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Abstract

It has been shown that implicit connectives can
be exploited to improve the performance of the
models for implicit discourse relation recogni-
tion (IDRR). An important property of the im-
plicit connectives is that they can be accurately
mapped into the discourse relations conveying
their functions. In this work, we explore this
property in a multi-task learning framework
for IDRR in which the relations and the con-
nectives are simultaneously predicted, and the
mapping is leveraged to transfer knowledge
between the two prediction tasks via the em-
beddings of relations and connectives. We pro-
pose several techniques to enable such knowl-
edge transfer that yield the state-of-the-art per-
formance for IDRR on several settings of the
benchmark dataset (i.e., the Penn Discourse
Treebank dataset).

1 Introduction

Discourse parsing reveals the discourse units (i.e.,
text spans, sentences, clauses) of the documents
and how such units are related to each others to
improve the coherence. This work focuses on
the task of implicit discourse relation recogni-
tion (IDRR), aiming to identify the discourse rela-
tions (i.e., cause, contrast) between adjacent text
spans in documents. IDRR is a fundamental prob-
lem in discourse analysis (Knott, 2014; Webber
et al., 1999) with important applications on ques-
tion answering (Liakata et al., 2013; Jansen et al.,
2014) and text summarization (Gerani et al., 2014;
Yoshida et al., 2014), to name a few. Due it its
importance, IDRR is being studied actively in the
literature, leading to the recent advances for this
problem based on deep learning (Chen et al., 2016;
Qin et al., 2016; Zhang et al., 2016; Lan et al.,
2017; Dai and Huang, 2018).

∗Corresponding author.

Consider the two following text spans (called
arguments) taken from (Qin et al., 2017) as an ex-
ample:

Argument 1: Never mind.
Argument 2: You already know the answer.
An IDRR model should be able to recognize

that argument 2 is the cause of argument 1 (i.e.,
the Cause relation) in this case. This is a chal-
lenging problem as the models need to rely solely
on the text of the arguments to predict accurate
discourse relations. The problem would become
more manageable if connective/marker cues (i.e.,
“but”, “so”) are provided to connect the two argu-
ments according to their discourse relations (Qin
et al., 2017). In the example above, it is bene-
ficial for the models to know that “because” can
be a connective of the two arguments that is con-
sistent with their discourse relation (i.e., Cause).
In fact, a human annotator can also benefit from
the connectives between arguments when he or she
needs to assign discourse relations for pairs of ar-
guments (Qin et al., 2017). This is demonstrated
in the Penn Discourse Treebank dataset (PDTB)
(Prasad et al., 2008), a major benchmark dataset
for IDRR, where the annotators first inject the con-
nectives between the arguments (called the “im-
plicit connectives”) to aid the relation assignment
of the arguments later (Qin et al., 2017).

Motivated by the relevance of connectives for
IDRR, some recent work on deep learning has ex-
plored methods to transfer the knowledge from the
implicit connectives to support discourse relation
prediction using the multi-task learning frame-
works (Qin et al., 2017; Bai and Zhao, 2018).
The typical approach is to simultaneously pre-
dict the discourse relations and the implicit con-
nectives for the input arguments in which the
model parameters for the two prediction tasks are
shared/tied to allow the knowledge transfer (Liu
et al., 2016; Wu et al., 2016; Lan et al., 2017;
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Bai and Zhao, 2018). Unfortunately, such multi-
task learning models for IDRR share the limi-
tation of failing to exploit the mapping between
the implicit connectives and the discourse rela-
tions. In particular, each implicit connective in the
PDTB dataset can be naturally mapped into the
corresponding discourse relations based on their
semantics that can be further employed to trans-
fer the knowledge from the connectives to the re-
lations. For instance, in the PDTB dataset, the
connective “consequently” uniquely corresponds
to the relation cause while the connective “in con-
trast” can be associated with the relation compar-
ison. In this work, we argue that the knowledge
transfer facilitated by such a connective-relation
mapping can indeed help to improve the perfor-
mance of the multi-task learning models for IDRR
with deep learning. Consequently, in order to ex-
ploit the connective-relation mapping, we propose
to embed the implicit connectives and the dis-
course relations into the same space that would be
used to transfer the knowledge between connec-
tive and relation predictions via the mapping. We
introduce several mechanisms to encourage both
knowledge sharing and representation distinction
for the embeddings of the connectives and rela-
tions for IDRR. In the experiments, we extensively
demonstrate that the novel embeddings of connec-
tives and relations along with the proposed mech-
anisms significantly improve the multi-task learn-
ing models for IDRR. We achieve the state-of-the-
art performance for IDRR over several settings of
the benchmark dataset PDTB.

2 Related Work

There have been many research on IDRR since the
creation of the PDTB dataset (Prasad et al., 2008).
The early work has manually designed various
features for IDRR (Pitler et al., 2009; Lin et al.,
2009; Wang et al., 2010; Zhou et al., 2010; Braud
and Denis, 2015; Lei et al., 2018) while the recent
approach has applied deep learning to significantly
improve the performance of IDRR (Zhang et al.,
2015; Ji et al., 2015a; Chen et al., 2016; Liu et al.,
2016; Qin et al., 2016; Zhang et al., 2016; Cai and
Zhao, 2017; Lan et al., 2017; Wu et al., 2017; Dai
and Huang, 2018; Kishimoto et al., 2018).

The most related work to ours in this pa-
per involves the multi-task learning models for
IDRR that employ connectives as the auxiliary
labels for the prediction of the discourse rela-

tions. For the feature-based approach, (Zhou et al.,
2010) employ a pipelined approach to first pre-
dict the connectives and then assign discourse re-
lations accordingly while (Lan et al., 2013) use the
connective-relation mapping to automatically gen-
erate synthetic data. For the recent work on deep
learning for IDRR, (Liu et al., 2016; Wu et al.,
2016; Lan et al., 2017; Bai and Zhao, 2018) si-
multaneously predict connectives and relations as-
suming the shared parameters of the deep learn-
ing models while (Qin et al., 2017) develop ad-
versarial networks to encourage the relation mod-
els to mimic the features learned from the connec-
tive incorporation. However, none of these work
employs embeddings of connectives and relations
to transfer knowledge with the connective-relation
mapping and deep learning as we do in this work.

3 Model

Let A1 and A2 be the two input arguments (essen-
tially text spans with sequences of words). The
goal of IDRR is to predict the discourse relation r
for these two arguments among the n possibilities
in the discourse relation set R (|R| = n). Follow-
ing the prior work on IDRR (Qin et al., 2017; Bai
and Zhao, 2018), we focus on the PDTB dataset in
this work. In PDTB, besides the discourse relation
r, each argument pair is also associated with an
implicit connective c to aid the relation prediction.
The set of possible implicit connectives is denoted
as C (|C| = k) in PDTB.

In the following, we first describe the multi-
task learning framework for IDRR to employ both
training signals r and c forA1 andA2, and present
the novel mechanisms for knowledge transfer with
connective and relation embeddings afterward.

3.1 Multi-task Learning for IDRR

The multi-task learning model for IDRR aims to
predict the discourse relations and the implicit
connectives simultaneously in a single training
process so the knowledge from the connective pre-
diction can be transferred to the relation prediction
to improve the performance. In particular, the ar-
guments A1 and A2 are first consumed by a neural
network model M (called the encoder model) to
generate a representation vector V =M(A1, A2).
In the previous work on multi-task learning for
IDRR, this representation vector V would be used
to compute the probability distributions for both
connective and relation predictions based on two
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task-specific neural networks with softmax layers.
In our multi-task learning model, the represen-

tation vector V is also fed into two feed-forward
neural networks Fr and Fc to compute the repre-
sentation vectors Vr and Vc specific to the predic-
tions of the relation r and the connective c respec-
tively (i.e., Vr = Fr(V ) ∈ Rd and Vc = Fc(V ) ∈
Rd where d is the dimension of the vectors). How-
ever, instead of directly normalizing Vr and Vc
with softmax layers, we employ two embedding
matrices Er ∈ Rn×d and Ec ∈ Rk×d for the rela-
tions and connectives respectively. These vectors
are multiplied with the representation vectors Vr
and Vc to produce the scores for the possibilities,
eventually being normalized by the softmax lay-
ers to obtain the probability distributions Pr and
Pc over the relation set R and the connective set
C for prediction: Pr = softmax(ErVr) ∈ Rn and
Pc = softmax(EcVc) ∈ Rk. To train the model,
we jointly minimize the negative log-likelihood
for the relation r and the connective c:

L = − log(Pr[r])− log(Pc[c]) (1)

Note that the embedding matrices Er and Ec are
initialized randomly and updated as model param-
eters in the training process, and the implicit con-
nectives are only required in the training phase.

The description of the multi-task learning
framework so far is agnostic to the encoder model
M to generate the vector representation V for A1

and A2. In order to ensure a fair comparison
with the recent work on multi-task learning for
IDRR, in this work, we employ the best encoder
model M presented in (Bai and Zhao, 2018), a re-
cent state-of-the-art multi-task learning model for
this problem. We refer the reader to (Bai and
Zhao, 2018) for the full description of the en-
coder. Essentially, this encoder first converts the
words in the arguments A1 and A2 into vectors
using the word embedding word2vec in (Mikolov
et al., 2013b), the word embedding ELMo in (Pe-
ters et al., 2018) and the subword embeddings.
This transforms the arguments into matrices that
are sent to stacks of convolutional neural networks
(Nguyen and Grishman, 2015a,b) augmented with
gated linear units and residual connections. Each
CNN layer produces two hidden matrices corre-
sponding to the two input arguments over which
the co-attention and max-pooling mechanisms are
applied to obtain a part of the representation vector
V with the current CNN layer.

3.2 Knowledge Transferring via Relation and
Connective Embeddings

As we have mentioned in the introduction, each
implicit connective in C can be associated with
a set of discourse relations that capture its main
discourse functions. For instance, in the PDTB
dataset, we find that 53% of the implicit connec-
tives only corresponds to one discourse relation
while the other 44% appears with two discourse
relations. Our intuition is to employ such corre-
spondence between connectives and relations to
link the similar concepts in the two prediction
tasks to promote knowledge transfer. As the con-
nectives and relations are embedded via Er and
Ec in this work, we can rely on such embeddings
to enforce the similarity of the corresponding con-
nectives and relations in the training process.

Formally, for each connective ci ∈ C, let Ri

be the relation subset of R that can be paired with
ci in the correspondence. In order to transfer the
knowledge from the connective prediction to the
relation prediction, we propose to encourage the
embedding of ci to be similar to the embeddings
of the relations in Ri, leading to the following loss
function to be minimized:

L1 =
k∑

i=1

∑
rj∈Ri

‖Ec[ci]− Er[rj ]‖2 (2)

where ‖.‖ is the L2 norm of a vector, and Ec[ci]
and Er[rj ] denote the embeddings of the connec-
tive ci and the relation rj respectively.

The constraint in Equation 2 can have degen-
erate solutions where the embeddings of the con-
nectives corresponding to some relation all have
the same embeddings as the relation embedding.
In order to avoid this trivial solution, we propose
to add another constraint to ensure that the embed-
dings of the connectives of the same relation to be
different. Formally, for each relation ri ∈ R, let
Ci be the subset of connectives of C that can cor-
respond to ri andECi

c be the matrix containing the
embeddings of the connectives in Ci from Ec. We
achieve the difference between the embeddings of
the connectives by minimizing:

L2 =
n∑

i=1

‖ECi
c (ECi

c )T − I‖2F (3)

where ‖.‖F is the Frobenius norm, I is an identity
matrix, and (ECi

c )T is the transpose matrix ofECi
c .
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The objective of the terms in Equation 3 is to en-
courage the matrices ECi

c to be orthogonal where
each connective embedding captures different se-
mantic aspects (Lin et al., 2017).

Finally, as the discourse relations in IDRR tend
to characterize different functions in documents,
we apply a similar constraint as Equation 3 on the
relation embedding matrix Er to promote the di-
versity of the relation embeddings with the follow-
ing penalization term:

L3 = ‖ErE
T
r − I‖2F (4)

Note that the embedding vectors in the matrices
ECi

c and Er in Equations 3 and 4 are normalized
before being used in the loss functions.

Eventually, the overall objective function of the
multi-task learning framework in this work would
be the weighted sum of the terms in Equations 1,
2, 3 and 4:

O = L+ λ1L1 + λ2L2 + λ3L3

where λ1, λ2 and λ3 are the trade-off parameters.
This concludes the presentation of the model in
this work. We note that the proposed technique
with transfer learning via connective and relation
embeddings is general and can be applied on top
of any multi-task learning models for IDRR to fur-
ther improve their performance.

4 Experiments

4.1 Dataset, Resources and Parameters
We evaluate the models in this work on PDTB 2.0,
one of the largest datasets that is commonly used
for IDRR research. PDTB involves three levels
of senses (relations): level 1 for 4 classes of re-
lations, level 2 for 16 types of relations and level
3 for subtypes. We consider different settings for
PDTB that have been studied in the previous re-
search to achieve a comparable and comprehen-
sive comparison, including the one-versus-others
binary classifications for the first level (leading to
four different datasets for the relations Compari-
son, Contingency, Expansion and Temporal), the
muti-class classification setting for the first level
(i.e., 4-way classification) and the multi-class clas-
sification for the second level (i.e., 11-way classi-
fication for the most popular types) (Pitler et al.,
2009; Ji and Eisenstein, 2015b; Qin et al., 2017).
Each setting has its own training, development and
test datasets. For the 11-way classification setting,

we further consider two popular ways to split the
PDTB dataset, i.e., PDTB-Lin in (Lin et al., 2009)
that use sections 2-21, 22 and 23 for the training,
development and test datasets respectively, and
PDTB-Ji (Ji and Eisenstein, 2015b; Bai and Zhao,
2018) where sections 2-20, 0-1, and 21-22 consti-
tute the training, development and test datasets. In
order to obtain the mapping between connectives
and relations in the datasets, we rely on the asso-
ciation of the implicit connectives and relations in
the examples of the training datasets.

We employ the same parameters and resources
for the encoder model M as those in (Bai and
Zhao, 2018) to achieve a fair comparison. We tune
the dimension d of the relation and connective em-
beddings, and the trade-off parameters (λ1, λ2, λ3)
on the development sets for the aforementioned
settings of the PDTB datasets, leading to d = 80
for different settings, and (λ1, λ2, λ3) = (0.1, 0.01,
0.1), (0.01, 0.01, 0.01) and (1, 1, 1) for the binary,
4-way and 11-way classification experiments re-
spectively. Following (Bai and Zhao, 2018), we
use the Adagrad optimizer with learning rate =
0.001 to optimize the models in this work.

4.2 Comparing to the State of the Art

This section compares our proposed model with
the current state-of-the-art models for IDRR. In
particular, Table 1 reports the performance of the
models for the one-versus-other binary classifica-
tion settings while Table 2 shows the performance
of the models for the multi-class classification set-
tings (i.e., 4-way and 11-way with PDTB-Lin and
PDTB-Ji) on the corresponding test sets.

System Comp Cont Exp Temp
(Pitler et al., 2009) 21.96 47.13 - 16.76
(Zhang et al., 2015) 33.22 52.04 69.59 30.54
(Chen et al., 2016) 40.17 54.76 - 31.32
(Qin et al., 2016b) 41.55 57.32 71.50 35.43
(Liu et al., 2016) 37.91 55.88 69.97 37.17
(Liu and Li, 2016b) 36.70 54.48 70.43 38.84
(Zhang et al., 2016) 35.88 50.56 71.48 29.54
(Qin et al., 2017) 40.87 54.56 72.38 36.20
(Lan et al., 2017) 40.73 58.96 72.47 38.50
(Dai and Huang, 2018) 46.79 57.09 70.41 45.61
(Lei et al., 2018) 43.24 57.82 72.88 29.10
(Guo et al., 2018) 40.35 56.81 72.11 38.65
(Bai and Zhao, 2018) 47.85 54.47 70.60 36.87
This work 48.44 56.84 73.66 38.60

Table 1: System performance (F1) for the binary clas-
sification settings.
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System 4-way PDTB-Lin PDTB-Ji
(Lin et al., 2009) - 40.20 -
(Ji and Eisenstein, 2015b) - - 44.59
(Qin et al., 2016) - 43.81 45.04
(Liu and Li, 2016b) 46.29 - -
(Qin et al., 2017) - 44.65 46.23
(Lan et al., 2017) 47.80 - -
(Dai and Huang, 2018) 51.84 - -
(Lei et al., 2018) 47.15 - -
(Guo et al., 2018) 47.59 - -
(Bai and Zhao, 2018) 51.06 45.73 48.22
This work 53.00 46.48 49.95

Table 2: System performance for the multi-class clas-
sification settings (i.e., F1 for 4-way and Accuracy for
PDTB-Lin and PDTB-Ji as in the prior work). Our
model is significantly better than the others (p < 0.05).

The first observation from these tables is that
the proposed model is significantly better than the
model in (Bai and Zhao, 2018) over all the dataset
settings (with p < 0.05) with large performance
gap. As the proposed model is developed on top
of the model in (Bai and Zhao, 2018), this is a di-
rect comparison and demonstrates the benefit of
the embeddings for relations and connectives as
well as the transfer learning mechanisms for IDRR
in this work. Second, the proposed model achieves
the state-of-the-art performance on the multi-class
classification settings (i.e., Table 2) and two set-
tings for binary classification (i.e., Comparison
and Expansion). The performance gaps between
the proposed method and the other methods on
the multi-class classification datasets (i.e., Table
2) are large and clearly testify to the advantage of
the proposed model for IDRR.

4.3 Ablation Study

The multi-task learning framework in this work in-
volves three penalization terms (i.e., L1, L2 and
L3 in Equations 2, 3 and 4). In order to illustrate
the contribution of these terms, Table 3 presents
the test set performance of the proposed model
when different combinations of the terms are em-
ployed for the multi-class classification settings.

The row with “None” in the table corresponds
to the proposed model where none of the penaliza-
tion terms (L1, L2 and L3) is used, reducing to the
model in (Bai and Zhao, 2018) that is augmented
with the connective and relation embeddings. As
we can see from the table, the embeddings of con-
nectives and relations can only slightly improve
the performance of the model in (Bai and Zhao,
2018), necessitating the penalization terms L1, L2

System 4-way PDTB-Lin PDTB-Ji
L1 + L2 + L3 53.00 46.48 49.95
L1 + L2 52.18 46.08 49.28
L1 + L3 52.31 45.30 49.57
L2 + L3 52.57 44.91 49.86
L1 51.11 46.21 49.09
L2 50.38 45.56 47.83
L3 52.52 45.69 49.09
None 51.62 45.82 48.60

Table 3: System performance with different combina-
tions ofL1, L2 andL3 (i.e., F1 for 4-way and Accuracy
for PDTB-Lin and PDTB-Ji as in prior work). “None”:
not using any term.

andL3 to facilitate the knowledge transfer and fur-
ther improve the performance. From the table, it
is also clear that each penalization term is impor-
tant for the proposed model as eliminating any of
them would worsen the performance. Combining
the three penalization terms results in the best per-
formance for IDRR in this work.

5 Conclusion

We present a novel multi-task learning model for
IDRR with deep learning. Our proposed model
features the embeddings of the implicit connec-
tives and discourse relations, and the three penal-
ization terms to encourage the knowledge shar-
ing between the prediction tasks. We achieve
the state-of-the-art performance on different set-
tings for the popular dataset PDTB for IDRR.
In the future work, we plan to extend the idea
of multi-task learning/transfer learning with label
embeddings to the problems in information ex-
traction (e.g., event detection, relation extraction,
entity mention detection) (Nguyen and Grishman,
2015a,b, 2016d; Nguyen et al., 2016a,b,c; Nguyen
and Nguyen, 2018b, 2019). In these problems, the
labels are often organized in the hierarchies (e.g.,
types, subtypes) and the label embeddings can ex-
ploit such hierarchies to transfer the knowledge
between different label-specific prediction tasks.
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