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Abstract

The well-known problem of knowledge acqui-
sition is one of the biggest issues in Word
Sense Disambiguation (WSD), where anno-
tated data are still scarce in English and al-
most absent in other languages. In this
paper we formulate the assumption of One
Sense per Wikipedia Category and present
OneSeC, a language-independent method for
the automatic extraction of hundreds of thou-
sands of sentences in which a target word is
tagged with its meaning. Our automatically-
generated data consistently lead a supervised
WSD model to state-of-the-art performance
when compared with other automatic and
semi-automatic methods. Moreover, our ap-
proach outperforms its competitors on mul-
tilingual and domain-specific settings, where
it beats the existing state of the art on all
languages and most domains. All the train-
ing data are available for research purposes at
http://trainomatic.org/onesec.

1 Introduction

The problem of acquiring knowledge (i.e., the
knowledge acquisition bottleneck) is an open is-
sue in Natural Language Processing (NLP). This
problem has become even more critical with the
advent of deep learning, as a bigger amount of
data is needed to meet the requirements of more
and more difficult tasks and increasingly complex
models. Word Sense Disambiguation (WSD), i.e.,
the task of associating a word with its meaning
in a context (Navigli, 2009), is one of the most
affected research areas (Navigli, 2018). The in-
terest in this field has grown remarkably due to
the variety of applications that can benefit from it,
such as Machine Translation (Neale et al., 2016)
or Information Extraction (Delli Bovi et al., 2015).
Most approaches to WSD are either supervised or
knowledge-based. The former frames the problem

as a classification (Zhong and Ng, 2010) or se-
quence learning (Raganato et al., 2017b) task, in
which either a target word or all the content words
in a sequence have to be tagged with one of their
possible meanings. The latter, instead, exploits
graph algorithms on knowledge bases, such as
the Personalized PageRank method (Haveliwala,
2002; Agirre et al., 2014), or the densest subgraph
heuristic (Moro et al., 2014). Hence, knowledge-
based approaches rely on semantic networks such
as WordNet1 (Miller et al., 1990), a manually-
curated resource where synonyms are grouped
into so-called synsets, or BabelNet2 (Navigli and
Ponzetto, 2010), a large multilingual encyclopedic
dictionary that merges together different resources
like WordNet, Wikipedia, Wikidata etc. There-
fore, in one form or another both approaches to
WSD need lexical-semantic data. This is espe-
cially crucial in the case of supervised systems,
which have proved capable of attaining higher re-
sults on English, for which annotated data are
available, whereas they fall behind knowledge-
based approaches when tested on other languages.
Unfortunately, carrying out semantic annotations
for a target language requires time, resources and
expertise in the field. Thus, in the last few years
new approaches have been developed to mitigate
the burden of knowledge acquisition by providing
automatically or semi-automatically tagged cor-
pora. The main goal of such techniques is to in-
fer the meaning of words occurring in raw sen-
tences by leveraging information drawn from dif-
ferent sources of knowledge, i.e., parallel corpora
(Taghipour and Ng, 2015; Delli Bovi et al., 2017),
or semantic networks (Pasini and Navigli, 2017;
Pasini et al., 2018). Although supervised mod-
els achieve competitive results when trained on

1https://wordnet.princeton.edu
2https://babelnet.org

http://trainomatic.org/onesec
https://wordnet.princeton.edu
https://babelnet.org
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automatically and semi-automatically annotated
datasets, a major limitation concerning these ap-
proaches is that they are strictly dependent on
knowledge sources, which are in their turn diffi-
cult to harvest. In fact, on the one hand, parallel
corpora require human intervention for translat-
ing a collection of texts into one or more different
languages. On the other hand, semantic networks
rely on manually-annotated lexical-semantic data
for enriching the network itself.

In this paper we tackle the knowledge acqui-
sition bottleneck by extending the hypotheses in-
troduced in the two seminal papers by Gale et al.
(1992b, One Sense Per Discourse) and Yarowsky
(1993, One Sense Per Collocation) to Wikipedia
categories, thereby making the following four con-
tributions:

1. We formulate the new assumption of One
Sense per Wikipedia Category, i.e., all the oc-
currences of a word across Wikipedia pages
in a category share the same word meaning.

2. We propose OneSeC (One Sense per Cat-
egory), a novel fully-automatic method
that produces multilingual sense-annotated
datasets on a large scale by mapping
Wikipedia categories to word senses.

3. We eliminate the dependency on the struc-
ture of a semantic network by relying only on
the association between Wikipedia pages and
categories and on a sparse vector represen-
tation of concepts, i.e., NASARI3 (Camacho
Collados et al., 2016).

4. We prove that OneSeC achieves state-of-the-
art results on multilingual WSD and outper-
forms its automatic and semi-automatic alter-
natives on English.

2 One Sense Per Category

Preliminaries Wikipedia is the largest elec-
tronic encyclopedia, available in approximately
300 languages. It is composed of pages and
categories: pages are used to describe named
entities and abstract concepts, while categories
group pages that convey common semantic in-
formation. For example, the Mouse (computing)
and Computer keyboard pages are grouped un-
der the same category, namely, COMPUTING IN-
PUT DEVICES. Similarly, the MONARCHS OF THE

3http://lcl.uniroma1.it/nasari/

UNITED KINGDOM category groups together all
the past and present monarchs of the country, e.g.
Elisabeth II, Queen Victoria, etc. Based on this, in
what follows we refer to the sentences of a cat-
egory C as those sentences contained in all the
pages of C, and we refer to the occurrences of a
lemma in a category C as the occurrences of its
inflected forms in the sentences of C.

Automatically annotating Wikipedia Our ap-
proach aims at creating a sense-annotated cor-
pus in a target language by leveraging the seman-
tic information contained within Wikipedia cate-
gories. Therefore, by relying on the One Sense
per Wikipedia Category assumption (see Section
1), we infer the meaning of words occurring in
Wikipedia sentences by exploiting the information
provided by their categories. For example, the
lemma4 spring#n appears in more than 8K cate-
gories, including SEASONS and MECHANICS. At
the end of our procedure, OneSeC automatically
assigns the metal elastic device sense to all the
occurrences of spring#n in MECHANICS and the
season sense to those in SEASONS.

Given the whole Wikipedia together with its as-
sociations between pages and categories and given
a lexicon of words L, our approach computes a
semantically-tagged dataset – where words in L

are annotated with their correct meaning – by per-
forming the following three steps:

• Category Representation, which represents
a lexeme-category pair (l, C) as the Bag Of
Words of the sentences of the category C in
which the lemma l appears (Section 2.1).

• Sense Assignment, which assigns a sense s
of the lemma l to each lexeme-category pair
(l, C) (Section 2.2).

• Sentence Sampling, which extracts a certain
number of sentences for each sense s of each
lemma l in the lexicon L by exploiting the as-
sociation between lexeme-category pairs and
word senses computed in the previous step
(Section 2.3).

2.1 Category Representation
The first step aims at representing each lexeme-
category pair (l, C) with a Bag Of Words (BOW).
To that end, we lemmatise and POS tag the text of

4We use lemma and lexeme, i.e., a lemma#pos, inter-
changeably.

http://lcl.uniroma1.it/nasari/
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BOW mouse, cat, animal, vehicle, rodent, mice, mammal
Mouse (animal) mouse, animal, rodent, mice, mammal, cat
Mouse (device) mouse, computer, keyboard, device, input, output

Table 1: Excerpt of the sorted components of an ex-
ample category’s BOW (first line) and two NASARI
vectors (second and third line).

each page in C and retain only the content words
in each sentence. Then, we consider all the sen-
tences of C in which l appears at least once and
we count the frequency of each other lemma oc-
curring in the selected sentences. Finally, we build
the BOW of (l, C) in which each dimension cor-
responds to a lemma that is associated with its
frequency, thus giving greater importance to more
frequent words. For example, the pair (spring#n,
MECHANICS) contains words such as force and
gravity, while the pair (match#n, SPORTS LAW)
includes team and play.

2.2 Sense Assignment
The second step aims at assigning a sense distri-
bution to each lexeme-category pair. We exploit
the BOW we computed and the NASARI lexical
vectors (Camacho Collados et al., 2016) to repre-
sent categories and synsets, respectively. NASARI
leverages Wikipedia pages to provide a sparse rep-
resentation of BabelNet synsets, having words as
their dimensions weighted by their lexical speci-
ficity (Lafon, 1980). NASARI has been used to
compute the semantic similarity between two con-
cepts (Pilevar et al., 2013) in combination with
the Weighted Overlap (WO), which has proven to
work better than cosine similarity for comparing
sparse vectors. It takes as input two vectors v1 and
v2 and computes their similarity by considering
the ranks of the components shared by both vec-
tors5. However, as it takes into account only the
common dimensions, it also gives a high similarity
value when the two vectors share just a few dimen-
sions with similar rankings. In light of this, we
modified the original formula and added a weight
factor Ψ as follows:

WO(v1, v2) = Ψ

∑
w∈O

(rv1w + rv2w )−1

|O|∑
i=1

(2i)−1

(1)

where O is the intersection set between the dimen-
sions of v1 and v2, rviw is the rank of the dimension

5We note that the components of each vector are ranked
according to their weights.

(spring#n, SEASONS) (match#n, SPORTS LAW)
The season of growth 0.63 A formal contest 0.49
Natural flow of water 0.10 Score needed to win 0.21
Movement upwards 0.08 Exact duplicate 0.07

Table 2: Excerpt of the sense distribution of spring#n
and match#n for one of their categories.

Mouse (Animal) Score Mouse (Device) Score
MICE 2.91 COMPUTING INPUT DEVICES 3.35
INVASIVE MAMMAL SPECIES 2.91 POINTING DEVICES 3.24
RODENTS 2.82 COMPUTER CONNECTORS 3.24
RODENTS OF AUSTRALIA 2.70 PERSONAL COMPUTERS 3.07
RODENTS OF AFRICA 2.65 COMPUTER KEYBOARDS 2.87

Table 3: Excerpt of the most related categories for the
device and animal senses of mouse.

corresponding to the wordw in the vector vi and Ψ
is a logarithmic function that depends on the size
of O and is defined as Ψ = ln(|O|+ 1).

For example, given the BOW for a category re-
lated to the animal mouse and the two NASARI
vectors for the animal and device senses of mouse
as in Table 1, the standard weighted overlap scores
the animal sense 0.93 and the device sense 1.00,
even though the latter has only the first dimension
in common. When we add the logarithmic factor
Ψ, instead, the first sense is scored 1.80 while the
second is scored 0.69.

Therefore, for each lexeme-category pair (l, C)
we compute the WO between BC , i.e., the BOW
representation of the category C (see Section 2.1),
and each NASARI vector associated with a given
sense of l. Thus, given a set of weighted overlap
scores {WO(BC , s1), . . . ,WO(BC , sn)}, where
s1 . . . sn are the senses of l, we assign to (l, C)
the sense that maximises the similarity with the
category BOW as follows:

sense(l, C) = arg max
si

{WO(BC , si)}

In Table 2 we show the distribution of senses
for one category of spring#n and match#n, respec-
tively. As one can see, given the pair (spring#n,
SEASONS) we select the season sense of spring#n
as it is the highest ranked one in terms of WO,
while the formal contest meaning of match#n is
selected for (match#n, SPORTS LAW).

2.3 Sentence Sampling
Once each lexeme-category pair (l, C) is associ-
ated with one sense, we can reverse the relation
having – for each sense of l – a list of categories
C1, . . . , Cm sorted by weighted overlap. For ex-
ample, in Table 3 we show an excerpt of the most
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related categories for the animal and the device
meanings of the lemma mouse#n. As one can see,
the animal sense is mostly related to categories
that concern the animal world, e.g. MICE, RO-
DENTS, etc., while the device sense to the elec-
tronic device world, e.g. COMPUTING INPUT DE-
VICES, POINTING DEVICES, etc. Therefore, for
each sense si of l we sample a set of Ksi sentences
from C1, . . . , Cmi that depends on the BabelNet
ordering of senses. Following Pasini and Navigli
(2017) we compute Ksi applying a Zipfian distri-
bution:

Ksi =
K

iz
(2)

where K and z are two system parameters that de-
fine, respectively, the number of examples to as-
sign to the first sense of a lemma and how fast the
function decreases, while i is the sense position
in BabelNet. In the case that we find only β sen-
tences for the first sense of l, with β < Ks1 , we
scale down all Ksi by setting K = β, i.e., we con-
sider the maximum number of examples as those
that are actually available for the first sense. For
example, if we have z = 2.0 and K = 500 but we
can retrieve only 100 sentences for the sense s1,
we set K = 100 when computing Ksi for i > 1.
Hence, the number of sentences to be associated
with s2 is 25, rather than 125, thus maintaining
the distribution across senses balanced.

In order to provide different contexts of use for
a given sense si, we sample K

Cj
si sentences from

each category Cj . K
Cj
si is computed as follows:

K
Cj
si = Ksi

j−1

mi∑
j′=1

j′−1
(3)

where the second term is a smoothed version of
the category rank reciprocal6, i.e., it is normalised
by the sum of the reciprocal of each category rank
(from 1 to mi).

Once we have determined the number of exam-
ples to draw from each category, we sample the
sentences according to their perplexity, which we
compute with a Neural Language Model trained
on WikiText103 (Howard and Ruder, 2018)7.

The result of the above three steps is a
semantically-annotated corpus where each mean-
ing s of each lemma l ∈ L is associated with a set
of sentences in which l is tagged with s.

6Recall that the categories associated with the sense s are
sorted by weighted overlap.

7http://files.fast.ai/models/wt103/

3 Experimental Setup

We exploited the Word Sense Disambiguation
task to assess the quality of our automatically-
generated corpus. Therefore, we trained a ref-
erence WSD model on the data generated by
OneSeC and compared the results against those
achieved by the same model trained on other re-
sources.

In what follows we introduce the reference
Word Sense Disambiguation system, the test bed,
the comparison systems and how we tuned the two
parameters K and z.

Reference system We carried out the evaluation
with two different WSD models: the SVM-based
system It Makes Sense (Zhong and Ng, 2010,
IMS) and the Bi-LSTM-based model introduced
by Raganato et al. (2017b). For the latter we used
MUSE embeddings (Lample et al., 2018) in the
input layer, a learning rate of 0.5 and followed Ra-
ganato et al. (2017b) for all the other hyperparam-
eters. Depending on the setting, English or multi-
lingual, we chose the best-performing system on a
development set: Senseval-2 for English and an in-
house development set for all the other languages8.
For both models, unless differently stated, we used
the Most Frequent Sense (MFS) of a lemma, i.e.,
its first-ranked meaning in BabelNet, as backoff
strategy when the system was not able to provide
an answer.

Test bed We used the evaluation framework for
English all-words WSD made available by Ra-
ganato et al. (2017a). This comprises all the past
test sets, including Senseval-2 (Edmonds and Cot-
ton, 2001), Senseval-3 (Snyder and Palmer, 2004),
SemEval-2007 (Pradhan et al., 2007), SemEval-
2013 (Navigli et al., 2013), SemEval-2015 (Moro
and Navigli, 2015) and ALL, i.e., the concatena-
tion of all the aforementioned datasets. For the
multilingual evaluation, instead, we used the all-
words multilingual WSD tasks of SemEval-2013
(Navigli et al., 2013) and SemEval-2015 (Moro
and Navigli, 2015). For both settings, we focused
on nouns only, as NASARI vectors are available
mainly for nominal concepts.

Following the literature, we report the F1 mea-
sure on all the test sets unless stated differently.

8The development set of each language comprises 50
manually-annotated word-sense pairs.

http://files.fast.ai/models/wt103/
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Figure 1: Performance on the development set of IMS and the Bi-LSTM model trained on OneSeC when z = 2.0
and K ranges between 100 and 900 (left) and when K = 700 and z ranges between 2.0 and 3.0 (right).

English parameter tuning We tune the param-
eters K and z introduced in Section 2.3 so as to
maximise the performance of the reference system
on the development set. We used Senseval-2 as
tuning corpus and varied K between 100 and 900
with a 200 step and z between 2.0 and 3.0 with a
0.1 step. We ran both models, IMS and Bi-LSTM,
for each parameter value and chose the one that
performed best. In Figure 1 (left) we show the re-
sults of the two systems when trained on OneSeC
where z is set to 2.0 and K is increased from 100
to 900. As can be seen, the Bi-LSTM trend in-
creases more rapidly than the IMS one. However,
its results are always lower than those attained by
its alternative. IMS, in fact, scores almost 5 points
higher starting from K = 100 and maintains its
lead through all the values of K. It reaches a
plateau when K = 700, which we interpret as the
plateau of knowledge. Indeed, increasing the num-
ber of examples degrades IMS performance as no
more informative sentences are found for a given
sense. Once K was set to 700 both for IMS and
Bi-LSTM, we ran the same experiment varying z.
As one can see in Figure 1 (right), IMS achieves
the highest score when z = 2.1 while Bi-LSTM
when z = 2.9. While IMS seems sensitive to this
parameter, attaining better performance when the
distribution of classes in training is more balanced,
the neural model trend is almost constant, indicat-
ing it is less dependent on the sense distribution.

Therefore, we chose IMS as our WSD reference
system as it consistently outperformed its neural-
network alternative. In the following we report the
results of IMS trained on OneSeC with K = 700
and z = 2.1.

Multilingual parameter tuning We varied K

and z as for English and computed the perfor-
mance separately on each language-specific de-
velopment dataset. We then chose the parame-
ters leading the reference model to the highest
results averaged across all languages. Contrary
to what was the case for English, the Bi-LSTM
model outperformed IMS on most of the settings
and achieved the highest score with K = 200 and
z = 2.0. Hence, we report multilingual results
attained by the Bi-LSTM model when trained on
OneSeC with K = 200 and z = 2.0.

Comparison systems We compared OneSeC
with a manual, a semi-automatic and a fully-
automatic alternative:

• SemCor (Miller et al., 1993): the most
used training corpus in WSD, which provides
more than 200K manual annotations.

• OMSTI (Taghipour and Ng, 2015): a
semi-automatic approach that extracts
semantically-annotated data by exploiting
parallel data to reduce the ambiguity of the
target language. Since the resource contains
SemCor by default, we considered only the
semi-automatically generated examples in
order to guarantee a fair comparison with
OneSeC.

• Train-O-Matic9 (Pasini and Navigli, 2017,
TOM): a knowledge-based method for the
automatic generation of sense-annotated
data.

9http://trainomatic.org

http://trainomatic.org
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Dataset
OneSeC OMSTI Train-O-Matic SemCor

P R F1 P R F1 P R F1 P R F1
Senseval-2 72.3 69.1 70.7 64.8 38.5 39.6 69.5 65.5 67.4 73.5 61.3 66.8
Senseval-3 66.5 62.1 64.2 55.7 31.0 39.8 66.1 63.1 64.6 73.2 67.6 70.2
SemEval-07 63.7 62.9 63.3 64.1 35.9 46.0 59.8 59.8 59.8 68.9 65.4 67.1
SemEval-13 64.0 58.3 61.0 50.7 23.4 32.0 61.3 53.3 57.0 63.2 55.4 59.0
SemEval-15 69.2 64.8 66.9 57.0 26.7 36.4 67.0 62.3 64.6 65.3 56.3 60.5
ALL 67.3 62.8 64.9 56.5 27.0 36.5 65.1 59.7 62.3 68.3 59.9 63.8

Table 4: Performance of IMS trained on different corpora on the English all-words WSD tasks when the MFS is
disabled.

Dataset OneSeC TOM OMSTI SemCor MFS
Senseval-2 73.2 70.5 74.1 76.8 72.1
Senseval-3 68.2 67.4 67.2 73.8 72.0
SemEval-07 63.5 59.8 62.3 67.3 65.4
SemEval-13 66.5 65.5 62.8 65.5 63.0
SemEval-15 70.8 68.6 63.1 66.1 66.3
ALL 69.0 67.3† 66.4† 70.4 67.6

Table 5: Results of IMS trained on different corpora on
the English all-words WSD tasks. † marks statistical
significance between OneSeC and its competitors.

For the multilingual setting, instead, due to the
lack of manually sense-annotated data for non-
English languages, we compared directly OneSeC
against the best participating system in each task
and Train-O-Matic. To set a level playing field,
we also report the results attained by the Bi-LSTM
model when trained on Train-O-Matic corpora for
the tested languages.

4 Results

4.1 English All-Words WSD
We proceed by testing the reference WSD sys-
tem on the data provided by OneSeC, Train-O-
Matic, OMSTI and SemCor on the English all-
words tasks.

In Table 5 we compare the results of IMS when
trained on different corpora. As one can see,
OneSeC achieves the best results on ALL when
compared to automatic and semi-automatic ap-
proaches, and ranks second only with respect to
SemCor. Interestingly enough, OneSeC beats its
manual competitor on SemEval-2013 by 1 point
and on SemEval-2015 by 4.7 points, an impres-
sive result considering that OneSeC does not in-
volve any human intervention during the gener-
ation of the corpus. In Table 5 we also report
the statistical significance between OneSeC and
its competitors on the ALL dataset by juxtapos-
ing a † symbol next to the score. In order to do

Dataset OneSeC TOM OMSTI Total
Senseval-2 401 400 197 436
Senseval-3 424 435 197 469
SemEval-07 125 127 68 127
SemEval-13 656 629 249 751
SemEval-15 228 226 102 253
ALL 1359 1350 456 1557

Table 6: Number of nominal lemmas covered by each
corpus.

this, we computed the McNemar’s χ2 test (McNe-
mar, 1947) with significance level α = 0.01 be-
tween OneSeC and SemCor. It resulted in no sta-
tistical significance, meaning that IMS trained on
OneSeC is in the same ballpark as when trained
on SemCor. We note that the goal of this work
was not to achieve state-of-the-art results on En-
glish WSD compared to manually-annotated cor-
pora. However, performing competitively on stan-
dard benchmarks represents one step further to-
wards getting rid of the limitation imposed by re-
sources like SemCor. Moreover, our approach out-
performs Train-O-Matic, our direct competitor, on
all the datasets, with the highest increment of 3.7
points on SemEval-2007, while scoring almost 2
points higher than TOM overall.

OneSeC also attains higher results when com-
pared with a semi-automatic approach like OM-
STI. In fact, OMSTI is surpassed on all the
datasets but Senseval-2 and scores 2.6 F1 points
less on the ALL dataset. This is per se a remark-
able result as OneSeC is automatic, while OM-
STI relies on parallel corpora and manual effort
to align senses across languages. Furthermore,
we show that OneSeC results are statistically sig-
nificant in comparison to those attained by TOM
and OMSTI. We also note that, similarly to TOM,
OneSeC covers almost all the lemmas in each test
set (see Table 6), while OMSTI is able to provide
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Dataset Domain Size Backoff
OneSeC TOM OMSTI

MFS
P R F1 P R F1 P R F1

SemEval-13

Biology 135
MFS 67.4 67.4 67.4 63.0 63.0 63.0 65.9 65.9 65.9

64.4
- 65.1 60.7 62.8 59.0 53.3 56.0 48.1 18.5 26.7

Climate 194
MFS 68.0 68.0 68.0 68.1 68.1 68.1 68.0 68.0 68.0

67.5
- 65.0 54.6 59.4 63.4 50.0 55.9 58.0 24.2 34.2

Finance 219
MFS 69.4 69.4 69.4 68.0 68.0 68.0 64.4 64.4 64.4

56.2
- 67.2 61.6 64.3 62.1 51.6 56.4 57.4 28.3 37.9

Health Care 138
MFS 65.9 65.9 65.9 65.2 65.2 65.2 52.9 52.9 52.9

56.5
- 62.4 56.5 59.3 61.3 55.1 58.0 34.6 18.4 24.0

Politics 279
MFS 68.8 68.8 68.8 65.2 65.2 65.2 63.4 63.4 63.4

67.7
- 67.0 63.4 65.2 62.5 54.8 58.4 54.1 21.5 30.8

Social Issues 349
MFS 66.5 66.5 66.5 68.5 68.5 68.5 65.6 65.6 65.6

67.6
- 62.5 55.0 58.5 63.1 53.0 57.6 54.7 25.2 34.5

Sport 330
MFS 61.8 61.8 61.8 60.3 60.3 60.3 58.8 58.8 58.8

57.6
- 61.8 57.3 58.8 58.3 54.6 56.4 45.0 23.0 30.4

SemEval-15
Biomedicine 100

MFS 78.4 78.4 78.4 76.3 76.3 76.3 64.9 64.9 64.9
71.1

- 77.8 72.2 74.9 76.1 72.2 74.1 60.5 26.8 37.2

Maths & Pc 97
MFS 60.0 60.0 60.0 50.0 50.0 50.0 36.0 36.0 36.0

40.9
- 59.8 58.0 58.9 50.0 47.0 48.5 21.2 11.0 14.5

Table 7: Domain-specific evaluation on SemEval-2013 and SemEval-2015 of IMS trained on OneSeC, TOM and
OMSTI.

annotated examples for only half of the instances.
Therefore, IMS – when trained on OMSTI – re-
sorts heavily to the MFS backoff strategy.

In light of this, we computed precision (P), re-
call (R) and their harmonic mean (F1) when no
backoff strategy was used, as shown in Table 4. As
one can see, OMSTI’s performance drops heavily
by roughly 30 points, confirming the figures in Ta-
ble 6. Train-O-Matic’s results, in contrast, remain
consistent, scoring 1.5 F1 points less than Sem-
Cor overall and managing to beat it on 2 datasets.
OneSeC, instead, leads IMS to the highest results
overall, managing to surpass those achieved, not
only by its direct competitors, but also by SemCor.

The results attest the high quality of our corpus,
hence crowning OneSeC as the best choice over its
competitors and even over manually-curated cor-
pora when no back-off strategy is available.

4.2 Augmenting SemCor

To further investigate the quality of the exam-
ples provided by OneSeC, we augmented SemCor
with our automatically-tagged sentences (Sem-
Cor+OneSeC). We added examples to SemCor in
two cases:

1. When a word in OneSeC lexicon never ap-
pears tagged in SemCor.

2. When not all senses of a word are covered by
at least one example in SemCor.

In the first case we provided annotated sentences
for all the senses of the target word with K = 700
and z = 2.1. In the second case, instead, we gen-
erated examples only for those senses si of a word
w that are missing in SemCor. We determined
the number of examples for si by following the
Zipfian distribution in Formula 2 with z = 2.1
and K = |examples(s1, w)|, i.e., the number
of examples in SemCor where w occurs tagged
with its most frequent sense s1. SemCor+OneSeC
achieves 70.7 F1 points on ALL, beating SemCor
alone (70.4) and SemCor+OMSTI (70.5)10.

4.3 Domain-Specific Evaluation
In Table 7 we show the results achieved by IMS
on each specific domain of SemEval-2013 and
SemEval-2015. As shown in the two tables, when
compared with TOM and OMSTI, OneSeC leads
IMS to consistently outperform all the other ap-
proaches on SemEval-2015 and most of the do-
mains of SemEval-2013. In fact, OneSeC scores
lower only in 2 out of the 7 SemEval-2013 do-
mains, whereas Train-O-Matic, instead, scores 0.1
and 2 points higher. However, when the MFS is
disabled (second row of each domain), OneSeC
is the best system across the board, demonstrat-
ing it can also provide valuable examples for those
words that are specific to a domain.

10We refer to SemCor+OMSTI as the dataset containing
all tagged sentences of both SemCor and OMSTI corpora.
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4.4 Multilingual All-Words WSD

Finally, we move our focus to testing the abil-
ity of OneSeC to scale to different languages. In
Tables 8 and 9 we show the results obtained by
Bi-LSTM trained on OneSeC and Train-O-Matic
(TOM - Bi-LSTM) when the MFS backoff strat-
egy is disabled. We compare the aforementioned
approaches with the best participating system in
SemEval-2013 and SemEval-2015, i.e., UMCC-
DLSI’s (Gutiérrez Vázquez et al., 2010) best run
for the Spanish test set of SemEval-2013 and IMS
trained on Train-O-Matic for all other datasets
(Pasini et al., 2018). OneSeC proved, once again,
to be the best system across the board, achieving
state-of-the-art results on all languages. Our ap-
proach outperforms its competitors on all datasets,
with the highest increment of 7.4 points on the
French test set for SemEval-2013, while scoring
on average 3.2 F1 points higher compared to the
existing state of the art.

Results show that OneSeC is a robust approach
that is able to scale across languages and domains.
It goes beyond the findings of Train-O-Matic and
raises the state-of-the-art bar in multilingual WSD.

5 Related Work

Word Sense Disambiguation is a well-established
task in the field of Natural Language Processing
and it has been tackled from many different angles
over the past years. One of the major problems
concerning WSD has been the so-called knowl-
edge acquisition bottleneck (Gale et al., 1992a),
i.e., the paucity of lexical-semantic data. In fact,
semantic resources are mainly exploited by WSD
models in one of two different ways: as structured
knowledge to identify the meaning of a word in a
context in knowledge-based models (Moro et al.,
2014; Agirre et al., 2014; Chaplot and Salakhutdi-
nov, 2018), and as training data to fit the param-
eters of a classifier in supervised models (Zhong
and Ng, 2010; Yuan et al., 2016; Raganato et al.,
2017b; Luo et al., 2018).

On the one hand, knowledge-based models have
proved to be more versatile when it comes to
disambiguating less frequent words and texts in
low-resourced languages, even though they suf-
fer from the lack of statistical evidence of lexi-
cal context. On the other hand, supervised models
have consistently attained higher results in English
WSD (Raganato et al., 2017a), however at the
cost of less flexibility and lower results when scal-

Lang
OneSeC TOM - Bi-LSTM Best

P R F1 P R F1 F1
IT 72.3 64.5 68.2 65.4 60.6 62.9 68.0 �
ES 76.0 68.3 72.0 71.7 66.8 69.2 71.0 ∗
FR 79.2 70.9 74.8 71.0 64.2 67.4 61.0 �∗
DE 83.0 68.5 75.1 77.5 64.1 70.2 63.0 �

Table 8: Comparison of Bi-LSTM trained on OneSeC
and TOM with the best system (Best) on SemEval-
2013. � Train-O-Matic, ∗ UMCC-DLSI.

Lang
OneSeC TOM - Bi-LSTM Best

P R F1 P R F1 F1
IT 65.0 60.2 62.5 61.6 58.3 59.9 59.9 �
ES 67.8 58.4 62.8 62.5 56.1 59.2 57.9 �

Table 9: Comparison of Bi-LSTM trained on OneSeC
and TOM with the best system (Best) on SemEval-
2015. � Train-O-Matic, ∗ UMCC-DLSI.

ing to other languages (Raganato et al., 2017b).
Thus, research has recently been focused on new
techniques that aim at mitigating the effects of
the knowledge-acquisition bottleneck by automat-
ically creating high-quality, sense-annotated train-
ing corpora. Some earlier attempts consisted of
annotating examples from the Web by exploiting
the target words’ monosemous relatives (Agirre
and Martı́nez, 2004). But a major drawback of
this kind of approach is its limited coverage. In
fact, a training example can be provided only for
those senses with at least one monosemous related
concept. Raganato et al. (2016) presented in their
paper a method for the automatic construction of
a Semantically Enriched Wikipedia (SEW), where
the number of hyperlink annotations was enlarged
by means of a set of heuristics. As an outcome
they released a corpus containing more than 200
million annotations for approximately 4 million
concepts and named entities. Another approach
was developed by Otegi et al. (2016) to enrich the
multilingual text of Europarl (Koehn, 2005) and
QTLeap (Agirre et al., 2014) with several features,
including semantic annotations in 6 different lan-
guages. Parallel corpora were exploited also in
the more recent work of Taghipour and Ng (2015,
OMSTI)11, who presented a semi-automatic ap-
proach that creates a novel semantically-annotated
dataset by leveraging the manual effort made to
align senses across different languages.

In contrast, recent methods have been able to
fully automatise the whole process while simulta-

11http://lcl.uniroma1.it/wsdeval/
training-data

http://lcl.uniroma1.it/wsdeval/training-data
http://lcl.uniroma1.it/wsdeval/training-data
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neously producing high-quality resources. For ex-
ample, Delli Bovi et al. (2017) exploited an exter-
nal WSD system, i.e., Babelfy (Moro et al., 2014),
and the richer context provided by aligned sen-
tences, to carry out semantic annotations for Eu-
roparl. Instead, Pasini and Navigli completely re-
moved the need for parallel corpora (Pasini and
Navigli, 2017; Pasini et al., 2018) and for the
WordNet backoff strategy (Pasini and Navigli,
2018) by introducing Train-O-Matic and two auto-
matic methods for inducing the sense distribution.

Our work follows this latter line of research and,
similarly to the aforementioned approaches, au-
tomatically provides multilingual sense-annotated
data on a large scale. OneSeC stands out from
its alternatives as it does not depend either on
the structure of a semantic network (like Train-
O-Matic), or on external WSD models (like Eu-
roSense). In our approach, in fact, we only rely
on Wikipedia categories and NASARI vectors to
inject semantic information at sentence level.

6 Conclusions

In this paper we presented OneSeC, a novel
method for the automatic creation of multilingual
sense-annotated corpora on a large scale. Our ap-
proach relieves the burden of human intervention,
hence mitigating the knowledge acquisition bot-
tleneck besetting WSD training data. Moreover,
we take a further step towards removing any de-
pendency on a semantic-network structure by ex-
ploiting only Wikipedia categories and a sparse
vector representation of concepts for creating our
datasets. OneSeC outperforms its automatic and
semi-automatic alternatives on the English WSD
task, and achieves results in the same ballpark as
those attained when manually-curated corpora are
used for training. Furthermore, OneSeC scales to
multiple languages without any additional human
effort. Indeed, our approach also proved to be ca-
pable of producing high-quality training data for
low-resourced languages, leading a WSD super-
vised model to achieve state-of-the-art results on
all the datasets of the multilingual WSD tasks. We
release more than one million tagged sentences for
English, Spanish, Italian, French and German at
http://trainomatic.org/onesec.

As future work we plan to exploit a subset of the
Wikipedia categories as coarse-grained sense in-
ventory and enrich our dataset with coarser labels,
hence enabling WSD at different granularities.
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