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Abstract

We investigate the problem of efficiently in-
corporating high-order features into neural
graph-based dependency parsing. Instead of
explicitly extracting high-order features from
intermediate parse trees, we develop a more
powerful dependency tree node representation
which captures high-order information con-
cisely and efficiently. We use graph neu-
ral networks (GNNs) to learn the representa-
tions and discuss several new configurations
of GNN’s updating and aggregation functions.
Experiments on PTB show that our parser
achieves the best UAS and LAS on PTB
(96.0%, 94.3%) among systems without using
any external resources.

1 Introduction

In recent development of dependency parsers,
learning representations is gaining in importance.
From observed features (words, positions, POS
tags) to latent parsing states, building expressive
representations is shown to be crucial for getting
accurate and robust parsing performances.

Here we focus on graph-based dependency
parsers. Given a sentence, a parser first scores all
word pairs about how possible they hold valid de-
pendency relations, and then use decoders (e.g.,
greedy, maximum spanning tree) to generate a full
parse tree from the scores. The score function is
a key component in graph-based parses. Com-
monly, a neural network is assigned to learn low
dimension vectors for words (i.e., nodes of parse
trees), and the score function depends on vectors
of the word pair (e.g., inner products). The main
task of this paper is to explore effective encoding
systems for dependency tree nodes.

Two remarkable prior works on node repre-
sentation are recurrent neural networks (RNNs)
(Kiperwasser and Goldberg, 2016b) and biaffine
mappings (Dozat and Manning, 2017). RNNs are

powerful tools to collect sentence-level informa-
tion, but the representations ignore features related
to dependency structures. The biaffine mappings
improve vanilla RNNs via a key observation: the
representation of a word should be different re-
garding whether it is a head or a dependent (i.e.,
dependency tree edges are directional). Therefore,
Dozat and Manning (2017) suggest distinguishing
head and dependent vector of a word. Following
this line of thought, it is natural to ask whether
we can introduce more structured knowledge into
node representations. In other words, if biaffine
mappings encode the first order parent-children re-
lations, can we incorporate other high-order rela-
tions (such as grandparents and siblings)?

In this work, we propose to use graph neural
networks (GNNs) for learning dependency tree
node representations. Given a weighted graph, a
GNN embeds a node by recursively aggregating
node representations of its neighbours. For the
parsing task, we build GNNs on weighted com-
plete graphs which are readily obtained in graph-
based parsers. The graphs could be fixed in prior
or revised during the parsing process. By stack-
ing multiple layers of GNNs, the representation of
a node gradually collects various high-order infor-
mation and bring global evidence into decoders’
final decision.

Comparing with recent approximate high-
order parsers (Kiperwasser and Goldberg, 2016b;
Zheng, 2017; Ma et al., 2018), GNNs extract high-
order information in a similar incremental manner:
node representations of a GNN layer are computed
based on outputs of former layers. However, the
main difference is that, instead of extracting high-
order features on only one intermediate tree, the
update of GNN node vectors is able to inspect all
intermediate trees. Thus, it may reduce the influ-
ence of a suboptimal intermediate parsing result.

Comparing with the syntactic graph network
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(Marcheggiani and Titov, 2017; Bastings et al.,
2017; Zhang et al., 2018b) which runs GNNs on
dependency trees given by external parsers, we use
GNNs to build the parsing model. And instead of
using different weight matrices for outgoing and
ingoing edges, our way of handling directional
edges is based on the separation of head and de-
pendent representations, which requires new pro-
tocols for updating nodes.

We discuss various configurations of GNNs, in-
cluding strategies on neighbour vector aggrega-
tions, synchronized or asynchronized node vec-
tor update and graphs with different edge weights.
Experiments on the benchmark English Penn
Treebank 3.0 and CoNLL2018 multilingual pars-
ing shared task show the effectiveness of the pro-
posed node representations, and the result parser
is able to achieve state-of-the-art performances.

To summarize, our major contributions include:

1. introducing graph neural networks to depen-
dency parsing, which aims to efficiently en-
code high order information in dependency
tree node representations.

2. investigating new configurations of GNNs for
handling direct edges and nodes with multi-
ple representations.

3. achieving state-of-the-art performances on
PTB 3.0 (96.0% UAS, 94.3% LAS).

2 Basic Node Representations

In this section, we review word encoding sys-
tems used in recurrent neural networks and bi-
affine mappings. Our GNN encoder (Section 3)
will base on these two prior works. 1

Given a sentence s = w1, . . . , wn, we denote
a dependency tree of s to be T = (V,E), where
the node set V contains all words and a synthetic
root node 0, and the edge set E contains node
pairs (i, j, r) which represents a dependency re-
lation r between wi (the head) and wj (the de-
pendent). Following the general graph-based de-
pendency parsing framework, for every word pair
(i, j), a function σ(i, j) assigns it a score which
measures how possible is wi to be the head of

1Following the convention of (Dozat and Manning,
2017), we use lowercase italic letters for scalars and indices,
lowercase bold letters for vectors, uppercase italic letters for
matrices.

wj . 2 We denote G to be the directed complete
graph in which all nodes in V are connected with
weights given by σ. The correct tree T is ob-
tained from G using a decoder (e.g., dynamic pro-
gramming (Eisner, 1996), maximum spanning tree
(McDonald et al., 2005), and greedy algorithm
(Zhang et al., 2017)).

In neural-network-based models, the score
function σ(i, j) usually relies on vector represen-
tations of nodes (words) i and j. How to get in-
formative encodings of tree nodes is important for
training the parser. Basically, we want the tree
node encoder to explore both the surface form and
deep structure of the sentence.

To encode the surface form of s, we can use re-
current neural networks (Kiperwasser and Gold-
berg, 2016b). Specifically, we apply a bidirec-
tional long short-term memory network (biLSTM,
(Hochreiter and Schmidhuber, 1997)). At each
sentence position i, a forward LSTM chain (with
parameter

→
θ ) computes a hidden state vector →c i

by collecting information from the beginning of s
to the current position i. Similarly, a backward
LSTM chain (

←
θ ) collects information ←c i from the

end of s to the position i:

→
c i = LSTM(xi,

→
c i−1;

→
θ ),

←
c i = LSTM(xi,

←
c i+1;

←
θ ),

where xi is the input of a LSTM cell which
includes a randomly initialized word embedding
e(wi), a pre-trained word embedding e′(wi) from
Glove (Pennington et al., 2014) and a trainable
embedding of wi’s part-of-speech tag e(posi),

xi =
(
e(wi) + e′(wi)

)
⊕ e(posi).

Then, a context-dependent node representation of
word i is the concatenation of the two hidden vec-
tors,

ci =
→
c i ⊕

←
c i. (1)

With the node representations, we can define the
score function σ using a multi-layer perceptron
σ(i, j) = MLP(ci ⊕ cj) (Pei et al., 2015), or us-
ing a normalized bilinear function (A, b1, b2 are
parameters),

σ(i, j)= Softmaxi (c
⊺
iAcj + b⊺1ci + b⊺2cj)

≜ P (i|j), (2)
2We will focus on the unlabelled parsing when illustrat-

ing our parsing models. For predicting labels, we use the
identical setting in (Dozat and Manning, 2017).
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Figure 1: The GNN architecture. “RNN Encoder”+“Decoder” is equal to the Biaffine parser. For the “GNN
Layers”, each layer is based on a complete weighted graph, and the weights are supervised by the layer-wise loss.

which is actually a distribution on j’s head words.
We note that from the RNN encoder, a node

only obtains one vector representation. But as
the dependency tree edges have directions, a word
plays a different role regarding it is the head or
the dependent in an edge. Thus, instead of using
one vector representation, we employ two vectors
to distinguish the two roles (Dozat and Manning,
2017). Concretely, based on ci, we use two multi-
layer perceptrons to generate two different vectors,

hi = MLPh(ci), di = MLPd(ci).

The score funcion in Equation 2 now becomes

σ(i, j) = Softmaxi (h
⊺
iAdj + b⊺1hi + b⊺2dj) .(3)

The main task we will focus on in following
sections is to further encode deep structure of s to
node vectors hi and di. Specifically, besides the
parent-child relation, we would like to consider
high-order dependency relations such as grandpar-
ents and siblings in the score function σ.

3 Node Representation with GNNs

3.1 The GNN Framework

We first introduce the general framework of graph
neural network. The setting mainly follows the
graph attention network (Velikovi et al., 2018). 3

Given a (undirected) graph G, a GNN is a multi-
layer network. At each layer, it maintains a set of
node representations by aggregating information
from their neighbours.

3There are other variants of GNNs. See (Battaglia et al.,
2018) for a more general definition.

Formally, let N (i) be neighbours of node i in
G. We denote vt

i to be the vector representation of
i at the t-th GNN layer. vt

i is obtained by

vt
i = g

W
∑

j∈N (i)

αt
ijv

t−1
j +Bvt−1

i

 , (4)

where g is a non-linear activation function (we
use LeakyReLU with negative input slope 0.1), W
and B are parameter matrices. We use different
edge weights αt

ij , which is a function of vt−1
i and

vt−1
j , to indicate different contributions of node j

in building vt
i . The update Equation 4 reads that

the new representation vt
i contains both the previ-

ous layer vector vt−1
i and a weighted aggregation

of neighbour vectors vt−1
j .

We can see that the GNN naturally catches
multi-hop (i.e., high-order) relations. Taking the
first two layers for example, for every node i at the
second layer, v2

i contains information of its 1-hop
neighbours v1

j . Since v1
j has already encoded its

own 1-hop neighbours at the first layer, v2
i actu-

ally encodes information of its 2-hop neighbours.
Inspired by this observation, we think GNNs may
help parsing with high-order features.

On the other side, to parse with GNNs, instead
of encoding one vector for each node, we need
to handle the head representation hi and the de-
pendent representation di simultaneously on a di-
rected graph G.

Furthermore, to approximate the exact high-
order parsing (Eisner, 1996; McDonald and
Pereira, 2006), we need each GNN layer to have a
concrete meaning regarding parsing the sentence.
For example, we could consider complete graphs
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(a) Grandparent (b) Grandchild (c) Sibling

Figure 2: Three types of high-order information inte-
grated in the parent-child pair (j, i). The grey shad-
ows indicate which node representations already ex-
ist in first order feature. The orange shadows indicate
which node representations should to be included for
each high-order feature. Notice that k is actually a
weighted sum of all applicable nodes (soft). Subfig-
ure (a) helps to understand Equation 6. Since k acts as
parent of j, to capture grandparent feature, hj should
additionally contains information of hk. Subfigure (c)
helps to understand Equation 7. Since k acts as child
of j, to capture sibling feature, hj should additionally
contains information of dk.

(i.e., all nodes are connected) and set edge weights
using conditional probabilities,

αt
ij = σt(i, j) = P t(i|j), (5)

which is Equation 3 evaluated at layer t. 4 Thus,
the graph at each layer appears as a “soft” parse
tree, and the aggregated information would ap-
proximate high-order features on that tree. Com-
paring with existing incremental parsers which
maintain only one intermediate tree (“hard”), the
“soft” trees represented by GNN layers contain
more information. In fact, the graphs keep all in-
formation to derive any intermediate parse trees.
Therefore, it may reduce the risk of extracting
high-order features on suboptimal intermediates.
We detail the GNN model in the following.

3.2 High-order Information
Given a node i, we mainly focus on three types
of high-order information, namely, grandparents,
grandchildren and siblings. We need to adapt the
general GNN update formula to properly encode
them into node representations.

First, for incorporating grandparent information
(Figure 2.a), we expect σt(j, i), which depends on
the head vector of j and the dependent vector of
i, not only considers the parent-child pair (j, i),
but also consults the (“soft”) parent of j suggested
by the previous layer (denoted by k). Specifically,
the new head representation of node j should ex-
amine representations of its neighbors when they

4The model adds layer-wise loss functions to approach
Equation 5, see Section 3.5.

act as parents of j. In other word, we will update
ht
j using ht−1

k . Similarly, for encoding grandchil-
dren of j in σt(j, i) (also denoted by k), we need
the new dependent representation of node i exam-
ine its neighbors when they act as children of i.
Thus, we will update dt

i using dt−1
k . It suggests

the following protocol,


ht

i = g
(
W1

∑
j∈N (i)

αt
jih

t−1
j +B1h

t−1
i

)
dt
i = g

(
W2

∑
j∈N (i)

αt
ijd

t−1
j +B2d

t−1
i

)
.

(6)

Note that we use αt
ji in updating ht

i and αt
ji in

updating dt
i which is according to the probabilistic

meaning of the weights.
On the other side, for extracting siblings of i

(again denoted by k) in (j, i) (Figure 2.c), the new
head representation of node j should examine rep-
resentations of its neighbors when they act as de-
pendents of j. We expect the update of ht

j involv-
ing dt−1

k It suggests our second update protocol 5,


ht

i = g
(
W1

∑
j∈N (i)

αt
ijd

t−1
j +B1h

t−1
i

)
dt
i = g

(
W2

∑
j∈N (i)

αt
jih

t−1
j +B2d

t−1
i

)
.

(7)

We can integrate Equation 6 and 7 in a single
update which handles grandparents, grandchildren
and siblings in an uniform way,


ht

i = g
(
W1

∑
j∈N (i)

(αt
jih

t−1
j + αt

ijd
t−1
j ) +B1h

t−1
i

)
dt
i = g

(
W2

∑
j∈N (i)

(αt
ijh

t−1
j + αt

jid
t−1
j ) +B2d

t−1
i

)
.
(8)

Comparing with the general GNNs, above node
vector updates are tailored to the parsing task us-
ing high-order feature rules. We think explor-
ing the semantics of representations and graph
weights would provide useful guidance in design
of GNNs for specific tasks. Finally, besides the
default synchronized setting, we also investigate
asynchronized version of Equation 8,

h
t− 1

2
i =g

(
W1

∑
j∈N (i)

(αt
jih

t−1
j +αt

ijd
t−1
j )+B1h

t−1
i

)
dt
i=g

(
W2

∑
j∈N (i)

(αt
ijh

t− 1
2

j +αt
jid

t−1
j )+B2d

t−1
i

)
,

(9)

where we first update h, and then use the updated
h to update d.

5The update of dt
i in Equation 7 tries to include knowl-

edge of other candidate heads of i. It does not correspond to a
high-order feature, but for building a symmetric formula, we
just include it in that way.
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3.3 Graph Weights
In the graph-based parsing, the topology structure
of G is mainly determined by edge weights αt

ij .
In fact, we usually work on a complete graph to
obtain a parse tree. Thus, how to design αt

ij is
important to apply GNNs. As mentioned above,
we can set αt

ij equals to probability P t(i|j). In
this section, we explore more settings on αt

ij .
First, instead of using the “soft” tree setting, we

can assign {0, 1} values to αt
ij to obtain a sparse

graph,

αt
ij =

{
1, i = argmaxi′ P

t(i′|j)
0, otherwise

, (10)

In this setting, a node only looks at the head node
with the highest probability.

An extension of Equation 10 is to consider top-
k head nodes, which could include more neigh-
bourhood information. Defining N t

k(j) be a set
of nodes with top-k P t(i|j) for node j, we re-
normalize Equation 3 on this set and assign them
to αt

ij ,

αt
ij =

{
Softmaxi (h

⊺
iAdj + b⊺1hi + b⊺2dj) , i ∈ N t

k(j)

0, otherwise
(11)

Finally, for comparison, one can ignore P t(i|j)
and see each neighbour equally at each layer,

αt
ij =

1

n
, ∀j ∈ V, i ∈ V/{j}. (12)

3.4 Decoding
Given node representations and P (i|j), to build
the final parse tree, we can either greedily set
the head of wj to argmaxiP (i|j) which is fast
for decoding but may output an ill-formed tree,
or use a MST algorithm on all word pairs with
weight P (i|j), which forms a valid tree but could
be slower.

To predict labels of dependency edges, we in-
troduce P (r|i, j) which measures how possible a
tree (i, j) holds a dependency relation r using an-
other MLP. The setting is identical to the biaffine
parser (Dozat and Manning, 2017).

3.5 Training
Given the gold standard tree T , the training objec-
tive consists of two parts. First, we have a decoder
behind the final GNN layer (denote by τ ) which
will perform decoding on both tree structures (us-
ing P τ (i|j)) and edge labels (using P (r|i, j)).

The loss from the final classifier is negative log-
likelihood of T ,

L0 = − 1

n

∑
(i,j,r)∈T

(logP τ (i|j) + logP (r|i, j)) .

Second, as mentioned in Section 3.1, we can
provide supervision on P t(i|j) from each GNN
layer (only on the tree structure, intermediate loss
on labels are ignored). The layer-wise loss is

L′ =

τ∑
t=1

Lt =

τ∑
t=1

− 1

n

∑
(i,j,r)∈T

logP t(i|j).

The objective is to minimize a weighted combi-
nation of them L = λ1L0 + λ2L′.

4 Experiments

We evaluate the proposed framework on the Stan-
ford Dependency (SD) conversion of the English
Penn Treebank (PTB 3.0) and the Universal De-
pendencies (UD 2.2) (Nivre et al., 2018) tree-
banks used in CoNLL 2018 shared task(Zeman
et al., 2018). For English, we use the standard
train/dev/test splits of PTB (train=§2-21, dev=§22,
test=§23), POS tags were assigned using the Stan-
ford tagger with 10-way jackknifing of the training
corpus (accuracy ≈ 97.3%). For 12 languages se-
lected from UD 2.2, we use CoNLL 2018 shared
task’s official train/dev/test splits, POS tags were
assigned by the UDPipe (Straka et al., 2016).

Parsing performance is measured with five met-
rics. We report unlabeled (UAS) and labeled at-
tachment scores (LAS), unlabeled (UCM) and la-
beled complete match (LCM), and label accuracy
score (LA). For evaluations on PTB, following
(Chen and Manning, 2014), five punctuation sym-
bols (“ ” : , .) are excluded from the evaluation.
For CoNLL 2018 shared task, we use the official
evaluation script.

All basic hyper-parameters are the same as
those reported in Dozat and Manning (2017),
which means that our baseline system without
GNN layers is a re-implementation of the Biaffine
parser. For GNN models, the only new parameters
are matrices in P t(i|j) and matrices in GNN units.
The λ1, λ2 in objective L is set to λ1 = 1, λ2 =
0.5. The hyper-parameters of our default settings
are summarized in Appendix A.

The default setting for our final parser is a 2-
layer GNN model that uses hd ▷ h (Equation 8)
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Test
Parser UAS LAS

(Chen and Manning, 2014)

T

91.8 89.6
(Dyer et al., 2015) 93.1 90.9
(Ballesteros et al., 2016) 93.56 92.41
(Weiss et al., 2015) 94.26 91.42
(Andor et al., 2016) 94.61 92.79
(Ma et al., 2018) § 95.87 94.19

(Kiperwasser and Goldberg, 2016a) §

G

93.0 90.9
(Kiperwasser and Goldberg, 2016b) 93.1 91.0
(Wang and Chang, 2016) 94.08 91.82
(Cheng et al., 2016) 94.10 91.49
(Kuncoro et al., 2016) 94.26 92.06
(Zheng, 2017) § 95.53 93.94
(Dozat and Manning, 2017) 95.74 94.08

Baseline G 95.68 93.96
Our Model § 95.97 94.31

Table 1: Results on the English PTB dataset. The § indicates
parsers using high-order features. “T” represents transition-
based parser, and “G” represents a graph-based parser.

aggregating function and “H-first” asynchronous
update method (Equation 9). 6

4.1 Main Results
Firstly, we compare our method with previous
work (Table 1). The first part contains transition-
based models, the second part contains graph-
based models and the last part includes three mod-
els with integrated hard high-order features. In
general, our proposed method achieves significant
improvements over our baseline biaffine parser
and matches state-of-the-art models. In particu-
lar, it achieves 0.29 percent UAS and 0.35 per-
cent LAS improvement over the baseline parser,
and 0.1 percent UAS and 0.12 percent LAS im-
provement over the strong transition-based parser
(Ma et al., 2018). It shows that our method can
boost the performance of graph-based dependency
parser using the global and soft high-order infor-
mation by the GNN architecture.

Secondly, we analyze different aggregating
functions when capturing high-order information.
(Table 2). We have some observations regard-
ing this results. Model hd ▷ h (Equation 8) in-
tegrates high-order information of grandparents,
grandchildren and siblings. Under all layer set-
tings (1 to 3), its LAS is always better than h ▷ h
(Equation 6) model and d ▷ h (Equation 7) model,
which separately describe high-order information.
However, UAS is not sensitive to different ways of
aggregating.

6Our implementation is publicly available at: https:
//github.com/AntNLP/gnn-dep-parsing

GNN GNN Dev Test
Layer Model UAS LAS UAS LAS

l = 0 Baseline 95.58 93.74 95.68 93.96

l = 1
d ▷ h 95.75 93.84 95.83 94.15
h ▷ h 95.78 93.80 95.91 94.12

hd ▷ h 95.77 93.87 95.88 94.23

l = 2
d ▷ h 95.80 93.85 95.88 94.17
h ▷ h 95.77 93.83 95.85 94.13

hd ▷ h 95.79 93.90 95.92 94.24

l = 3
d ▷ h 95.74 93.78 95.87 94.14
h ▷ h 95.75 93.80 95.90 94.15

hd ▷ h 95.71 93.82 95.93 94.22

Table 2: Impact of l and different high-order informa-
tion integration methods on PTB dataset. “d ▷ h” cor-
responds to the Equation 7, “h ▷ h” corresponds to the
Equation 6, “hd ▷ h” corresponds to the Equation 8.

Thirdly, we analyze the contributions and ef-
fects of the number of GNN layers (Figure 3 (a)).
From the computation of GNNs, the more layers,
the higher order of information is captured. The
experimental results show that the 1-layer model
significantly outperforms 0-layer model on all five
scoring metrics. But continuing to increase the
number of layers does not significantly improve
performance. Previous work (Zheng, 2017) has
shown that the introduction of more than second-
order information does not significantly improve
parsing performances. Our results also present a
consistent conclusion. Specifically, on UAS, LAS
and LA, the 2-layer model has the highest sum
of scores. On UCM and LCM, performance in-
creases as the number of layers increases, showing
the superiority of using high-order information in
complete sentence parsing. In addition to parsing
performance, we also focus on the speed. We ob-
serve that adding one layer of GNN slows down
the prediction speed by about 2.1%. The 2-layer
model can process 415.9 sentences per second on
a single GPU. Its impact on the training process is
also slight, increasing from 3 minutes to 3.5 min-
utes per epoch.

We futher examine different performance of
each layer in a 3-layer model (Figure 3 (b)). We
observe that, as we move to a higher layer, the
average loss decreases during the training pro-
cess (L3 < L2 < L1). The figure shows that
the introduction of high-order information leads
to more accurate graph weights. We also do the
MST decoding directly based on the graph weights
on each layer and compare their development set
UAS performances. From the layer-wise UAS

https://github.com/AntNLP/gnn-dep-parsing
https://github.com/AntNLP/gnn-dep-parsing
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Figure 3: (a) Parsing performance and speed of different layers of our hd ▷ h model on the test set. (b) Layer-wise
training loss and development set’s UAS of our 3-layer hd ▷ h model.

GNN GNN Dev Test
Layer Model UAS LAS UAS LAS

l = 2
Synch 95.79 93.90 95.92 94.24
H-first 95.88 93.94 95.97 94.31
D-first 95.78 93.91 95.95 94.27

Table 3: Impact of different GNN update methods on
PTB dataset. “Synch” is our default synchronized set-
ting (Equation 8). “H-first” is an asynchronous up-
date method that first updates head word representa-
tion (Equation 9). Similarly, the “D-first” model first
updates dependent word representation.

results, we observe that the difference between
2-layer and 3-layer is not obvious, but both are
higher than the 1-layer.

Fourthly, we present the influences of synchro-
nized/asynchronized GNN update methods (Ta-
ble 3). We first compare the synchronous update
and asynchronous update methods. It shows that
the later one works better without adding extral
parameters. The reason may be that asynchronous
methods aggregate high-order information earlier.
The H-first model (Equation 9) is slightly better
than the D-first model. This may indicate that
dependent representation is more important than
head representation, since the first updated rep-
resentation will improve the representation of the
late update,

Fifthly, we experiment with unweighted graph
(all set to 1) and hard weight graph (renormalized
at top-k) (Table 4). A GNN based on completely
unweighted graph is equivalent to uniformly in-
corporating representations of all neighbors for
each node in the sentence, and similar to incor-
porating sentence embedding. Experiments show

GNN GNN Dev Test
Layer Model UAS LAS UAS LAS

l = 2

All=1 95.71 93.73 95.76 94.07
Hard-1 95.69 93.70 95.80 94.13
Hard-2 95.73 93.78 95.90 94.20
Hard-3 95.81 93.88 95.88 94.20

l = 2 Soft 95.88 93.94 95.97 94.31

Table 4: Impact of different kinds of graph weights on
PTB dataset. “All=1” means setting all weights to 1
(Equation 12), “Hard-k” means renormalization at the
top-k weights of each node (Equation 11), “Soft” is our
default model setting (Equation 8).

that this approach will hurt the performance of the
parser. For the Hard-k model (Equation 11), when
k is equal to 1, it is equivalent to a GNN based
on greedy decoding results, when k is equal to the
sentence length, it is equivalent to our soft method.
Experiments show that as k increases from 1 to 3,
the performance of the Hard-k model is gradually
improved. We also observe that hard weights af-
fect the training stability of the parser.

Finally, we report the results of our model on
partial UD treebanks on the CoNLL 2018 shared
task (Table 5). Our model uses only word and
XPOS tag (predict by UDPipe), without any cross
lingual features. 7 We use FastText multilingual
pretrained vectors instead of Glove vectors. 8 The
results show that our GNN parser performs better
on 10 UD 2.2 treebanks. For bg, our parser does
not improve performance. For nl, our parser im-
proves 0.22 UAS, although LAS is slightly lower

7The results should not compare with the shared task’s
official results.

8https://github.com/facebookresearch/
fastText

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
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UD Baseline Parser GNN Parser
2.2 UAS LAS UAS LAS

bg 91.69 88.25 91.64 88.28
ca 92.08 89.75 92.12 89.90
cs 91.22 88.73 92.00 89.85
de 86.11 81.86 86.47 81.96
en 83.72 81.07 83.83 81.16
es 90.95 88.65 91.28 88.93
fr 86.46 83.15 86.82 83.73
it 90.70 88.80 90.81 88.91
nl 87.72 84.85 87.94 84.82
no 88.27 85.97 88.57 86.33
ro 89.07 84.18 89.11 84.44
ru 88.67 86.29 88.94 86.62

Avg. 88.89 85.96 89.13 86.24

Table 5: UAS and LAS F1 scores on 12 UD 2.2 test
sets from CoNLL 2018 shared task.

than the baseline parser. For average performance,
it achieves 0.24 percent UAS and 0.28 percent
LAS improvement over the baseline parser.

4.2 Error Analysis

Following McDonald and Nivre (2011); Ma et al.
(2018), we characterize the errors made by the
baseline biaffine parser and our GNN parser.
Analysis shows that most of the gains come from
the difficult cases (e.g. long sentences or long-
range dependencies), which represents an encour-
aging sign of the proposed method’s benefits.

Sentence Length. Figure 4 (a) shows the accu-
racy relative to sentence length. Our parser signif-
icantly improves the performance of the baseline
parser on long sentence, but is slightly worse on
short sentence (length ≤ 10).
Dependency Length. Figure 4 (b) shows the
precision and recall relative to dependency length.
Our parser comprehensively and significantly im-
proves the performance of the baseline parser in
both precision and recall.
Root Distance. Figure 4 (c) shows the preci-
sion and recall relative to the distance to the root.
Our parser comprehensively and significantly im-
proves baseline parser’s recall. But for precision,
the baseline parser performs better over long dis-
tances (≥ 6) than our parser.

5 Related Work

Graph structures have been extended to model
text representation, giving competitive results for
a number of NLP tasks. By introducing context
neighbors, the graph structure is added to the se-
quence modeling tool LSTMs, which improves

performance on text classification, POS tagging
and NER tasks (Zhang et al., 2018a). Based on
syntactic dependency trees, DAG LSTMs (Peng
et al., 2017) and GCNs (Zhang et al., 2018b) are
used to improve the performance of relation ex-
traction task. Based on the AMR semantic graph
representation, graph state LSTMs (Song et al.,
2018), GCNs (Bastings et al., 2017) and gated
GNNs (Beck et al., 2018) are used as encoder
to construct graph-to-sequence learning. To our
knowledge, we are the first to investigate GNNs
for dependency parsing task.

The design of the node representation network
is a key problem in neural graph-based parsers.
Kiperwasser and Goldberg (2016b) use BiRNNs
to obtain node representation with sentence-level
information. To better characterize the direction
of edge, Dozat and Manning (2017) feed BiRNNs
outputs to two MLPs to distinguish word as head
or dependent, and then construct a biaffine map-
ping for prediction. It also performs well on mul-
tilingual UD datasets (Che et al., 2018).

Given a graph, a GNN can embed the node by
recursively aggregating the node representations
of its neighbors (Battaglia et al., 2018). Based on
a biaffine mapping, GNNs can enhance the node
representation by recursively integrating neigh-
bors’ information. The message passing neural
network (MPNN) (Gilmer et al., 2017) and the
non-local neural network (NLNN) (Wang et al.,
2018) are two popular GNN methods. Due to the
convenience of self-attention in handling variable
sentence length, we use a GAT-like network (Ve-
likovi et al., 2018) belonging to NLNN. Then, we
further explore its aggregating functions and up-
date methods on special task.

Apply the GAT to a directed complete graph
similar to the Transformer encoder (Vaswani et al.,
2017). But the transformer framework focuses
only on head-dep-like dependency, we further ex-
plore it to capture high-order information on de-
pendency parsing. Several works have investi-
gated high-order features in neural parsing. Kiper-
wasser and Goldberg (2016b) uses a bottom-up
tree-encoding to extract hard high-order features
from an intermediate predicted tree. Zheng (2017)
uses an incremental refinement framework to ex-
tract hard high-order features from a whole pre-
dicted tree. Ma et al. (2018) uses greedy decod-
ing to replace the MST decoding and extract lo-
cal 2-order features at the current decoding time.
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Figure 4: Parsing performance of baseline and our best parser relative to length and graph factors.

Comparing with the previous work, GNNs can ef-
ficiently capture global and soft high-order fea-
tures.

6 Conclusions

We propose a novel and efficient dependency
parser using the Graph Neural Networks. By re-
cursively aggregating the neighbors’ information,
our parser can obtain node representation that in-
corporates high-order features to improve perfor-
mance. Experiments on PTB and UD2.2 datasets
show the effectiveness of our proposed method.
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A Hyper-Parameters

Layer Hyper-parameter Value

Input
Word 100

POS tag 100
Glove 100

LSTM
encoder layers 3
encoder size 400

MLP
arc MLP size 500
rel MLP size 100

Dropout

embeddings 0.33
hidden states 0.33
inputs states 0.33

MLP 0.33

Trainer

optimizer Adam
learning rate 0.002

(β1, β2) (0.9, 0.9)
decay rate 0.75

decay step length 5000
GNN graph layers 2

Table 6: Hyper-parameters for experiments.
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