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Abstract

While word embeddings are widely used for
a variety of tasks and substantially improve
the performance, their quality is not consis-
tent throughout the vocabulary due to the long-
tail distribution of word frequency. Without
sufficient contexts, embeddings of rare words
are usually less reliable than those of com-
mon words. However, current models typ-
ically trust all word embeddings equally re-
gardless of their reliability and thus may in-
troduce noise and hurt the performance. Since
names often contain rare and unknown words,
this problem is particularly critical for name
tagging. In this paper, we propose a novel
reliability-aware name tagging model to tackle
this issue. We design a set of word frequency-
based reliability signals to indicate the quality
of each word embedding. Guided by the re-
liability signals, the model is able to dynami-
cally select and compose features such as word
embedding and character-level representation
using gating mechanisms. For example, if an
input word is rare, the model relies less on its
word embedding and assigns higher weights to
its character and contextual features. Experi-
ments on OntoNotes 5.0 show that our model
outperforms the baseline model, obtaining up
to 6.2% absolute gain in F-score. In cross-
genre experiments on six genres in OntoNotes,
our model improves the performance for most
genre pairs and achieves 2.3% absolute F-
score gain on average. 1

1 Introduction

Serving as the basic unit of the model input, word
embeddings form the foundation of various nat-
ural language processing techniques using deep
neural networks. Embeddings can effectively en-
code semantic information and have proven suc-
cessful in a wide range of tasks, such as sequence

1Code and resources for this paper: https://github.
com/limteng-rpi/neural_name_tagging

A MedChem spokesman said the products contribute about
a third of MedChem's sales and 10% to 20% of its earnings
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Figure 1: A simplified illustration of the proposed
model. We only show the backward part in the figure.

labeling (Collobert et al., 2011; Chiu and Nichols,
2016; Ma and Hovy, 2016; Lample et al., 2016),
text classification (Tang et al., 2014; Lai et al.,
2015; Yang et al., 2016), and parsing (Chen and
Manning, 2014; Dyer et al., 2015). Still, due to
the long tail distribution, the quality of pre-trained
word embeddings is usually inconsistent. Without
sufficient contexts, the embeddings of rare words
are less reliable and may introduce noise, as cur-
rent models disregard their quality and consume
them in the same way as well-trained embeddings
for common words. This issue is particularly im-
portant for name tagging, the task of identifying
and classifying names from unstructured texts, be-
cause names usually contain rare and unknown
words, especially when we move to new domains,
topics, and genres.

By contrast, when encountering an unknown
word, human readers usually seek other clues in
the text. Similarly, when informed that an embed-

https://github.com/limteng-rpi/neural_name_tagging
https://github.com/limteng-rpi/neural_name_tagging
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ding is noisy or uninformative, the model should
rely more on other features. Therefore, we aim
to make the model aware of the quality of input
embeddings and guide the model to dynamically
select and compose features using explicit relia-
bility signals. For example, in Figure 1, since the
model is informed of the relatively low quality of
the word embedding of “MedChem”, which only
occurs 8 times in the embedding training corpus,
it assigns higher weights to other features such
as its character-level representation and contex-
tual features derived from its context words (e.g.,
“spokesman”).

The basis of this dynamic composition mecha-
nism is the reliability signals that inform the model
of the quality of each word embedding. Specifi-
cally, we assume that if a word occurs more fre-
quently, its word embedding will be more fully
trained as it has richer contexts and its embedding
is updated more often during training. Thus, we
design a set of reliability signals based on word
frequency in the embedding training corpus and
name tagging training corpus.

As Figure 1 shows, we use reliability signals to
control feature composition at two levels in our
model. At the word representation level, in addi-
tion to word embedding, we generate a character-
level representation for each word from its compo-
sitional characters using convolutional neural net-
works (see Section 2.1). Such character-level rep-
resentation is able to capture semantic and mor-
phological information. For example, the char-
acter features extracted from “Med” and “Chem”
may encode semantic properties related to medical
and chemical industries. At the feature extraction
level, we introduce context-only features that are
derived only from the context and thus not sub-
ject to the quality of the current word representa-
tion. For rare words without reliable representa-
tions, the contexts may provide crucial informa-
tion to determine whether they are part of names
or not. For example, “spokesman”, “products”,
and “sales” in the context can help the model
identify “MedChem” as an organization name.
Additionally, context-only features are generally
more robust because most non-name tokens in the
context are common words and unlikely to vary
widely across topics and scenarios. To incorpo-
rate the character-level representation and context-
only features, we design new gating mechanisms
to mix them with the word embedding and en-

coder output respectively. These reliability-aware
gates learn to dynamically assign weights to vari-
ous types of features to obtain an optimal mixture.

Experiments on six genres in OntoNotes (see
Section 3.1) show that our model outperforms the
baseline model without the proposed dynamic fea-
ture composition mechanism. In the cross-genre
experiments, our model improves the performance
for most pairs and obtains 2.3% absolute gain in
F-score on average.

2 Model

In this section, we will elaborate each component
of our model. In Section 2.1, we will describe the
baseline model for name tagging. After that, we
will introduce the frequency-based reliability sig-
nals in Section 2.2. In Section 2.3, We will elabo-
rate how we guide gates to dynamically compose
features at the word representation level and fea-
ture extraction level.

2.1 Baseline Model

We adopt a state-of-the-art name tagging model
LSTM-CNN (Long-short Term Memory - Con-
volutional Neural Network) (Chiu and Nichols,
2016) as our base model.

In this architecture, the input sentence is repre-
sented as a sequence of vectors X = {x1, ...,xL},
where xi is the vector representation of the i-th
word, and L is the length of the sequence. Gen-
erally, xi is a concatenation of word embedding
and character-level representation generated with
a group of convolutional neural networks (CNNs)
with various filter sizes from compositional char-
acter embeddings of the word.

Next, the sequence X is fed into a bi-directional
Recurrent Neural Network (RNN) with Long-
short Term Memory (LSTM) units (Hochreiter
and Schmidhuber, 1997). The bi-directional
LSTM network processes the sentence in a se-
quential manner and encodes both contextual and
non-contextual features of each word xi into a
hidden state hi, which is afterwards decoded by
a linear layer into yi. Each component of yi rep-
resents the score for the corresponding name tag
category.

On top of the model, a CRF (Lafferty et al.,
2001) layer is employed to capture the dependen-
cies among predicted tags. Therefore, given an in-
put sequence X and the output of the linear layer
Y = {y1, ...,yL}, we define the score of a se-
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quence of predictions ẑ = {ẑ1, ..., ẑL} to be

s(X, ẑ) =

L+1∑
i=1

Aẑi−1,ẑi +

L∑
i=1

yi,ẑi ,

where Aẑi−1,ẑi is the score of transitioning from
tag ẑi−1 to tag ẑi, and yi,ẑi is the component of
yi that corresponds to tag ẑi. Additionally, ẑ0 and
ẑL+1 are the <start> and <end> tags padded to
the predictions.

During training, we maximize the sentence-
level log-likelihood of the true tag path z given
the input sequence as

log p(z|X) = log
( es(X,z)∑

ẑ∈Z e
s(X,ẑ)

)
= s(X, z)− log

∑
ẑ∈Z

es(X,ẑ),

where Z is the set of all possible tag paths.
Note that in addition to word embeddings

and character-level representations, (Chiu and
Nichols, 2016) uses additional features such as
capitalization and lexicons, which are not included
in our implementation. Other similar name tag-
ging model will be discussed in Section 4.

2.2 Reliability Signals
As the basis of the proposed dynamic feature com-
position mechanism, reliability signals aim to in-
form the model of the quality of input word em-
beddings. Due to the lack of evaluation meth-
ods that directly measure the reliability of a single
word embedding (Bakarov, 2018), we design a set
of reliability signals based on word frequency as
follows:

1. Word frequency in the word embedding train-
ing corpus f e. Generally, if a word has more
occurrences in the corpus, it will appear in
more diverse contexts, and its word embed-
ding will be updated more times.

2. Word frequency in the name tagging train-
ing set fn. By fine-tuning pre-trained word
embeddings, the name tagging model can en-
code task-specific information (e.g., “depart-
ment” is often part of an organization name)
into embeddings of words in the name tag-
ging training set and improve their quality.

Because word frequency has a broad range of
values, we normalize it with tanh (λf), where λ

is set to 0.001 for f e and 0.01 for fn as the av-
erage word frequency is higher in the embedding
training corpus. We do not use relative frequency
because it turns low frequencies into very small
numbers close to zero. Using tanh as the normal-
ization function, the model can react more sensi-
tively towards lower frequency values.

In addition to the above numeric signals, we
introduce binary signals to give the model more
explicit clues of the rarity of each word. For ex-
ample, because we filter out words occurring less
than 5 times during word embedding training, the
following binary signal can explicitly inform the
model whether a word is out-of-vocabulary or not:

b(f e, 5) =

{
1, if f e < 5

0, if f e ≥ 5

We heuristically set the thresholds to 5, 10, 100,
1000, and 10000 for f e and 5, 10, 50 for fn based
on the average word frequency in both corpora.

The reliability signals of each word are repre-
sented as a vector, of which each component is
a certain numeric or binary signal. We apply a
dropout layer (Srivastava et al., 2014) with proba-
bility 0.2 to the reliability signals.

2.3 Dynamic Feature Composition
Word Representation Level
It is a common practice in current name tagging
models to utilize character-level representations to
address the following limitations of word embed-
dings: 1. Word embeddings take words as atomic
units and thus ignore useful subword information
such as affixes; 2. Pre-trained word embddings
are not available for unknown words, which are
typically represented using a randomly initialized
vector in current models.

Unlike previous methods that generally use
the character-level representation as an additional
feature under the assumption that word- and
character-level representations learn disjoint fea-
tures, we split the character-level representation
into two segments: the first segment serves as
an alternative representation to encode the same
semantic information as word embedding and is
mixed with word embedding using gating mecha-
nisms; the second segment is used as an additional
feature to encode morphological information that
cannot be captured by word embedding.

As Figure 2 illustrates, given the i-th word in a
sentence, xw

i ∈ Rdw denotes its word embedding,
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xc
i ∈ Rdc denotes its character-level representa-

tion, and xr
i ∈ Rdr denotes the reliability signals.

The character-level representation xc
i consists of

two subvectors:

xc
i = xca

i ⊕ xcc
i ,

where ⊕ is the concatenation operator, xca
i ∈ Rdw

i

acts as an alternative representation to word em-
bedding, and xcc ∈ Rdc−dw is concatenated as ad-
ditional features.

M e d C h e m

Max Pooling Layer

Convolution Layer

Character Embeddings

Fully Connected Layer

Word Embedding xw

xca xcc

Reliability-aware Gates
xr

Reliability
Signals

xc

Figure 2: Dynamic feature composition at the word
representation level.

In this example, because the word embedding
of “MedChem” is not reliable and informative,
the model should attend more to xca

i . To enable
the model to switch between both representations
accordingly, we define a pair of reliability-aware
gates gw

i and gc
i to filter xw

i and xca
i respectively.

We refer to gw
i as the word-level representation

gate and gc
i as the character-level representation

gate. We calculate gw
i as

gw
i = σ(Wwxw

i +W cxc
i +W rxr

i + b),

where Ww ∈ Rdw×dw , W c ∈ Rdw×dw , W r ∈
Rdw×dr , and b ∈ Rdw are parameters of the gate.
The character-level representation gate gc

i is de-
fined in the same way.

Finally, the enhanced representation of the i-th
word is given by

xi = (gw
i ◦ xw

i + gc
i ◦ xca

i )⊕ xcc
i ,

where ◦ denotes the Hadamard product.
We separately calculate gw

i and gc
i instead of

setting gc
i = 1− gw

i because word- and character-
level representations are not always exclusive.

Feature Extraction Level

Although character-level representations can en-
code semantic information in many cases, they
cannot perfectly replace word embeddings. For
example, in the following sentence:

“How does a small town like Linpien come to
be home to such a well-organized volunteer effort,
and just how did the volunteers set about giving
their town a make-over?”

The surface information of “Linpien” does not
provide sufficient clues to infer its meaning and
determine whether it is a name. In this case, the
model should seek other useful features from the
context, such as “a small town like” in the sen-
tence.

However, in our pilot study on OntoNotes, we
observe many instances where the model fails to
recognize an unseen name even with obvious con-
text clues, along with a huge performance gap
in recall between seen (92-96%) and unseen (53-
73%) names. A possible reason is that the model
can memorize some words without reliable rep-
resentations in the training set instead of exploit-
ing their contexts in order to reduce the training
loss. As a solution to this issue, we encourage
the model to leverage contextual features to reduce
overfitting to seen names. Compared to names, the
context usually consists of more common words.
Therefore, contextual features should be more ro-
bust when we apply the model to new data.

In LSTM, each hidden state hi is computed
from the previous forward hidden state

−→
h i−1, next

backward hidden state
←−
h i+1, and the current input

xi. To obtain features that are independent of the
current input and not affected by its quality, we
define context-only features as

oi =
−→o i ⊕←−o i = F (

−→
h i−1)⊕ F ′(

←−
h i+1),

where F and F ′ are affine transformations fol-
lowed by a non-linear function such that oi ∈
R2dh has the same dimensionality as hi.

In order to find an optimal mixture of hi and
oi according to the reliability of representations of
the current word and its context words, we define
two pairs of gates to control the composition: the
forward gates−→g h

i and−→g o
i , and the backward gates

←−g h
i and←−g o

i . Figure 3 illustrates how to obtain the
forward context-only features −→o i and mix it with−→
h i using reliability-aware gates.

All gates are computed in the same way. Take
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Figure 3: Dynamic feature composition at the feature
extraction level. We only show the forward model for
the purposes of simplicity.

the forward hidden state gate −→g h
i as an example:

−→g h
i = σ(Uh−→o i +U r(xr

i ⊕ ...⊕ xr
i−C) + b′),

where −→g h
i is parameterized by Uh ∈ Rdh×dh ,

U r ∈ Rdh×dr , and b′ ∈ Rdh . This gate is con-
trolled by the previous forward context-only fea-
tures −→oi and reliability signals (xr

i ⊕ ... ⊕ xr
i−C),

where C is the context window size.
By contrast, the backward gates ←−g h

i and ←−g o
i

take as input the backward context-only features
and reliability signals of the right context. With
these gates, we incorporate the context-only fea-
tures by

h′i = (−→g h
i ◦
−→
h i+

−→g o
i ◦
−→o i)⊕(←−g h

i ◦
←−
h i+

←−g o
i ◦
←−o i)

The enhanced hidden state h′i is then decoded
by a following linear layer as in the baseline
model.

3 Experiment

3.1 Data Sets

We conduct our experiments on OntoNotes
5.02 (Weischedel et al., 2013), the final release of
the OntoNotes project because it includes six di-
verse text genres for us to evaluate the robustness
of our approach as Table 1 shows.

We adopt the following four common entity
types that are also used in other data sets such
as TAC-KBP (Ji et al., 2011): PER (person), ORG

(organization), GPE (geo-political entity), and LOC

(location). We pre-process the data with Pradhan

2https://catalog.ldc.upenn.edu/LDC2013T19

Code Genre Name #Sentences
Train Dev Test

bc Broadcast conversation 11,866 2,117 2,211
bn Broadcast news 10,683 1,295 1,357
mz Magazine 6,911 642 780
nw Newswire 33,908 5,771 2,197
tc Telephone conversation 11,162 1,634 1,366
wb Weblogs 7,592 1,634 1,366

Table 1: OntoNotes genres.

et al.’s scripts3 and therefore follow their split of
training, development, and test sets.

We use the BIOES tag scheme to annotate tags.
The S- prefix indicates a single-token name men-
tion. Prefixes B-, I-, and E- mark the beginning,
inside, and end of a multi-token name mention. A
word that does not belong to any name mention is
annotated as O.

3.2 Experimental Setup

We use 100-dimensional word embeddings trained
on English Wikipedia articles (2017-12-20 dump)
with word2vec, and initialize character embed-
dings as 50-dimensional random vectors. The
character-level convolutional networks have filters
of width [2, 3, 4] of size 50.

For the bidirectional LSTM layer, we use a
hidden state size of 100. To reduce overfitting,
we attach dropout layers (Srivastava et al., 2014)
with probability 0.5 to the input and output of the
LSTM layer. We use an Adam optimizer with
batch size of 20, learning rate of 0.001 and linear
learning rate decay.

3.3 Within-genre Results

We use the LSTM-CNN model as our baseline in
all experiments. We train and test models on each
genre and compare the within-genre results in Ta-
ble 2. We also merge all genres and show the over-
all scores in the last column.

Overall, with reliability-aware dynamic feature
composition, our model achieves up to 6.2% ab-
solute F-score gain on separate genres. T-test re-
sults show that the differences are considered to be
statistically significant (p < 0.05) to statistically
highly significant (p < 0.001).

In Figure 4, we visualize gates that control the
mixture of hidden states and context-only fea-
tures. Each block represents the average of out-
put weights of a certain gate for the correspond-

3https://cemantix.org/data/ontonotes.html

https://catalog.ldc.upenn.edu/LDC2013T19
https://cemantix.org/data/ontonotes.html
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bc bn mz nw tc wb all

LSTM-CNN 83.5 89.9 86.6 92.8 65.4 79.4 90.1
Rei et al. (2016) 85.4 90.4 87.2 92.5 71.1 77.4 90.0
Our Model* 86.2 91.2 89.8 92.9 71.3 78.5 90.3
Our Model 86.4 91.4 90.0 93.0 71.6 79.1 90.6

Table 2: Performance on OntoNotes (F-score, %). Our
Model* is a variant of our model that does not incorpo-
rate reliability signals. (Rei et al., 2016) uses a gate to
control the mixture of character- and word-level repre-
sentations.

ing word. The results of hidden state gates −→g h

and←−g h show that for common words such as “a”
and “to”, the model mainly relies on their origi-
nal hidden states. By contrast, the context-only
feature gates −→g o and ←−g o assign greater weights
to the unknown word “Linpien”. Meanwhile, the
model barely uses any context-only features for
words following “Linpien” (“come” in the for-
ward model and “like” in the backward model)
to avoid using unreliable features derived from an
unknown word.

To our surprise, the model also emphasizes
context-only features for the beginning and ending
words. Their context-only features actually come
from the zero vectors padded to the sequence dur-
ing gate calculation. Our explanation is that these
features may help the model distinguish the be-
ginning and ending words that differ from other
words in some aspects. For example, capitaliza-
tion is usually an indicator of proper nouns for
most words except for the first word of a sentence.
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Figure 4: Visualization of reliability-aware gates. A
darker color indicates a higher average weight.

3.4 Cross-genre Results

Different genres in OntoNotes not only differ in
style but also cover different topics and hence dif-
ferent names. As Table 3 shows, when tested on
another genre, the model encounters a high per-
centage of names that are unseen in the training
genre. For example, 81.3% names are unseen
when we train a model on mz and test it on bc.
Therefore, through cross-genre experiments, we
can evaluate the generalization capability of the
model.

Train
Test

bc bn mz nw tc wb

bc 36.3 53.4 73.2 68.9 81.4 51.5
bn 43.9 28.5 72.8 63.6 67.8 49.9
mz 81.3 79.8 41.1 82.1 88.1 86.4
nw 40.2 43.8 70.8 33.1 55.4 55.1
tc 82.4 83.2 93.4 87.0 67.8 79.0
wb 54.6 60.6 75.4 70.8 85.3 53.4

Table 3: High percentage of unseen names (%).

Baseline Model

Train
Test

bc bn mz nw tc wb

bc 83.5 82.4 70.4 67.9 74.8 75.2
bn 83.5 89.9 78.7 75.6 76.8 77.1
mz 59.2 70.7 86.6 65.9 66.1 58.0
nw 82.4 85.4 72.6 92.8 74.4 76.7
tc 53.2 51.2 34.0 38.9 65.4 44.3
wb 71.5 78.1 67.5 66.6 70.1 79.4

Our Model

Train
Test

bc bn mz nw tc wb

bc 86.4 82.5 76.4 70.6 74.7 76.1
bn 84.8 91.4 78.7 79.2 76.5 76.1
mz 64.3 73.8 90.0 70.5 57.5 59.3
nw 81.5 86.1 74.0 93.0 74.9 78.3
tc 58.2 55.6 43.6 47.1 71.6 50.4
wb 76.3 78.4 70.5 69.6 72.3 79.1

Table 4: Cross-genre performance on OntoNotes (F-
score, %).

In Table 4, we compare the cross-genre perfor-
mance between the baseline and our model. For
most cross-genre pairs, our model outperforms the
baseline and obtains up to 9.6% absolute gains in
F-score.

With dynamic feature composition, the cross-
genre performance of our model even exceeds the
within-genre performance of the baseline model
in some cases. For example, when trained on the
bn portion and tested on bc, our model achieves
84.8% F-score, which is 1.3% higher than the
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within-genre performance of the baseline model
(83.5% F-score). Such generalization capability
is important for real-word applications as it is in-
feasible to annotate training data for all possible
scenarios.

3.5 Qualitative Analysis

In Table 5, we show some typical name tagging
errors corrected by our model. We highlight the
difference between the outputs of the baseline
model and our model in bold. We also underline
words that probably have provided useful contex-
tual clues.

Identification Errors
? BASELINE:
The 50-50 joint venture, which may be dubbed Euro-
dynamics , would have combined annual sales of at least

#1.4 billion ($2.17 billion) and would be among the world’s
largest missile makers.
? OUR MODEL:
The 50-50 joint venture, which may be dubbed [ORG Eu-

rodynamics] , would have combined annual sales of at
least #1.4 billion ($2.17 billion) and would be among the
world’s largest missile makers.
? BASELINE:
The Tanshui of illustrations is a place of unblemished
beauty, a myth that remains unshakeable.
? OUR MODEL:
The [GPE Tanshui] of illustrations is a place of unblem-
ished beauty, a myth that remains unshakeable.
Classification Errors
? BASELINE:
As [PER Syms] ’s “core business of off-price retailing
grows, a small subsidiary that is operationally unrelated be-
comes a difficult distraction,” said [PER Marcy Syms], pres-
ident of the parent, in a statement.
? OUR MODEL:
As [ORG Syms] ’s “core business of off-price retailing
grows, a small subsidiary that is operationally unrelated
becomes a difficult distraction,” said [PER Marcy Syms],
president of the parent, in a statement.
? BASELINE:
Workers at plants in [GPE Van Nuys] , [GPE Calif.] , [GPE

Oklahoma City] and [ORG Pontiac] , [GPE Mich.] , were
told their facilities are no longer being considered to build
the next generation of the [ORG Pontiac] Firebird and [ORG
Chevrolet] Camaro muscle cars.
? OUR MODEL:
Workers at plants in [GPE Van Nuys] , [GPE Calif.] , [GPE

Oklahoma City] and [GPE Pontiac] , [GPE Mich.] , were
told their facilities are no longer being considered to build
the next generation of the [ORG Pontiac] Firebird and [ORG
Chevrolet] Camaro muscle cars.

Table 5: Name tagging result comparison between the
baseline model and our model.

Character-level representations are particularly
effective for words containing morphemes that are
related to a certain type of names. For example,
“Eurodynamics” in the first sentence consists of
“Euro-” and “dynamic”. The prefix “Euro-” often
appears in European organization names such as
“EuroDisney” (an entertainment resort) and “Eu-
roAtlantic” (an airline), while “dynamic” is used
in some company names such as Boston dynam-
ics (a robotics company) and Beyerdynamic (an
audio equipment manufacturer). Therefore, “Eu-
rodynamics” is likely to be an organization rather
than a person or location.

However, for words like “Tanshui” (a town)
in the second example, character-level represen-
tations may not provide much useful semantic in-
formation. In this case, contextual features (“is a
place”) play an important role in determining the
type of this name.

Contextual features can be critical even for fre-
quent names such as “Jordan” (can be a person or a
country) and “Thomson” (can be various types of
entities, including person, organization, city, and
river). Take the third sentence in Table 5 as an
example. The name “Syms” appears twice in the
sentence, referring to the Syms Corp and Marcy
Syms respectively. As they share the same word-
and character-level representations, context clues
such as “core business” and “president” are cru-
cial to distinguish them. Similarly, “Pontiac” in
the last example can be either a city or a car brand.
Cities in its context (e.g., “Van Nuys, Calif”, “Ok-
lahoma City”) help the model determine that the
first “Pontiac” is more likely to be a GPE instead
of an ORG.

Still, the contextual information utilized by the
current model is not profound enough, and our
model is not capable of conducting deep reasoning
as human readers. For example, in the following
sentence:

“In the middle of the 17th century the Ming
dynasty loyalist Zheng Chenggong (also known
as Koxinga) brought an influx of settlers to Tai-
wan from the Fujian and Guangdong regions of
China.”

Although our model successfully identifies
“Zheng Chenggong” as a person, it is not able to
connect this name with “Koxinga” based on the
expression “also known as” to further infer that
“Koxinga” should also be a person.
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4 Related Work

Name Tagging Models
Most existing methods treat name tagging as a se-
quence labeling task. Traditional methods lever-
age handcrafted features to capture textual signals
and employ conditional random fields (CRF) to
model label dependencies (Finkel et al., 2005; Set-
tles, 2004; Leaman et al., 2008).

Bi-LSTM-CRF (Huang et al., 2015) combines
word embedding and handcrafted features, inte-
grates neural networks with CRF, and shows per-
formance boost over previous methods. LSTM-
CNN further utilizes CNN and illustrates the po-
tential of capturing character-level signals (Chiu
and Nichols, 2016). LSTM-CRF and LSTM-
CNNs-CRF are proposed to get rid of hand-crafted
features and demonstrate the feasibility to fully
rely on representation learning to capture textual
features (Lample et al., 2016; Ma and Hovy, 2016;
Liu et al., 2018b). Recently, language model-
ing methods are proven effective as the repre-
sentation module for name tagging (Liu et al.,
2018a; Peters et al., 2018; Akbik et al., 2018). At
the same time, there has been extensive research
about cross-genre (Peng and Dredze, 2017), cross-
domain (Pan et al., 2013; He and Sun, 2017),
cross-time (Mota and Grishman, 2008), cross-
task (Søgaard and Goldberg, 2016; Liu et al.,
2018b), and cross-lingual (Yang et al., 2017; Lin
et al., 2018) adaptation for name tagging training.

Unlike these models, although we also aim to
enhance the performance on new data, we achieve
this by improving the generalization capability of
the model so that it can work better on unknown
new data instead of transferring it to a known tar-
get setting.

Word Representation Models
Recent advances on representation learning al-
low us to capture textual signals in a data-driven
manner. Based on the distributional hypothesis
(i.e., “a word is characterized by the company it
keeps” (Harris, 1954)), embedding methods rep-
resent each word as a dense vector, while pre-
serving their syntactic and semantic information in
a context-agnostic manner (Mikolov et al., 2013;
Pennington et al., 2014). Recent work shows that
word embeddings can cover textual information of
various levels (Artetxe et al., 2018) and improve
name tagging performance significantly (Cherry
and Guo, 2015). Still, due to the long-tail distri-

bution of word frequency, embedding vectors usu-
ally have inconsistent reliability, and such incon-
sistency has been long overlooked.

Meanwhile, language models such as ELMo,
Flair, and BERT have shown their effectiveness
on constructing representations in a context-aware
manner (Peters et al., 2018; Akbik et al., 2018;
Devlin et al., 2018). These models are de-
signed to better capture the context information by
pre-training, while our model dynamically com-
poses representations in a reliability-aware man-
ner. Therefore, our model and these efforts have
the potential to mutually enhance each other.

In addition, (Kim et al., 2016) and (Rei et al.,
2016) also mix word- and character-level repre-
sentations using gating mechanisms. They use
a single gate to balance the representations in a
reliability-agnostic way.

5 Conclusions and Future Work

We propose a name tagging model that is able to
dynamically compose features depending on the
quality of input word embeddings. Experiments
on the benchmark data sets in both within-genre
and cross-genre settings demonstrate the effective-
ness of our model and verify our intuition to intro-
duce reliability signals.

Our future work includes integrating advanced
word representation methods (e.g., ELMo and
BERT) and extending the proposed model to other
tasks, such as event extraction and co-reference
resolution. We also plan to incorporate external
knowledge and common sense as additional sig-
nals into our architecture as they are important for
human readers to recognize names but still absent
from the current model.
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