
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3342–3348
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

3342

Putting words in context:
LSTM language models and lexical ambiguity

Laura Aina Kristina Gulordava Gemma Boleda
Universitat Pompeu Fabra

Barcelona, Spain
{firstname.lastname}@upf.edu

Abstract
In neural network models of language, words
are commonly represented using context-
invariant representations (word embeddings)
which are then put in context in the hidden lay-
ers. Since words are often ambiguous, repre-
senting the contextually relevant information
is not trivial. We investigate how an LSTM
language model deals with lexical ambiguity
in English, designing a method to probe its
hidden representations for lexical and contex-
tual information about words. We find that
both types of information are represented to
a large extent, but also that there is room for
improvement for contextual information.

1 Introduction

In language, a word can contribute a very differ-
ent meaning to an utterance depending on the con-
text, a phenomenon known as lexical ambiguity
(Cruse, 1986; Small et al., 2013). This variation is
pervasive and involves both morphosyntactic and
semantic aspects. For instance, in the examples in
Table 1, show is used as a verb in Ex. (1), and as a
noun in Ex. (2-3), in a paradigmatic case of mor-
phosyntactic ambiguity in English. Instead, the
difference between Ex. (2) and (3) is semantic in
nature, with show denoting a TV program and an
exhibition, respectively. Semantic ambiguity cov-
ers a broad spectrum of phenomena, ranging from
quite distinct word senses (e.g. mouse as animal
or computer device) to more subtle lexical modu-
lation (e.g. visit a city / an aunt / a doctor; Cruse,
1986). This paper investigates how deep learning
models of language, and in particular Long Short-
Term Memory Networks (LSTMs) trained on Lan-
guage Modeling, deal with lexical ambiguity.1

In neural network models of language, words
in a sentence are commonly represented through

1Code at: https://github.com/amore-upf/
LSTM_ambiguity

word-level representations that do not change
across contexts, that is, “static” word embeddings.
These are then passed to further processing lay-
ers, such as the hidden layers in a recurrent neural
network (RNN). Akin to classic distributional se-
mantics (Erk, 2012), word embeddings are formed
as an abstraction over the various uses of words
in the training data. For this reason, they are apt
to represent context-invariant information about a
word —its lexical information— but not the con-
tribution of a word in a particular context —its
contextual information (Erk, 2010). Indeed, word
embeddings subsume information relative to var-
ious senses of a word (e.g., mouse is close to
words from both the animal and computer do-
main; Camacho-Collados and Pilehvar, 2018).

Classic distributional semantics attempted to
do composition to account for contextual effects,
but it was in general unable to go beyond short
phrases (Baroni, 2013); newer-generation neural
network models have supposed a big step forward,
as they can natively do composition (Westera and
Boleda, 2019). In particular, the hidden layer acti-
vations in an RNN can be seen as putting words in
context, as they combine the word embedding with
information coming from the context (the adja-
cent hidden states). The empirical success of RNN
models, and in particular LSTM architectures, at
fundamental tasks like Language Modeling (Joze-
fowicz et al., 2015) suggests that they are indeed
capturing relevant contextual properties. More-
over, contextualized representations derived from
such models have been shown to be very informa-
tive as input for lexical disambiguation tasks (e.g.
Melamud et al., 2016; Peters et al., 2018).

We here present a method to probe the extent
to which the hidden layers of an LSTM language
trained on English data represent lexical and con-
textual information about words, in order to inves-
tigate how the model copes with lexical ambiguity.

https://github.com/amore-upf/LSTM_ambiguity
https://github.com/amore-upf/LSTM_ambiguity

3343

Examples LexSub w NN s NN w&s NN

(1) . . . I clapped her shoulder
to show I was not laughing at
her. . .

demonstrate,
display, indicate,
prove, clarify

demonstrate,
exhibit, indicate,
offer, reveal

indicate,
demonstrate,
suggest, prove,

indicate,
demonstrate, prove,
ensure, suggest

(2) . . . The show [. . .]
revolutionized the way
America cooks and eats. . .

program, series,
broadcast,
presentation

demonstrate,
exhibit, indicate,
offer, reveal

series, program,
production,
miniseries, trilogy

series, program,
production,
broadcast

(3) . . . The inauguration of
Dubai Internet City coincides
with the opening of an annual
IT show in Dubai. . . .

exhibition,
conference,
convention,
demonstration

demonstrate,
exhibit, indicate,
offer, reveal

conference, event,
convention,
symposium,
exhibition

conference, event,
exhibition,
symposium,
convention

Table 1: Examples from the LexSub dataset (Kremer et al., 2014) and nearest neighbors for target representations.

Our work follows a recent strand of research that
purport to identify what linguistic properties deep
learning models are able to capture (Linzen et al.,
2016; Adi et al., 2017; Gulordava et al., 2018;
Conneau et al., 2018; Hupkes et al., 2018, a.o.).
We train diagnostic models on the tasks of retriev-
ing the embedding of a word and a representation
of its contextual meaning, respectively —the latter
obtained from a Lexical Substitution dataset (Kre-
mer et al., 2014). Our results suggest that LSTM
language models heavily rely on the lexical infor-
mation in the word embeddings, at the expense of
contextually relevant information. Although fur-
ther analysis is necessary, this suggests that there
is still much room for improvement to account for
contextual meanings. Finally, we show that the
hidden states used to predict a word – as opposed
to those that receive it as input – display a bias to-
wards contextual information.

2 Method

Language model. As our base model, we em-
ploy a word-level bidirectional LSTM (Schus-
ter and Paliwal, 1997; Hochreiter and Schmidhu-
ber, 1997) language model (henceforth, LM) with
three hidden layers. Each input word at timestep
t is represented through its word embedding wt;
this is fed to both a forward and a backward
stacked LSTMs, which process the sequence left-
to-right and right-to-left, respectively (Eqs. (1-2)
describe the forward LSTM). To predict the word
at t, we obtain output weights by summing the ac-
tivations of the last hidden layers of the forward
and backward LSTMs at timesteps t−1 and t+1,
respectively, and applying a linear transformation
followed by softmax (Eq. 3, where L is the num-
ber of hidden layers). Thus, a word is predicted
using both its left and right context jointly, akin
to the context2vec architecture (Melamud et al.,

2016) but differently from, e.g., the BiLSTM ar-
chitecture used for ELMo (Peters et al., 2018).

h1
t = LSTM1(wt,h

1
t−1) (1)

hi
t = LSTMi(hi−1

t ,hi
t−1) (2)

ot = softmax(f(
−→
h L

t−1 +
←−
h L

t+1)) (3)

We train the LM on the concatenation of English
text data from a Wikipedia dump2, the British Na-
tional Corpus (Leech, 1992), and the UkWaC cor-
pus (Ferraresi et al., 2008).3 More details about
the training setup are specified in Appendix A.1.
The model achieves satisfying performances on
test data (perplexity: 18.06).

For our analyses, we deploy the trained LM on a
text sequence and extract the following activations
of each hidden layer; Eq. (4) and Fig. 1.

{
−→
h i

t|i ≤ L} ∪ {
←−
h i

t|i ≤ L} (4)

hi
t = [
−→
h i

t;
←−
h i

t] (5)

hi
t±1 = [

−→
h i

t−1;
←−
h i

t+1] (6)

At timestep t, for each layer, we concatenate the
forward and backward hidden states; Eq. (5). We
refer to these vectors as current hidden states.
As they are obtained processing the word at t as
input and combining it with information from the
context, we can expect them to capture the rel-
evant contribution of such word (e.g., in Fig. 1
the mouse-as-animal sense). As a comparison, we
also extract activations obtained by processing the
text sequence up to t− 1 and t+ 1 in the forward
and backward LSTM, respectively, hence exclud-
ing the word at t. We concatenate the forward and
backward states of each layer; Eq. (6). While these

2From 2018/01/03, https://dumps.wikimedia.
org/enwiki/

350M tokens from each corpus, in total 150M
(train/valid/test: 80/10/10%); vocabulary size: 50K.

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/

3344

Figure 1: Language model and extracted representa-
tions. The different shades across layers reflect the dif-
ferent performances in the probe tasks (darker = higher)

activations do not receive the word at t as input,
they are relevant because they are used to predict
that word as output. We refer to them as predic-
tive hidden states. These may capture some as-
pects of the word (e.g., in Fig. 1, that it is a noun
and denotes something animate), but are likely to
be less accurate than the current states, since they
do not observe the actual word.

Probe tasks. We aim to assess to what extent
the hidden states in the LM carry over the lexi-
cal and context-invariant information in the input
word embedding, and how much they instead rep-
resent the contextual meaning of the word. To this
end, we rely on vector representations of lexical
and contextual word information. As for the for-
mer, we can directly use the word embeddings of
the LM (w); it is instead more challenging to find
a representation of the contextual meaning.

Our solution is to use Lexical Substitution data
(McCarthy and Navigli, 2009) and, in particular,
the large dataset by Kremer et al., 2014 (hence-
forth, LexSub; see Table 1). In this dataset, words
in context (up to 3 sentences) are annotated with a
set of paraphrases given by human subjects. Since
contextual substitutes reflect differences among
uses of a word (for instance, demonstrate para-
phrases show in a context like Ex. (1), but not in
Ex. (2)), this type of data is often used as an evalu-
ation benchmark for contextual representations of
words (e.g., Erk and Padó, 2008; Melamud et al.,
2016; Garı́ Soler et al., 2019). We leverage Lex-
Sub to build proxies for ground-truth representa-

tions of the contextual meaning of words. We
define two types of representations, inspired by
previous work that proposed simple vector oper-
ations to combine word representations (Mitchell
and Lapata, 2010; Thater et al., 2011, a.o.): the
average embedding of the substitute words (hence-
forth, s), and the average embedding of the union
of the substitute words and the target word (w&s).
As Table 1 qualitatively shows, the resulting repre-
sentations tend to be close to the substitute words
and reflect the contextual nuance conveyed by the
word; in the case of w&s, they also retain a strong
similarity to the embedding of the target word.4

We frame our analyses as supervised probe
tasks: a diagnostic model learns to “retrieve” word
representations out of the hidden states; the rate
of success of the model is taken to measure the
amount of information relevant to the task that its
input contains. Given current or predictive states
as inputs, we define three diagnostic tasks:

- WORD: predict w
- SUB: predict s
- WORD&SUB: predict w&s

The WORD task is related to the probe tasks in-
troduced in Adi et al. (2017) and Conneau et al.
(2018), which, given a hidden state, require to pre-
dict the words that a sentence encoder has pro-
cessed as input. Note that, while these authors pre-
dict words by their discrete index, we are predict-
ing the complete multi-dimensional embedding of
the word. Our test quantifies not only whether the
model is tracking the identity of the input word,
but also how much of its information it retains.

We train distinct probe models for each task and
type of input (i; e.g., current hidden state at layer
1). A model consists of a non-linear transforma-
tion from an input vector i (extracted from the LM)
to a vector with the dimensionality of the word
embeddings (Eq. 7, where r̂ is one of ŵ, ŝ, ˆw&s
for WORD, SUB, and WORD&SUB tasks, respec-
tively). The models are trained through max-
margin loss, optimizing the cosine similarity be-
tween r̂ and the target representation against the
similarities between r̂ and 5 negative samples (de-
tails in Appendix A.2).

r̂ = tanh(W i+ b) (7)
4These vectors are close to the related word embedding

(0.45 and 0.66 mean cosine, see Table 2, row wt), but also
different from it: on average, s and w&s share 17 and 25%
of the top-10 neighbors with w, respectively (statistics from
training data, excluding the word itself from neighbors).

3345

input WORD SUB WORD&SUB

wt 1 .45 (±.14) .66 (±.09)
avgctxt .35 (±.10) .16 (±.11) .24 (±.12)

h1
t .84 (±.2) .61 (±.14) .71 (±.11)

h2
t .74 (±.12) .60 (±.13) .69 (±.11)

h3
t .64 (±.12) .58 (±.13) .65 (±.11)

h1
t±1 .25 (±.16) .36 (±.16) .38 (±.16)

h2
t±1 .27 (±.16) .39 (±.16) .41 (±.16)

h3
t±1 .29 (±.15) .41 (±.16) .43 (±.16)

Table 2: Results of probe tasks for current (hi
t) and

predictive (hi
t±1) hidden states.

We adapt the LexSub data to our setup as fol-
lows. Since substitutes are provided in their lem-
matized form, we only consider datapoints where
the word form is identical to the lemma so as to
exclude effects due to morphosyntax (e.g., ask-
ing the models to recover play when they observe
played).5 We require that at least 5 substitutes
per datapoint are in the LM vocabulary to ensure
quality in the target representations. LexSub data
come with a validation/test split; since we need
training data, we create a new random partitioning
into train/valid/test (70/10/20%, with no overlap-
ping contexts among splits). The final data consist
of 4.7K/0.7K/1.3K datapoints for train/valid/test.

3 Results

The results of the probe tasks on test data are pre-
sented in Table 2. We report the mean and stan-
dard deviation of the cosine similarity between the
output representations (ŵ, ŝ, ˆw&s) and the target
ones (w, s, w&s). This evaluates the degree to
which the word representations can be retrieved
from the hidden states. For comparison, we also
report the cosine scores between the targets and
two baseline representations: the word embedding
itself and the average of word embeddings of a 10-
word window around the target word (avgctxt).6

Overall, the models do better than these unsuper-
vised baselines, with exceptions.7

Current hidden states. Both lexical and con-
textual representations can be retrieved from the
current hidden states (hi

t) to a large extent (cosines

5We also exclude substitutes that are multi-word expres-
sions and the datapoints involving words that are part of a
compound (e.g., fast in fast-growing).

6We exclude out-of-vocabulary words and punctuation.
7The first cell is 1 as it involves the same representation.

0.0 0.5
Cosine (w, s)

0.0

0.5

C
os

in
e

su
b

ta
sk

Figure 2: Similarity of lexical and contextual vector (w
- s) vs. similarity of target and prediction in SUB for h1

t .

.58-.84), but retrieving the former is much easier
than the latter (.64-.84 vs. .58-71). This suggests
that the information in the word embedding is bet-
ter represented in the hidden states than the con-
textually relevant one. In all three tasks, perfor-
mance degrades closer to the output layer (from
h1
t to h3

t), but the effect is more pronounced for
the WORD task (84/.74/.64). Word embeddings
are part of the input to the hidden state, and the
transformation learned for this task can be seen
as a decoder in an auto-encoder, reconstructing
the original input; the further the hidden layer is
from the input, the more complex the function is
to reverse-engineer. Crucially, the high perfor-
mance at reconstructing the word embedding sug-
gests that lexical information is retained in the hid-
den layers, possibly including also contextually ir-
relevant information (e.g., in Ex. (4) in Table 3 ŵ
is close to verbs, even if share is here a noun).

Contextual information (s and w&s) seems to
be more stable across processing layers, although
overall less present (cf. lower results). Table 3 re-
ports one example where the learned model dis-
plays relevant contextual aspects (Ex. (4), share)
and one where it does not (Ex. (5), studio). Qual-
itative analysis shows that morphosyntactic ambi-
guity (e.g., share as a noun vs. verb) is more eas-
ily discriminated, while semantic distinctions pose
more challenges (e.g., studio as a room vs. com-
pany). This is not surprising, since the former
tends to correlate with clearer contextual cues.
Furthermore, we find that the more the contex-
tual representation is aligned to the lexical one,
the easier it is to retrieve the former from the hid-
den states (e.g., correlation cos(w, s) - cos(̂s, s),
for h1

t : Pearson’s ρ = .62∗∗∗; Fig. 2): that is,
it is harder to resolve lexical ambiguity when the
contextual meaning is less represented in the word
embedding (e.g., less frequent uses). This sug-
gests that the LM heavily relies on the informa-

3346

Context LexSub WORD: ŵ NN SUB: ŝ NN WORD&SUB: w&̂s NN

(4) ... The financial-services
company will pay 0.82 share
for each Williams share ...

stock, dividend,
interest, stake, unit

stake, owe,
discuss,
coincide, reside

portion, amount,
percentage,
fraction

stake, percentage,
portion, spend,
proportion

(5) ... Sony’s effort to hire
producers Jon Peters and
Peter Guber to run the
studio...

business, company,
facility, film, lot

lab, troupe,
classroom,
apartment,
booth

room, gallery,
troupe, journal,
house

room, troupe, lab,
audience, department

(6) ... I had [...] told her that
we needed other company
than our own ...

friend, acquaintance,
visitor,
accompaniment,
associate

retailer, trader,
firm, maker,
supplier

firm, corporation,
organisation,
conglomerate,
retailer

corporation, firm,
conglomerate, retailer,
organisation

Table 3: Examples with nearest neighbours of the representations predicted in the first current hidden layer.

tion in the word embedding, making it challenging
to diverge from it when contextually relevant (see
Ex. (6) in Table 3).

Current vs. predictive hidden states. The pre-
dictive hidden states are obtained without observ-
ing the target word; hence, recovering word in-
formation is considerably harder than for current
states. Indeed, we observe worse results in this
condition (e.g., below avgctxt in the WORD task);
we also observe two patterns that are opposite to
those observed for current states, which shed light
on how LSTM LMs track word information.

For predictive states, results improve closer to
the output (from layer 1 to 3; they instead degrade
for current states). We link this to the double ob-
jective that a LM has when it comes to word infor-
mation: to integrate a word passed as input, and to
predict one as output. Our results suggest that the
hidden states keep track of information for both
words, but lower layers focus more on the process-
ing of the input and higher ones on the predictive
aspect (see Fig. 1). This is in line with previous
work showing that activations close to the output
tend to be task-specific (Liu et al., 2019).

Moreover, from predictive states, it is easier
to retrieve contextual than lexical representations
(.41/.43 vs. .29; the opposite was true for current
states). Our hypothesis is that this is due to a com-
bination of two factors. On the one hand, pre-
dictive states are based solely on contextual infor-
mation, which highlights only certain aspects of a
word; for instance, the context of Ex. (2) in Ta-
ble 1 clearly signals that a noun is expected, and
the predictive states in a LM should be sensitive to
this kind of cue, as it affects the probability distri-
bution over words. On the other hand, lexical rep-
resentations are underspecified; for instance, the
word embedding for show abstracts over both ver-

bal and nominal uses of the word. Thus, it makes
sense that the predictive state does not capture
contextually irrelevant aspects of the word embed-
ding, unlike the current state (note however that, as
stated above, the overall performance of the cur-
rent state is better, because it has access to the
word actually produced).

4 Future work

We introduced a method to study how deep learn-
ing models of language deal with lexical ambigu-
ity. Though we focused on LSTM LMs for En-
glish, this method can be applied to other architec-
tures, objective tasks, and languages; possibilities
to explore in future work. We also plan to carry
out further analyses aimed at individuating factors
that challenge the resolution of lexical ambigu-
ity (e.g., morphosyntactic vs. semantic ambiguity,
frequency of a word or sense, figurative uses), as
well as clarifying the interaction between predic-
tion and processing of words within neural LMs.

Acknowledgements

This project has received funding from the Eu-
ropean Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 715154),
and from the Ramón y Cajal programme (grant
RYC-2015-18907). We gratefully acknowledge
the support of NVIDIA Corporation with the do-
nation of GPUs used for this research, and the
computer resources at CTE-POWER and the tech-
nical support provided by Barcelona Supercom-
puting Center (RES-FI-2018-3-0034). This paper
reflects the authors’ view only, and the EU is not
responsible for any use that may be made of the
information it contains.

3347

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In Proceedings of 5th ICLR International
Conference on Learning Representations.

Marco Baroni. 2013. Composition in distributional
semantics. Language and Linguistics Compass,
7(10):511–522.

Jose Camacho-Collados and Taher Pilehvar. 2018.
From word to sense embeddings: A survey on vec-
tor representations of meaning. Journal of Artificial
Intelligence, 63(1):743–788.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics,
pages 2126–2136.

Alan Cruse. 1986. Lexical semantics. Cambridge Uni-
versity Press.

Katrin Erk. 2010. What is word meaning, really? (and
how can distributional models help us describe it?).
In Proceedings of the 2010 Workshop on Geometri-
cal Models of Natural Language Semantics, pages
17–26.

Katrin Erk. 2012. Vector space models of word mean-
ing and phrase meaning: A survey. Language and
Linguistics Compass, 6(10):635–653.

Katrin Erk and Sebastian Padó. 2008. A structured vec-
tor space model for word meaning in context. In
Proceedings of the EMNLP Conference on Empiri-
cal Methods in Natural Language Processing, pages
897–906.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukWac, a very large web-derived corpus of English.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google, pages 47–54.

Aina Garı́ Soler, Anne Cocos, Marianna Apidianaki,
and Chris Callison-Burch. 2019. A comparison of
context-sensitive models for lexical substitution. In
Proceedings of the 13th International Conference on
Computational Semantics (IWCS).

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 NAACL-HLT Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1195–1205.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2018. Visualisation and ’diagnostic classi-
fiers’ reveal how recurrent and recursive neural net-
works process hierarchical structure. Journal of Ar-
tificial Intelligence Research, 61:907–926.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In International Confer-
ence on Machine Learning, pages 2342–2350.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Gerhard Kremer, Katrin Erk, Sebastian Padó, and Ste-
fan Thater. 2014. What substitutes tell us-analysis of
an” all-words” lexical substitution corpus. In Pro-
ceedings of the 14th EACL Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 540–549.

Geoffrey Neil Leech. 1992. 100 million words of En-
glish: the British National corpus (BNC).

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew Peters, and Noah A Smith. 2019. Linguis-
tic knowledge and transferability of contextual rep-
resentations. In Proceedings of the 2019 NAACL-
HLT Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Diana McCarthy and Roberto Navigli. 2009. The En-
glish lexical substitution task. Language resources
and evaluation, 43(2):139–159.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In Proceedings
of the 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 NAACL-HLT
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2227–2237.

3348

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Steven L Small, Garrison W Cottrell, and Michael K
Tanenhaus. 2013. Lexical Ambiguity Resolution:
Perspective from Psycholinguistics, Neuropsychol-
ogy and Artificial Intelligence. Elsevier.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word meaning in context: A simple and ef-
fective vector model. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 1134–1143.

Matthijs Westera and Gemma Boleda. 2019. Don’t
blame distributional semantics if it can’t do entail-
ment. In Proceedings of the 13th International Con-
ference on Computational Semantics (IWCS), pages
120–133.

A Appendix

A.1 Language model

The hidden layers are of sizes 600/600/300 re-
spectively, while the word embeddings are of size
300. The language model was trained optimizing
the log-likelihood of a target word given its sur-
rounding context, with stochastic gradient descent
for 20 epochs with decaying learning rate using
Adam optimiser (Kingma and Ba, 2014). The ini-
tial learning rate was 0.0005 for batch size of 32.
Dropout was set to 0.2 and applied to the input em-
bedding, and the outputs of the LSTM layers. At
training time, the text data is fed to the model in
sequences of 100 tokens.

A.2 Diagnostic models

We train separate models for each combination
of task and input type. Each model consist of
a linear transformation and a tahn non-linearity,
trained using Cosine Embedding Loss (PyTorch
0.4, Paszke et al., 2017) and Adam optimiser, with
early stopping based on validation loss. We car-
ried out hyperparameter search based on valida-
tion loss for each of the model types in order to
set batch size and initial learning rate. We report
the final settings for each combination of input and
task in Table 4.

At training time, for each positive target word,
we obtain 5 negative targets by sampling words
from the frequency quartile of the postive target
(frequency is computed on the training corpus of
the language model). We always exclude the tar-
get word, as well as the substitute words in the

input WORD SUB WORD&SUB

h1
t 16, 5× 10−5 32, 1× 10−4 32, 5× 10−5

h2
t 16, 5× 10−5 64, 5× 10−4 64, 5× 10−4

h3
t 16, 5× 10−5 128, 5× 10−4 16, 5× 10−5

h1
t±1 128, 1× 10−3 128, 1× 10−3 128, 5× 10−4

h2
t±1 16, 1× 10−4 64, 5× 10−4 16, 5× 10−4

h3
t±1 128, 1× 10−3 16, 1× 10−4 128, 5× 10−4

Table 4: Hyperparameter settings in the diagnostic
models (batch size, initial learning rate)

SUB and WORD&SUB conditions, from the neg-
ative samples. Given the input vector, we maxi-
mize the margin of the resulting output vector r̂ to
the embeddings of the negative samples (i = −1),
and minimize the distance of the output vector to
the target representation of the positive instance
(i = 1; Eq. 8).

L(r̂, r, i) =

1− cos(r̂, r) if i = 1

if i = −1
max(0, cos(r̂, r)−margin)

(8)
At each training epoch, new negative instances are
sampled, and the data is shuffled.

