
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3156–3161
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

3156

Cross-lingual Knowledge Graph Alignment via
Graph Matching Neural Network

Kun Xu1, Liwei Wang1, Mo Yu2, Yansong Feng3, Yan Song1, Zhiguo Wang4, Dong Yu1

1Tencent AI Lab
2IBM T.J. Watson Research

3Peking University
4Amazon AWS

{syxu828,wlwsjtu1989,zgw.tomorrow}@gmail.com
yum@us.ibm.com, fengyansong@pku.edu.cn, {clksong,dyu}@tencent.com

Abstract

Previous cross-lingual knowledge graph (KG)
alignment studies rely on entity embeddings
derived only from monolingual KG structural
information, which may fail at matching enti-
ties that have different facts in two KGs. In
this paper, we introduce the topic entity graph,
a local sub-graph of an entity, to represent en-
tities with their contextual information in KG.
From this view, the KB-alignment task can be
formulated as a graph matching problem; and
we further propose a graph-attention based so-
lution, which first matches all entities in two
topic entity graphs, and then jointly model the
local matching information to derive a graph-
level matching vector. Experiments show that
our model outperforms previous state-of-the-
art methods by a large margin.

1 Introduction

Multilingual knowledge graphs (KGs), such as
DBpedia (Auer et al., 2007) and Yago (Suchanek
et al., 2007), represent human knowledge in the
structured format and have been successfully used
in many natural language processing applications.
These KGs encode rich monolingual knowledge
but lack the cross-lingual links to bridge the lan-
guage gap. Therefore, the cross-lingual KG align-
ment task, which automatically matches entities
in a multilingual KG, is proposed to address this
problem.

Most recently, several entity matching based
approaches (Hao et al., 2016; Chen et al., 2016;
Sun et al., 2017; Wang et al., 2018) have been
proposed for this task. Generally, these ap-
proaches first project entities of each KG into low-
dimensional vector spaces by encoding monolin-
gual KG facts, and then learn a similarity score
function to match entities based on their vec-
tor representations. However, since some enti-
ties in different languages may have different KG

KG-1 KG-2

Matched
e0 e0’

Figure 1: A challenging entity matching example.

facts, the information encoded in entity embed-
dings may be diverse across languages, making it
difficult for these approaches to match these enti-
ties. Figure 1 illustrates such an example where
we aim to align e0 with e′0, but there is only one
aligned neighbor in their surrounding neighbors.
In addition, these methods do not encode the en-
tity surface form into the entity embedding, also
making it difficult to match entities that have few
neighbors in the KG that lacks sufficient structural
information.

To address these drawbacks, we propose a topic
entity graph to represent the KG context informa-
tion of an entity. Unlike previous methods that uti-
lize entity embeddings to match entities, we for-
mulate this task as a graph matching problem be-
tween the topic entity graphs. To achieve this, we
propose a novel graph matching method to esti-
mate the similarity of two graphs. Specifically,
we first utilize a graph convolutional neural net-
work (GCN) (Kipf and Welling, 2016; Hamilton
et al., 2017) to encode two graphs, say G1 and
G2, resulting in a list of entity embeddings for
each graph. Then, we compare each entity in G1

(or G2) against all entities in G2 (or G1) by us-
ing an attentive-matching method, which gener-
ates cross-lingual KG-aware matching vectors for
all entities in G1 and G2. Consequently, we ap-
ply another GCN to propagate the local match-
ing information throughout the entire graph. This
produces a global matching vector for each topic
graph that is used for the final prediction. The

3157

GCN#1�������

Lebron James

Miami Heat

	�����

�
��

���

Akron,
Ohio

Cleveland
Cavaliers

National Basketball
Association

Chinese Knowledge Graph

English Knowledge Graph

GCN#1

GCN#2

GCN#2

Graph
Embedding

Graph
Embedding

�
���
�����

Graph Matching Model

Figure 2: A running example of our model for aligning Lebron James in the English and Chinese knowledge graph.

motivation behind is that, the graph convolution
could jointly encode all entity similarities, includ-
ing both the topic entity and its neighbor enti-
ties, into a matching vector. Experimental re-
sults show that our model outperforms previous
state-of-the-art models by a large margin. Our
code and data is available at https://github.

com/syxu828/Crosslingula-KG-Matching.

2 Topic Entity Graph

As indicated in Wang et al. (2018), the local con-
textual information of an entity in the KG is impor-
tant to the KG alignment task. In our model, we
propose a structure, namely topic entity graph, to
represent relations among the given entity (called
topic entity) and its neighbors in the knowledge
base. Figure 2 shows the topic graphs of Le-
bron James in the English and Chinese knowledge
graph. In order to build the topic graph, we first
collect 1-hop neighbor entities of the topic entity,
resulting in a set of entities, {e1, ..., en}, which
are the nodes of the graph. Then, for each entity
pair (ei, ej), we add one directed edge between
their corresponding nodes in the topic graph if ei
and ej are directly connected through a relation,
say r, in the KG. Notice that, we do not label this
edge with r that ei and ej hold in the KG, but just
retain r’s direction. In practice, we find this strat-
egy significantly improves both the efficiency and
performance, which we will discuss in §4.

3 Graph Matching Model

Figure 2 gives an overview of our method for
aligning Lebron James in the English and Chi-
nese knowledge graph1. Specifically, we fist re-
trieve topic entity graphs of Lebron James from
two KGs, namely G1 and G2. Then, we propose
a graph matching model to estimate the probabil-
ity that G1 and G2 are describing the same entity.
In particular, the matching model includes the fol-
lowing four layers:

Input Representation Layer The goal of this
layer is to learn embeddings for entities that oc-
curred in topic entity graphs by using a GCN
(henceforth GCN1) (Xu et al., 2018a). Recently,
GCN has been successfully applied in many NLP
tasks, such as semantic parsing (Xu et al., 2018b),
text representation (Zhang et al., 2018), relation
extraction (Song et al., 2018) and text generation
(Xu et al., 2018c). We use the following embed-
ding generation of entity v as an example to ex-
plain the GCN algorithm:
(1) We first employ a word-based LSTM to trans-
form v’s entity name to its initial feature vector av;
(2) We categorize the neighbors of v into incoming
neighbors N`(v) and outgoing neighbors Na(v)
according to the edge direction.
(3) We leverage an aggregator to aggregate the in-
coming representations of v’s incoming neighbors
{hk−1

u` , ∀u ∈ N`(v)} into a single vector, hk
N`(v)

,
where k is the iteration index. This aggregator

1Lebron James is translated to 勒布朗·詹姆斯 in Chi-
nese.

https://github.com/syxu828/Crosslingula-KG-Matching
https://github.com/syxu828/Crosslingula-KG-Matching

3158

feeds each neighbor’s vector to a fully-connected
neural network and applies an element-wise mean-
pooling operation to capture different aspects of
the neighbor set.
(4) We concatenate v’s current incoming repre-
sentation hk−1

v` with the newly generated neigh-
borhood vector hk

N`(v)
and feed the concatenated

vector into a fully-connected layer to update the
incoming representation of v, hk

v` for the next it-
eration;
(5) We update the outgoing representation of v,
hk
va using the similar procedure as introduced in

step (3) and (4) except that operating on the out-
going representations;
(6) We repeat steps (3)∼(5) by K times and treat
the concatenation of final incoming and outgo-
ing representations as the final representation of
v. The outputs of this layer are two sets of entity
embeddings {e11, ..., e1|G1|} and {e21, ..., e2|G2|}.

Node-Level (Local) Matching Layer In this
layer, we compare each entity embedding of one
topic entity graph against all entity embeddings
of the other graph in both ways (from G1 to G2

and from G2 to G1), as shown in Figure 2. We
propose an attentive-matching method similar to
(Wang et al., 2017). Specifically, we first calculate
the cosine similarities of entity e1i in G1 with all
entities {e2j} in G2 in their representation space.

αi,j = cosine(e1i , e
2
j) j ∈ {1, ..., |G2|}

Then, we take these similarities as the weights to
calculate an attentive vector for the entire graph
G2 by weighted summing all the entity embed-
dings of G2.

ē1i =

∑|G2|
j=1 αi,j · e2j∑|G2|

j=1 αi,j

We calculate matching vectors for all entities in
both G1 and G2 by using a multi-perspective co-
sine matching function fm at each matching step
(See Appendix A for more details):

matt
i = fm(e1i , ē

1
i)

matt
j = fm(e2j , ē

2
j)

Graph-Level (Global) Matching Layer Intu-
itively, the above matching vectors (matts) cap-
ture how each entity in G1 (G2) can be matched
by the topic graph in the other language. How-
ever, they are local matching states and are not

sufficient to measure the global graph similarity.
For example, many entities only have few neigh-
bor entities that co-occurr inG1 andG2. For those
entities, a model that exploits local matching infor-
mation may have a high probability to incorrectly
predict these two graphs are describing different
topic entities since most entities in G1 and G2 are
not close in their embedding space.

To overcome this issue, we apply another GCN
(henceforth GCN2) to propagate the local match-
ing information throughout the graph. Intuitively,
if each node is represented as its own matching
state, by design a GCN over the graph (with a suf-
ficient number of hops) is able to encode the global
matching state between the pairs of whole graphs.
We then feed these matching representations to
a fully-connected neural network and apply the
element-wise max and mean pooling method to
generate a fixed-length graph matching represen-
tation.

Prediction Layer We use a two-layer feed-
forward neural network to consume the fixed-
length graph matching representation and apply
the softmax function in the output layer.

Training and Inference To train the model,
we randomly construct 20 negative examples for
each positive example <e1i , e

2
j> using a heuristic

method. That is, we first generate rough entity em-
beddings for G1 and G2 by summing over the pre-
trained embeddings of words within each entity’s
surface form; then, we select 10 closest entities to
e1i (or e2j) in the rough embedding space to con-
struct negative pairs with e2j (or e1i). During test-
ing, given an entity in G1, we rank all entities in
G2 by the descending order of matching probabil-
ities that estimated by our model.

4 Experiments

We evaluate our model on the DBP15K datasets,
which were built by Sun et al. (2017). The datasets
were generated by linking entities in the Chinese,
Japanese and French versions of DBpedia into En-
glish version. Each dataset contains 15,000 inter-
language links connecting equivalent entities in
two KGs of different languages. We use the same
train/test split as previous works. We use the
Adam optimizer (Kingma and Ba, 2014) to update
parameters with mini-batch size 32. The learning
rate is set to 0.001. The hop size K of GCN1

and GCN2 are set to 2 and 3, respectively. The

3159

Method ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR
@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

Hao (2016) 21.27 42.77 19.52 39.36 18.92 39.97 17.80 38.44 15.38 38.84 14.61 37.25
Chen (2016) 30.83 61.41 24.78 52.42 27.86 57.45 23.72 49.92 24.41 55.55 21.26 50.60
Sun (2017) 41.18 74.46 40.15 71.05 36.25 68.50 38.37 67.27 32.39 66.68 32.97 65.91
Wang (2018) 41.25 74.38 36.49 69.94 39.91 74.46 38.42 71.81 37.29 74.49 36.77 73.06
BASELINE 59.64 72.30 57.66 70.44 67.01 79.53 62.48 77.54 83.45 91.56 81.03 90.79
NodeMatching 62.03 75.12 60.17 72.67 69.82 80.19 66.74 80.10 84.71 92.35 84.15 91.76
Ours
HopGCN2 = 1 66.91 77.52 64.01 78.12 72.63 85.09 69.76 83.48 87.62 94.19 87.65 93.66
HopGCN2 = 3 67.93 78.48 65.28 79.64 73.97 87.15 71.29 84.63 89.38 95.24 88.18 94.75
HopGCN2 = 5 67.92 78.36 65.21 79.48 73.52 86.87 70.18 84.29 88.96 94.28 88.01 94.37

Table 1: Evaluation results on the datasets.

non-linearity function σ is ReLU (Glorot et al.,
2011) and the parameters of aggregators are ran-
domly initialized. Since KGs are represented in
different languages, we first retrieve monolingual
fastText embeddings (Bojanowski et al., 2017) for
each language, and apply the method proposed
in Conneau et al. (2017) to align these word em-
beddings into a same vector space, namely, cross-
lingual word embeddings. We use these embed-
dings to initialize word representations in the first
layer of GCN1.

Results and Discussion. Following previous
works, we used Hits@1 and Hits@10 to evaluate
our model, where Hits@k measures the propor-
tion of correctly aligned entities ranked in the top
k. We implemented a baseline (referred as BASE-
LINE in Table 1) that selects k closest G2 entities
to a given G1 entity in the cross-lingual embed-
ding space, where an entity embedding is the sum
of embeddings of words within its surface form.
We also report results of an ablation of our model
(referred as NodeMatching in Table 1) that uses
GCN1 to derive the two topic entity embeddings
and then directly feeds them to the prediction layer
without using matching layer. Table 1 summarizes
the results of our model and existing works.

We can see that even without considering any
KG structural information, the BASELINE signif-
icantly outperforms previous works that mainly
learn entity embeddings from the KG structure,
indicating that the surface form is an important
feature for the KG alignment task. Also, the
NodeMatching, which additionally encodes the
KG structural information into entity embeddings
using GCN1, achieves better performance com-
pared to the BASELINE. In addition, we find the
graph matching method significantly outperforms
all baselines, which suggests that the global con-

text information of topic entities is important to
establish their similarities.

Let us first look at the impacts of hop size of
GCN2 to our model. From Table 1, we can see
that our model could benefit from increasing the
hop size of GCN2 until it reaches a threshold λ. In
experiments, we find the model achieves the best
performance when λ = 3. To better understand on
which type of entities that our model could better
deal with due to introducing the graph matching
layer, we analyze the entities that our model cor-
rectly predicts while NodeMatching does not. We
find the graph matching layer enhances the ability
of our model in handling the entities whose most
neighbors in two KGs are different. For such en-
tities, although most local matching information
indicate that these two entities are irrelevant, the
graph matching layer could alleviate this by prop-
agating the most relevant local matching informa-
tion throughout the graph.

Recall that our proposed topic entity graph only
retains the relation direction while neglecting the
relation label. In experiments, we find incorporat-
ing relation labels as distinct nodes that connect-
ing entity nodes into the topic graph hurts not only
the performance but efficiency of our model. We
think this is due to that (1) relation labels are rep-
resented as abstract symbols in the datasets, which
provides quite limited knowledge about the rela-
tions, making it difficult for the model to learn
their alignments in two KGs; (2) incorporating re-
lation labels may significantly increase the topic
entity graph size, which requires bigger hop size
and running time.

5 Conclusions

Previous cross-lingual knowledge graph align-
ment methods mainly rely on entity embeddings

3160

that derived from the monolingual KG structural
information, thereby may fail at matching entities
that have different facts in two KGs. To address
this, we introduce the topic entity graph to repre-
sent the contextual information of an entity within
the KG and view this task as a graph matching
problem. For this purpose, we further propose
a graph matching model which induces a graph
matching vector by jointly encoding the entity-
wise matching information. Experimental results
on the benchmark datasets show that our model
significantly outperforms existing baselines. In the
future, we will explore more applications of the
proposed idea of attentive graph matching. For ex-
ample, the metric learning based few-shot knowl-
edge base completion (Xiong et al., 2018) can be
directly formulated as a similar graph matching
problem in this paper.

References
Sren Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.
In ISWC/ASWC.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo
Zaniolo. 2016. Multilingual knowledge graph em-
beddings for cross-lingual knowledge alignment.
arXiv preprint arXiv:1611.03954.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, AIS-
TATS 2011, Fort Lauderdale, USA, April 11-13,
2011, pages 315–323.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216.

Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu,
and Jun Zhao. 2016. A joint embedding method for
entity alignment of knowledge bases. In China Con-
ference on Knowledge Graph and Semantic Comput-
ing, pages 3–14. Springer.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. N-ary relation extraction using graph
state lstm. arXiv preprint arXiv:1808.09101.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In WWW.

Zequn Sun, Wei Hu, and Chengkai Li. 2017.
Cross-lingual entity alignment via joint attribute-
preserving embedding. In International Semantic
Web Conference, pages 628–644. Springer.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
357.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2018. One-shot relational
learning for knowledge graphs. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1980–1990.

Kun Xu, Lingfei Wu, Zhiguo Wang, and Vadim
Sheinin. 2018a. Graph2seq: Graph to se-
quence learning with attention-based neural net-
works. arXiv preprint arXiv:1804.00823.

Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Li-
wei Chen, and Vadim Sheinin. 2018b. Exploit-
ing rich syntactic information for semantic pars-
ing with graph-to-sequence model. arXiv preprint
arXiv:1808.07624.

Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei
Chen, and Vadim Sheinin. 2018c. Sql-to-text gener-
ation with graph-to-sequence model. arXiv preprint
arXiv:1809.05255.

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence-
state lstm for text representation. arXiv preprint
arXiv:1805.02474.

A Matching Function fm

fm is a multi-perspective cosine matching func-
tion that compares two vectors

m = fm(v1,v2;W)

where v1 and v2 are two d-dimensional vectors,
W ∈ <l×d is a trainable parameter with the shape
l × d, l is the number of perspectives, and the re-
turned value m is a l-dimensional vector m =

3161

[m1, ...,mk, ...,ml]. Each element mk ∈ m is a
matching value from the k-th perspective, and it
is calculated by the cosine similarity between two
weighted vectors

mk = cosine(Wk ◦ v1,Wk ◦ v2)

where ◦ is the element-wise multiplication, and
Wk is the k-th row of W , which controls the k-th
perspective and assigns different weights to differ-
ent dimensions of the d-dimensional space.

