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Abstract

In this paper, we address a novel task, namely
weakly-supervised spatio-temporally ground-
ing natural sentence in video. Specifically,
given a natural sentence and a video, we local-
ize a spatio-temporal tube in the video that se-
mantically corresponds to the given sentence,
with no reliance on any spatio-temporal anno-
tations during training. First, a set of spatio-
temporal tubes, referred to as instances, are
extracted from the video. We then encode
these instances and the sentence using our pro-
posed attentive interactor which can exploit
their fine-grained relationships to character-
ize their matching behaviors. Besides a rank-
ing loss, a novel diversity loss is introduced
to train the proposed attentive interactor to
strengthen the matching behaviors of reliable
instance-sentence pairs and penalize the unre-
liable ones. Moreover, we also contribute a
dataset, called VID-sentence, based on the Im-
ageNet video object detection dataset, to serve
as a benchmark for our task. Extensive exper-
imental results demonstrate the superiority of
our model over the baseline approaches. Our
code and the constructed VID-sentence dataset
are available at: https://github.com/
JeffCHEN2017/WSSTG.git.

1 Introduction

Given an image/video and a language query, im-
age/video grounding aims to localize a spatial re-
gion in the image (Plummer et al., 2015; Yu et al.,
2017, 2018) or a specific frame in the video (Zhou
et al., 2018) which semantically corresponds to
the language query. Grounding has broad appli-
cations, such as text based image retrieval (Chen
et al., 2017; Ma et al., 2015), description genera-
tion (Wang et al., 2018a; Rohrbach et al., 2017;
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A brown and white dog is lying on the grass and then it
stands up.

...

...

Figure 1: The proposed WSSTG task aims to local-
ize a spatio-temporal tube (i.e., the sequence of green
bounding boxes) in the video which semantically cor-
responds to the given sentence, with no reliance on any
spatio-temporal annotations during training.

Wang et al., 2018b), and question answer (Gao
et al., 2018; Ma et al., 2016). Recently, promising
progress has been made in image grounding (Yu
et al., 2018; Chen et al., 2018c; Zhang et al., 2018)
which heavily relies on fine-grained annotations
in the form of region-sentence pairs. Fine-grained
annotations for video grounding are more compli-
cated and labor-intensive as one may need to an-
notate a spatio-temporal tube (i.e., label the spatial
region in each frame) in a video which semanti-
cally corresponds to one language query.

To avoid the intensive labor involved in dense
annotations, (Huang et al., 2018) and (Zhou
et al., 2018) considered the problem of weakly-
supervised video grounding where only aligned
video-sentence pairs are provided without any
fine-grained regional annotations. However, they
both ground only a noun or pronoun in a static
frame of the video. As illustrated in Fig. 1, it
is difficult to distinguish the target dog (denoted
by the green box) from other dogs (denoted by
the red boxes) if we attempt to ground only the
noun “dog” in one single frame of the video. The
main reason is that the textual description of “dog”
is not sufficiently expressive and the visual ap-
pearance in one single frame cannot characterize
the spatio-temporal dynamics (e.g., the action and
movements of the “dog”).

https://github.com/JeffCHEN2017/WSSTG.git
https://github.com/JeffCHEN2017/WSSTG.git
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In this paper, we introduce a novel task, re-
ferred to as weakly-supervised spatio-temporally
grounding sentence in video (WSSTG). Specifi-
cally, given a natural sentence and a video, we
aim to localize a spatio-temporal tube (i.e., a se-
quence of bounding boxes), referred to as an in-
stance, in the video which semantically matches
the given sentence (see Fig. 1). During train-
ing, we do not rely on any fine-grained regional
annotations. Compared with existing weakly-
supervised video grounding problems (Zhou et al.,
2018; Huang et al., 2018), our proposed WSSTG
task has the following two advantages and chal-
lenges. First, we aim to ground a natural sen-
tence instead of just a noun or pronoun, which is
more comprehensive and flexible. As illustrated in
Fig. 1, with a detailed description like “lying on

the grass and then it stands up”, the target
dog (denoted by green boxes) can be localized
without ambiguity. However, how to comprehen-
sively capture the semantic meaning of a sentence
and ground it in a video, especially in a weakly-
supervised manner, poses a challenge. Second,
compared with one bounding box in a static frame,
a spatio-temporal tube (denoted by a sequence of
green bounding boxes in Fig. 1) presents the tem-
poral movements of “dog”, which can character-
ize its visual dynamics and thereby semantically
match the given sentence. However, how to ex-
ploit and model the spatio-temporal characteristics
of the tubes as well as their complicated relation-
ships with the sentence poses another challenge.

To handle the above challenges, we propose a
novel model realized within the multiple instance
learning framework (Karpathy and Fei-Fei, 2015;
Tang et al., 2017, 2018). First, a set of instance
proposals are extracted from a given video. Fea-
tures of the instance proposals and the sentence are
then encoded by a novel attentive interactor that
exploits their fine-grained relationships to gener-
ate semantic matching behaviors. Finally, we pro-
pose a diversity loss, together with a ranking loss,
to train the whole model. During testing, the in-
stance proposal which exhibits the strongest se-
mantic matching behavior with the given sentence
is selected as the grounding result.

To facilitate our proposed WSSTG task, we
contribute a new grounding dataset, called VID-
sentence, by providing sentence descriptions for
the instances of the ImageNet video object de-
tection dataset (VID) (Russakovsky et al., 2015).

Specifically, 7, 654 instances of 30 categories from
4, 381 videos in VID are extracted. For each in-
stance, annotators are asked to provide a natural
sentence describing its content. Please refer to
Sec. 4 for more details about the dataset.

Our main contributions can be summarized
as follows. 1) We tackle a novel task, namely
weakly-supervised spatio-temporally video
grounding (WSSTG), which localizes a spatio-
temporal tube in a given video that semantically
corresponds to a given natural sentence, in a
weakly-supervised manner. 2) We propose a
novel attentive interactor to exploit fine-grained
relationships between instances and the sentence
to characterize their matching behaviors. A diver-
sity loss is proposed to strengthen the matching
behaviors between reliable instance-sentence
pairs and penalize the unreliable ones during
training. 3) We contribute a new dataset, named
as VID-sentence, to serve as a benchmark for the
novel WSSTG task. 4) Extensive experimental re-
sults are analyzed, which illustrate the superiority
of our proposed method.

2 Related Work

Grounding in Images/Videos. Grounding in im-
ages has been popular in the research commu-
nity over the past decade (Kong et al., 2014;
Matuszek et al., 2012; Hu et al., 2016; Wang
et al., 2016a,b; Li et al., 2017; Cirik et al., 2018;
Sadeghi and Farhadi, 2011; Zhang et al., 2017;
Xiao et al., 2017; Chen et al., 2019, 2018a). In re-
cent years, researchers also explore grounding in
videos. Yu and Siskind (2015) grounded objects
in constrained videos by leveraging weak seman-
tic constraints implied by a sequence of sentences.
Vasudevan et al. (2018) grounded objects in the
last frame of stereo videos with the help of text,
motion cues, human gazes and spatial-temporal
context. However, fully supervised grounding re-
quires intensive labor for regional annotations, es-
pecially in the case of videos.

Weakly-Supervised Grounding. To avoid
the intensive labor involved in regional anno-
tations, weakly-supervised grounding has been
proposed where only image-sentence or video-
sentence pairs are needed. It was first studied in
the image domain (Zhao et al., 2018; Rohrbach
et al., 2016). Later, given a sequence of transcrip-
tions and their corresponding video clips as well
as their temporal alignment, Huang et al. (2018)
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Figure 2: The architecture of our model. An instance
generator is used to produce spatio-temporal instances.
An attentive interactor is proposed to exploit the com-
plicated relationships between instances and the sen-
tence. Multiple instance learning is used to train the
model with a ranking loss and a diversity loss.

grounded nouns/pronouns in specific frames by
constructing a visual grounded action graph. The
work closest to ours is (Zhou et al., 2018), in
which the authors grounded a noun in a specific
frame by considering object interactions and loss
weighting given one video and one text input. In
this work, we also focus on grounding in a video-
text pair. However, different from (Zhou et al.,
2018) whose text input consists of nouns/pronouns
and output is a bounding box in a specific frame,
we aim to ground a natural sentence and output a
spatio-temporal tube in the video.

3 Method

Given a natural sentence query q and a video
v, our proposed WSSTG task aims to localize a
spatio-temporal tube, referred to as an instance,
p = {bt}Tt=1 in the video sequence, where bt rep-
resents a bounding box in the t-th frame and T
denotes the total number of frames. The local-
ized instance should semantically correspond to
the sentence query q. As WSSTG is carried out in
a weakly-supervised manner, only aligned video-
sentence pairs {v, q} are available with no fine-
grained regional annotations during training. In
this paper, we cast the WSSTG task as a multi-
ple instance learning problem (Karpathy and Fei-
Fei, 2015). Given a video v, we first generate a
set of instance proposals by an instance genera-
tor (Gkioxari and Malik, 2015). We then identify
which instance semantically matches the natural
sentence query q.

We propose a novel model for handling the
WSSTG task. It consists of two components,

namely an instance generator and an attentive in-
teractor (see Fig. 2). The instance generator links
bounding boxes detected in each frame into in-
stance proposals (see Sec. 3.1). The attentive
interactor exploits the complicated relationships
between instance proposals and the given sen-
tence to yield their matching scores (see Sec. 3.2).
The proposed model is optimized with a ranking
loss Lrank and a novel diversity loss Ldiv (see
Sec. 3.3). Specifically, Lrank aims to distinguish
aligned video-sentence pairs from the unaligned
ones, while Ldiv targets strengthening the match-
ing behaviors between reliable instance-sentence
pairs and penalizing the unreliable ones from the
aligned video-sentence pairs.

3.1 Instance Extraction

Instance Generation. As shown in Fig. 2, the
first step of our method is to generate instance pro-
posals. Similar to (Zhou et al., 2018), the region
proposal network from Faster-RCNN (Ren et al.,
2015) is used to detect frame-level bounding boxes
with corresponding confidence scores, which are
then linked to produce spatio-temporal tubes.

Let bt denote a detected bounding box at time
t and bt+1 denote another box at time t+ 1. Fol-
lowing (Gkioxari and Malik, 2015), we define the
linking score sl between bt and bt+1 as

sl(bt, bt+1) = sc(bt) + sc(bt+1) + λ · IoU(bt, bt+1), (1)

where sc(b) is the confidence score of b,
IoU(bt, bt+1) is the intersection-over-union (IoU)
of bt and bt+1, and λ is a balancing scalar which is
set to 0.2 in our implementation.

As such, one instance proposal pn can be
viewed as a path {bnt }Tt=1 over the whole video se-
quence with energy E(pn) given by

E(pn) =
1

T − 1

T−1∑
t=1

sl(b
n
t , b

n
t+1). (2)

We identify the instance proposal with the maxi-
mal energy by the Viterbi algorithm (Gkioxari and
Malik, 2015). We keep the identified instance pro-
posal and remove all the bounding boxes associ-
ated with it. We then repeat the above process un-
til there is no bounding box left. This results in a
set of instance proposals P = {pn}Nn=1, with N
being the total number of proposals.

Feature Representation. Since an instance
proposal consists of bounding boxes in consec-
utive video frames, we use I3D (Carreira and
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Figure 3: The architecture of the attentive interactor.
It consists of two components, namely interaction and
matching behavior characterization. A© denotes the at-
tention mechanism in Eqs. (4-6). φ© denotes the func-
tion in Eq. (7).

Zisserman, 2017) and Faster-RCNN to generate
the RGB sequence feature I3D-RGB, the flow se-
quence feature I3D-Flow, and the frame-level RoI
pooled feature, respectively. Note that it is not
effective to encode each bounding box as an in-
stance proposal may include thousands of bound-
ing boxes. We therefore evenly divide each in-
stance proposal into tp segments and average the
features within each segment. tp is set to 20 for all
our experiments. We concatenate all three kinds
of visual features before feeding it into the follow-
ing attentive interactor. Taking each segment as a
time step, each proposal p is thereby represented
as Fp ∈ Rtp×dp , a sequence of dp dimensional
concatenated visual features at each step.

3.2 Attentive Interactor

With the instance proposals from the video and
the given sentence query, we propose a novel at-
tentive interactor to characterize the matching be-
haviors between each proposal and the sentence
query. Our attentive interactor consists of two cou-
pling components, namely interaction and match-
ing behavior characterization (see Fig. 3).

Before diving into the details of the interactor,
we first introduce the representation of the query
sentence q. We represent each word in q using the
300-dimensional word2vec (Mikolov et al., 2013)
and omit words that are not in the dictionary. In
this way, each sentence q is represented as Fq ∈
Rtq×dq , where tq is the total number of words in
the sentence and dq denotes the dimension of the

word embedding.

3.2.1 Interaction
Given the sequential visual features Fp ∈ Rtp×dp

of one candidate instance and the sequential tex-
tual features Fq ∈ Rtq×dq of the query sen-
tence, we propose an interaction module to exploit
their complicated matching behaviors in a fine-
grained manner. First, two long short-term mem-
ory networks (LSTMs) (Hochreiter and Schmid-
huber, 1997) are utilized to encode the instance
proposal and sentence, respectively:

hp
t = LSTMp(fpt ,h

p
t−1),

hq
t = LSTMq(fqt ,h

q
t−1),

(3)

where fpt and f qt are the t-th row representations in
Fp and Fq, respectively. Due to the natural char-
acteristics of LSTM, hp

t and hq
t , as the yielded hid-

den states, encode and aggregate the contextual in-
formation from the sequential representation, and
thereby yield more meaningful and informative vi-
sual features Hp = {hp

t }
tp
t=1 and sentence repre-

sentations Hq = {hq
t}

tq
t=1.

Different from (Rohrbach et al., 2016; Zhao
et al., 2018) which used only the last hidden
state hq

tq as the feature embedding for the query
sentence, we generate visually guided sentence
features Hqp = {hqp

t }
tp
t=1 by exploiting their

fine-grained relationships based on Hq and Hp.
Specifically, given the i-th visual feature hp

i , an
attention mechanism (Xu et al., 2015) is used to
adaptively summarize Hq = {hq

t}
tq
t=1 with respect

to hp
i :

ei,j = wT tanh (Wqhq
j + Wphp

i + b1) + b2, (4)

ai,j =
exp(ei,j)∑tq

j′=1 exp(ei,j′)
, (5)

hqp
i =

tq∑
j=1

ai,jh
q
j , (6)

where Wq ∈ RK×Dq , Wp ∈ RK×Dp , b1 ∈
RK are the learnable parameters that map visual
and sentence features to the same K-dimension
space. w ∈ RK and b2 ∈ R work on the coupled
textual and visual features and yield their affinity
scores. With respect to Wphp

i in Eq. (4), the gen-
erated visually guided sentence feature hqp

i pays
more attention on the words more correlated with
hp
i by adaptively summarizing Hq = {hq

t}
tq
t=1.

Owning to the attention mechanism in Eqs. (4-
6), our proposed interaction module makes each
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visual feature interact with all the sentence fea-
tures and attentively summarize them together. As
such, fine-grained relationships between the visual
and sentence representations are exploited.

3.2.2 Matching Behavior Characterization
After obtaining a set of visually guided sen-
tence features Hqp = {hqp

t }
tp
t=1, we character-

ize the fine-grained matching behaviors between
the visual and sentence features. Specifically, the
matching behavior between the i-th visual and
sentence features is defined as

si(h
p
i ,h

qp
i ) = φ(hp

i ,h
qp
i ). (7)

The instantiation of φ can be realized by differ-
ent approaches, such as multi-layer perceptron
(MLP), inner-product, or cosine similarity. In this
paper, we use cosine similarity between hp

i and
hqp
i for simplicity. Finally, we define the match-

ing behavior between an instance proposal p and
the sentence q as

s(q, p) =
1

tp

tp∑
i=1

si(h
p
i ,h

qp
i ). (8)

3.3 Training
For the WSSTG task, since no regional annota-
tions are available during the training, we cannot
optimize the framework in a fully supervised man-
ner. We, therefore, resort to MIL to optimize the
proposed network based on the obtained matching
behaviors of the instance-sentence pairs. Specifi-
cally, our objective function is defined as

L = Lrank + β Ldiv, (9)

where Lrank is a ranking loss, aiming at distin-
guishing aligned video-sentence pairs from the un-
aligned ones. Ldiv is a novel diversity loss, which
is proposed to strengthen the matching behaviors
between reliable instance-sentence pairs and pe-
nalize the unreliable ones from the aligned video-
sentence pair. β is a scalar which is set to 1 in all
our experiments.
Ranking Loss. Assume that {v, q} is a semanti-
cally aligned video-sentence pair. We define the
visual-semantic matching score S between v and
q as

S(v, q) = max s(q, pn) , n = 1, ..., N , (10)

where pn is the n-th proposal generated from the
video v, s(q, pn) is the matching behavior com-
puted by Eq. (8), and N is the total number of in-
stance proposals.

Suppose that v′ and q′ are negative samples that
are not semantically correlated with q and v, re-
spectively. Inspired by (Karpathy and Fei-Fei,
2015), we define the ranking loss as

Lrank =
∑
v 6=v′

∑
q 6=q′

[max(0, S(v, q′)− S(v, q) + ∆)+

max(0, S(v′, q)− S(v, q) + ∆)],
(11)

where ∆ is a margin which is set to 1 in all our ex-
periments. Lrank directly encourages the match-
ing scores of aligned video-sentence pairs to be
larger than those of unaligned pairs.
Diversity Loss. One limitation of the ranking
loss defined in Eq. (11) is that it does not con-
sider the matching behaviors between the sentence
and different instance proposals extracted from an
aligned video. A prior for video grounding is that
only a few instance proposals in the paired video
are semantically aligned to the query sentence,
while most of the other instance proposals are not.
Thus, it is desirable to have a diverse distribution
of the matching behaviors {s(q, pn)}Nn=1.

To encourage a diverse distribution of
{s(q, pn)}Nn=1, we propose a diversity loss Ldiv
to strengthen the matching behaviors between
reliable instance-sentence pairs and penalize the
unreliable ones during training. Specifically, we
first normalize {s(q, pn)}Nn=1 by softmax

s′(q, pn) =
exp(s(q, pn))∑N

n′=1 exp(s(q, pn′))
, (12)

and then penalize the entropy of the distribution of
{s′(q, pn)}Nn=1 by defining the diversity loss as

Ldiv = −
N∑

n=1

s′(q, pn)log(s′(q, pn)). (13)

Note that the smaller Ldiv is, the more diverse
{s(q, pn)}Nn=1 will be, which implicitly encour-
ages the matching scores of semantically aligned
instance-sentence pairs being larger than those of
the misaligned pairs.

3.4 Inference
Given a testing video and a query sentence, we ex-
tract candidate instance proposals, and character-
ize the matching behavior between each instance
proposal and the sentence by the proposed atten-
tive interactor. The instance with the strongest
matching behavior is deemed the result of the
WSSTG task.
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A red bus is making a turn on the road A red bus is making a turn on the road

 A brown and white dog is lying on the grass and then standing upA large elephant runs in the water from left to right

 A red bus is making a turn on the road

 A brown and white dog is lying on the grass and then standing up

 A large elephant runs in the water from left to right

Figure 4: Samples of the newly constructed VID-
sentence dataset. Sentences are shown on the top of
images and the associated target instances are enclosed
with green bounding boxes.

4 VID-sentence Dataset

A main challenge for the WSSTG task is the
lack of suitable datasets. Existing datasets like
TACoS (Regneri et al., 2013) and YouCook (Das
et al., 2013) are unsuitable as they do not provide
spatio-temporal annotations for target instances in
the videos, which are necessary for the WSSTG
task for evaluation. To the best of our knowledge,
the most suitable existing dataset is the Person-
sentence dataset provided by (Yamaguchi et al.,
2017), which is used for spatio-temporal person
search among videos. However, this dataset is
too simple for the WSSTG task since it contains
only people in the videos. To this end, we con-
tribute a new dataset by annotating videos in Ima-
geNet video object detection dataset (VID) (Rus-
sakovsky et al., 2015) with sentence descriptions.
We choose VID as the visual materials for two
primary reasons. First, it is one of the largest
video detection datasets containing videos of di-
verse categories in complicated scenarios. Sec-
ond, it provides dense bounding-box annotations
and instance IDs which help avoid labor-intensive
annotations for spatio-temporal regions of the val-
idation/testing set.
VID-sentence Annotation. With 30 categories,
VID contains 3826, 555 and 937 videos for train-
ing, validation and testing respectively. We first
divide videos in training and validation sets1 into
trimmed videos based on the provided instance
IDs, and delete videos less than 9 frames. As such,
there remain 9, 029 trimmed videos in total. In
each trimmed video, one instance is identified as
a sequence of bounding boxes. A group of anno-
tators are asked to provide sentence descriptions
for the target instances. Each target instance is

1Testing set is omitted as its spatial-temporal annotations
are unavailable

annotated with one sentence description. An in-
stance is discarded if it is too difficult to provide a
unique and precise description. After annotation,
there are 7, 654 videos with sentence descriptions.
We randomly select 6, 582 videos as the training
set, and evenly split the remaining videos into the
validation and testing sets (i.e., each contains 536
videos). Some examples from the VID-sentence
dataset are shown in Fig. 4.
Dataset Statistics. To summarize, the cre-
ated dataset has 6, 582/536/536 spatio-
temporal instances with descriptions for
training/validation/testing. It covers all 30
categories in VID, such as “car”, “monkey” and
“watercraft”. The size of the vocabulary is
1, 823 and the average length of the descriptions
is 13.2. Table 1 shows the statistics of our con-
structed VID-sentence dataset. Compared with
the Person-sentence dataset, our VID-sentence
dataset has a similar description length but
includes more instances and categories.

It is important to note that, although VID pro-
vides regional annotations for the training set,
these annotations are not used in any of our ex-
periments since we focus on weakly-supervised
spatio-temporal video grounding.

5 Experiments

In this section, we first compare our method with
different kinds of baseline methods on the cre-
ated VID-sentence dataset, followed by the abla-
tion study. Finally, we show how well our model
generalizes on the Person-sentence dataset.

5.1 Experimental Settings

Baseline Models. Existing weakly-supervised
video grounding methods (Huang et al., 2018;
Zhou et al., 2018) are not applicable to the
WSSTG task. Huang et al. (2018) requires tempo-
ral alignment between a sequence of transcription
descriptions and the video segments to ground a
noun/pronoun in a certain frame, while Zhou et al.
(2018) mainly grounds nouns/pronouns in specific
frames of videos. As such, we develop three
baselines based on DVSA (Karpathy and Fei-Fei,
2015), GroundeR (Rohrbach et al., 2016), and a
variant frame-level method modified from (Zhou
et al., 2018) for performance comparisons. Fol-
lowing recent grounding methods like (Rohrbach
et al., 2016; Chen et al., 2018b), we use the last
hidden state of an LSTM encoder as the sentence
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Instance Num. Des. Categoriestrain val test length
Person 5,437 313 323 13.1 1
Ours 6,582 536 536 13.2 30

Table 1: Statistics of the VID-sentence dataset and pre-
vious Person-sentence dataset Yamaguchi et al. (2017).

embedding for all the baselines.
Since DVSA and GroundeR are originally pro-

posed for image grounding, in order to adapt to
video, we consider three methods to encode vi-
sual features Fp ∈ Rtp×dp including averaging
(Avg), NetVLAD (Arandjelovic et al., 2016), and
LSTM. For the variant baseline modified from
(Zhou et al., 2018), we densely predict each frame
to generate a spatio-temporal prediction.
Implementation Details. Similar to (Zhou et al.,
2018), we use the region proposal network from
Faster-RCNN pretrained on MSCOCO (Lin et al.,
2014) to extract frame-level region proposals. For
each video, we extract 30 bounding boxes for each
frame and link them into 30 spatio-temporal tubes
with the method (Gkioxari and Malik, 2015). We
map the word embedding to 512-dimension before
feeding it to the LSTM encoder. Dimension of
the hidden state of all the LSTMs is set to 512.
Batch size is 16, i.e., 16 videos with total 480 in-
stance proposals and 16 corresponding sentences.
We construct positive and negative video-sentence
pairs for training within a batch for efficiency, i.e.,
roughly 16 positive pairs and 240 negative pairs
for the triplet construction. SGD is used to opti-
mize the models with a learning rate of 0.001 and
momentum of 0.9. We train all the models with 30
epochs. Please refer to supplementary materials
for more details.
Evaluation Metric. We use the bounding box
localization accuracy for evaluation. An output
instance is considered as “accurate” if the over-
lap between the detected instance and the ground-
truth is greater than a threshold η. The definition
of the overlap is the same as (Yamaguchi et al.,
2017), i.e., the average overlap of the bounding
boxes in annotated frames. η is set to 0.4, 0.5, 0.6
for extensive evaluations.

5.2 Performance Comparisons

Table 2 shows the performance comparisons be-
tween our model and the baselines. We addition-
ally show the performance of randomly choosing
an instance proposal and the upper bound perfor-

Methods Accuracy
0.4 0.5 0.6 Average

Random 8.0 4.3 2.1 4.8
Proposal upper bound 58.6 47.2 36.9 47.6
DVSA+Avg 36.2 29.7 23.5 29.8
DVSA+NetVLAD 31.2 24.8 18.5 24.8
DVSA+LSTM 38.2 31.2 23.5 31.0
GroundeR+Avg 36.7 31.9 25.0 31.2
GroundeR+NetVLAD 26.1 22.2 15.1 21.1
GroundeR+LSTM 36.8 31.2 24.1 30.7
Zhou et al. (2018) 41.6 33.8 27.1 34.2
Ours 44.6 38.2 28.9 37.2

Table 2: Performance comparisons on the proposed
VID-sentence dataset. The top entry of all the meth-
ods except the upper bound is highlighted in boldface.

mance of choosing the instance proposal of the
largest overlap with the ground-truth.

The results suggest that, 1) models with
NetVLAD (Arandjelovic et al., 2016) perform
the worst. We suspect that models based on
NetVLAD are complicated and the supervisions
are too weak to optimize the models sufficiently
well. 2) Models with LSTM embedding achieve
only comparable performances compared with
models based on simple averagingf. It is mainly
due to the fact that the power of LSTM has not
been fully exploited. 3) The variant method of
(Zhou et al., 2018) performs better than both
DVSA and GroundeR with various kinds of vi-
sual encoding techniques, indicating its power for
the task. 4) Our model achieves the best results,
demonstrating its effectiveness, showing that our
model is better at characterizing the matching be-
haviors between the query sentence and the visual
instances in the video.

To compare the methods qualitatively, we
show an exemplar sample in Fig. 5. Compared
with GroundeR+LSTM and DVSA+LSTM, our
method identifies a more accurate instance from
the candidate instance proposals. Moreover, the
instances generated by our method are more tem-
porally consistent compared with the modified
frame-level method (Zhou et al., 2018). This can
be attributed to the exploitation of the temporal in-
formation during instance generation and attentive
interactor in our model.

5.3 Ablation Study

To verify the contributions of the proposed atten-
tive interactor and diversity loss, we perform the
following ablation study. To be specific, we com-
pare the full method with three variants, includ-
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Description: The white car is running from left to right on the left side of the road.

DVSA+LSTM, IoU: 0.172 GroundeR+LSTM, IoU: 0.042

Zhou et al. (2018), IoU: 0.413 Ours, IoU: 0.604

Figure 5: An exemplar of the results by different methods. The sentence is shown on the top. Three frames of the
detected results and the ground-truth are respectively bounded with blue lines and green dotted lines. IoU scores
between the detected instances and the ground-truth are shown below the images. Best viewed on screen.

Methods Accuracy
0.4 0.5 0.6 Average

Base 38.2 31.2 23.5 31.0
Base + Div 38.4 32.5 25.0 32.0
Base + Int 42.4 35.1 26.1 34.5
Full method 44.6 38.2 28.9 37.2

Table 3: Ablation study of the proposed attentive inter-
actor and diversity loss.

segment Id: 0 segment Id: 1 segment Id: 2

Figure 6: Visualization of the attentive interaction. On
the top, we show an instance highlighted in the blue
box in three different segments. On the bottom, we
show the corresponding distributions of the attention
weights. Darker colors mean larger attentive weights.
Intuitively, the attention weight matches well with the
visual contents such as “puppy” in all three segments
and “hand” in the segment with ID 2. Best viewed on
screen.

ing: 1) removing both the attentive interactor and
diversity loss, which is equivalent to the DVSA
model using LSTM for encoding both the visual
features and sentence features, termed as Base;
2) Base+Div, which is formed by introducing
the diversity loss; 3) Base+Int with the atten-
tive interactor module.

Table 3 shows the corresponding results. Com-
pared with Base, both the diversity loss and at-
tentive interactor constantly improve the perfor-
mance. Moreover, to show the effectiveness of
the proposed attentive interactor, we visualize the
adaptive weight a in Eq. (5). As shown in Fig. 6,
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Figure 7: Comparison of the distribution of the match-
ing behaviors of instances.

Methods Accuracy
0.4 0.5 0.6 Average

Random 15.1 7.2 3.5 8.6
Proposal upper bound 89.8 79.9 64.1 77.9
DVSA+Avg 39.8 30.3 19.7 29.9
DVSA+NetVLAD 34.1 25.0 18.3 25.8
DVSA+LSTM 42.7 30.2 20.0 31.0
GroundeR+Avg 45.5 32.2 21.7 33.1
GroundeR+NetVLAD 22.1 16.1 8.6 15.6
GroundeR+LSTM 39.9 28.2 17.7 28.6
Ours w/o Ldiv 57.9 47.7 35.6 47.1
Ours 62.5 52.0 38.4 51.0

Table 4: Performance comparisons on the Person-
sentence dataset (Yamaguchi et al., 2017).

our method adaptively pays more attention to the
words that match the instance such as the “puppy”
in all three segments and the “hand” in segment
with ID 2. To show the effectiveness of the diver-
sity loss, we divide instance proposals in the test-
ing set into 10 groups based on their IoU scores
with the ground-truth and then calculate the aver-
age matching behaviors of each group, predicted
by counterparts with and without the diversity
loss. As shown in Fig. 7, the proposed diversity
loss Ldiv penalizes the matching behaviors of the
instances of lower IoU with ground-truth while
strengthens instances of higher IoU.
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5.4 Experiments on Person-sentence Dataset
We further evaluate our model and the baseline
methods on the Person-sentence dataset (Yam-
aguchi et al., 2017). We ignore the bounding box
annotations in the training set and carry out ex-
periments for the proposed WSSTG task. For fair
comparisons, all experiments are conducted on the
visual feature extractor provided by (Carreira and
Zisserman, 2017).

Table 4 shows the results. Similarly, the pro-
posed attentive interactor model (without the di-
versity loss) outperforms all the baselines. More-
over, the diversity loss further improves the perfor-
mance. Note that the improvement of our model
on this dataset is more significant than that on
the VID-sentence dataset. The reason might be
that the upper bound performance of the Person-
sentence is much higher than that of the VID-
sentence (77.9 for Person-sentence versus 47.6 for
VID-sentence on average). This also suggests that
the created VID-sentence dataset is more chal-
lenging and more suitable as a benchmark dataset.

6 Conclusion

In this paper, we introduced a new task, namely
weakly-supervised spatio-temporally grounding
natural sentence in video. It takes a sentence and a
video as input and outputs a spatio-temporal tube
from the video, which semantically matches the
sentence, with no reliance on spatio-temporal an-
notations during training. We handled this task
based on the multiple instance learning frame-
work. An attentive interactor and a diversity loss
were proposed to learn the complicated relation-
ships between the instance proposals and the sen-
tence. Extensive experiments showed the effec-
tiveness of our model. Moreover, we contributed
a new dataset, named as VID-sentence, which can
serve as a benchmark for the proposed task.
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