecutive
image frames captured within a short time inter-
val, which tend to contain redundant information.
Thus the value network of the actor-critic model
fails to estimate good value of the given state since
deleting a good frame will not result in the loss of
QA accuracy. Thus we compute the rewardR(t) as
the accuracy difference between at time step t and
t − 1 then use only the policy with non-episodic
REINFORCE for training. With this method, if
the task fails to solve the question after deleting
certain frame, the frame is considered as impor-
tant, and unimportant otherwise.

Results and Analysis We report the accuracy
on TVQA as a function of memory size in Fig-
ure 9. We observe that EMR variants signifi-
cantly outperform all baselines, including EMR-
Independent. We also observe that the models per-
form well even when the size of the memory is in-
creased to as large as 60, which was never encoun-
tered during the training stage where the number
of memory entries was fixed as 20. When the
size of memory is small, the gap between different
models are larger, with EMR-Transformer obtain-
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Figure 8: An example of TVQA dataset and a visualization of how our model operates. The answer in red is the ground truth
and the answer with underline is the predicted answer from our QA model. At state 1, since the memory is empty, our model
encodes every video frame into the memory until the memory becomes full. At state T, after reading in all the video frames,
it retains the most informative frames to answer the question. Note that this retention of the important frames is done without
knowing the question in advance.
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Figure 9: QA accuracy of various memory scheduling poli-
cies on the TVQA dataset, reported as a function of the num-
ber of memory entries.

ing the best accuracy, which may be due to its abil-
ity to capture global relative importance of each
memory entry. However, the gap between EMR-
Transformer and EMR-biGRU diminishes as the
size of memory increases, since then the size of
the memory becomes large enough to contain all
the frames necessary to answer the question.

As qualitative analysis, we further examine
which frames and subtitles were preserved in the
external memory after the model has read through
the entire sequence in Figure 8. To answer the
question for this example, the model should con-
sider the relationship between two frames, where
the first frame describes Ross showing the paper
to others, and the second frame describes Monica
entering the coffee shop. We see that our model
kept both frames, although it did not know what
the question will be.

5 Conclusion

We proposed a novel problem of question an-
swering from streaming data, where the model
needs to answer a question that is given after
reading through unlimited amount of context (e.g.
documents, videos) that cannot fit into the sys-
tem memory. To handle this problem, we pro-
posed Episodic Memory Reader (EMR), which
is basically a memory-augmented network with
RL-based memory-scheduler, that learns the rel-
ative importance among memory entries and re-
places the entries with the lowest importance to
maximize the QA performance for future tasks.
We validated EMR on three QA datasets against
rule-based memory scheduling as well as an RL-
baseline that does not model relative importances
among memory entries, which it significantly out-
performs. Further qualitative analysis of memory
contents after learning confirms that such good
performance comes from its ability to retain im-
portant instances for future QA tasks.
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Çaglar Gülçehre, Sarath Chandar, Kyunghyun Cho,
and Yoshua Bengio. 2016. Dynamic neural tur-
ing machine with soft and hard addressing schemes.
CoRR, abs/1607.00036.

Karl Moritz Hermann, Tomás Kociský, Edward
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Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu.
2016. Asynchronous methods for deep reinforce-
ment learning. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML
2016.

Seil Na, Sangho Lee, Jisung Kim, and Gunhee Kim.
2017. A read-write memory network for movie
story understanding. In IEEE International Confer-
ence on Computer Vision, ICCV 2017.



4417

Boyuan Pan, Hao Li, Zhou Zhao, Bin Cao, Deng Cai,
and Xiaofei He. 2017. MEMEN: multi-layer em-
bedding with memory networks for machine com-
prehension. CoRR, abs/1707.09098.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016.

Matthew Richardson, Christopher J. C. Burges, and
Erin Renshaw. 2013. Mctest: A challenge dataset
for the open-domain machine comprehension of
text. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2013.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR,
abs/1611.01603.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. Movieqa: Understanding stories in movies
through question-answering. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017.

Bo Wang, Youjiang Xu, Yahong Han, and Richang
Hong. 2018a. Movie question answering: Re-
membering the textual cues for layered visual con-
tents. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18).

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018b. R3̂:
Reinforced ranker-reader for open-domain question
answering. In Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18).

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks.
CoRR, abs/1502.05698.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256.

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and
textual question answering. In Proceedings of the
33nd International Conference on Machine Learn-
ing, ICML 2016.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V.
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. CoRR, abs/1804.09541.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
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