
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 140–150
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

140

A Joint Named-Entity Recognizer for Heterogeneous Tag-sets
Using a Tag Hierarchy

Genady Beryozkin, Yoel Drori, Oren Gilon, Tzvika Hartman and Idan Szpektor
Google Research
Tel Aviv, Israel

{genady,dyoel,ogilon,tzvika,szpektor} @google.com

Abstract
We study a variant of domain adaptation for
named-entity recognition where multiple, het-
erogeneously tagged training sets are avail-
able. Furthermore, the test tag-set is not iden-
tical to any individual training tag-set. Yet, the
relations between all tags are provided in a
tag hierarchy, covering the test tags as a com-
bination of training tags. This setting occurs
when various datasets are created using differ-
ent annotation schemes. This is also the case
of extending a tag-set with a new tag by an-
notating only the new tag in a new dataset.
We propose to use the given tag hierarchy to
jointly learn a neural network that shares its
tagging layer among all tag-sets. We compare
this model to combining independent models
and to a model based on the multitasking ap-
proach. Our experiments show the benefit of
the tag-hierarchy model, especially when fac-
ing non-trivial consolidation of tag-sets.

1 Introduction

Named Entity Recognition (NER) has seen signif-
icant progress in the last couple of years with the
application of Neural Networks to the task. Such
models achieve state-of-the-art performance with
little or no manual feature engineering (Collobert
et al., 2011; Huang et al., 2015; Lample et al.,
2016; Ma and Hovy, 2016; Dernoncourt et al.,
2017). Following this success, more complex NER
setups are approached with neural models, among
them domain adaptation (Qu et al., 2016; He and
Sun, 2017; Dong et al., 2017).

In this work we study one type of domain adap-
tation for NER, denoted here heterogeneous tag-
sets. In this variant, samples from the test set are
not available at training time. Furthermore, the test
tag-set differs from each training tag-set. However
every test tag can be represented either as a single
training tag or as a combination of several train-
ing tags. This information is given in the form of a

hypernym hierarchy over all tags, training and test
(see Fig. 1).

This setting arises when different schemes are
used for annotating multiple datasets for the same
task. This often occurs in the medical domain,
where healthcare providers use customized tag-
sets to create their own private test sets (Shickel
et al., 2017; Lee et al., 2018). Another scenario
is selective annotation, as in the case of extend-
ing an existing tag-set, e.g. {‘Name’, ‘Location’},
with another tag, e.g. ‘Date’. To save annotation
effort, new training data is labeled only with the
new tag. This case of disjoint tag-sets is also dis-
cussed in the work of Greenberg et al. (2018). A
similar case is extending a training-set with new
examples in which only rare tags are annotated.
In domains where training data is scarce, out-of-
domain datasets annotated with infrequent tags
may be very valuable.

A naive approach concatenates all training-
sets, ignoring the differences between the tagging
schemes in each example. A different approach
would be to learn to tag with multiple training tag-
sets. Then, in a post-processing step, the predic-
tions from the different tag-sets need to be con-
solidated into a single test tag sequence, resolv-
ing tagging differences along the way. We study
two such models. The first model learns an in-
dependent NER model for each training tag-set.
The second model applies the multitasking (MTL)
(Collobert et al., 2011; Ruder, 2017) paradigm, in
which a shared latent representation of the input
text is fed into separate tagging layers.

The above models require heuristic post-
processing to consolidate the different predicted
tag sequences. To overcome this limitation, we
propose a model that incorporates the given tag
hierarchy within the neural NER model. Specifi-
cally, this model learns to predict a tag sequence
only over the fine-grained tags in the hierarchy.

141

Tag-set 1 (T1): Name, Street, City, Hospital, Age>90

Tag-set 2 (T2): First Name, Last Name, Address, Age

Tag-set 3 (T3): Name, Location, Date

First
Name

Last
Name Street City Hospital Age>90 Date

Address

Location

Name Age

Figure 1: A tag hierarchy for three tag-sets.

At training time, gradients on each dataset-specific
labeled examples are propagated as gradients on
plausible fine-grained tags. At inference time the
model predicts a single sequence of fine-grained
tags, which are then mapped to the test tag-set by
traversing the tag hierarchy. Importantly, all tag-
ging decisions are performed in the model without
the need for a post-processing consolidation step.

We conducted two experiments. The first eval-
uated the extension of a tag-set with a new tag
via selective annotation of a new dataset with only
the extending tag, using datasets from the medical
and news domains. In the second experiment we
integrated two full tag-sets from the medical do-
main with their training data while evaluating on a
third test tag-set. The results show that the model
which incorporates the tag-hierarchy is more ro-
bust compared to a combination of independent
models or MTL, and typically outperforms them.
This is especially evident when many tagging col-
lisions need to be settled at post-processing. In
these cases, the performance gap in favor of the
tag-hierarchy model is large.

2 Background and Definitions

2.1 Task Definition
The goal in the heterogeneous tag-sets domain
adaptation task is to learn an NER model M that
given an input token sequence x = {xi}n1 infers
a tag sequence y = {yi}n1 = M(x) over a test
tag-set T s, ∀i yi∈T s. To learn the model, K train-
ing datasets {DSr

k}Kk=1 are provided, each labeled
with its own tag-set T r

k . Superscripts ’s’ and ’r’
stand for ’test’ and ’training’, respectively. In this
task, no training tag-set is identical to the test tag-
set T s by itself. However, all tags in T s can be cov-
ered by combining the training tag-sets {T r

k }Kk=1.
This information is provided in the form of a di-
rected acyclic graph (DAG) representing hyper-

Figure 2: Neural architecture for NER.

nymy relations between all training and test tags.
Fig. 1 illustrates such a hierarchy.

As mentioned above, an example scenario is
selective annotation, in which an original tag-set
is extended with a new tag t, each with its own
training data, and the test tag-set is their union.
But, some setups require combinations other than
a simple union, e.g. covering the test tag ‘Address’
with the finer training tags ‘Street’ and ‘City’, each
from a different tag-set.

This task is different from inductive domain
adaptation (Pan and Yang, 2010; Ruder, 2017), in
which the tag-sets are different but the tasks differ
as well (e.g. NER and parsing), with no need to
map the outcomes to a single tag-set at test time.

2.2 Neural network for NER

As the underlying architecture shared by all mod-
els in this paper, we follow the neural network
proposed by Lample et al. (2016), which achieved
state-of-the-art results on NER. In this model, de-
picted in Fig. 2, each input token xi is represented
as a combination of: (a) a one-hot vector xwi , map-
ping the input to a fixed word vocabulary, and (b) a
sequence of one-hot vectors {xci,j}

ni
j=1, represent-

ing the input word’s character sequence.
Each input token xi is first embedded in la-

tent space by applying both a word-embedding
matrix, wei = E xwi , and a character-based em-
bedding layer cei = CharBiRNN({xci,j}) (Ling
et al., 2015). This output of this step is ei =
cei ⊕ wei, where ⊕ stands for vector concatena-
tion. Then, the embedding vector sequence {ei}n1

142

Figure 3: NER multitasking architecture for 3 tag-sets.

is re-encoded in context using a bidirectional RNN
layer {ri}n1 = BiRNN({ei}n1) (Schuster and Pali-
wal, 1997). The sequence {ri}n1 constitutes the la-
tent representation of the input text.

Finally, each re-encoded vector ri is projected
to tag space for the target tag-set T , ti = P ri,
where |ti| = |T |. The sequence {ti}n1 is then taken
as input to a CRF layer (Lafferty et al., 2001),
which maintains a global tag transition matrix. At
inference time, the model output is y =M(x), the
most probable CRF tag sequence for input x.

3 Models for Multiple Tagging Layers

One way to learn a model for the heterogeneous
tag-sets setting is to train a base NER (Sec. 2.2)
on the concatenation of all training-sets, predicting
tags from the union of all training tag-sets. In our
experiments, this model under performed, due to
the fact that it treats each training example as fully
tagged despite being tagged only with the tags be-
longing to the training-set from which the example
is taken (see Sec. 6).

We next present two models that instead learn
to tag each training tag-set separately. In the first
model the outputs from independent base mod-
els, each trained on a different tag-set, are merged.
The second model utilizes the the multitasking ap-
proach to train separate tagging layers that share a
single text representation layer.

3.1 Combining independent models
In this model, we train a separate NER model for
each training set, resulting inK models {Mk}Kk=1.
At test time, each model predicts a sequence yk =

Mk(x) over the corresponding tag-set T r
k . The se-

quences {yk}Kk=1 are consolidated into a single se-
quence ys over the test tag-set T s.

We perform this consolidation in a post-
processing step. First, each predicted tag yk,i is
mapped to the test tag-set as ysk,i. We employ the
provided tag hierarchy for this mapping by travers-
ing it starting from yk,i until a test tag is reached.
Then, for every token xi, we consider the test
tags predicted at position i by the different mod-
els M(xi) = {ysk,i|ysk,i 6= ‘Other’}. Cases where
M(xi) contains more than one tag are called colli-
sions. Models must consolidate collisions, select-
ing a single predicted tag for xi.

We introduce three different consolidation
methods. The first is to randomly select a tag from
M(xi). The second chooses the tag that originates
from the tag sequence yk with the highest CRF
probability score. The third computes the marginal
CRF tag probability for each tag and selects the
one with the highest probability.

3.2 Multitasking for heterogeneous tag-sets

Lately, several works explored using multitask-
ing (MTL) for inductive transfer learning within a
neural architecture (Collobert and Weston, 2008;
Chen et al., 2016; Peng and Dredze, 2017). Such
algorithms jointly train a single model to solve dif-
ferent NLP tasks, such as NER, sentiment analy-
sis and text classification. The various tasks share
the same text representation layer in the model but
maintain a separate tagging layer per task.

We adapt multitasking to heterogeneous tag-
sets by considering each training dataset, which
has a different tag-set T r

k , as a separate NER task.
Thus, a single model is trained, in which the latent
text representation {ri}n1 (see Sec. 2.2) is shared
between NER tasks. As mentioned above, the tag-
ging layers (projection and CRF) are kept separate
for each tag-set. Fig. 3 illustrates this architecture.

We emphasize that the output of the MTL model
still consists of {yk}Kk=1 different tag sequence
predictions. They are consolidated into a final sin-
gle sequence ys using the same post-processing
step described in Sec. 3.1.

4 Tag Hierarchy Model

The models introduced in Sec. 3.1 and 3.2 learn
to predict a tag sequence for each training tag-
set separately and they do not share parameters
between tagging layers. In addition, they require

143

Tag-set 1 (T1): Name, Street, City, Hospital, Age>90, T1-Other

Tag-set 2 (T2): First Name, Last Name, Address, Age, T2-Other

Tag-set 3 (T3): Name, Location, Date, T3-Other

First
Name

Last
Name Street City Hospital Age>90 Age-

Other
Location-

Other Date

Address

Location

Name Age

T1-Other T2-Other T3-Other

FG-
Other

Address-
Other

Name-
Other

Figure 4: The tag hierarchy in Fig. 1 for three tag-sets
after closure extension. Green nodes and edges were
automatically added in this process. Fine-grained tags
are surrounded by a dotted box.

a post-processing step, outside of the model, for
merging the tag sequences inferred for the differ-
ent tag-sets. A simple concatenation of all training
data is also not enough to accommodate the differ-
ences between the tag-sets within the model (see
Sec. 3). Moreover, none of these models utilizes
the relations between tags, which are provided as
input in the form of a tag hierarchy.

In this section, we propose a model that ad-
dresses these limitations. This model utilizes the
given tag hierarchy at training time to learn a sin-
gle, shared tagging layer that predicts only fine-
grained tags. The hierarchy is then used during
inference to map fine-grained tags onto a target
tag-set. Consequently, all tagging decisions are
made in the model, without the need for a post-
processing step.

4.1 Notations

In the input hierarchy DAG, each node repre-
sents some semantic role of words in sentences,
(e.g. ‘Name’). A directed edge c → d implies
that c is a hyponym of d, meaning c captures
a subset of the semantics of d. Examples in-
clude ‘LastName’ → ‘Name’, and ‘Street ’ →
‘Location’ in Fig. 1. We denote the set of all
tags that capture some subset of semantics of d
by Sem(d) = {d} ∪ {c|c R−→ d}, where R−→ in-
dicates that there is a directed path from c to
d in the graph. For example, Sem(Name) =
{Name,LastName, F irstName}.

If a node d has no hyponyms (Sem(d) = {d}),
it represents some fine-grained tag semantics. We
denote the set of all fine-grained tags by TFG.
We also denote all fine-grained tags that are hy-
ponyms of d by Fine(d) = TFG ∩ Sem(d), e.g.
Fine(Name) = {LastName, F irstName}. As
mentioned above, our hierarchical model predicts
tag sequences only from TFG and then maps them

onto a target tag-set.

4.2 Hierarchy extension with ‘Other’ tags
For each tag d we would like the semantics cap-
tured by the union of semantics of all tags in
Fine(d) to be exactly the semantics of d, making
sure we will not miss any aspect of dwhen predict-
ing only over TFG. Yet, this semantics-equality
property does not hold in general. One such exam-
ple in Fig. 4 is ‘Age>90’→‘Age’, because there
may be age mentions below 90 annotated in T2’s
dataset.

To fix the semantics-equality above, we use the
notion of the ‘Other’ tag in NER, which has the
semantics of “all the rest”. Specifically, for every
d /∈ TFG, a fine-grained tag ‘d-Other’ ∈ TFG and
an edge ‘d-Other’→‘d’ are automatically added
to the graph, hence ‘d-Other’∈ Fine(d). For in-
stance, ‘Age-Other’→‘Age’. These new tags rep-
resent the aspects of d not captured by the other
tags in Fine(d).

Next a tag ‘Ti-Other’ is automatically added to
each tag-set Ti, explicitly representing the “all the
rest” semantics of Ti. The labels for ‘Ti-Other’
are induced automatically from unlabeled tokens
in the original DSr

i dataset. To make sure that the
semantics-equality property above also holds for
‘Ti-Other’, a fine-grained tag ‘FG-Other’ is also
added, which captures the “all the rest” semantics
at the fine-grained level. Then, each ‘Ti-Other’ is
connected to all fine-grained tags that do not cap-
ture some semantics of the tags in Ti, defining:

Fine(Ti-Other) = TFG \
⋃

d∈Tir{Ti-Other}

Sem(d)

This mapping is important at training time, where
‘Ti-Other’ labels are used as distant supervision
over their related fine-grained tags (Sec. 4.3). Fig.
4 depicts our hierarchy example after this step. We
emphasize that all extensions in this step are done
automatically as part of the model’s algorithm.

4.3 NER model with tag hierarchy
One outcome of the extension step is that the set
of fine-grained tags TFG covers all distinct fine-
grained semantics across all tag-sets. In the fol-
lowing, we train a single NER model (Sec. 2.2)
that predicts sequences of tags from the TFG tag-
set. As there is only one tagging layer, model pa-
rameters are shared across all training examples.

At inference time, this model predicts the most
likely fine-grained tag sequence yfg for the input

144

x. As the model outputs only a single sequence,
post-processing consolidation is not needed. The
tag hierarchy is used to map each predicated fine-
grained tag yfgi to a tag in a test tag-set T s by
traversing the out-edges of yfgi until a tag in T s

is reached. This procedure is also used in the base-
line models (see Sec. 3.1) for mapping their pre-
dictions onto the test tag-set. However, unlike the
baselines, which end with multiple candidate pre-
dictions in the test tag-set and need to consolidate
between them, here, only a single fine-grained tag
sequence is mapped, so no further consolidation is
needed.

At training time, each example x that belongs
to some training dataset DSr

i is labeled with a
gold-standard tag sequence y where the tags are
taken only from the corresponding tag-set T r

i .
This means that tags {yi} are not necessarily fine-
grained tags, so there is no direct supervision for
predicting fine-grained tag sequences. However,
each gold label yi provides distant supervision
over its related fine-grained tags, Fine(yi). It in-
dicates that one of them is the correct fine-grained
label without explicitly stating which one, so we
consider all possibilities in a probabilistic manner.

Henceforth, we say that a fine-grained tag se-
quence yfg agrees with y if ∀i yfgi ∈ Fine(yi),
i.e. yfg is a plausible interpretation for y at the
fine-grained tag level. For example, following
Fig. 4, sequences [‘Hospital’, ‘City’] and [‘Street’,
‘City’] agree with [‘Location’, ‘Location’], unlike
[‘City’, ‘Last Name’]. We denote all fine-grained
tag sequences that agree with y by AgreeWith(y).

Using this definition, the tag-hierarchy model is
trained with the loss function:

loss(y) = −log(Zy

Z
) (1)

Zy =
∑

yfg∈AgreeWith(y)

φ(yfg) (2)

Z =
∑
yfg

φ(yfg) (3)

where φ(y) stands for the model’s score for se-
quence y, viewed as unnormalized probability. Z
is the standard CRF partition function over all pos-
sible fine-grained tag sequences. Zy, on the other
hand, accumulates scores only of fine-grained tag
sequences that agree with y. Thus, this loss func-
tion aims at increasing the summed probability
of all fine-grained sequences agreeing with y.
Both Zy and Z can be computed efficiently using

Dataset Tag-set # Tokens Tagged (%)Size Tokens
I2B2’06 (train) 7 387,126 4.6
I2B2’06 (test) 163,488 4.2
I2B2’14 (train)

17
336,422 4.4

I2B2’14 (dev) 152,895 5.0
I2B2’14 (test) 316,212 4.6
Physio (test) 6 335,383 0.7
Conll (train)

4
203,621 16.7

Conll (dev) 51,362 16.7
Conll (test) 46,435 18.1
Onto (train) 18 1,304,491 13.1
Onto (test) 162,971 14.2

Table 1: Dataset statistics. Tokens tagged refer to per-
centage of tokens tagged not as ‘Other’.

the Forward-Backward algorithm (Lafferty et al.,
2001).

We note that we also considered finding the
most likely tag sequence over a test tag-set at infer-
ence time by summing the probabilities of all fine-
grained tag sequences that agree with each candi-
date sequence y: maxy

∑
yfg∈AgreeWith(y) φ(y

fg).
However, this problem is NP-hard (Lyngsø and
Pedersen, 2002). We plan to explore other alter-
natives in future work.

5 Experimental Settings

To test the tag-hierarchy model under hetero-
geneous tag-set scenarios, we conducted experi-
ments using datasets from two domains. We next
describe these datasets as well as implementation
details for the tested models. Sec. 6 then details
the experiments and their results.

5.1 Datasets

Five datasets from two domains, medical and
news, were used in our experiments. Table 1 sum-
marizes their main statistics.

For the medical domain we used the datasets
I2B2-2006 (denoted I2B2’06) (Uzuner et al.,
2007), I2B2-2014 (denoted I2B2’14) (Stubbs and
Uzuner, 2015) and the PhysioNet golden set (de-
noted Physio) (Goldberger et al., 2000). These
datasets are all annotated for the NER task of de-
identification (a.k.a text anonymization) (Dernon-
court et al., 2017). Still, as seen in Table 1, each
dataset is annotated with a different tag-set. Both
I2B2’06 and I2B2’14 include train and test sets,
while Physio contains only a test set.

For the news domain we used the English part of
CONLL-2003 (denoted Conll) (Tjong Kim Sang
and De Meulder, 2003) and OntoNotes-v5 (de-
noted Onto) (Weischedel et al., 2013), both with
train and test sets. We note that I2B2’14, Conll

145

and Onto also contain a dev-set, which is used for
hyper-param tuning (see below).

In all experiments, each example is a full docu-
ment. Each document is split into tokens on white-
spaces and punctuation. A tag-hierarchy covering
the 57 tags from all five datasets was given as input
to all models in all experiments. We constructed
this hierarchy manually. The only non-trivial tag
was ‘Location’, which in I2B2’14 is split into finer
tags (‘City’, ‘Street’ etc.) and includes also hospi-
tal mentions in Conll and Onto. We resolved these
relations similarly to the graph in Figure 1.

5.2 Compared Models

Four models were compared in our experiments:
MConcat A single NER model on the concate-

nation of datasets and tag-sets (Sec. 3).
MIndep Combining predictions of independent

NER models, one per tag-set (Sec. 3.1).
MMTL Multitasking over training tag-sets

(Sec. 3.2).
MHier A tag hierarchy employed within a sin-

gle base model (Sec. 4).

All models are based on the neural network de-
scribed in Sec. 2.2. We tuned the hyper-params in
the base model to achieve state-of-the-art results
for a single NER model on Conll and I2B2’14
when trained and tested on the same dataset
(Strubell et al., 2017; Dernoncourt et al., 2017)
(see Table 2). This is done to maintain a constant
baseline, and is also due to the fact that I2B2’06
does not have a standard dev-set.

We tuned hyper-params over the dev-sets of
Conll and I2B2’14. For character-based em-
bedding we used a single bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) with hidden
state size of 25. For word embeddings we used
pre-trained GloVe embeddings1 (Pennington et al.,
2014), without further training. For token recoding
we used a two-level stacked bidirectional LSTM
(Graves et al., 2013) with both output and hidden
state of size 100.

Once these hyper-params were set, no further
tuning was made in our experiments, which means
all models for heterogeneous tag-sets were tested
under the above fixed hyper-param set. In each
experiment, each model was trained until conver-
gence on the respective training set.

1nlp.stanford.edu/data/glove.6B.zip

I2B2’06 I2B2’14 Conll Onto
Micro avg. F1 0.894 0.960 0.926 0.896

Table 2: F1 for training and testing a single base NER
model on the same dataset.

Tag Frequency in training / test (%)
I2B2’06 I2B2’14 Conll Onto

Name 1.4 / 1.3 1.0 / 1.0 4.3 / 4.9 3.1 / 2.9
Date 1.7 / 1.5 2.4 / 2.5 0 / 0 2.7 / 3.1
Location 0.1 / 0.1 0.2 / 0.3 3.2 / 3.4 2.7 / 3.2
Hospital 0.6 / 0.7 0.3 / 0.3 0 / 0 0 / 0

Table 3: Occurrence statistics for tags used in the tag-
set extension experiment, reported as % out of all to-
kens in the training and test sets of each dataset.

6 Experiments and Results

We performed two experiments. The first refers to
selective annotation, in which an existing tag-set
is extended with a new tag by annotating a new
dataset only with the new tag. The second exper-
iment tests the ability of each model to integrate
two full tag-sets.

In all experiments we assess model perfor-
mance via micro-averaged tag F1, in accordance
with CoNLL evaluation (Tjong Kim Sang and
De Meulder, 2003). Statistical significance was
computed using the Wilcoxon two-sided signed
ranks test at p = 0.01 (Wilcoxon, 1945). We next
detail each experiment and its results.

In all our experiments, we found the per-
formance of the different consolidation methods
(Sec. 3.1) to be on par. One reason that using
model scores does not beat random selection may
be due to the overconfidence of the tagging mod-
els – their prediction probabilities are close to 0 or
1. We report figures for random selection as repre-
sentative of all consolidation methods.

6.1 Tag-set extension experiment
In this experiment, we considered the 4 most
frequent tags that occur in at least two of our
datasets: ‘Name’, ‘Date’, ‘Location’ and ‘Hospi-
tal’ (Table 3 summarizes their statistics). For each
frequent tag t and an ordered pair of datasets
in which t occurs, we constructed new training
sets by removing t from the first training set
(termed base dataset) and remove all tags but t
from the second training set (termed extending
dataset). For example, for the triplet of { ‘Name’,
I2B2’14, I2B2’06}, we constructed a version of
I2B2’14 without ‘Name’ annotations and a ver-
sion of I2B2’06 containing only annotations for
‘Name’. This process yielded 32 such triplets.

nlp.stanford.edu/data/glove.6B.zip

146

F1 AVERAGE Model
Extending Tag Base Dataset Hier Indep MTL
Date I2B2’14 0.806 0.795 0.787

I2B2’06 0.756 0.761 0.787
Onto 0.835 0.828 0.819

Date Total 0.799 0.795 0.798
Hospital I2B2’14 0.931 0.941 0.918

I2B2’06 0.867 0.866 0.853
Hospital Total 0.899 0.904 0.885
Location Conll 0.801 0.784 0.793

I2B2’14 0.953 0.913 0.905
I2B2’06 0.877 0.848 0.820
Onto 0.785 0.694 0.692

Location Total 0.854 0.810 0.802
Name Conll 0.847 0.759 0.729

I2B2’14 0.918 0.880 0.902
I2B2’06 0.740 0.743 0.729
Onto 0.878 0.862 0.862

Name Total 0.846 0.811 0.806
Grand Total 0.854 0.823 0.816

Table 4: F1 in the tag-set extension experiment, aver-
aged over extending datasets for every base dataset.

For every triplet, we train all tested models on
the two modified training sets and test them on the
test-set of the base dataset (I2B2’14 in the exam-
ple above). Each test-set was not altered and con-
tains all tags of the base tag-set, including t.

MConcat performed poorly in this experiment.
For example, on the dataset extending I2B2’14
with ‘Name’ from I2B2’06, MConcat tagged only
one ‘Name’ out of over 4000 ‘Name’ mentions in
the test set. Given this, we do not provide further
details of the results of MConcat in this experiment.

For the three models tested, this experiment
yields 96 results. The main results2 of this ex-
periment are shown in Table 4. Surprisingly, in
more tests MIndep outperformed MMTL than vice
versa, adding to prior observations that multitask-
ing can hurt performance instead of improving
it (Bingel and Søgaard, 2017; Alonso and Plank,
2017; Bjerva, 2017). But, applying a shared tag-
ging layer on top of a shared text representation
boosts the model’s capability and stability. Indeed,
overall, MHier outperforms the other models in
most tests, and in the rest it is similar to the best
performing model.

Analyzing the results, we noticed that the gap
between model performance increases when more
collisions are encountered for MMTL and MIndep at
post-processing time (see Sec. 3.1). The amount
of collisions may be viewed as a predictor for the
baselines’ difficulty to handle a specific heteroge-
neous tag-sets setting. Table 5 presents the tests
in which more than 100 collisions were detected
for either MIndep or MMTL, constituting 66% of all

2Detailed results for all 96 tests are given in the Appendix.

F1 Model
Tag Base Extending Hier Indep MTL
Date I2B2’14 I2B2’06 0.899 *0.903

Onto *0.713 0.686 0.671
I2B2’06 Onto 0.641 *0.681
Onto I2B2’06 *0.834 0.807

Location Conll I2B2’14 *0.818 0.783
I2B2’06 *0.748 0.730
Onto *0.836 0.830

I2B2’14 Conll *0.954 0.899 0.887
Onto *0.951 0.921 0.907

I2B2’06 Conll 0.876 0.816 0.760
Onto *0.869 0.847 0.812

Onto Conll *0.747 0.701 0.703
I2B2’14 0.793 0.691 0.707
I2B2’06 *0.814 0.691

Name Conll I2B2’14 *0.855 0.690
I2B2’06 *0.827 0.666 0.631
Onto 0.860 0.841

I2B2’14 Conll *0.900 0.863
I2B2’06 *0.943 0.893
Onto *0.911 0.882 0.891

I2B2’06 Conll *0.662 0.653
Onto Conll *0.895 0.888

I2B2’14 *0.892 0.872
I2B2’06 *0.846 0.827

Table 5: F1 for tag-set extensions with more than 100
collisions. Blank entries indicate fewer than 100 colli-
sions. (*) indicates all results that are statistically sig-
nificantly better than others in that row.

F1 Model
Tag Base Extending Hier Indep MTL

Location I2B2’14 I2B2’06 0.953 0.919 0.919
Onto 0.954 0.899 0.887

Name Conll I2B2’06 0.846 0.827 0.809
Onto 0.895 0.888 0.890

Table 6: Examples for performance differences when
base datasets are extended with an in-domain dataset
compared to an out-of-domain dataset.

test triplets. In these tests, MHier is a clear winner,
outperforming the compared models in all but two
comparisons, often by a significant margin.

Finally, we compared the models trained with
selective annotation to an “upper-bound” of train-
ing and testing a single NER model on the same
dataset with all tags annotated (Table 2). As ex-
pected, performance is usually lower with selec-
tive annotation. But, the drop intensifies when the
base and extending datasets are from different do-
mains – medical and news. In these cases, we ob-
served that MHier is more robust. Its drop com-
pared to combining datasets from the same domain
is the least in almost all such combinations. Ta-
ble 6 provides some illustrative examples.

6.2 Full tag-set integration experiment

A scenario distinct from selective annotation is
the integration of full tag-sets. On one hand, more
training data is available for similar tags. On the
other hand, more tags need to be consolidated
among the tag-sets.

147

F1 Test Set
Model I2B2’06 I2B2’14 Physio

I2B2’06 *0.894 0.730 0.637
I2B2’14 0.714 *0.960 0.712
MConcat 0.827 0.809 0.621
MIndep 0.760 0.861 0.640
MMTL 0.81 0.862 *0.739
MHier *0.900 *0.958 *0.760
Collisions Test Set

I2B2’06 I2B2’14 Physio
MIndep 224 1272 114
MMTL 158 584 44

Table 7: F1 for combining I2B2’06 and I2B2’14. The
top two models were trained only on a single dataset.
The lower table part holds the number of collisions at
post-processing. (*) indicates results that are statisti-
cally significantly better than others in that column.

To test this scenario, we trained the tested model
types on the training sets of I2B2’06 and I2B2’14,
which have different tag-sets. The models were
evaluated both on the test sets of these datasets
and on Physio, an unseen test-set that requires the
combination of the two training tag-sets for full
coverage of its tag-set. We also compared the mod-
els to single models trained on each of the training
sets alone. Table 7 displays the results.

As expected, single models do well on the test-
set companion of their training-set but they under-
perform on the other test-sets. This is expected be-
cause the tag-set on which they were trained does
not cover well the tag-sets in the other test-sets.

When compared with the best-performing sin-
gle model, using MConcat shows reduced results on
all 3 test sets. This can be attributed to reduced per-
formance for types that are semantically different
between datasets (e.g. ‘Date’), while performance
on similar tags (e.g. ‘Name’) does not drop.

Combining the two training sets using either
MIndep or MMTL leads to substantial performance
drop in 5 out of 6 test-sets compared to the best-
performing single model. This is strongly corre-
lated with the number of collisions encountered
(see Table 7). Indeed, the only competitive result,
MMTL tested on Physio, had less than 100 colli-
sions. This demonstrates the non triviality in real-
world tag-set integration, and the difficulty of re-
solving tagging decisions across tag-sets.

By contrast, MHier has no performance drop
compared to the single models trained and tested
on the same dataset. Moreover, it is the best per-
forming model on the unseen Physio test-set, with
6% relative improvement in F1 over the best single
model. This experiment points up the robustness
of the tag hierarchy approach when applied to this

heterogeneous tag-set scenario.

7 Related Work

Collobert et al. (2011) introduced the first com-
petitive NN-based NER that required little or no
feature engineering. Huang et al. (2015) combined
LSTM with CRF, showing performance similar to
non-NN models. Lample et al. (2016) extended
this model with character-based embeddings in ad-
dition to word embedding, achieving state-of-the-
art results. Similar architectures, such as combina-
tions of convolutional networks as replacements of
RNNs were shown to out-perform previous NER
models (Ma and Hovy, 2016; Chiu and Nichols,
2016; Strubell et al., 2017).

Dernoncourt et al. (2017) and Liu et al. (2017)
showed that the LSTM-CRF model achieves state-
of-the-art results also for de-identification in the
medical domain. Lee et al. (2018) demonstrated
how performance drops significantly when the
LSTM-CRF model is tested under transfer learn-
ing within the same domain in this task.

Collobert and Weston (2008) introduced MTL
for NN, and other works followed, showing it
helps in various NLP tasks (Chen et al., 2016;
Peng and Dredze, 2017). Søgaard and Goldberg
(2016) and Hashimoto et al. (2017) argue that
cascading architectures can improve MTL perfor-
mance. Several works have explored conditions
for successful application of MTL (Bingel and
Søgaard, 2017; Bjerva, 2017; Alonso and Plank,
2017).

Few works attempt to share information across
datasets at the tagging level. Greenberg et al.
(2018) proposed a single CRF model for tagging
with heterogeneous tag-sets but without a hierar-
chy. They show the utility of this method for in-
domain datasets with a balanced tag distribution.
Our model can be viewed as an extension of theirs
for tag hierarchies. Augenstein et al. (2018) use
tag embeddings in MTL to further propagate in-
formation between tasks. Li et al. (2017) propose
to use a tag-set made of cross-product of two dif-
ferent POS tag-sets and train a model for it. Given
the explosion in tag-set size, they introduce au-
tomatic pruning of cross-product tags. Kim et al.
(2015) and Qu et al. (2016) automatically learn
correlations between tag-sets, given training data
for both tag-sets. They rely on similar contexts for
related source and target tags, such as ‘professor’
and ‘student’.

148

Our tag-hierarchy model was inspired by re-
cent work on hierarchical multi-label classification
(Silla and Freitas, 2011; Zhang and Zhou, 2014),
and can be viewed as an extension of this direction
onto sequences tagging.

8 Conclusions

We proposed a tag-hierarchy model for the het-
erogeneous tag-sets NER setting, which does not
require a consolidation post-processing stage. In
the conducted experiments, the proposed model
consistently outperformed the baselines in difficult
tagging cases and showed robustness when apply-
ing a single trained model to varied test sets.

In the case of integrating datasets from the news
and medical domains we found the blending task
to be difficult. In future work, we’d like to im-
prove this integration in order to gain from training
on examples from different domains for tags like
‘Name’ and ‘Location’.

Acknowledgments

The authors would like to thank Yossi Matias,
Katherine Chou, Greg Corrado, Avinatan Has-
sidim, Rony Amira, Itay Laish and Amit Markel
for their help in creating this work.

References
Hector Martinez Alonso and Barbara Plank. 2017.

When is multitask learning effective? semantic se-
quence prediction under varying data conditions. In
EACL 2017-15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 1–10.

Isabelle Augenstein, Sebastian Ruder, and Anders
Søgaard. 2018. Multi-task learning of pairwise
sequence classification tasks over disparate label
spaces. arXiv:1802.09913v2.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In ACL.

Johannes Bjerva. 2017. Will my auxiliary tagging
task help? estimating auxiliary tasks effectivity in
multi-task learning. In Proceedings of the 21st
Nordic Conference on Computational Linguistics,
NoDaLiDa, 22-24 May 2017, Gothenburg, Sweden,
131, pages 216–220. Linköping University Elec-
tronic Press.

Hongshen Chen, Yue Zhang, and Qun Liu. 2016.
Neural network for heterogeneous annotations. In
EMNLP.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. TACL,
4(1):357–370.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR, 12(Aug):2493–2537.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner, and
Peter Szolovits. 2017. De-identification of patient
notes with recurrent neural networks. J. Am Med
Inform Assoc, 24(3):596–606.

Chuanhai Dong, Huijia Wu, Jiajun Zhang, and
Chengqing Zong. 2017. Multichannel lstm-crf for
named entity recognition in chinese social media. In
CCL/NLP-NABD. Springer.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jef-
frey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-
Kang Peng, and H Eugene Stanley. 2000. Phys-
iobank, physiotoolkit, and physionet. Circulation,
101(23):215–220.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In ICASSP.

Nathan Greenberg, Trapit Bansal, Patrick Verga, and
Andrew McCallum. 2018. Marginal likelihood
training of bilstm-crf for biomedical named entity
recognition from disjoint label sets. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2824–2829.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In
EMNLP.

Hangfeng He and Xu Sun. 2017. A unified model
for cross-domain and semi-supervised named entity
recognition in chinese social media. In AAAI.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional lstm-crf models for sequence tagging.
arXiv:1508.01991.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015. New transfer learning tech-
niques for disparate label sets. In ACL.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML.

149

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In ACL.

Ji Young Lee, Franck Dernoncourt, and Peter Szolovits.
2018. Transfer learning for named-entity recogni-
tion with neural networks.

Zhenghua Li, Jiayuan Chao, Min Zhang, Wenliang
Chen, Meishan Zhang, Guohong Fu, Zhenghua Li,
Jiayuan Chao, Min Zhang, Wenliang Chen, et al.
2017. Coupled pos tagging on heterogeneous an-
notations. TASLP, 25(3):557–571.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fernandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In EMNLP.

Zengjian Liu, Buzhou Tang, Xiaolong Wang, and
Qingcai Chen. 2017. De-identification of clinical
notes via recurrent neural network and conditional
random field. J. Biomed. Inf., 75:34–42.

Rune B Lyngsø and Christian NS Pedersen. 2002.
The consensus string problem and the complexity of
comparing hidden markov models. Journal of Com-
puter and System Sciences, 65(3):545–569.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
ACL.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Nanyun Peng and Mark Dredze. 2017. Multi-task do-
main adaptation for sequence tagging. In Proceed-
ings of the 2nd Workshop on Representation Learn-
ing for NLP.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei
Hou, and Timothy Baldwin. 2016. Named entity
recognition for novel types by transfer learning. In
EMNLP.

Sebastian Ruder. 2017. An overview of
multi-task learning in deep neural networks.
arXiv:1706.05098.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Benjamin Shickel, Patrick James Tighe, Azra Bihorac,
and Parisa Rashidi. 2017. Deep ehr: A survey of re-
cent advances in deep learning techniques for elec-
tronic health record (ehr) analysis. IEEE Journal of
Biomedical and Health Informatics.

Carlos N Silla and Alex A Freitas. 2011. A survey
of hierarchical classification across different appli-
cation domains. Data Mining and Knowledge Dis-
covery, 22(1-2):31–72.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew McCallum. 2017. Fast and accurate entity
recognition with iterated dilated convolutions. In
ENNLP.

Amber Stubbs and Özlem Uzuner. 2015. Annotating
longitudinal clinical narratives for de-identification:
The 2014 i2b2/uthealth corpus. J. Biomed. Inf.,
58:20–29.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
NAACL.

Özlem Uzuner, Yuan Luo, and Peter Szolovits. 2007.
Evaluating the state-of-the-art in automatic de-
identification. J. Am Med Inform Assoc, 14(5):550–
563.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. Ontonotes release 5.0
ldc2013t19. LDC.

Frank Wilcoxon. 1945. Individual comparisons by
ranking methods. Biometrics bulletin, 1(6):80–83.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A re-
view on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering,
26(8):1819–1837.

150

A Experiment Results

Full experiment results for Section 6.1

F1 Model
Tag Base Extending Hier Indep MTL
Date I2B2’14 I2B2’06 0.899 0.904 0.903

Onto 0.713 0.686 0.671
I2B2’06 I2B2’14 0.871 0.840 0.875

Onto 0.641 0.681 0.698
Onto I2B2’14 0.837 0.830 0.831

I2B2’06 0.834 0.826 0.807
Hospital I2B2’14 I2B2’06 0.931 0.941 0.918

I2B2’06 I2B2’14 0.867 0.866 0.853
Location Conll I2B2’14 0.818 0.783 0.812

I2B2’06 0.748 0.739 0.730
Onto 0.836 0.830 0.836

I2B2’14 Conll 0.954 0.899 0.887
I2B2’06 0.953 0.919 0.919
Onto 0.951 0.921 0.907

I2B2’06 Conll 0.876 0.816 0.760
I2B2’14 0.886 0.883 0.888
Onto 0.869 0.847 0.812

Onto Conll 0.747 0.701 0.703
I2B2’14 0.793 0.691 0.707
I2B2’06 0.814 0.691 0.666

Name Conll I2B2’14 0.855 0.771 0.690
I2B2’06 0.827 0.666 0.631
Onto 0.860 0.841 0.867

I2B2’14 Conll 0.900 0.863 0.890
I2B2’06 0.943 0.893 0.927
Onto 0.911 0.882 0.891

I2B2’06 Conll 0.662 0.679 0.653
I2B2’14 0.834 0.824 0.808
Onto 0.726 0.726 0.727

Onto Conll 0.895 0.888 0.890
I2B2’14 0.892 0.872 0.886
I2B2’06 0.846 0.827 0.809

