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Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 56th Annual Meeting of the Association for Computational
Linguistics on July 15-20, 2018 in Melbourne, Australia.

The ACL 2018 demonstrations track invites submissions ranging from early research prototypes to
mature production-ready systems. We received 79 submissions this year, of which 24 were selected
for inclusion in the program (acceptance rate of 30%) after review by three members of the program
committee.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions. A subset of the program committee members also helped us in selecting the best demo
paper. The candidate papers were selected by the demo chairs based on the feedback received by
reviewers. These are the papers nominated for the best demo paper:

• CRUISE: Cold-Start New Skill Development via Iterative Utterance Generation by Yilin
Shen, Avik Ray, Abhishek Patel and Hongxia Jin

• Out-of-the-box Universal Romanization Tool by Ulf Hermjakob, Jonathan May and Kevin
Knight

• Platforms for Non-Speakers Annotating Names in Any Language by Ying Lin, Cash Costello,
Boliang Zhang, Di Lu, Heng Ji, James Mayfield and Paul McNamee

• YEDDA: A lightweight Collaborative Text Span Annotation Tool by Jie Yang, Yue Zhang,
Linwei Li and Xingxuan Li

The winner of the best demo paper will be announced at ACL 2018. We would like to thank the best
demo paper committee for their dedicated work in this task. Lastly, we thank the many authors that
submitted their work to the demonstrations track.

Demonstrations papers will be presented during the three day conference along side the poster sessions.

Best,
Fei Liu and Thamar Solorio
ACL 2018 Demonstration Track Chairs
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V.G.Vinod Vydiswaran
Byron Wallace
William Yang Wang
Rui Wang
Huazheng Wang
Guillaume Wisniewski
Qingyun Wu
Kun Xu
tae yano
Hai Zhao
Jun Zhao
Guangyou Zhou
Imed Zitouni
Pierre Zweigenbaum

Best Demo Paper Selection Committee:

Michael Gamon
Vivek Srikumar
Benjamin Marie
Alessandro Raganato

vii





Table of Contents

Platforms for Non-speakers Annotating Names in Any Language
Ying Lin, Cash Costello, Boliang Zhang, Di Lu, Heng Ji, James Mayfield and Paul McNamee . . . 1

NovelPerspective: Identifying Point of View Characters
Lyndon White, Roberto Togneri, Wei Liu and Mohammed Bennamoun . . . . . . . . . . . . . . . . . . . . . . . . 7

Out-of-the-box Universal Romanization Tool uroman
Ulf Hermjakob, Jonathan May and Kevin Knight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

HarriGT: A Tool for Linking News to Science
James Ravenscroft, Amanda Clare and Maria Liakata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Jack the Reader – A Machine Reading Framework
Dirk Weissenborn, Pasquale Minervini, Isabelle Augenstein, Johannes Welbl, Tim Rocktäschel,

Matko Bosnjak, Jeff Mitchell, Thomas Demeester, Tim Dettmers, Pontus Stenetorp and Sebastian Riedel
25

YEDDA: A Lightweight Collaborative Text Span Annotation Tool
Jie Yang, Yue Zhang, Linwei Li and Xingxuan Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

NextGen AML: Distributed Deep Learning based Language Technologies to Augment Anti Money Laun-
dering Investigation

Jingguang Han, Utsab Barman, Jeremiah Hayes, Jinhua Du, Edward Burgin and Dadong Wan . . 37

NLP Web Services for Resource-Scarce Languages
Martin Puttkammer, Roald Eiselen, Justin Hocking and Frederik Koen . . . . . . . . . . . . . . . . . . . . . . . 43

DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled
Training Data

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao and Jun Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Sentence Suggestion of Japanese Functional Expressions for Chinese-speaking Learners
Jun Liu, Hiroyuki Shindo and Yuji Matsumoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Translating a Language You Don’t Know In the Chinese Room
Ulf Hermjakob, Jonathan May, Michael Pust and Kevin Knight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

SANTO: A Web-based Annotation Tool for Ontology-driven Slot Filling
Matthias Hartung, Hendrik ter Horst, Frank Grimm, Tim Diekmann, Roman Klinger and Philipp

Cimiano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

NCRF++: An Open-source Neural Sequence Labeling Toolkit
Jie Yang and Yue Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

TALEN: Tool for Annotation of Low-resource ENtities
Stephen Mayhew and Dan Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Web-scale system for scientific knowledge exploration
Zhihong Shen, Hao Ma and Kuansan Wang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

ix



ScoutBot: A Dialogue System for Collaborative Navigation
Stephanie M. Lukin, Felix Gervits, Cory Hayes, Pooja Moolchandani, Anton Leuski, John Rogers,

Carlos Sanchez Amaro, Matthew Marge, Clare Voss and David Traum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

The SUMMA Platform: A Scalable Infrastructure for Multi-lingual Multi-media Monitoring
Ulrich Germann, Renars Liepins, Guntis Barzdins, Didzis Gosko, Sebastião Miranda and David

Nogueira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

CRUISE: Cold-Start New Skill Development via Iterative Utterance Generation
Yilin Shen, Avik Ray, Abhishek Patel and Hongxia Jin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Praaline: An Open-Source System for Managing, Annotating, Visualising and Analysing Speech Corpora
George Christodoulides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Marian: Fast Neural Machine Translation in C++
Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,

Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins and Alexandra Birch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

DeepPavlov: Open-Source Library for Dialogue Systems
Mikhail Burtsev, Alexander Seliverstov, Rafael Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-

ina, Nickolay Bushkov, Olga Gureenkova, Taras Khakhulin, Yuri Kuratov, Denis Kuznetsov, Alexey
Litinsky, Varvara Logacheva, Alexey Lymar, Valentin Malykh, Maxim Petrov, Vadim Polulyakh, Leonid
Pugachev, Alexey Sorokin, Maria Vikhreva and Marat Zaynutdinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition
Albert Zeyer, Tamer Alkhouli and Hermann Ney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Flexible, Efficient and Accurate Framework for Community Question Answering Pipelines
Salvatore Romeo, Giovanni Da San Martino, Alberto Barrón-Cedeño and Alessandro Moschitti134

Moon IME: Neural-based Chinese Pinyin Aided Input Method with Customizable Association
Yafang Huang, Zuchao Li, Zhuosheng Zhang and Hai Zhao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



Conference Program

July 16th, 2018

12:30PM–14:00PM Demo Poster Session 1

Platforms for Non-speakers Annotating Names in Any Language
Ying Lin, Cash Costello, Boliang Zhang, Di Lu, Heng Ji, James Mayfield and Paul
McNamee

NovelPerspective: Identifying Point of View Characters
Lyndon White, Roberto Togneri, Wei Liu and Mohammed Bennamoun

Out-of-the-box Universal Romanization Tool uroman
Ulf Hermjakob, Jonathan May and Kevin Knight

HarriGT: A Tool for Linking News to Science
James Ravenscroft, Amanda Clare and Maria Liakata

Jack the Reader – A Machine Reading Framework
Dirk Weissenborn, Pasquale Minervini, Isabelle Augenstein, Johannes Welbl, Tim
Rocktäschel, Matko Bosnjak, Jeff Mitchell, Thomas Demeester, Tim Dettmers,
Pontus Stenetorp and Sebastian Riedel

YEDDA: A Lightweight Collaborative Text Span Annotation Tool
Jie Yang, Yue Zhang, Linwei Li and Xingxuan Li

NextGen AML: Distributed Deep Learning based Language Technologies to Aug-
ment Anti Money Laundering Investigation
Jingguang Han, Utsab Barman, Jeremiah Hayes, Jinhua Du, Edward Burgin and
Dadong Wan

NLP Web Services for Resource-Scarce Languages
Martin Puttkammer, Roald Eiselen, Justin Hocking and Frederik Koen

xi



July 17th, 2018

12:30PM–14:00PM Demo Poster Session 2

DCFEE: A Document-level Chinese Financial Event Extraction System based on
Automatically Labeled Training Data
Hang Yang, Yubo Chen, Kang Liu, Yang Xiao and Jun Zhao

Sentence Suggestion of Japanese Functional Expressions for Chinese-speaking
Learners
Jun Liu, Hiroyuki Shindo and Yuji Matsumoto

Translating a Language You Don’t Know In the Chinese Room
Ulf Hermjakob, Jonathan May, Michael Pust and Kevin Knight

SANTO: A Web-based Annotation Tool for Ontology-driven Slot Filling
Matthias Hartung, Hendrik ter Horst, Frank Grimm, Tim Diekmann, Roman Klinger
and Philipp Cimiano

NCRF++: An Open-source Neural Sequence Labeling Toolkit
Jie Yang and Yue Zhang

TALEN: Tool for Annotation of Low-resource ENtities
Stephen Mayhew and Dan Roth

A Web-scale system for scientific knowledge exploration
Zhihong Shen, Hao Ma and Kuansan Wang

ScoutBot: A Dialogue System for Collaborative Navigation
Stephanie M. Lukin, Felix Gervits, Cory Hayes, Pooja Moolchandani, Anton
Leuski, John Rogers, Carlos Sanchez Amaro, Matthew Marge, Clare Voss and
David Traum

xii



July 18th, 2018

12:30PM–14:00PM Demo Poster Session 3

The SUMMA Platform: A Scalable Infrastructure for Multi-lingual Multi-media
Monitoring
Ulrich Germann, Renars Liepins, Guntis Barzdins, Didzis Gosko, Sebastião Mi-
randa and David Nogueira

CRUISE: Cold-Start New Skill Development via Iterative Utterance Generation
Yilin Shen, Avik Ray, Abhishek Patel and Hongxia Jin

Praaline: An Open-Source System for Managing, Annotating, Visualising and
Analysing Speech Corpora
George Christodoulides

Marian: Fast Neural Machine Translation in C++
Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang,
Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri
Aji, Nikolay Bogoychev, André F. T. Martins and Alexandra Birch

DeepPavlov: Open-Source Library for Dialogue Systems
Mikhail Burtsev, Alexander Seliverstov, Rafael Airapetyan, Mikhail Arkhipov, Dil-
yara Baymurzina, Nickolay Bushkov, Olga Gureenkova, Taras Khakhulin, Yuri
Kuratov, Denis Kuznetsov, Alexey Litinsky, Varvara Logacheva, Alexey Lymar,
Valentin Malykh, Maxim Petrov, Vadim Polulyakh, Leonid Pugachev, Alexey
Sorokin, Maria Vikhreva and Marat Zaynutdinov

RETURNN as a Generic Flexible Neural Toolkit with Application to Translation
and Speech Recognition
Albert Zeyer, Tamer Alkhouli and Hermann Ney

A Flexible, Efficient and Accurate Framework for Community Question Answering
Pipelines
Salvatore Romeo, Giovanni Da San Martino, Alberto Barrón-Cedeño and Alessan-
dro Moschitti

Moon IME: Neural-based Chinese Pinyin Aided Input Method with Customizable
Association
Yafang Huang, Zuchao Li, Zhuosheng Zhang and Hai Zhao

xiii





Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 1–6
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Platforms for Non-Speakers Annotating Names in Any Language

Ying Lin,1 Cash Costello,2 Boliang Zhang,1 Di Lu,1
Heng Ji,1 James Mayfield,2 Paul McNamee2

1 Rensselaer Polytechnic Institute
{liny9,zhangb8,lud2,jih}@rpi.edu

2 Johns Hopkins University
{ccostel2,mayfield,mcnamee}@jhu.edu

Abstract

We demonstrate two annotation platforms
that allow an English speaker to anno-
tate names for any language without know-
ing the language. These platforms pro-
vided high-quality “silver standard” an-
notations for low-resource language name
taggers (Zhang et al., 2017) that achieved
state-of-the-art performance on two sur-
prise languages (Oromo and Tigrinya) at
LoreHLT20171 and ten languages at TAC-
KBP EDL2017 (Ji et al., 2017). We dis-
cuss strengths and limitations and compare
other methods of creating silver- and gold-
standard annotations using native speak-
ers. We will make our tools publicly avail-
able for research use.

1 Introduction
Although researchers have been working on unsu-
pervised and semi-supervised approaches to alle-
viate the demand for training data, most state-of-
the-art models for name tagging, especially neu-
ral network-based models (Pan et al., 2017; Zhang
et al., 2017) still rely on a large amount of train-
ing data to achieve good performance. When ap-
plied to low-resource languages, these models suf-
fer from data sparsity. Traditionally, native speak-
ers of a language have been asked to annotate a cor-
pus in that language. This approach is uneconom-
ical for several reasons. First, for some languages

We thank Kevin Blissett and Tongtao Zhang from RPI
for their contributions to the annotations used for the exper-
iments. This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) un-
der Contracts No. HR0011-15-C-0115 and No. HR0011-16-
C-0102. The views, opinions and/or findings expressed are
those of the authors and should not be interpreted as represent-
ing the official views or policies of the Department of Defense
or the U.S. Government.

1https://www.nist.gov/itl/iad/mig/lorehlt-evaluations

with extremely low resources, it’s not easy to ac-
cess native speakers for annotation. For example,
Chechen is only spoken by 1.4 million people and
Rejiang is spoken by 200,000 people. Second, it
is costly in both time and money to write an anno-
tation guideline for a low-resource language and
to train native speakers (who are usually not lin-
guists) to learn the guidelines and qualify for an-
notation tasks. Third, we observed poor annotation
quality and low inter-annotator agreement among
newly trained native speakers in spite of high lan-
guage proficiency. For example, under DARPA
LORELEI,2 the performance of two native Uighur
speakers on name tagging was only 69% and 73%
F1-score respectively.

Previous efforts to generate “silver-standard”
annotations used Web search (An et al., 2003), par-
allel data(Wang and Manning, 2014), Wikipedia
markups (Nothman et al., 2013; Tsai et al., 2016;
Pan et al., 2017), and crowdsourcing (Finin et al.,
2010). Annotations produced by these methods are
usually noisy and specific to a particular writing
style (e.g., Wikipedia articles), yielding unsatisfac-
tory results and poor portability.

It is even more expensive to teach English-
speaking annotators new languages. But can we
annotate names in a language we don’t know?
Let’s examine a Somali sentence:

“Sida uu saxaafadda u sheegay Dr Jaamac
Warsame Cali oo fadhigiisu yahay magaal-
ada Baardheere hadda waxaa shuban caloolaha
la yaalla xarumaha caafimaadka 15-cunug oo
lagu arkay fuuq bax joogto ah, wuxuu xusay
dhakhtarku in ay wadaan dadaallo ay wax kaga
qabanayaan xaaladdan”

Without knowing anything about Somali, an En-
glish speaker can guess that “Jaamac Warsame
Cali” is a person name because it’s capitalized, the

2https://www.darpa.mil/program/low-resource-
languages-for-emergent-incidents
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word on its left, “Dr,” is similar to “Dr.” in En-
glish, and its spelling looks similar to the English
“Jamac Warsame Ali.” Similarly, we can identify
“Baardheere” as a location name if we know that
“magaalada” in English is “town” from a common
word dictionary, and its spelling is similar to the
English name “Bardhere.”

What about languages that are not written in Ro-
man (Latin) script? Fortunately language universal
romanization (Hermjakob et al., 2018) or translit-
eration3 tools are available for most living lan-
guages. For example, the following is a Tigrinya
sentence and its romanized form:

“ናይዚ እዋን'ዚ ፕረዝደንት ዓብደልፈታሕ አል-ሲሲ ነቲ
ናይ 2011 ዓ.ም.ፈ ተቃውሞ ብምንኣድ እቲ ተቃውሚ
ሓዳስ ግብጺ ዘምጸአ'ዩ ኢሎም።”
“naayezi ’ewaane’zi perazedanete ’aabedale-
fataahhe ’ale-sisi nati naaye 2011 ’aa.me.fa
taqaawemo bemene’aade ’eti taqaawemi
hhaadaase gebetsi zametsa’a ’yulome .”

An English speaker can guess that “ዓብደልፈታሕ
አል-ሲሲ” is a person name because its romanized
form “aabedalefataahhe ’ale-sisi” sounds simi-
lar to the English name “Abdel-Fattah el-Sissi,”
and the romanized form of the word on its left,
“ፕረዝደንት,” (perazedanete) sounds similar to the
English word “president.”

Moreover, annotators (may) acquire language-
specific patterns and rules gradually during anno-
tation; e.g., a capitalized word preceded by “mag-
aalaa” is likely to be a city name in Oromo, such
as “magaalaa Adaamaa” (Adama city). Synchro-
nizing such knowledge among annotators both im-
proves annotation quality and boosts productivity.

The Information Sciences Institute (ISI) devel-
oped a “Chinese Room” interface4 to allow a non-
native speaker to translate foreign language text
into English, based on a small set of parallel sen-
tences that include overlapped words. Inspired by
this, RPI and JHU developed two collaborative an-
notation platforms that exploit linguistic intuitions
and resources to allow non-native speakers to per-
form name tagging efficiently and effectively.

2 Desiderata
We see the following requirements as being most
important to allow a non-speaker to annotate a lan-
guage, independent of interface. None of these re-
quirements is necessary, but the more that are sat-
isfied, the easier it will be for the annotator to pro-
duce accurate annotations:

3https://github.com/andyhu/transliteration
4https://www.isi.edu/ ulf/croom/ChineseRoomEditor.html

Word recognition. Presentation of text in a fa-
miliar alphabet makes it easier to see similarities
and differences between text segments, to learn as-
pects of the target language morphology, and to re-
member sequences previously seen.

Word pronunciation. Because named entities
often are transliterated into another language, ac-
cess to the sound of the words is particularly impor-
tant for annotating names. Sounds can be exposed
either through a formal expression language such
as IPA,5 or by transliteration into the appropriate
letters of the annotator’s native language.

Word and sentence meaning. The better the
annotator understands the full meaning of the text
being annotated, the easier it will be both to iden-
tify which named entities are likely to be men-
tioned in the text and what the boundaries of those
mentions are. Meaning can be conveyed in a va-
riety of ways: dictionary lookup to provide fixed
meanings for individual words and phrases; de-
scription of the position of a word or phrase in a
semantic space (e.g., Brown clusters or embedding
space) to define words that are not found in a dic-
tionary; and full sentence translation.

Word context. Understanding how a word
is used in a given instance can benefit greatly
from understanding how that word is used broadly,
either across the document being annotated, or
across a larger corpus of monolingual text. For ex-
ample, knowing that a word frequently appears ad-
jacent to a known person name suggests it might be
a surname, even if the adjacent word in the current
context is not known to be a name.

World knowledge. Knowledge of some of the
entities, relations, and events referred to in the text
allows the annotator to form a stronger model of
what the text as a whole might be saying (e.g., a
document about disease outbreak is likely to in-
clude organizations like Red Cross), leading to bet-
ter judgments about components of the text.

History. Annotations previously applied to a
use of a word form a strong prior on how a new in-
stance of the word should be tagged. While some
of this knowledge is held by the annotator, it is dif-
ficult to maintain such knowledge over time. Pro-
grammatic support for capturing prior conclusions
(linguistic patterns, word translations, possible an-
notations for a mention along with their frequency)
and making them available to the annotator is es-
sential for large collaborative annotation efforts.

5https://en.wikipedia.org/wiki/IPA
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Adjudication. Disagreements among annota-
tors can indicate cases that require closer exami-
nation. An adjudication interface is beneficial to
enhance precision (see Section 4).

The next section discusses how we embody
these requirements in two annotation platforms.

3 Annotation Platforms
We developed two annotation tools to explore the
range of ways the desiderata might be fulfilled:
ELISA and Dragonfly. After describing these
interfaces, Figure 1 shows how they fulfill the
desiderata outlined in Table 2.

3.1 ELISA

Figure 1: ELISA IE Annotation Architecture.

The ELISA IE annotation platform was devel-
oped at Rensselaer Polytechnic Institute.6 Fig-
ure 1 depicts ELISA’s overall architecture. Fig-
ure 2 demonstrates the main annotation interface,
which consists of:

Annotation Panel. For each sentence in a doc-
ument, we show the text in the original language,
its English translation if available, and automatic
romanization results generated with a language-
universal transliteration library.7 To label a name
mention, the annotator clicks its first and last to-
kens, then chooses the desired entity type in the
annotation panel. If the selected text span has been
labeled before, previous annotations are displayed
at the bottom of the panel for reference. Annotated
mentions are styled differently according to type.

Resource Lookup Panel. This panel is used
to browse/search the associated resources. Right

6See examples at http://nlp.cs.rpi.edu/demo/
elisa_annotation.html.

7https://github.com/andyhu/transliteration

clicking a token in the document will show its full
definition in lexicons and bilingual example sen-
tences containing that token. A floating pop-up
displaying romanization and simple definition ap-
pears instantly when hovering over a token.

Rule Editor. Annotators may discover useful
hueristics to identify and classify names, such as
personal designators and suffixes indicative of lo-
cations. They can encode such clues as rules in the
rule editor. Once created, each rule is rendered as
a strikethrough line in the text and is shared among
annotators. For example (Figure 1, if an annotator
marks “agency” as an organization, all annotators
will see a triangular sign below each occurrence of
this word.

Adjudication Interface. If multiple users pro-
cess the same document we can consolidate their
annotations through an adjudication interface (Fig-
ure 3). This interface is similar to the annota-
tion interface, except that competing annotations
are displayed as blocks below the text. Clicking a
block will accept the associated annotation. The
adjudicator can accept annotations from either an-
notator or accept the agreed cases at once by click-
ing one of the three interface buttons. Then, the ad-
judicator need only focus on disputed cases, which
are highlighted with a red background.

3.2 Dragonfly
Dragonfly, developed at the Johns Hopkins Uni-
versity Applied Physics Laboratory, takes a more
word-centric approach to annotation. Each sen-
tence to be annotated is laid out in a row, each col-
umn of which shows a word augmented with a va-
riety of information about that word.

Figure 4 shows a screenshot of a portion of the
Dragonfly tool being used to annotate text written
in the Kannada language. The top entry in each
column is the Kannada word. Next is a Roman-
ization of the word (Hermjakob et al., 2018). The
third entry is one or more dictionary translations,
if available. The fourth entry is a set of dictionary
translations of other words in the word’s Brown
cluster. (Brown et al., 1992) While these tend to
be less accurate than translations of the word, they
can give a strong signal that a word falls into a
particular category. For example, a Brown clus-
ter containing translations such as “Paris,” “Rome”
and “Vienna” is likely to refer to a city, even if no
translation exists to indicate which city. Finally, if
automated labels for the sentence have been gen-
erated, e.g., by a trained name tagger, those labels
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Figure 2: ELISA IE Annotation Interface in use annotating a Tigrinya document.

Figure 3: ELISA IE Adjudication Interface in use
annotating a Tigrinya document.

are displayed at the bottom of the column.
In addition to word-specific information, Drag-

onfly can present sentence-level information. In
Figure 4, an automatic English translation of the
sentence is shown above the words of the sentence
(in this example, from Google Translate). Trans-
lations might also be available when annotating a
parallel document collection. Other sentence-level
information that might prove useful in this slot in-
cludes a topic model description, or a bilingual em-
bedding of the entire sentence.

Figure 4 shows a short sentence that has been
annotated with two name mentions. The first
word of the sentence (Romanization “uttara”) has
translations of “due north,” “northward,” “north,”

etc. The second word has no direct translations
or Brown cluster entries. However, its Roman-
ization, “koriyaavannu,” begins with a sequence
that suggests the word ‘Korea’ with a morpho-
logical ending. Even without the presence of the
phrase “North Korea” in the MT output, an an-
notator likely has enough information to draw the
conclusion that the GPE “North Korea” is men-
tioned here. The presence of the phrase “North
Korea” in the machine translation output confirms
this choice.

The sentence also contains a word whose Ro-
manization is “ttramp.” This is a harder call. There
is no translation, and the Brown cluster translations
do not help. Knowledge of world events, examina-
tion of other sentences in the document, the trans-
lation of the following word, and the MT output
together suggest that this is a mention of “Donald
Trump;” it can thus be annotated as a person.

4 Experiments

We asked ten non-speakers to annotate names
using our annotation platforms on documents in
various low-resource languages released by the
DARPA LORELEI program and the NIST TAC-
KBP2017 EDL Pilot (Ji et al., 2017). The gen-
res of these documents include newswire, discus-
sion forum and tweets. Using non-speaker annota-
tions as “silver-standard” training data, we trained
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Figure 4: The Dragonfly tool in use annotating a Kannada document.

ELISA Dragonfly
Recognition &
pronunciation

universal transliter-
ation

uroman

Meanings Resource Lookup
Panel; pop-ups;
Annotation Panel

Dictionary; Brown
clusters; sentence
translation

Word context Resource Lookup
Panel

Concordance

World knowl-
edge

External External

History Previous annota-
tions; Rule Editor

Cascade; pop-ups

Adjudication Adjudication inter-
face

None

Table 1: How Platforms Fulfill Desiderata

name taggers based on a bi-directional long short-
term memory (LSTM) network with a Conditional
Random Fields (CRFs) layer (Lample et al., 2016).
The lexicons loaded into the ELISA IE annotation
platform were acquired from Panlex,8 Geonames9

and Wiktionary.10 Dragonfly used bilingual lexi-
cons by (Rolston and Kirchhoff, 2016).

4.1 Overall Performance
The agreement between non-speaker annotations
from the ELISA annotation platform and gold stan-
dard annotations from LDC native speakers on the
same documents is between 72% and 85% for var-
ious languages. The ELISA platform enables us
to develop cross-lingual entity discovery and link-
ing systems which achieved state-of-the-art per-
formance at both NIST LoreHLT201711 and ten
languages at TAC-KBP EDL2017 evaluations (Ji
et al., 2017).

8https://panlex.org/
9http://www.geonames.org/

10https://www.wiktionary.org/
11https://www.nist.gov/itl/iad/mig/lorehlt-evaluations

Albanian Kannada Nepali Polish Swahili
#sents 1,652 535 959 1,933 1,714
#tokens 41,785 8,158 16,036 26,924 42,715
#dict
entries

96,911 9,931 10,048 644,232 216,323

#names 2,683 900 1,413 1,356 2,769
F1(%) 75.9 58.4 65.0 55.7 74.2

Table 2: Data Statistics and Performance on
KBP2017 EDL Pilot

Four annotators used two platforms (two each)
to annotate 50 VOA news documents for each of
the five languages listed in Table 2. Their anno-
tations were then adjudicated through the ELISA
adjudication interface. The process took about one
week. For each language we used 40 documents
for training and 10 documents for test in the TAC-
KBP2017 EDL Pilot. In Table 2 we see that the
languages with more annotated names (i.e., Alba-
nian and Swahili) achieved higher performance.

4.2 Silver Standard Creation
We compare our method with Wikipedia based
silver standard annotations (Pan et al., 2017) on
Oromo and Tigrinya, two low-resource languages
in the LoreHLT2017 evaluation. Table 3 shows the
data statistics. We can see that with the ELISA
annotation platform we were able to acquire many
more topically-relevant training sentences and thus
achieved much higher performance.

Data Oromo Tigrinya
ELISA Annotated Training 4,717 6,174
Wikipedia Markup Derived Training 631 152
Gold Standard Unsequestered 2,957 2,201

Table 3: # Sentences in Oromo and Tigrinya Data.
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Method Oromo Tigrinya
ELISA Annotated 68.2 71.3
Wikipedia Markup 6.2 2.7

Table 4: Comparison of Silver Standard Creation
Methods (F-score %).

4.3 Comparison with Native Speaker
Annotations

F1
 S

co
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 (%
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65

Number of Sentences

1000 2000 3000 4000 5000 6000

Native-speaker Annotation Non-speaker Annotation

Figure 5: Russian Name Tagging Performance Us-
ing Native-speaker and Non-speaker Annotations.

Figure 5 compares the performance of Rus-
sian name taggers trained from Gold Standard by
LDC native speakers and Silver Standard by non-
speakers through our annotation platforms, test-
ing on 1,952 sentences with ground truth anno-
tated by LDC native speakers. Our annotation plat-
forms got off to a good start and offered higher
performance than annotations from native speak-
ers, because non-speakers quickly capture com-
mon names, which can be synthesized as effective
features and patterns for our name tagger. How-
ever, after all low-hanging fruit was picked, it be-
came difficult for non-speakers to discover many
uncommon names due to the limited coverage of
lexicon and romanization; thus the performance
of the name tagger converged quickly and hits an
upper-bound. For example, the most frequently
missed names by non-speakers include organiza-
tion abbreviations and uncommon person names.

4.4 Impact of Adjudication
Table 5 shows that the adjudication process sig-
nificantly improved precision because annotators
were able to fix annotation errors after extensive
discussions on disputed cases and also gradually
learned annotation rules and linguistic patterns.
Most missing errors remained unfixed during the
adjudication so the recall was not improved.

Language Adjudication P (%) R (%) F (%)
Oromo Before 68.6 61.3 64.7

After 76.2 61.8 68.2
Tigrinya Before 67.3 67.1 67.2

After 76.4 66.8 71.3

Table 5: Impact of Annotation Adjudication
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Abstract

We present NovelPerspective: a tool to al-
low consumers to subset their digital liter-
ature, based on point of view (POV) char-
acter. Many novels have multiple main
characters each with their own storyline
running in parallel. A well-known exam-
ple is George R. R. Martin’s novel: “A
Game of Thrones”, and others from that
series. Our tool detects the main char-
acter that each section is from the POV
of, and allows the user to generate a new
ebook with only those sections. This gives
consumers new options in how they con-
sume their media; allowing them to pursue
the storylines sequentially, or skip chap-
ters about characters they find boring. We
present two heuristic-based baselines, and
two machine learning based methods for
the detection of the main character.

1 Introduction

Often each section of a novel is written from the
perspective of a different main character. The
characters each take turns in the spot-light, with
their own parallel storylines being unfolded by the
author. As readers, we have often desired to read
just one storyline at a time, particularly when read-
ing the book a second-time. In this paper, we
present a tool, NovelPerspective, to give the con-
sumer this choice.

Our tool allows the consumer to select which
characters of the book they are interested in, and to
generate a new ebook file containing just the sec-
tions from that character’s point of view (POV).
The critical part of this system is the detection of
the POV character. This is not an insurmountable
task, building upon the well established field of
named entity recognition. However to our knowl-

edge there is no software to do this. Such a tool
would have been useless, in decades past when
booked were distributed only on paper. But today,
the surge in popularity of ebooks has opened a new
niche for consumer narrative processing. Meth-
ods are being created to extract social relationships
between characters (Elson et al., 2010; Wohlge-
nannt et al., 2016); to align scenes in movies with
those from books (Zhu et al., 2015); and to oth-
erwise augment the literature consumption experi-
ence. Tools such as the one presented here, give
the reader new freedoms in controlling how they
consume their media.

Having a large cast of characters, in particu-
lar POV characters, is a hallmark of the epic fan-
tasy genre. Well known examples include: George
R.R. Martin’s “A Song of Ice and Fire”, Robert
Jordan’s “Wheel of Time”, Brandon Sander-
son’s “Cosmere” universe, and Steven Erikson’s
“Malazan Book of the Fallen”, amongst thousands
of others. Generally, these books are written in
limited third-person POV; that is to say the reader
has little or no more knowledge of the situation
described than the main character does.

We focus here on novels written in the lim-
ited third-person POV. In these stories, the main
character is, for our purposes, the POV character.
Limited third-person POV is written in the third-
person, that is to say the character is referred to
by name, but with the observations limited to be-
ing from the perspective of that character. This
is in-contrast to the omniscient third-person POV,
where events are described by an external narra-
tor. Limited third-person POV is extremely popu-
lar in modern fiction. It preserves the advantages
of first-person, in allowing the reader to observe
inside the head of the character, while also al-
lowing the flexibility to the perspective of another
character (Booth, 1961). This allows for multiple
concurrent storylines around different characters.
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Our tool helps users un-entwine such storylines,
giving the option to process them sequentially.

The utility of dividing a book in this way varies
with the book in question. Some books will cease
to make sense when the core storyline crosses over
different characters. Other novels, particularly in
epic fantasy genre, have parallel storylines which
only rarely intersect. While we are unable to find
a formal study on this, anecdotally many readers
speak of:

• “Skipping the chapters about the boring char-
acters.”

• “Only reading the real main character’s sec-
tions.”

• “Reading ahead, past the side-stories, to get
on with the main plot.”

Particularly if they have read the story before, and
thus do not risk confusion. Such opinions are a
matter of the consumer’s personal taste. The Nov-
elPerspective tool gives the reader the option to
customise the book in this way, according to their
personal preference.

We note that sub-setting the novel once does not
prevent the reader from going back and reading the
intervening chapters if it ceases to make sense, or
from sub-setting again to get the chapters for an-
other character whose path intersects with the sto-
ryline they are currently reading. We can person-
ally attest for some books reading the chapters one
character at a time is indeed possible, and pleas-
ant: the first author of this paper read George R.R.
Martin’s “A Song of Ice and Fire” series in exactly
this fashion.

The primary difficulty in segmenting ebooks
this way is attributing each section to its POV char-
acter. That is to say detecting who is the point
of view character. Very few books indicate this
clearly, and the reader is expected to infer it dur-
ing reading. This is easy for most humans, but au-
tomating it is a challenge. To solve this, the core of
our tool is its character classification system. We
investigated several options which the main text of
this paper will discuss.

2 Character Classification Systems

The full NovelPerspective pipeline is shown in
Figure 1. The core character classification step
(step 3), is detailed in Figure 2. In this step the
raw text is first enriched with parts of speech,

and named entity tags. We do not perform co-
reference resolution, working only with direct en-
tity mentions. From this, features are extracted for
each named entity. These feature vectors are used
to score the entities for the most-likely POV char-
acter. The highest scoring character is returned by
the system. The different systems presented mod-
ify the Feature Extraction and Character Scor-
ing steps. A broadly similar idea, for detecting the
focus location of news articles, was presented by
(Imani et al., 2017).

2.1 Baseline systems

To the best of our knowledge no systems have
been developed for this task before. As such, we
have developed two deterministic baseline charac-
ter classifiers. These are both potentially useful to
the end-user in our deployed system (Section 5),
and used to gauge the performance of the more
complicated systems in the evaluations presented
in Section 4.

It should be noted that the baseline systems,
while not using machine learning for the charac-
ter classification steps, do make extensive use of
machine learning-based systems during the pre-
processing stages.

2.1.1 “First Mentioned” Entity
An obvious way to determine the main character
of the section is to select the first named entity.
We use this to define the “First Mentioned” base-
line In this system, the Feature Extraction step
is simply retrieving the position of the first use of
each name; and the Character Scoring step as-
signs each a score such that earlier is higher. This
works for many examples: “One dark and stormy
night, Bill heard a knock at the door.”; however it
fails for many others: “ ‘Is that Tom?’ called out
Bill, after hearing a knock.’’. Sometimes a sec-
tion may go several paragraphs describing events
before it even mentions the character who is per-
ceiving them. This is a varying element of style.

2.1.2 “Most Mentioned” Entity
A more robust method to determine the main char-
acter, is to use the occurrence counts. We call
this the “Most Mentioned” baseline. The Fea-
ture Extraction step is to count how often the
name is used. The Character Scoring step as-
signs each a score based what proportional of all
names used were for this entity. This works well
for many books. The more important a character
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Figure 1: The full NovelPerspective pipeline. Note that step 5 uses the original ebook to subset.
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Figure 2: The general structure of the character classification systems. This repeated for each section of
the book during step 3 of the full pipeline shown in Figure 1.

is, the more often their name occurs. However,
it is fooled, for example, by book chapters that
are about the POV character’s relationship with a
secondary character. In such cases the secondary
character may be mentioned more often.

2.2 Machine learning systems

One can see the determination of the main charac-
ter as a multi-class classification problem. From
the set of all named entities in the section, classify
that section as to which one is the main character.
Unlike typical multi-class classification problems
the set of possible classes varies per section being
classified. Further, even the total set of possible
named characters, i.e. classes, varies from book to
book. An information extraction approach is re-
quired which can handle these varying classes. As
such, a machine learning model for this task can
not incorporate direct knowledge of the classes
(i.e. character names).

We reconsider the problem as a series of bi-
nary predictions. The task is to predict if a given
named entity is the point of view character. For
each possible character (i.e. each named-entity
that occurs), a feature vector is extracted (see Sec-
tion 2.2.1). This feature vector is the input to a
binary classifier, which determines the probability
that it represents the main character. The Charac-
ter Scoring step is thus the running of the binary
classifier: the score is the output probability nor-
malised over all the named entities.

2.2.1 Feature Extraction for ML

We investigated two feature sets as inputs for
our machine learning-based solution. They cor-
respond to different Feature Extraction steps in
Figure 2. A hand-engineered feature set, that we
call the “Classical” feature set; and a more modern
“Word Embedding” feature set. Both feature sets

give information about how the each named entity
token was used in the text.

The “Classical” feature set uses features that are
well established in NLP related tasks. The features
can be described as positional features, like in the
First Mentioned baseline; occurrence count fea-
tures, like in the Most Mentioned baseline and ad-
jacent POS counts, to give usage context. The po-
sitional features are the index (in the token counts)
of the first and last occurrence of the named en-
tity. The occurrence count features are simply the
number of occurrences of the named entity, sup-
plemented with its rank on that count compared
to the others. The adjacent POS counts are the
occurrence counts of each of the 46 POS tags on
the word prior to the named entity, and on the
word after. We theorised that this POS informa-
tion would be informative, as it seemed reason-
able that the POV character would be described
as doing more things, so co-occurring with more
verbs. This gives 100 base features. To allow for
text length invariance we also provide each of the
base features expressed as a portion of its maxi-
mum possible value (e.g. for a given POS tag oc-
curring before a named entity, the potion of times
this tag occurred). This gives a total of 200 fea-
tures.

The “Word Embedding” feature set uses Fast-
Text word vectors (Bojanowski et al., 2017). We
use the pretrained 300 dimensional embeddings
trained on English Wikipedia 1. We concate-
nate the 300 dimensional word embedding for the
word immediately prior to, and immediately af-
ter each occurrence of a named entity; and take
the element-wise mean of this concatenated vector
over all occurrences of the entity. Such averages of
word embeddings have been shown to be a useful

1https://fasttext.cc/docs/en/
pretrained-vectors.html
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feature in many tasks (White et al., 2015; Mikolov
et al., 2013). This has a total of 600 features.

2.2.2 Classifier
The binary classifier, that predicts if a named en-
tity is the main character, is the key part of the
Character Scoring step for the machine learning
systems. From each text in the training dataset we
generated a training example for every named en-
tity that occurred. All but one of these was a neg-
ative example. We then trained it as per normal
for a binary classifier. The score for a character is
the classifier’s predicted probability of its feature
vector being for the main character.

Our approach of using a binary classifier to
rate each possible class, may seem similar to the
one-vs-rest approach for multi-class classification.
However, there is an important difference. Our
system only uses a single binary classifier; not one
classifier per class, as the classes in our case vary
with every item to be classified. The fundamental
problem is information extraction, and the classi-
fier is a tool for the scoring which is the correct
information to report.

With the classical feature set we use logistic
regression, with the features being preprocessed
with 0-1 scaling. During preliminary testing we
found that many classifiers had similar high de-
gree of success, and so chose the simplest. With
the word embedding feature set we used a radial
bias support vector machine, with standardisation
during preprocessing, as has been commonly used
with word embeddings on other tasks.

3 Experimental Setup

3.1 Datasets

We make use of three series of books selected from
our own personal collections. The first four books
of George R. R. Martin’s “A Song of Ice and Fire”
series (hereafter referred to as ASOIAF); The two
books of Leigh Bardugo’s “Six of Crows” duology
(hereafter referred to as SOC); and the first 9 vol-
umes of Robert Jordan’s “Wheel of Time” series
(hereafter referred to as WOT). In Section 4 we
consider the use of each as a training and testing
dataset. In the online demonstration (Section 5),
we deploy models trained on the combined total
of all the datasets.

To use a book for the training and evaluation of
our system, we require a ground truth for each sec-
tion’s POV character. ASOIAF and SOC provide

Dataset Chapters POV Characters

ASOIAF 256 15
SOC 91 9

WOT 432 52

combined 779 76

Table 1: The number of chapters and point of view
characters for each dataset.

ground truth for the main character in the chapter
names. Every chapter only uses the POV of that
named character. WOT’s ground truth comes from
an index created by readers.2 We do not have any
datasets with labelled sub-chapter sections, though
the tool does support such works.

The total counts of chapters and characters in
the datasets, after preprocessing, is shown in Ta-
ble 1. Preprocessing consisted of discarding chap-
ters for which the POV character was not identi-
fied (e.g. prologues); and of removing the charac-
ter names from the chapter titles as required.

3.2 Evaluation Details

In the evaluation, the systems are given the body
text and asked to predict the character names. Dur-
ing evaluation, we sum the scores of the char-
acters alternative aliases/nick-names used in the
books. For example merging Ned into Eddard
in ASOIAF. This roughly corresponds to the case
that a normal user can enter multiple aliases into
our application when selecting sections to keep.
We do not use these aliases during training, though
that is an option that could be investigated in a fu-
ture work.

3.3 Implementation

The full source code is available on GitHub. 3

Scikit-Learn (Pedregosa et al., 2011) is used for
the machine learning and evaluations, and NLTK
(Bird and Loper, 2004) is used for textual prepro-
cessing. The text is tokenised, and tagged with
POS and named entities using NLTK’s default
methods. Specifically, these are the Punkt sen-
tence tokenizer, the regex-based improved Tree-
Bank word tokenizer, greedy averaged perceptron
POS tagger, and the max-entropy binary named
entity chunker. The use of a binary, rather than

2http://wot.wikia.com/wiki/List_of_
Point_of_View_Characters

3https://github.com/oxinabox/
NovelPerspective/
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Test Set Method Train Set Acc

ASOIAF First Mentioned — 0.250
ASOIAF Most Mentioned — 0.914
ASOIAF ML Classical Features SOC 0.953
ASOIAF ML Classical Features WOT 0.984
ASOIAF ML Classical Features WOT+SOC 0.977
ASOIAF ML Word Emb. Features SOC 0.863
ASOIAF ML Word Emb. Features WOT 0.977
ASOIAF ML Word Emb. Features WOT+SOC 0.973

SOC First Mentioned — 0.429
SOC Most Mentioned — 0.791
SOC ML Classical Features WOT 0.923
SOC ML Classical Features ASOIAF 0.923
SOC ML Classical Features WOT+ASOIAF 0.934
SOC ML Word Emb. Features WOT 0.934
SOC ML Word Emb. Features ASOIAF 0.945
SOC ML Word Emb. Features WOT+ASOIAF 0.945

WOT First Mentioned — 0.044
WOT Most Mentioned — 0.660
WOT ML Classical Features SOC 0.701
WOT ML Classical Features ASOIAF 0.745
WOT ML Classical Features ASOIAF+SOC 0.736
WOT ML Word Emb. Features SOC 0.551
WOT ML Word Emb. Features ASOIAF 0.699
WOT ML Word Emb. Features ASOIAF+SOC 0.681

Table 2: The results of the character classifier sys-
tems. The best results are bolded.

a multi-class, named entity chunker is significant.
Fantasy novels often use “exotic” names for char-
acters, we found that this often resulted in charac-
ter named entities being misclassified as organisa-
tions or places. Note that this is particularly dis-
advantageous to the First Mentioned baseline, as
any kind of named entity will steal the place. Nev-
ertheless, it is required to ensure that all character
names are a possibility to be selected.

4 Results and Discussion

Our evaluation results are shown in Table 2 for all
methods. This includes the two baseline methods,
and the machine learning methods with the differ-
ent feature sets. We evaluate the machine learning
methods using each dataset as a test set, and using
each of the other two and their combination as the
training set.

The First Mentioned baseline is very weak. The
Most Mentioned baseline is much stronger. In al-
most all cases machine learning methods outper-
form both baselines. The results of the machine
learning method on the ASOIAF and SOC are very
strong. The results for WOT are weaker, though
they are still accurate enough to be useful when
combined with manual checking.

It is surprising that using the combination of

Test Set Method Train Set Acc

ASOIAF ML Classical Features ASOIAF 0.980
ASOIAF ML Word Emb. Features ASOIAF 0.988

SOC ML Classical Features SOC 0.945
SOC ML Word Emb. Features SOC 0.956

WOT ML Classical Features WOT 0.785
WOT ML Word Emb. Features WOT 0.794

Table 3: The training set accuracy of the machine
learning character classifier systems.

two training sets does not always out-perform each
on their own. For many methods training on just
one dataset resulted in better results. We believe
that the difference between the top result for a
method and the result using the combined train-
ing sets is too small to be meaningful. It can, per-
haps, be attributed to a coincidental small similar-
ity in writing style of one of the training books to
the testing book. To maximise the generalisability
of the NovelPerspective prototype (see Section 5),
we deploy models trained on all three datasets
combined.

Almost all the machine learning models re-
sulted in similarly high accuracy. The exception
to this is word embedding features based model
trained on SOC, which for both ASOIAF and
WOT test sets performed much worse. We at-
tribute the poor performance of these models to
the small amount of training data. SOC has only
91 chapters to generate its training cases from, and
the word embedding feature set has 600 dimen-
sions. It is thus very easily to over-fit which causes
these poor results.

Table 3 shows the training set accuracy of each
machine learning model. This is a rough upper
bound for the possible performance of these mod-
els on each test set, as imposed by the classifier
and the feature set. The WOT bound is much
lower than the other two texts. This likely re-
lates to WOT being written in a style that closer
to the line between third-person omniscient, than
the more clear third-person limited POV of the
other texts. We believe longer range features are
required to improve the results for WOT. How-
ever, as this achieves such high accuracy for the
other texts, further features would not improve ac-
curacy significantly, without additional more diffi-
cult training data (and may cause over-fitting).

The results do not show a clear advantage to ei-
ther machine learning feature set. Both the classi-
cal features and the word embeddings work well.
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Though, it seems that the classical feature are
more robust; both with smaller training sets (like
SOC), and with more difficult test sets (like WOT).

5 Demonstration System

The demonstration system is deployed online at
https://white.ucc.asn.au/tools/np.
A video demonstrating its use can be found at
https://youtu.be/iu41pUF4wTY. This
web-app, made using the CherryPy framework,4

allows the user to apply any of the model
discussed to their own novels.

The web-app functions as shown in Figure 1.
The user uploads an ebook, and selects one of
the character classification systems that we have
discussed above. They are then presented with a
page displaying a list of sections, with the pre-
dicted main character(/s) paired with an excerpt
from the beginning of the section. The user can
adjust to show the top-k most-likely characters on
this screen, to allow for additional recall.

The user can select sections to retain. They
can use a regular expression to match the charac-
ter names(/s) they are interested in. The sections
with matching predicted character names will be
selected. As none of the models is perfect, some
mistakes are likely. The user can manually correct
the selection before downloading the book.

6 Conclusion

We have presented a tool to allow consumers to re-
structure their ebooks around the characters they
find most interesting. The system must discover
the named entities that are present in each sec-
tion of the book, and then classify each section
as to which character’s point of view the section
is narrated from. For named entity detection we
make use of standard tools. However, the clas-
sification is non-trivial. In this design we im-
plemented several systems. Simply selecting the
most commonly named character proved success-
ful as a baseline approach. To improve upon this,
we developed several machine learning based ap-
proaches which perform very well. While none
of the classifiers are perfect, they achieve high
enough accuracy to be useful.

A future version of our application will allow
the users to submit corrections, giving us more
training data. However, storing this information
poses copyright issues that are yet to be resolved.

4http://cherrypy.org/
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Abstract

We present uroman, a tool for converting
text in myriads of languages and scripts
such as Chinese, Arabic and Cyrillic into a
common Latin-script representation. The
tool relies on Unicode data and other ta-
bles, and handles nearly all character sets,
including some that are quite obscure such
as Tibetan and Tifinagh. uroman converts
digital numbers in various scripts to West-
ern Arabic numerals. Romanization en-
ables the application of string-similarity
metrics to texts from different scripts with-
out the need and complexity of an in-
termediate phonetic representation. The
tool is freely and publicly available as a
Perl script suitable for inclusion in data
processing pipelines and as an interactive
demo web page.

1 Introduction

String similarity is a useful feature in many natural
language processing tasks. In machine translation,
it can be used to improve the alignment of bitexts,
and for low-resource languages with a related lan-
guage of larger resources, it can help to decode
out-of-vocabulary words. For example, suppose
we have to translate degustazione del vino with-
out any occurrence of degustazione in any train-
ing corpora, but we do know that in a related lan-
guage dégustation de vin means wine tasting, we
can use string similarity to infer the meaning of
degustazione.

String similarity metrics typically assume that
the strings are in the same script, but many cross-
lingual tasks such as machine translation often in-
volve multiple scripts. If we can romanize text
from a non-Latin script to Latin, standard string
similarity metrics can be applied, including edit

distance-based metrics (Levenshtein, 1966; Win-
kler, 1990) and phonetic-based metrics such as
Metaphone (Philips, 2000).

Hindi, for example, is written in the Devanagari
script and Urdu in the Arabic script, so any words
between those two languages will superficially
appear to be very different, even though the two
languages are closely related. After romanization,
however, the similarities become apparent, as can
be seen in Table 1:

Table 1: Example of Hindi and Urdu romanization

Foreign scripts also present a massive cognitive
barrier to humans who are not familiar with them.
We devised a utility that allows people to trans-
late text from languages they don’t know, using
the same information available to a machine trans-
lation system (Hermjakob et al., 2018). We found
that when we asked native English speakers to use
this utility to translate text from languages such as
Uyghur or Bengali to English, they strongly pre-
ferred working on the romanized version of the
source language compared to its original form and
indeed found using the native, unfamiliar script to
be a nearly impossible task.

1.1 Scope of Romanization

Romanization maps characters or groups of char-
acters in one script to a character or group of char-
acters in the Latin script (ASCII) with the goal to
approximate the pronunciation of the original text
and to map cognates in various languages to simi-
lar words in the Latin script, typically without the
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Table 2: Romanization examples for 10 scripts

use of any large-scale lexical resources. As a sec-
ondary goal, romanization standards tend to pre-
fer reversible mappings. For example, as stand-
alone vowels, the Greek letters ι (iota) and υ (up-
silon) are romanized to i and y respectively, even
though they have the same pronunciation in Mod-
ern Greek.

uroman generally follows such preference, but
uroman is not always fully reversible. For exam-
ple, since uroman maps letters to ASCII charac-
ters, the romanized text does not contain any dia-
critics, so the French word ou (“or”) and its homo-
phone où (“where”) both map to romanized ou.

uroman provides the option to map to a plain
string or to a lattice of romanized text, which al-
lows the system to output alternative romaniza-
tions. This is particularly useful for source lan-
guages that use the same character for significantly
different sounds. The Hebrew letter Pe for exam-
ple can stand for both p and f. Lattices are output
in JSON format.

Note that romanization does not necessarily
capture the exact pronunciation, which varies
across time and space (due to language change
and dialects) and can be subject to a number of
processes of phonetic assimilation. It also is not
a translation of names and cognates to English
(or any other target language). See Table 3 for
examples for Greek.

A romanizer is not a full transliterator. For
example, this tool does not vowelize text that
lacks explicit vowelization such as normally

Modern Greek Κρήτη γεωλογία μπανάνα
Pronunciation Kriti yeoloyia banana
Romanization Krete geologia banana
English Crete geology banana
German Kreta Geologie Banane

Table 3: Examples of Greek romanization

occurring text in Arabic and Hebrew (i.e., without
diacritics/points); see Table 4.

Table 4: Romanization with and without diacritics

1.2 Features
uroman has the following features:

1. Input: UTF8-encoded text and an optional
ISO-639-3 language code

2. Output: Romanized text (default) or lattice of
romanization alternatives in JSON format

3. Nearly universal romanization1

4. N-to-m mapping for groups of characters that
are non-decomposable with respect to roman-
ization

5. Context-sensitive and source language-
specific romanization rules

1See Section 4 for a few limitations.

14



6. Romanization includes (digital) numbers

7. Romanization includes punctuation

8. Preserves capitalization

9. Freely and publicly available

Romanization tools have long existed for spe-
cific individual languages such as the Kakasi2

kanji-to-kana/romaji converter for Japanese, but to
the best of our knowledge, we present the first pub-
licly available (near) universal romanizer that han-
dles n-to-m character mappings. Many romaniza-
tion examples are shown in Table 2 and examples
of n-to-m character mapping rules are shown in
Table 7.

2 System Description

2.1 Unicode Data

As its basis, uroman uses the character descrip-
tions of the Unicode table.3 For the characters of
most scripts, the Unicode table contains descrip-
tions such as CYRILLIC SMALL LETTER SHORT
U or CYRILLIC CAPITAL LETTER TE WITH
MIDDLE HOOK. Using a few heuristics, uroman
identifies the phonetic token in that description,
i.e. U and TE for the examples above. The heuris-
tics use a list of anchor keywords such as letter
and syllable as well as a number of modifier pat-
terns that can be discarded. Given the phonetic
token of the Unicode description, uroman then
uses a second set of heuristics to predict the ro-
manization for these phonetic tokens, i.e. u and t.
For example, if the phonetic token is one of more
consonants followed by one or more vowels, the
predicted romanization is the leading sequence of
consonants, e.g. SHA→ sh.

2.2 Additional Tables

However, these heuristics often fail. An exam-
ple of a particularly spectacular failure is SCHWA
→ schw instead of the desired e. Addition-
ally, there are sequences of characters with non-
compositional romanization. For example, the
standard romanization for the Greek sequence
omikron+upsilon, (ου) is the Latin ou rather than
the character-by-character romanization oy.

As a remedy, we manually created additional
correction tables that map sequences of one or
more characters to the desired romanization, with

2http://kakasi.namazu.org
3ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt

currently 1,088 entries. The entries in these tables
can be restricted by conditions, for example to spe-
cific languages or to the beginning of a word, and
can express alternative romanizations. This data
table is a core contribution of the tool.

uroman additionally includes a few special
heuristics cast in code, such as for the voweliza-
tions of a number of Indian languages and Ti-
betan, dealing with diacritics, and a few language-
specific idiosyncrasies such as the Japanese
sokuon and Thai consonant-vowel swaps.

Building these uroman resources has been
greatly facilitated by information drawn from
Wikipedia,4 Richard Ishida’s script notes,5 and
ALA-LC Romanization Tables.6

2.3 Characters without Unicode Description

The Unicode table does not include character de-
scriptions for all scripts.

For Chinese characters, we use a Mandarin
pinyin table for romanization.

For Korean, we use a short standard Hangul ro-
manization algorithm.7

For Egyptian hieroglyphs, we added single-
sound phonetic characters and numbers to uro-
man’s additional tables.

2.4 Numbers

uroman also romanizes numbers in digital form.
For some scripts, number characters map one-

to-one to Western Arabic numerals 0-9, e.g. for
Bengali, Eastern Arabic and Hindi.

For other scripts, such as Amharic, Chinese,
and Egyptian hieroglyphics, written numbers
are structurally different, e.g. the Amharic num-
ber character sequence 10·9·100·90·8 = 1998
and the Chinese number character sequence
2·10·5·10000·6·1000 = 256000. uroman includes
a special number module to accomplish this latter
type of mapping. Examples are shown in Table 5.

Note that for phonetically spelled-out numbers
such as Greek οκτώ, uroman romanizes to the
spelled-out Latin okto rather than the digital 8.

4https://en.wikipedia.org
5https://r12a.github.io/scripts/featurelist
6https://www.loc.gov/catdir/cpso/roman.html
7http://gernot-katzers-spice-pages.com/var/

korean hangul unicode.html
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Figure 1: Screenshot of Uyghur romanization on demo site at bit.ly/uroman

Table 5: Romanization/Arabization of numbers

2.5 Romanization of Latin Text

Some Latin script-based languages have words for
which spelling and pronunciation differ substan-
tially, e.g. the English name Knight (IPA: /naIt/)
and French Bordeaux (/bOK.do/), which compli-
cates string similarity matching if the correspond-
ing spelling of the word in the non-Latin script is
based on pronunciation.

uroman therefore offers alternative romaniza-
tions for words such as Knight and Bordeaux
(see Table 6 for an example of the former), but,
as a policy uroman always preserves the original
Latin spelling, minus any diacritics, as the top
romanization alternative.

Table 6: Romanization with alternatives

Table 7 includes examples of the Romanization
rules in uroman, including n-to-m mappings.

2.6 Caching

uroman caches token romanizations for speed.

Table 7: Romanization rules with two examples
each for Greek, Uyghur, Japanese, and English,
with a variety of n-to-m mappings.
(::s = source; ::t = target; ::lcode = language code)

3 Download and Demo Sites

uroman v1.2 is publicly available for download
at bit.ly/isi-nlp-software. The fully self-sufficient
software package includes the implementation of
uroman in Perl with all necessary data tables. The
software is easy to install (gunzip and tar), with-
out any need for compilation or any other software
(other than Perl).
Typical call (for plain text output):

uroman.pl --lc uig < STDIN > STDOUT

where –lc uig specifies the (optional) language
code (e.g. Uyghur).

There is also an interactive demo site at
bit.ly/uroman. Users may enter text in the lan-
guage and script of their choice, optionally specify
a language code, and then have uroman romanize
the text.

Additionally, the demo page includes sample
texts in 290 languages in a wide variety of scripts.
Texts in 21 sample languages are available on the
demo start page and more are accessible as ran-
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dom texts. After picking the first random text,
additional random texts will be available from
three corpora to choose from (small, large, and
Wikipedia articles about the US). Users can then
restrict the randomness in a special option field.
For example, --l will exclude texts in Latin+
scripts. For further information about possible re-
strictions, hover over the word restriction (a dot-
ted underline indicates that additional info will be
shown when a user hovers over it).

The romanization of the output at the demo site
is mouse sensitive. Hovering over characters of
either the original or romanized text, the page will
highlight corresponding characters. See Figure 1
for an example. Hovering over the original text
will also display additional information such as
the Unicode name and any numeric value. To sup-
port this interactive demo site, the uroman package
also includes fonts for Burmese, Tifinagh, Klin-
gon, and Egyptian hieroglyphs, as they are some-
times missing from standard browser font pack-
ages.

4 Limitations and Future Work

The current version of uroman has a few limita-
tions, some of which we plan to address in fu-
ture versions. For Japanese, uroman currently ro-
manizes hiragana and katakana as expected, but
kanji are interpreted as Chinese characters and ro-
manized as such. For Egyptian hieroglyphs, only
single-sound phonetic characters and numbers are
currently romanized. For Linear B, only phonetic
syllabic characters are romanized. For some other
extinct scripts such as cuneiform, no romanization
is provided.

uroman allows the user to specify an ISO-639-3
source language code, e.g. uig for Uyghur. This
invokes any language-specific romanization rules
for languages that share a script with other lan-
guages. Without source language code specifi-
cation, uroman assumes a default language, e.g.
Arabic for text in Arabic script. We are consid-
ering adding a source language detection com-
ponent that will automatically determine whether
an Arabic-script source text is Arabic, Farsi, or
Uyghur etc.

5 Romanization Applications

5.1 Related Work
Gey (2009) reports that romanization based on
ALA-LC romanization tables (see Section 2.2) is

useful in cross-lingual information retrieval.
There is a body of work mapping text to pho-

netic representations. Deri and Knight (2016)
use Wiktionary and Wikipedia resources to learn
text-to-phoneme mappings. Phonetic representa-
tions are used in a number of end-to-end translit-
eration systems (Knight and Graehl, 1998; Yoon
et al., 2007). Qian et al. (2010) describe the
toolkit ScriptTranscriber, which extracts cross-
lingual transliteration pairs from comparable cor-
pora. A core component of ScriptTranscriber
maps text to an ASCII variant of the International
Phonetic Alphabet (IPA).

Andy Hu’s transliterator8 is a fairly universal
romanizer in JavaScript, limited to romanizing one
Unicode character at a time, without context.

5.2 Applications Using uroman

Ji et al. (2017) and Mayfield et al. (2017) use
uroman for named entity recognition. Mayhew
et al. (2016) use uroman for (end-to-end) translit-
eration. Cheung et al. (2017) use uroman for ma-
chine translation of low-resource languages.

uroman has also been used in our aforemen-
tioned translation utility (Hermjakob et al., 2018),
where humans translate text to another language,
with computer support, with high fluency in the
target language (English), but no prior knowledge
of the source language.

uroman has been partially ported by third par-
ties to Python and Java.9

6 Conclusion

Romanization tools have long existed for specific
individual languages, but to the best of our knowl-
edge, we present the first publicly available (near)
universal romanizer that handles n-to-m character
mappings. The tool offers both simple plain text
as well as lattice output with alternatives, and in-
cludes romanization of numbers in digital form.
It has been successfully deployed in a number of
multi-lingual natural language systems.
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Abstract

Being able to reliably link scientific works
to the newspaper articles that discuss them
could provide a breakthrough in the way
we rationalise and measure the impact of
science on our society. Linking these ar-
ticles is challenging because the language
used in the two domains is very differ-
ent, and the gathering of online resources
to align the two is a substantial infor-
mation retrieval endeavour. We present
HarriGT, a semi-automated tool for build-
ing corpora of news articles linked to the
scientific papers that they discuss. Our
aim is to facilitate future development
of information-retrieval tools for newspa-
per/scientific work citation linking. Har-
riGT retrieves newspaper articles from an
archive containing 17 years of UK web
content. It also integrates with 3 large ex-
ternal citation networks, leveraging named
entity extraction, and document classifica-
tion to surface relevant examples of scien-
tific literature to the user. We also pro-
vide a tuned candidate ranking algorithm
to highlight potential links between scien-
tific papers and newspaper articles to the
user, in order of likelihood. HarriGT is
provided as an open source tool (http:
//harrigt.xyz).

1 Introduction

For scientists, understanding the ways in which
their work is being reported by journalists and
the subsequent societal impact of these reports re-
mains an overwhelming task. Research funding
councils have also become increasingly interested
in the impact that the research that they fund pro-
duces. These motivating factors, combined with

suggestions that traditional citation-based metrics
such as JIF (Garfield, 2006) and h-index (Hirsch,
2005) are not as transparent as once thought
(Cronin, 1984; Bornmann and Daniel, 2008) have
catalyzed the development of metrics to measure
scientific impact in society, policy and the econ-
omy (recently termed “comprehensive scientific
impact” (Ravenscroft et al., 2017)). Evaluation
programmes such as the UK’s Research Excel-
lence Framework (REF) Impact Case Study (REF
2014, 2012) and the United States’ STAR Metrics
programme (Lane and Bertuzzi, 2010) set the cur-
rent state of the art in comprehensive scientific im-
pact metrics. However, both processes involve sig-
nificant manual labour and introduce human sub-
jectivity into their evaluation processes. Raven-
scroft et al. (2017) recently showed that there is
negligible correlation between citation-based met-
rics and REF scores and called for the develop-
ment of an objective, automated metric for mea-
suring comprehensive impact. As part of the US-
funded FUSE project, McKeown et al. (2016) de-
veloped a method for measuring the use of techni-
cal terms over time in scientific works as a proxy
for scientific impact. McKeown’s work, whilst
primarily focusing on scientific literature, repre-
sents a significant step towards deeper understand-
ing of scientific impact beyond citations.

Our assumption is that the perception of re-
searchers’ work as reflected in the mainstream me-
dia is an important means of measuring compre-
hensive impact, useful both to researchers them-
selves as well as funding bodies. However, one of
the main barriers to building an automated solu-
tion to assessing such comprehensive impact is a
lack of training data. In this paper, we present and
discuss our tool, HarriGT, which facilitates ground
truth collection for a corpus of news articles linked
to the scientific works that they discuss. In this
way we aim to lay the groundwork for future stud-
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ies that help scientists understand societal percep-
tion and impact of their work through the media.

2 Background

Citation extraction from news articles reporting on
scientific topics remains a challenging and rela-
tively unexplored task. There are no conventions,
formal or informal, for citing a scientific work in a
news article. Scientific journalists often omit key
information about who funded or even carried out
a given study from their reports making identifica-
tion of the work very difficult (Bubela et al., 2009).
Journalists also frequently quote academics who
were not directly involved in a scientific work in
their stories, further confusing attempts to auto-
mate citation extraction (Conrad, 1999). Louis and
Nenkova (2013) found that the quality of scientific
reporting varies greatly even between journalists
within the same publishing venue.

On the other hand, parsing and understanding
citations between scientific works is a domain
that has seen a lot of attention from academia
in recent years. Citations in scientific papers
are relatively well structured and formulaic. As
such, pattern-based extraction mechanisms have
been found to yield good citation extraction re-
sults (Councill et al., 2008). Disambiguation of
the scientific work and authors to which a cita-
tion refers can be a much more challenging task.
This especially applies in cases where authors
have ambiguous names (e.g. J. Smith). One ap-
proach is to assign scientific works and authors
unique identifiers such that there is no ambigu-
ity in cited works (DOI and ORCID respectively)
(Paskin, 2015; Butler, 2012). A more pragmatic
approach is needed to disambiguate publications
and authors for which no DOI or ORCID ID have
been assigned. Huang and Ertekin (2006) present
a method for disambiguation of authors using a
learned distance metric that takes into account au-
thor’s known names, affiliations and venues that
they typically publish at. Similar approaches have
led to the creation of citation networks that store
relationships between huge volumes of scientific
works. Networks such as CiteSeerX (Wu et al.,
2014), Microsoft Academic Knowledge Graph
and Scopus provide external access via APIs for
research and application development purposes.

Beyond academia, references to scientific work
are common across a number of domains. The
popular encyclopedia website, Wikipedia, relies

upon outbound citation to establish its veracity
concerning matters of science (Nielsen, 2007).
Whilst DOI links to articles are often used, in
many cases, only the title, publication name and
author names are provided leading to a structured
extraction and disambiguation problem similar to
that outlined above. (Nielsen, 2007; Kousha and
Thelwall, 2017; Nielsen et al., 2017).

Since academia as a whole has begun to adapt
to online publishing, academics have become in-
dividually accustomed to sharing work through
digital channels and social media. This has led
to the development of systems such as Altmet-
ric.com (Adie and Roe, 2013), that monitor social
media posts as well as some mainstream media
outlets for mentions of scientific works via DOI
links. By their own admission, altmetric toolmak-
ers still struggle to identify all mentions of scien-
tific works, focusing only on articles with a DOI or
some other unique identifier (Liu and Adie, 2013).

Extraction and disambiguation of references to
scientific works in news articles is the task that has
motivated the development of HarriGT. We seek
to facilitate construction of a human-curated cor-
pus of newspaper articles that have been explic-
itly linked to scientific works. Such corpora could
be used to build machine learning models that are
able to connect news articles to scientific works
automatically. Using HarriGT we have already
started the creation of such a corpus. At time of
writing the corpus consists of 304 newspaper ar-
ticles linked to one or more scientific paper. The
corpus is growing incrementally and can be down-
loaded via the tool.

3 System Overview

Figure 1: HarriGT Web UI shows a news article
and related candidate scientific papers
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HarriGT provides a system that brings together
historical news articles from web archives stored
in the widely used open source WARC format.
The system automatically ingests and parses news-
paper articles and searches citation graphs for rel-
evant candidate papers that the user is able to link
or hide or mark as spam. A diagram explain-
ing this process is available on the HarriGT web-
site. In this paper, we worked with a UK national
web archive (JISC and the Internet Archive, 2013)
and candidate scientific papers connected to cita-
tion graphs from Microsoft, Scopus and Springer.
The news article and candidate scientific papers
are presented in a web interface, enabling a user
to quickly decide whether each candidate is linked
to the news article or not. This section discusses
the components involved in this process in detail
and outlines some of the challenges we faced in
the system creation.

3.1 News Corpus Retrieval
In order to build a comprehensive corpus of news
articles, we worked with the JISC Web Archive, a
comprehensive scrape of the .uk top-level domain
between 1996 and 2013. Content is stored in Web
Archive (WARC) compressed format and an in-
dex file containing metadata about every URL that
was scraped and a pointer to the related content
within the WARC structure was made available.
The JISC Web Archive is approximately 62 Ter-
abytes in size, so identifying and filtering relevant
content became a primary concern1.

We initially decided to restrict our investigation
to news articles between 2011 and late 2013 which
coincided with REF 2014. We compiled a list of
web addresses for local and national UK news out-
lets via a Wikipedia article2 in order to reduce the
number of hostnames that our tool should inspect
down to 205. The archive index files also provided
metadata about the type of each WARC entry and
whether the original scrape was successful or not
(e.g. whether the URL was invalid). This brought
down the total number of WARC entries to be ex-
amined to approximately 11.5 million. Requests
to the BLOB store hosting the web archive were
optimised through a script that identified batches
of URLS archived in the same BLOB.

1The JISC Web Archive is accessible for research
purposes at data.webarchive.org.uk/opendata/
ukwa.ds.2/

2https://en.wikipedia.org/wiki/List_
of_newspapers_in_the_United_Kingdom

3.2 News Article Pre-Processing & Filtering

The contents of the archives were typically HTML
and thus we needed to extract the title and body of
each news story. HTML layouts can vary signifi-
cantly between sites but news articles follow a typ-
ical layout and thus extraction of content fields can
be carried out using rules and patterns rather than
a machine learning approach. For our purposes we
found that the open source library newspaper3 was
highly effective and gave us access to an article’s
title, authors, publication date and other metadata.

During the process we realised that some news
articles had been duplicated in the archive. This
can occur when a web crawler retrieves a URL
that has been generated erroneously by the scraper
script or the website being scraped. This can lead
to multiple links to the same content. Examples
include incorrectly appending search keywords,
pagination information and other parameters into
URLs that do not require these parameters.

To get around this problem, we introduced a
hashing system, taking the SHA256 hash of the ti-
tle body text from each article and only accepting
new content if its hash is not already known.

We found that using the science section of the
newspapers to filter suitable articles led to ex-
clusion of relevant material. A second approach
was to only accept articles that pass two high-
level keyword filters. The first, simpler check is
to see whether or not an article contains one or
more keywords: science, scientist, professor, doc-
tor, academic, journal, research, publish, report.
We deliberately chose these keywords as a sim-
plistic filter to reduce the amount of current af-
fairs/celebrity gossip news that was initially ac-
cepted into our system. For the second of our fil-
ters, we ran a Named Entity Recognition (NER)
algorithm4 that provided multi-word expression
identification and classification for names, loca-
tions and geo-political entities. From the results
of the NER execution, we only accepted articles
with at least one organisation containing Univer-
sity, College or Institute.

The final step in the pre-processing pipeline
is identification of each article’s publication date.
Publication date is one of the most salient features
in our paper candidate scoring algorithm discussed
below. Recent digital news articles give their date

3http://newspaper.readthedocs.io/en/
latest/

4SpaCy 2.0 https://spacy.io/
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Model Type Accuracy F1-Score
SVM 0.94 0.94
Naive Bayes 0.82 0.86

Table 1: Micro-averaged Results from Spam Mod-
els. Spam Articles: 2085, Ham Articles: 840

of publication in their HTML metadata. However,
for many of the old articles in the web archive, this
information was not present. For articles with no
known publication date, we first attempted to re-
trieve the same URL from the live internet where
much of the original content is still available but
with updated layouts and metadata. If the content
can’t be found, we used a set of regular expres-
sions (found within the newspaper library men-
tioned above) to try and find the date in the article
HTML. Failing all else, we simply asked the user
to try and identify the publication date manually
within the user interface.

The retrieval and pre-processing steps are rather
time consuming, taking a modern workstation (In-
tel i7 Quad Core @ 3.5Ghz, 16GB RAM) approx-
imately 24 hours to process 20k news articles. We
therefore ingest content into HarriGT in batches
using a small Apache Hadoop cluster.

3.3 ‘Spam’ Filtering

Our keyword filter during pre-processing removes
a large number of general interest articles that do
not discuss scientific work. There are still a num-
ber of articles that pass this initial screening that
are off topic. We address this issue by includ-
ing a machine learned “spam” model into Har-
riGT. Within the user interface, news articles can
be marked as spam if they contain little relevant
scientific content. The model is re-trained using
new examples from the spam and link categories
as the user continues to tag articles.

We trained two machine learning models to ad-
dress the problem, a Naive Bayes classifier and a
Support Vector Machine. We used Grid Search to
identify the best training hyper-parameters for fea-
ture extraction and the models. The optimal fea-
ture hyper-parameters were found to be unigram
and bigram bag-of-words features with TF-IDF
weighting, maximum document frequency of 75%
and a maximum vocabulary size of 10,000. We
found that an SVM with a linear kernel and C = 1
produced the best results and used this model in
the live system. Table 3.3 shows our model results
after 4 iterations of training and use.

Given the size of the corpus, the hardware en-

vironment that the model was required to support
and the positive results from the SVM mode, we
decided not to explore deep learning approaches
to spam filtering.

3.4 Citation Graph Integration

In order to provide candidate scientific works for
each newspaper article, we required integration
with rich sources of metadata for as many sci-
entific disciplines as possible. We decided to
integrate HarriGT with the Microsoft Academic
Knowledge5, Scopus6 and Springer7 APIs. These
APIs all provide broad, up to date coverage of
known academic works. Each API had a differ-
ent search endpoint with differing query languages
and syntax that had to be catered for.

Each of the APIs returns metadata such as title,
names and affiliations of authors, name of pub-
lishing venue and date of publication. In most
cases each API returned a DOI so that each work
could be uniquely identified and hyperlinked via
the HarriGT interface. This allowed us to de-
duplicate items returned by more than one API.

Articles typically talk about the institution that
a scientific work was carried out at and indepen-
dently the name of the author e.g. “Cambridge
Researchers have found that... Dr Smith who led
the study said...” making automatic extraction of
reference information very difficult. Therefore,
we use NER to identify all names and institutions
in the article and run citation graph queries for
each permutation. For example: “A study run by
Oxford and Cambridge universities found that...
Dr Jones who led the study said...” would yield
two queries: (Jones, Oxford), (Jones, Cambridge).
Searches are bounded by the article’s publication
date plus-or-minus 90 days.

3.5 Candidate Scoring Implementation

The retrieval mechanism described above tends
to overgenerate links between news articles and
scientific publications, resulting in 0.19 precision.
Therefore it is important to have a mechanism for
ranking these further, to avoid spurious links and
only show the user the most prominent ones for
further verification. To address this we propose a
simple but effective mechanism based on the Lev-
enshtein Ratio. Each news article is associated

5https://labs.cognitive.microsoft.com/
en-us/project-academic-knowledge

6https://dev.elsevier.com/index.html
7https://dev.springer.com/
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with a set of C candidate scientific works ci where
i ∈ [0, C] are found using the retrieval method
discussed above. News articles contain two sets of
entity mentions of interest: A set of N peoples’
names nj and a set of O organization names oj .
We also record the number of times each entity is
mentioned Mj . For each candidate scientific work
ci, we identify a set of Ai authors’ names aki and
their respective academic affiliations uki . We also
note the publication date of each news article D
and the publication date of each candidate scien-
tific work Pi.

For a given news article, we score each candi-
date scientific work ci by summing over the square
of Levenshtein Ratio (Lr(x, y)) of each pair of
mentions of names and authors:

Sper
i =

N∑

j=0

Mj

Ai∑

k=0

Lr(nj , a
i
k)2

A similar calculation is carried out for organisa-
tion mentions and affiliations.

Sorg
i =

O∑

j=0

Mj

Ai∑

k=0

Lr(oj , u
i
k)2

The Levenshtein Ratio is a simple, effective
measure that has been used for assessing NE sim-
ilarity (Moreau et al., 2008). We also calculate
∆D, the number of days between the publication
date of the news article, D and the scientific work
Pi. In cases where the candidate article has mul-
tiple publication dates (for example, online publi-
cation versus print publication), ∆D is calculated
for all publication dates and the smallest value is
retained.

∆D = min
n

(
√

(D − Pn
i )2)

Finally, we calculate an overall score Si for each
article by normalizing Sper

i and Sorg
i by their re-

spective numbers of distinct entity mentions and
then dividing by ∆D like so:

Si = (
Sper
i

N
+

Sorg
i

O
)× 1

∆D

Candidates are ranked according to their Si

score in descending order so that the highest scor-
ing candidates are presented to the user first.

3.6 Candidate Scoring Evaluation
To evaluate our candidate scoring technique, we
use it to retrieve the N-best candidates for news
articles with known links to one or more scientific
papers. For each of the news articles in our ground

truth collection, we retrieved all candidate scien-
tific works from the citation graphs as described
in section 3.4 above. We then use the scoring al-
gorithm from section 3.5 above to rank the candi-
dates then check to see whether actual linked pa-
pers appear in the top 1,3 and 5 results (Top-K ac-
curacy).

Top-1 Top-3 Top-5
Accuracy 0.59 0.83 0.90

Table 2: Top-K Accuracy for Scoring Algorithm

We identified a small number of reasons for sub-
optimal ranking. Newspaper articles occasionally
focus around candidate works published months
earlier. In some cases, incorrect publication dates
are being reported by the scientific paper APIs. In
both cases, our system strongly penalizes candi-
dates in terms of ∆D. HarriGT’s ranking algo-
rithm also weakly penalizes candidates that have
multiple authors in cases where only one author
(often the lead) is mentioned in the newspaper text.
This effect is amplified when work by the same
lead author with fewer or no co-authors is also
found since these candidates are preferred and fil-
tered to the top of the list.

HarriGT’s recall is not bounded by the candi-
date ranking algorithm but by the queries and re-
sults from our integration with Scopus, Microsoft
and Springer APIs. HarriGT allows the user to
hide news articles that are scientific but for which
no relevant candidates are recommended. This ac-
tion is distinct from marking an item as spam,
which indicates that it has no scientific value and
should be excluded from the corpus.

We evaluate the recall of our tool by considering
items marked as link to be retrieved and deemed
relevant and items marked as hide to be retrieved
but for which no relevant items could be found.
Thus defining recall as:

recall =
|{linked}|

|{linked} ∪ {hidden}|

At the time of writing, the recall of the system
is 0.57. This figure may be lower than the actual
figure, since papers are occasionally classified as
‘hidden’ by annotators if several strong candidates
are presented and they are unsure which paper to
link to. We expect that this figure will get stronger
with more use.
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4 Conclusion & Future Work

We have presented HarriGT, the first tool for
rapidly establishing links between scientific works
and the newspaper articles that discuss them. We
have shown that using a combination of NLP tech-
niques and proposing a simple but effective candi-
date ranking algorithm, it is possible to construct
a linked corpus of scientific articles and news ar-
ticles for future analysis of the impact of scien-
tific articles in news media. The tool could also
have other uses such as the discovery of primary
sources for scientific news. Future work will ex-
plore the role of time and other content in this task.
Our open source tool has been constructed with
use of the JISC corpus in mind, but could be used
with other sources of news also. HarriGT pro-
duces useful ranking and good recall and is ready
for use with a large corpus. HarriGT is available
to try out at http://www.harrigt.xyz and
we welcome feedback from volunteer users.
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Abstract

Many Machine Reading and Natural Lan-
guage Understanding tasks require reading
supporting text in order to answer ques-
tions. For example, in Question Answer-
ing, the supporting text can be newswire
or Wikipedia articles; in Natural Language
Inference, premises can be seen as the sup-
porting text and hypotheses as questions.
Providing a set of useful primitives operat-
ing in a single framework of related tasks
would allow for expressive modelling, and
easier model comparison and replication.
To that end, we present Jack the Reader
(JACK), a framework for Machine Read-
ing that allows for quick model prototyp-
ing by component reuse, evaluation of new
models on existing datasets as well as in-
tegrating new datasets and applying them
on a growing set of implemented baseline
models. JACK is currently supporting (but
not limited to) three tasks: Question An-
swering, Natural Language Inference, and
Link Prediction. It is developed with the
aim of increasing research efficiency and
code reuse.

1 Introduction

Automated reading and understanding of textual
and symbolic input, to a degree that enables ques-
tion answering, is at the core of Machine Read-
ing (MR). A core insight facilitating the develop-
ment of MR models is that most of these tasks can
be cast as an instance of the Question Answering
(QA) task: an input can be cast in terms of ques-
tion, support documents and answer candidates,
and an output in terms of answers. For instance,
in case of Natural Language Inference (NLI), we
can view the hypothesis as a multiple choice ques-

tion about the underlying premise (support) with
predefined set of specific answer candidates (en-
tailment, contradiction, neutral). Link Prediction
(LP) – a task which requires predicting the truth
value about facts represented as (subject, predi-
cate, object)-triples – can be conceived of as an in-
stance of QA (see Section 4 for more details). By
unifying these tasks into a single framework, we
can facilitate the design and construction of multi-
component MR pipelines.

There are many successful frameworks such as
STANFORD CORENLP (Manning et al., 2014),
NLTK (Bird et al., 2009), and SPACY1 for NLP,
LUCENE2 and SOLR3 for Information Retrieval,
and SCIKIT-LEARN4, PYTORCH5 and TENSOR-
FLOW (Abadi et al., 2015) for general Machine
Learning (ML) with a special focus on Deep
Learning (DL), among others. All of these frame-
works touch upon several aspects of Machine
Reading, but none of them offers dedicated sup-
port for modern MR pipelines. Pre-processing and
transforming MR datasets into a format that is us-
able by a MR model as well as implementing com-
mon architecture building blocks all require sub-
stantial effort which is not specifically handled by
any of the aforementioned solutions. This is due to
the fact that they serve a different, typically much
broader purpose.

In this paper, we introduce Jack the Reader
(JACK), a reusable framework for MR. It allows
for the easy integration of novel tasks and datasets
by exposing a set of high-level primitives and a
common data format. For supported tasks it is
straight-forward to develop new models without
worrying about the cumbersome implementation

1https://spacy.io
2https://lucene.apache.org
3http://lucene.apache.org/solr/
4http://scikit-learn.org
5http://pytorch.org/
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of training, evaluation, pre- and post-processing
routines. Declarative model definitions make the
development of QA and NLI models using com-
mon building blocks effortless. JACK covers a
large variety of datasets, implementations and pre-
trained models on three distinct MR tasks and sup-
ports two ML backends, namely PYTORCH and
TENSORFLOW. Furthermore, it is easy to train,
deploy, and interact with MR models, which we
refer to as readers.

2 Related Work

Machine Reading requires a tight integration of
Natural Language Processing and Machine Learn-
ing models. General NLP frameworks include
CORENLP (Manning et al., 2014), NLTK (Bird
et al., 2009), OPENNLP6 and SPACY. All these
frameworks offer pre-built models for standard
NLP preprocessing tasks, such as tokenisation,
sentence splitting, named entity recognition and
parsing.

GATE (Cunningham et al., 2002) and
UIMA (Ferrucci and Lally, 2004) are toolk-
its that allow quick assembly of baseline NLP
pipelines, and visualisation and annotation via
a Graphical User Interface. GATE can utilise
NLTK and CORENLP models and additionally
enable development of rule-based methods using
a dedicated pattern language. UIMA offers a
text analysis pipeline which, unlike GATE, also
includes retrieving information, but does not offer
its own rule-based language. It is further worth
mentioning the Information Retrieval frameworks
APACHE LUCENE and APACHE SOLR which
can be used for building simple, keyword-based
question answering systems, but offer no ML
support.

Multiple general machine learning frame-
works, such as SCIKIT-LEARN (Pedregosa et al.,
2011), PYTORCH, THEANO (Theano Develop-
ment Team, 2016) and TENSORFLOW (Abadi
et al., 2015), among others, enable quick proto-
typing and deployment of ML models. However,
unlike JACK, they do not offer a simple framework
for defining and evaluating MR models.

The framework closest in objectives to JACK

is ALLENNLP (Gardner et al., 2017), which is
a research-focused open-source NLP library built
on PYTORCH. It provides the basic low-level
components common to many systems in addition

6https://opennlp.apache.org
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Figure 1: Our core abstraction, the JTREADER.
On the left, the responsibilities covered by the IN-
PUT, MODEL and OUTPUT modules that compose
a JTREADER instance. On the right, the data for-
mat that is used to interact with a JTREADER (dot-
ted lines indicate that the component is optional).

to pre-assembled models for standard NLP tasks,
such as coreference resolution, constituency pars-
ing, named entity recognition, question answer-
ing and textual entailment. In comparison with
ALLENNLP, JACK supports both TENSORFLOW

and PYTORCH. Furthermore, JACK can also learn
from Knowledge Graphs (discussed in Section 4),
while ALLENNLP focuses on textual inputs. Fi-
nally, JACK is structured following a modular ar-
chitecture, composed by input-, model-, and out-
put modules, facilitating code reuse and the inclu-
sion and prototyping of new methods.

3 Overview

In Figure 1 we give a high-level overview of
our core abstraction, the JTREADER. It is a
task-agnostic wrapper around three typically task-
dependent modules, namely the input, model and
output modules. Besides serving as a container
for modules, a JTREADER provides convenience
functionality for interaction, training and serialisa-
tion. The underlying modularity is therefore well
hidden from the user which facilitates the applica-
tion of trained models.

3.1 Modules and Their Usage

Our abstract modules have the following high-
level responsibilities:

• INPUT MODULES: Pre-processing that trans-
forms a text-based input to tensors.

• MODEL MODULES: Implementation of the
actual end-to-end MR model.

• OUTPUT MODULES: Converting predictions
into human readable answers.
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The main design for building models in JACK

revolves around functional interfaces between the
three main modules: the input-, model-, and out-
put module. Each module can be viewed as a thin
wrapper around a (set of) function(s) that addi-
tionally provides explicit signatures in the form of
tensor ports which can be understood as named
placeholders for tensors.

The use of explicit signatures helps validate
whether modules are correctly implemented and
invoked, and to ensure correct behaviour as well as
compatibility between modules. Finally, by imple-
menting modules as classes and their interaction
via a simple functional interface, JACK allows for
the exploitation of benefits stemming from the use
of object oriented programming, while retaining
the flexibility offered by the functional program-
ming paradigm when combining modules.

Given a list of training instances, correspond-
ing to question-answer pairs, a input module is re-
sponsible for converting such instances into ten-
sors. Each produced tensor is associated with a
pre-defined tensor port – a named placeholder for
a tensor – which can in turn be used in later mod-
ules to retrieve the actual tensor. This step typ-
ically involves some shallow forms of linguistic
pre-processing such as tokenisation, building vo-
cabularies, etc. The model module runs the end-
to-end MR model on the now tensorised input and
computes a new mapping of output tensor ports to
newly computed tensors. Finally, the joint tensor
mappings of the input- and model module serve
as input to the output module which produces a
human-readable answer. More in-depth documen-
tation can be found on the project website.

3.2 Distinguishing Features

Module Reusability. Our shallow modularisa-
tion of readers into input-, model- and output mod-
ules has the advantage that they can be reused
easily. Most of nowadays state-of-the-art MR
models require the exact same kind of input pre-
processing and produce output of the same form.
Therefore, existing input- and output modules that
are responsible for pre- and post-processing can be
reused in most cases, which enables researchers
to focus on prototyping and implementing new
models. Although we acknowledge that most of
the pre-processing can easily be performed by
third-party libraries such as CORENLP, NLTK
or SPACY, we argue that additional functional-

ity, such as building and controlling vocabular-
ies, padding, batching, etc., and connecting the
pre-processed output with the actual model im-
plementation pose time intensive implementation
challenges. These can be avoided when work-
ing with one of our currently supported tasks –
Question Answering, Natural Language Inference,
or Link Prediction in Knowledge Graphs. Note
that modules are typically task specific and not
shared directly between tasks. However, utilities
like the pre-processing functions mentioned above
and model building blocks can readily be reused
even between tasks.

Supported ML Backends. By decoupling mod-
elling from pre- and post-processing we can easily
switch between backends for model implementa-
tions. At the time of writing, JACK offers support
for both TENSORFLOW and PYTORCH. This al-
lows practitioners to use their preferred library for
implementing new MR models and allows for the
integration of more back-ends in the future.

Declarative Model Definition. Implementing
different kinds of MR models can be repetitive,
tedious, and error-prone. Most neural architec-
tures are built using a finite set of basic building
blocks for encoding sequences, and realising inter-
action between sequences (e.g. via attention mech-
anisms). For such a reason, JACK allows to de-
scribe these models at a high level, as a composi-
tion of simpler building blocks 7, leaving concrete
implementation details to the framework.

The advantage of using such an approach is
that is very easy to change, adapt or even cre-
ate new models without knowing any implemen-
tation specifics of JACK or its underlying frame-
works, such as TENSORFLOW and PYTORCH.
This solution also offers another important advan-
tage: it allows for easy experimentation of auto-
mated architecture search and optimisation (Au-
toML). JACK already enables the definition of new
models purely within configuration files without
writing any source code. These are interpreted by
JACK and support a (growing) set of pre-defined
building blocks. In fact, many models for differ-
ent tasks in JACK are realised by high-level archi-
tecture descriptions. An example of an high-level
architecture definition in JACK is available in Ap-
pendix A.

7For instance, see https://github.com/uclmr/
jack/blob/master/conf/nli/esim.yaml
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Dataset Coverage. JACK allows parsing a large
number of datasets for QA, NLI, and Link Pre-
diction. The supported QA datasets include
SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi
et al., 2017), NewsQA (Trischler et al., 2017),
and QAngaroo (Welbl et al., 2017). The sup-
ported NLI datasets include SNLI (Bowman et al.,
2015), and MultiNLI (Williams et al., 2018).
The supported Link Prediction datasets include
WN18 (Bordes et al., 2013), WN18RR (Dettmers
et al., 2018), and FB15k-237 (Toutanova and
Chen, 2015).

Pre-trained Models. JACK offers several pre-
trained models. For QA, these include FastQA,
BiDAF, and JackQA trained on SQuAD and Triv-
iaQA. For NLI, these include DAM and ESIM
trained on SNLI and MultiNLI. For LP, these in-
clude DistMult and ComplEx trained on WN18,
WN18RR and FB15k-237.

4 Supported MR Tasks

Most end-user MR tasks can be cast as an instance
of question answering. The input to a typical ques-
tion answering setting consists of a question, sup-
porting texts and answers during training. In the
following we show how JACK is used to model our
currently supported MR tasks.

Ready to use implementations for these tasks
exist which allows for rapid prototyping. Re-
searchers interested in developing new models can
define their architecture in TENSORFLOW or PY-
TORCH, and reuse existing of input- and output
modules. New datasets can be tested quickly on a
set of implemented baseline models after convert-
ing them to one of our supported formats.

Extractive Question Answering. JACK sup-
ports the task of Extractive Question Answering
(EQA), which requires a model to extract an an-
swer for a question in the form of an answer span
comprising a document id, token start and -end
from a given set of supporting documents. This
task is a natural fit for our internal data format,
and is thus very easy to represent with JACK.

Natural Language Inference. Another popu-
lar MR task is Natural Language Inference, also
known as Recognising Textual Entailment (RTE).
The task is to predict whether a hypothesis is en-
tailed by, contradicted by, or neutral with respect
to a given premise. In JACK, NLI is viewed as

an instance of multiple-choice Question Answer-
ing problem, by casting the hypothesis as the ques-
tion, and the premise as the support. The answer
candidates to this question are the three possible
outcomes or classes – namely entails, contradicts
or neutral.

Link Prediction. A Knowledge Graph is a set of
(s, p, o) triples, where s, o denote the subject and
object of the triple, and p denotes its predicate:
each (s, p, o) triple denotes a fact, represented as
a relationship of type p between entities s and
o, such as: (LONDON, CAPITALOF, UK). Real-
world Knowledge Graphs, such as Freebase (Bol-
lacker et al., 2007), are largely incomplete: the
Link Prediction task consists in identifying miss-
ing (s, p, o) triples that are likely to encode true
facts (Nickel et al., 2016).

JACK also supports Link Prediction, because
existing LP models can be cast as multiple-choice
Question Answering models, where the question
is composed of three words – a subject s, a predi-
cate p, and an object o. The answer candidates to
these questions are true and false.

In its original formulation of the Link Predic-
tion task, the support is left empty. However, JACK

facilitates enriching the questions with additional
support – consisting, for instance, of the neigh-
bourhood of the entities involved in the question,
or sentences from a text corpus that include the
entities appearing in the triple in question. Such a
setup can be interpreted as an instance of NLI, and
existing models not originally designed for solv-
ing Link Prediction problems can be trained ef-
fortlessly.

5 Experiments

Experimental setup and results for different mod-
els on the three above-mentioned MR tasks are
reported in this section. Note that our re-
implementations or training configurations may
not be entirely faithful.We performed slight mod-
ifications to original setups where we found this
to perform better in our experiments, as indicated
in the respective task subsections. However, our
results still vary from the reported ones, which
we believe is due to the extensive hyper-parameter
engineering that went into the original settings,
which we did not perform. For each experiment, a
ready to use training configuration as well as pre-
trained models are part of JACK.
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Model Original F1 JACK F1 Speed #Params

BiDAF 77.3 77.8 1.0x 2.02M
FastQA 76.3 77.4 2.2x 0.95M
JackQA – 79.6 2.0x 1.18M

Table 1: Metrics on the SQuAD development set
comparing F1 metric from the original implemen-
tation to that of JACK, number of parameters, and
relative speed of the models.

Model Original JACK

cBiLSTM (Rocktäschel et al., 2016) – 82.0
DAM (Parikh et al., 2016) 86.6 84.6
ESIM (Chen et al., 2017) 88.0 87.2

Table 2: Accuracy on the SNLI test set achieved
by cBiLSTM, DAM, and ESIM.

Question Answering. For the Question An-
swering (QA) experiments we report results for
our implementations of FastQA (Weissenborn
et al., 2017), BiDAF (Seo et al., 2016) and, in ad-
dition, our own JackQA implementations. With
JackQA we aim to provide a fast and accurate
QA model. Both BiDAF and JackQA are re-
alised using high-level architecture descriptions,
that is, their architectures are purely defined within
their respective configuration files. Results of our
models on the SQuAD (Rajpurkar et al., 2016)
development set along with additional run-time
and parameter metrics are presented in Table 1.
Apart from SQuAD, JACK supports the more re-
cent NewsQA (Trischler et al., 2017) and Trivi-
aQA (Joshi et al., 2017) datasets too.

Natural Language Inference. For NLI, we re-
port results for our implementations of condi-
tional BiLSTMs (cBiLSTM) (Rocktäschel et al.,
2016), the bidirectional version of conditional
LSTMs (Augenstein et al., 2016), the Decompos-
able Attention Model (DAM, Parikh et al., 2016)
and Enhanced LSTM (ESIM, Chen et al., 2017).
ESIM was entirely implemented as a modular NLI
model, i.e. its architecture was purely defined in a
configuration file – see Appendix A for more de-
tails. Our models or training configurations con-
tain slight modifications from the original which
we found to perform better than the original setup.
Our results are slightly differ from those reported,
since we did not always perform an exhaustive
hyper-parameter search.

Dataset Model MRR Hits@3 Hits@10

WN18 DistMult 0.822 0.914 0.936
ComplEx 0.941 0.936 0.947

WN18RR DistMult 0.430 0.443 0.490
ComplEx 0.440 0.461 0.510

FB15k-237 DistMult 0.241 0.263 0.419
ComplEx 0.247 0.275 0.428

Table 3: Link Prediction results, measured
using the Mean Reciprocal Rank (MRR) and
Hits@10, for DistMult (Yang et al., 2015), and
ComplEx (Trouillon et al., 2016).

Link Prediction. For Link Prediction in Knowl-
edge Graphs, we report results for our implemen-
tations of DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016) on various datasets.
Results are otlined in Table 3.

6 Demo

We created three tutorial Jupyter notebooks at
https://github.com/uclmr/jack/
tree/master/notebooks to demo JACK’s
use cases. The quick start notebook shows how to
quickly set up, load and run the existing systems
for QA and NLI. The model training notebook
demonstrates training, testing, evaluating and
saving QA and NLI models programmatically.
However, normally the user will simply use the
provided training script from command line. The
model implementation notebook delves deeper
into implementing new models from scratch by
writing all modules for a custom model.

7 Conclusion

We presented Jack the Reader (JACK), a shared
framework for Machine Reading tasks that will
allow component reuse and easy model transfer
across both datasets and domains.

JACK is a new unified Machine Reading frame-
work applicable to a range of tasks, developed
with the aim of increasing researcher efficiency
and code reuse. We demonstrate the flexibility
of our framework in terms of three tasks: Ques-
tion Answering, Natural Language Inference, and
Link Prediction in Knowledge Graphs. With fur-
ther model additions and wider user adoption,
JACK will support faster and reproducible Ma-
chine Reading research, enabling a building-block
approach to model design and development.
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Abstract

In this paper, we introduce YEDDA, a
lightweight but efficient and comprehen-
sive open-source tool for text span an-
notation. YEDDA provides a systematic
solution for text span annotation, rang-
ing from collaborative user annotation to
administrator evaluation and analysis. It
overcomes the low efficiency of traditional
text annotation tools by annotating entities
through both command line and shortcut
keys, which are configurable with custom
labels. YEDDA also gives intelligent rec-
ommendations by learning the up-to-date
annotated text. An administrator client
is developed to evaluate annotation qual-
ity of multiple annotators and generate de-
tailed comparison report for each annota-
tor pair. Experiments show that the pro-
posed system can reduce the annotation
time by half compared with existing anno-
tation tools. And the annotation time can
be further compressed by 16.47% through
intelligent recommendation.

1 Introduction

Natural Language Processing (NLP) systems rely
on large-scale training data (Marcus et al., 1993)
for supervised training. However, manual anno-
tation can be time-consuming and expensive. De-
spite detailed annotation standards and rules, inter-
annotator disagreement is inevitable because of
human mistakes, language phenomena which are
not covered by the annotation rules and the ambi-
guity of language itself (Plank et al., 2014).

Existing annotation tools (Cunningham et al.,
2002; Morton and LaCivita, 2003; Chen and
Styler, 2013; Druskat et al., 2014) mainly focus
on providing a visual interface for user annotation

Admin
Toolkits

Annotator
Interface

Annotator  1

Annotator  2

Annotator  n

Raw  Text

Annotated
Text

Multi-Annotation  
Analysis  Results

Detailed  Pairwise  
Annotation  Report  

Feedback

Administrator

Figure 1: Framework of YEDDA.

process but rarely consider the post-annotation
quality analysis, which is necessary due to the
inter-annotator disagreement. In addition to the
annotation quality, efficiency is also critical in
large-scale annotation task, while being relatively
less addressed in existing annotation tools (Ogren,
2006; Stenetorp et al., 2012). Besides, many tools
(Ogren, 2006; Chen and Styler, 2013) require a
complex system configuration on either local de-
vice or server, which is not friendly to new users.

To address the challenges above, we propose
YEDDA1 , a lightweight and efficient annotation
tool for text span annotation. A snapshot is shown
in Figure 2. Here text span boundaries are se-
lected and assigned with a label, which can be use-
ful for Named Entity Recognition (NER) (Tjong
Kim Sang and De Meulder, 2003), word seg-
mentation (Sproat and Emerson, 2003), chunk-
ing (Tjong Kim Sang and Buchholz, 2000) ,etc.
To keep annotation efficient and accurate, YEDDA

provides systematic solutions across the whole an-
notation process, which includes the shortcut an-
notation, batch annotation with a command line,
intelligent recommendation, format exporting and

1Code is available at https://github.com/
jiesutd/YEDDA.
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Tool
Operating System Self

Consistency
Command Line

Annotation
System

Recommendation Analysis Size Language
MacOS Linux Win

WordFreak
√ √ √ √ × √ × 1.1M Java

GATE
√ √ √ √ × √ × 544M Java

Knowtator
√ √ √ × × × √

1.5M Java
Stanford

√ √ √ √ × × × 88k Java
Atomic

√ √ √ √ × × × 5.8M Java
WebAnno

√ √ √ × × √ √
13.2M Java

Anafora
√ √ × × × × × 1.7M Python

BRAT
√ √ × × × √ × 31.1M Python

YEDDA
√ √ √ √ √ √ √

80k Python

Table 1: Annotation Tool Comparison .

administrator evaluation/analysis.
Figure 1 shows the general framework of

YEDDA. It offers annotators with a simple and
efficient Graphical User Interface (GUI) to anno-
tate raw text. For the administrator, it provides two
useful toolkits to evaluate multi-annotated text and
generate detailed comparison report for annotator
pair. YEDDA has the advantages of being:
• Convenient: it is lightweight with an intuitive
interface and does not rely on specific operating
systems or pre-installed packages.
• Efficient: it supports both shortcut and com-
mand line annotation models to accelerate the an-
notating process.
• Intelligent: it offers user with real-time system
suggestions to avoid duplicated annotation.
• Comprehensive: it integrates useful toolkits to
give the statistical index of analyzing multi-user
annotation results and generate detailed content
comparison for annotation pairs.

This paper is organized as follows: Section 2
gives an overview of previous text annotation tools
and the comparison with ours. Section 3 describes
the architecture of YEDDA and its detail functions.
Section 4 shows the efficiency comparison results
of different annotation tools. Finally, Section 5
concludes this paper and give the future plans.

2 Related Work

There exists a range of text span annotation tools
which focus on different aspects of the annota-
tion process. Stanford manual annotation tool2

is a lightweight tool but does not support re-
sult analysis and system recommendation. Know-
tator (Ogren, 2006) is a general-task annotation
tool which links to a biomedical onto ontology to

2http://nlp.stanford.edu/software/
stanford-manual-annotation-tool-2004-05-16.
tar.gz

help identify named entities and relations. It sup-
ports quality control during the annotation process
by integrating simple inter-annotator evaluation,
while it cannot figure out the detailed disagreed
labels. WordFreak (Morton and LaCivita, 2003)
adds a system recommendation function and inte-
grates active learning to rank the unannotated sen-
tences based on the recommend confidence, while
the post-annotation analysis is not supported.

Web-based annotation tools have been devel-
oped to build operating system independent an-
notation environments. GATE3 (Bontcheva et al.,
2013) includes a web-based with collaborative an-
notation framework which allows users to work
collaboratively by annotating online with shared
text storage. BRAT (Stenetorp et al., 2012) is
another web-based tool, which has been widely
used in recent years, it provides powerful an-
notation functions and rich visualization ability,
while it does not integrate the result analysis func-
tion. Anafora (Chen and Styler, 2013) and Atomic
(Druskat et al., 2014) are also web-based and
lightweight annotation tools, while they don’t sup-
port the automatic annotation and quality analysis
either. WebAnno (Yimam et al., 2013; de Castilho
et al., 2016) supports both the automatic annota-
tion suggestion and annotation quality monitor-
ing such as inter-annotator agreement measure-
ment, data curation, and progress monitoring. It
compares the annotation disagreements only for
each sentence and shows the comparison within
the interface, while our system can generate a de-
tailed disagreement report in .pdf file through
the whole annotated content. Besides, those web-
based annotation tools need to build a server
through complex configurations and some of the
servers cannot be deployed on Windows systems.

3GATE is a general NLP tool which includes annotation
function.
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Figure 2: Annotator Interface.

The differences between YEDDA and related
work are summarised in Table 14. Here “Self
Consistency” represents whether the tool works
independently or it relies on pre-installed pack-
ages. Compared to these tools, YEDDA provides
a lighter but more systematic choice with more
flexibility, efficiency and less dependence on sys-
tem environment for text span annotation. Be-
sides, YEDDA offers administrator useful toolkits
for evaluating the annotation quality and analyze
the detailed disagreements within annotators.

3 YEDDA

YEDDA is developed based on standard Python
GUI library Tkinter5, and hence needs only
Python installation as a prerequisite and is com-
patible with all Operating System (OS) platforms
with Python installation. It offers two user-
friendly interfaces for annotators and administra-
tor, respectively, which are introduced in detail in
Section 3.1 and Section 3.2, respectively.

3.1 Annotator Client
The client is designed to accelerate the annotation
process as much as possible. It supports short-
cut annotation to reduce the user operation time.
Command line annotation is designed to annotate
multi-span in batch. In addition, the client pro-
vides system recommendations to lessen the work-
load of duplicated span annotation.

4For web-based tools, we list their server-side dependency
on operating systems.

5https://docs.python.org/2/library/
tkinter.html

Figure 2 shows the interface of annotator client
on an English entity annotation file. The interface
consists of 5 parts. The working area in the up-left
which shows the texts with different colors (blue:
annotated entities, green: recommended entities
and orange: selected text span). The entry at the
bottom is the command line which accepts anno-
tation command. There are several control buttons
in the middle of the interface, which are used to
set annotation model. The status area is below the
control buttons, it shows the cursor position and
the status of recommending model. The right side
shows the shortcut map, where shortcut key “a”
or “A” means annotating the text span with “Arti-
ficial” type and the same for other shortcut keys.
The shortcut map can be configured easily6. De-
tails are introduced as follows.

3.1.1 Shortcut Key Annotation

YEDDA provides the function of annotating text
span by selecting using mouse and press shortcut
key to map the selection into a specific label. It
is a common annotation process in many annota-
tion tools (Stenetorp et al., 2012; Bontcheva et al.,
2013). It binds each label with one custom short-
cut key, this is shown in the “Shortcuts map La-
bels” part of Figure 2. The annotator needs only
two steps to annotate one text span, i.e. “select and
press”. The annotated file updates simultaneously
with each key pressing process.

6Type the corresponding labels into the entries following
shortcut keys and press “ReMap” button.
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Figure 3: Administrator Interface.

3.1.2 Command Line Annotation

YEDDA also support the command line annota-
tion function (see the command entry in the bot-
tom of Figure 2) which can execute multi-span
annotation at once. The system will parse the
command automatically and convert the command
into multi-span annotation instructions and exe-
cute in batch. It is quite efficient for the tasks
of character-based languages (such as Chinese and
Japanese) with high entity density. The command
follows a simple rule which is “n1+ key1+n2+
key2 + n3 + key3 + ...′′, where ‘n1, n2, n3’ are
the length of the entities and ‘key1, key2, key3’
is the corresponding shortcut key. For example,
command “2A3D2B” represents annotating fol-
lowing 2 characters as label ‘A’ (mapped into a
specific label name), the following 3 characters as
label ‘D’ and 2 characters further as label ‘B’.

3.1.3 System Recommendation

It has been shown that using pre-annotated text
and manual correction increases the annotation ef-
ficiency in many annotation tasks (Meurs et al.,
2011; Stenetorp et al., 2012). YEDDA offers an-
notators with system recommendation based on
the existing annotation history. The current rec-
ommendation system incrementally collects anno-
tated text spans from sentences that have been la-
beled, thus gaining a dynamically growing lexi-
con. Using the lexicon, the system automatically
annotates sentences that are currently being anno-
tated by leveraging the forward maximum match-
ing algorithm. The automatically suggested text
spans and their types are returned with colors in
the user interface, as shown in green in Figure 2.
Annotators can use the shortcut to confirm, cor-
rect or veto the suggestions. The recommending
system keeps online updating during the whole an-
notation process, which learns the up-to-date and
in-domain annotation information. The recom-
mending system is designed as “pluggable” which
ensures that the recommending algorithm can be
easily extended into other sequence labeling mod-

Figure 4: Multiple annotators F1-score matrix.

els, such as Conditional Random Field (CRF)7

(Lafferty et al., 2001). The recommendation can
be controlled through two buttons “RMOn” and
“RMOff”, which enables and disables the recom-
mending function, respectively.

3.1.4 Annotation Modification
It is inevitable that the annotator or the recom-
mending system gives incorrect annotations or
suggestions. Based on our annotation experience,
we found that the time cost of annotation correc-
tion cannot be neglected. Therefore, YEDDA pro-
vides several efficient modification actions to re-
vise the annotation:
• Action withdraw: annotators can cancel their
previous action and let system return to the last
status by press the shortcut key Ctrl+z.
• Span label modification: if the selected span
has the correct boundary but receives an incorrect
label, annotator only needs to put the cursor inside
the span (or select the span) and press the shortcut
key of the right label to correct label.
• Label deletion: similar to the label modifica-
tion, the annotator can put the cursor inside the
span and press shortcut key q to remove the anno-
tated (recommended) label.

3.1.5 Export Annotated Text
As the annotated file is saved in .ann format,
YEDDA provides the “Export” function which
exports the annotated text as standard format
(ended with .anns). Each line includes one
word/character and its label, sentences are sepa-
rated by an empty line. The exported label can be
chosen in either BIO or BIOES format (Ratinov
and Roth, 2009).

3.2 Administrator Toolkits

For the administrator, it is important and neces-
sary to evaluate the quality of annotated files and
analyze the detailed disagreements of different an-
notators. Shown in Figure 3, YEDDA provides a

7Those sequence labeling models work well on big train-
ing data. For limited training data, the maximum matching
algorithm gives better performance.
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Annotation Comparison Report

SUTDNLP Group

Singapore University of Technology and Design

1 Overall Statistics

File1 color: Blue ; Dir: ~/demotext/EnglishUserA.txt.ann 

File2 color: Red ; Dir: ~/demotext/EnglishUserB.txt.ann

Table 1. Statistics for two annotations, assume File1 as gold standard

P/R/F (%) Entity Boundary

Artifical 74.36/50.0/59.79 –
Event Nan/0.0/Nan –
Fin-Concept 57.36/68.07/62.26 –
Location 50.0/100.0/66.67 –
Organization 66.67/82.93/73.91 –
Other 57.14/44.44/50.0 –
Person 91.3/67.74/77.78 –
Sector 56.52/76.47/65.0 –

Overall 61.96/66.36/64.08 72.05/77.16/74.52

2 Detail Content Comparison

Blue : only annotated in File1.

Red : only annotated in File2.

Green : annotated in both files.

But the group was actually farther away over the weekend, moving through
the Sunda Strait into the Indian Ocean .

The US military’s Pacific Command said on Tuesday that it had cancelled

a port visit to Perth , but had completed previously scheduled training with

Australia off its northwest coast after departing Singapore on 8 April.

The strike group was now ”proceeding to the Western Pacific as ordered”.
It is not clear whether the failure to arrive was a deliberate deception, per-
haps designed to frighten North Korea’s leader Kim Jong-un , a change of plan

Figure 5: Detailed report for annotator pair.

simple interface with several toolkits for adminis-
trator monitoring the annotation process.

3.2.1 Multi-Annotator Analysis
To evaluate and monitor the annotation quality of
different annotators, our Multi-Annotator Analy-
sis (MAA) toolkit imports all the annotated files
and gives the analysis results in a matrix. As
shown in Figure 4, the matrix gives the F1-scores
in full level (consider both boundary and label ac-
curacy) and boundary level (ignore the label cor-
rectness, only care about the boundary accuracy)
of all annotator pairs.

3.2.2 Pairwise Annotators Comparison
If an administrator wants to look into the de-
tailed disagreement of annotators, it is quite con-
venient by using the Pairwise Annotators Com-
parison (PAC). PAC loads two annotated files and
generates a specific comparison report file8 for the
two annotators. As shown in Figure 5, the report

8The report is generated in .tex format and can be com-
plied into .pdf file.
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Figure 6: Speed comparison.

is mainly in two parts:
• Overall statistics: it shows the specific preci-
sion, recall and F1-score9 of two files in all labels.
It also gives the three accuracy indexes on overall
full level and boundary level in the end.
• Content comparison: this function gives the
detailed comparison of two annotated files in
whole content. It highlights the annotated parts
of two annotators and assigns different colors for
the agreed and disagreed span.

4 Experiments

Here we compare the efficiency of our system with
four widely used annotation tools. We extract
100 sentences from CoNLL 2003 English NER
(Tjong Kim Sang and De Meulder, 2003) train-
ing data, with each sentence containing at least 4
entities. Two undergraduate students without any
experience on those tools are invited to annotate
those sentences10. Their average annotation time
is shown in Figure 6, where “YEDDA+R” suggests
annotation using YEDDA with the help of system
recommendation. The inter-annotator agreements
for those tools are closed, which around 96.1% F1-
score. As we can see from the figure, our YEDDA

system can greatly reduce the annotation time.
With the help of system recommendation, the an-
notation time can be further reduced. We notice
that “YEDDA+R” has larger advantage with the in-
creasing numbers of annotated sentences, this is
because the system recommendation gives better

9Notice that we assume “File1” as a gold standard. This
only affects the order of precision and recall, while the F1-
score keeps same if we choose the other file as gold standard.

10We ask the students to annotate those sentences several
rounds to get familiar with the entities before they start the
final exercise with recording.
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suggestions when it learns larger annotated sen-
tences. The “YEDDA+R” gives 16.47% time re-
duction in annotating 100 sentences11.

5 Conclusion and Future Work

We have presented a lightweight but systematic
annotation tool, YEDDA, for annotating the enti-
ties in text and analyzing the annotation results ef-
ficiently. In order to reduce the workload of an-
notators, we are going to integrate active learn-
ing strategy in our system recommendation part in
the future. A supervised sequence labeling model
(such as CRF) is trained based on the annotated
text, then unannotated sentences with less confi-
dence (predicted by this model) are reordered in
the front to ensure annotators only annotate the
most confusing sentences.

6 Acknowledgements

We thank Yanxia Qin, Hongmin Wang, Shaolei
Wang, Jiangming Liu, Yuze Gao, Ye Yuan,
Lu Cao, Yumin Zhou and other members of
SUTDNLP group for their trials and feedbacks.
Yue Zhang is the corresponding author. Jie is sup-
ported by the YEDDA grant 52YD1314.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation 47(4):1007–
1029.

Wei-Te Chen and Will Styler. 2013. Anafora: a web-
based general purpose annotation tool. In NAACL.
volume 2013, page 14.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate:
an architecture for development of robust hlt
applications. In ACL. pages 168–175.

Richard Eckart de Castilho, Eva Mujdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on LT4DH. pages 76–84.

Stephan Druskat, Lennart Bierkandt, Volker Gast,
Christoph Rzymski, and Florian Zipser. 2014.
11The speed improvement by recommendation depends on

the density of text spans. We suggest enabling the recom-
mendation model in the task whose text contains dense and
recurring text spans.

Atomic: An open-source software platform for
multi-level corpus annotation. In Proceedings of
the 12th Konferenz zur Verarbeitung natürlicher
Sprache.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML. volume 951, pages 282–289.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Marie-Jean Meurs, Caitlin Murphy, Nona Naderi, Ingo
Morgenstern, Carolina Cantu, Shary Semarjit, Greg
Butler, Justin Powlowski, Adrian Tsang, and René
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Abstract

Most of the current anti money launder-
ing (AML) systems, using handcrafted
rules, are heavily reliant on existing struc-
tured databases, which are not capable
of effectively and efficiently identifying
hidden and complex ML activities, es-
pecially those with dynamic and time-
varying characteristics, resulting in a high
percentage of false positives. Therefore,
analysts1 are engaged for further inves-
tigation which significantly increases hu-
man capital cost and processing time. To
alleviate these issues, this paper presents
a novel framework for the next gener-
ation AML by applying and visualiz-
ing deep learning-driven natural language
processing (NLP) technologies in a dis-
tributed and scalable manner to augment
AML monitoring and investigation. The
proposed distributed framework performs
news and tweet sentiment analysis, en-
tity recognition, relation extraction, en-
tity linking and link analysis on differ-
ent data sources (e.g. news articles and
tweets) to provide additional evidence to
human investigators for final decision-
making. Each NLP module is evaluated
on a task-specific data set, and the over-
all experiments are performed on synthetic
and real-world datasets. Feedback from
AML practitioners suggests that our sys-
tem can reduce approximately 30% time
and cost compared to their previous man-
ual approaches of AML investigation.

1One of our banking clients has about 10,000 analysts
globally to investigate over 400,000 red-alerted transactions
weekly. With the data privacy and non-disclosure agreement,
we are not entitled to release any clients’ or entities’ names.

1 Introduction

Money laundering (ML) is the process of transfer-
ring criminal and illegal proceeds into ostensibly
legitimate assets, and it has long been considered
as the world’s third largest “industry”. ML is of-
ten associated with terrorism financing, drug and
human trafficking, so that it is a severe threat to
the stability and security of the economy and pol-
itics globally. The International Monetary Fund
(IMF) estimates that the aggregate size of ML in
the world could be somewhere between 2% and
5% of the global Gross Domestic Product (GDP),
which is equivalent to $590 billion to $3.2 trillion
USD approximately. The annual growth rate of
the volume of illicit funds traveling through ML
channels is estimated as 2.7% (Jorisch, 2009).

AML is one of the long-standing challenges
in the financial sector. A number of systematic
frameworks have been proposed for AML sys-
tems (Gao and Xu, 2007; Gao and Ye, 2007;
Gao and Xu, 2010; Gombiro and Jantjies, 2015)
following a multi-stage procedure with data de-
scription and transaction evaluation approaches.
Moreover, several techniques have been applied
in this area: rule-based, link-analysis and risk-
classification/scoring-based methods.

In the traditional AML system, financial trans-
actions are consistently monitored using complex
rules and thresholds to identify suspicious ML pat-
terns and generate red alerts, e.g. unexpected high
amounts or high frequent transactions. These rules
are rigid and restrictive to ensure the blockage
of ML transactions, resulting in a high amount
of false positives (transactions blocked by mis-
take) (Pellegrina et al., 2009; Helmy et al., 2014).
Consequently, a significant amount of human re-
sources (reviewers/analysts) are engaged to ap-
prove or block such red-alerted transactions. This
manual validation process is mainly a consultation
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procedure which involves gathering intelligence
information from different sources about the par-
ties involved in a red-alerted transaction. More-
over, the manual process of gathering intelligence
involves: (1) news search; (2) name screening; and
(3) consultation of existing fraud database or crim-
inal records to determine if any of the parties has a
criminal record, fraud offense, or some other sus-
picious activities. The main drawbacks of most of
current AML systems are: (1) a high volume of
red ML alerts forces organizations to increase the
amount of investigation costs in terms of time and
human effort; (2) yet fewer ML alerts result in a
limited number of checks, which heavily affects
the recall of the system by allowing the suspicious
transaction to pass through the compliance proce-
dure (Gao et al., 2006); Several global banking or-
ganizations were heavily fined by AML regulators
for ineffective AML practices (Martin, 2017).

We propose a novel framework that can drasti-
cally decrease the time and effort of false positive
validation (FPV) for AML solutions. We harness
multiple data sources, and apply deep learning-
based NLP techniques within a distributed archi-
tecture to create a recommendation system to sup-
port human analysts for a more efficient and ac-
curate decision-making. The salient contributions
of this paper include: (1) Harnessing heteroge-
neous open data (e.g. social media, news articles
and fraud bases) in AML compliance to make it
more robust and updated; (2) Using different lev-
els of sentiment analysis (SA) to identify negative
evidence of a target entity; (3) Using name entity
recognition (NER) and relation extraction (RE) to
build the relation network of a target entity, and
analyze the hidden and complex connections be-
tween the target entity and existing suspicious en-
tities from the fraud bases; and (4) developing a
distributed communication architecture for scaling
the deployment of various NLP modules.

To the best of our knowledge, harnessing un-
structured social and news content to facilitate the
investigation and compliance has never been at-
tempted in the recent literature of AML, nor any
industrial systems.

2 System Architecture

The proposed novel AML framework follows a
distributed architecture to integrate different deep
learning-based NLP modules to facilitate the in-
vestigations of suspicious ML transactions. The

architecture of the system is presented in Figure 1.
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Figure 1: Architecture of the novel AML frame-
work.

The system follows an extensible micro-service
oriented distributed architecture where each com-
ponent acts as a separate micro-service and com-
municates with others via an Advanced Message
Queuing Protocol (AMQP) platform. AMQP is
an open standard application layer protocol used
for queuing and routing messages between the ser-
vices in a secure and reliable way2. Communi-
cations between the components are chained to
achieve incremental data processing. This archi-
tecture also supports dynamic routing topologies.

In this framework, each AML component is
independently configurable, deployable, scalable
and replaceable which makes it flexible on where
and how to run it. Thus, it can conveniently dis-
tribute the AML components over a cluster of ma-
chines where allocation of resources could be ad-
justed on demand depending on the needs regard-
ing the processing time or memory consumption.

In Figure 1, the User Interfaces (UI) connect to
the reporting service that provides the results in-
formation from the database (DB). The UI can also
trigger the processing pipeline, calling the report-
ing service to make the gateway start processing
data regarding new transactions.

The reporting service provides representational
state transfer (REST) endpoints for the interaction
between the UI and the system. This service al-
lows analysts/experts to retrieve information re-

2https://www.rabbitmq.com/
specification.html
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lated to a specific transaction and the set of pro-
cessed results that will lead to the human analyst
to approve or block this transaction.

The information processing pipeline is a com-
bination of different modules (micro-services) via
different routings. Different routings encapsulate
different customized functionalities for the end
user. Using the route configuration file, the route
is embedded in the message that is passed around,
so the component knows where it should direct the
message next.

In this architecture, the data layer is constructed
using Cassandra, Neo4j and MySQL along with
news and Twitter engines to govern, collect, man-
age and store various type of data (e.g. banking
data and open data). The data layer maintains a
bidirectional access with other modules in the sys-
tem. Two types of data are handled in the data
layer: banking and open data. Banking data refers
to a wide variety of financial data, for example:
data related to Know Your Customer (KYC), client
profiles, customer accounts, and real-time transac-
tions. On the other hand open data refers to finan-
cial news articles, social media, financial report,
existing and open source fraud base etc.

3 Work-flow and Functionalities

The main UI of our system is shown in Figures 2–
4. We will explicitly detail the functionality of
each NLP module while following the work-flow
of the system:

Figure 2: Sentiment Analysis of Target Entity

The system starts with transaction monitoring
(TM) that identifies suspicious transaction using
complex rules and generates red alerts. Suspicious
transactions are flagged and reside in a queue for
further investigation. Information such as name,
location, account details of the parties (involved in
a flagged) are extracted for further usage.

The name screening module filters out ML
offenders or criminals have previous records of
fraud, illegal activities (e.g. terrorism) and fi-
nancial crimes by looking at a sanction list or
ML cases from bank records and other fraud
bases. The name screening employs fuzzy match-
ing techniques as an initial filter like many off-the-
self AML solutions. If the target entity is matched
with some entities in the list, it will increase the
probability of a ML transaction, so the system is
triggered for more evidence gathering.

Figure 3: Knowledge Graph of Fraud Base: Each
Node is an entity and edges are relations. Sensitive
entities are blocked with white boxes according to
data privacy agreement.

The target entity with its properties are stored
in a knowledge graph (KG) which is con-
structed from a combination of publicly available
fraud/ML bases3. Figure 3 shows part of the KG,
where each node represents an entity and the edge
represents a relation. Persons and organizations
that occur in this KG and are red-alerted by the
TM system, are strongly considered to be involved
in illegal activities. Entity disambiguation is used
when the the query of the target entity to the KG
is to be made. If the target entity is matched, then
we directly submit the evidence to human inves-
tigators. The system also considers human judg-
ment in this process, mainly for two reasons: (1)
Often fake identities, aliases are captured by ana-
lyzing the neighbors of the target entities (e.g. the
associate entities remain same) (2) Often indirect
connection to a suspicious entity validates the ML
claim of a transaction.

Sentiment Analysis is a key module of our sys-
tem that can be viewed as a sequential and as well

3https://www.icij.org/investigations/
panama-papers/, http://www.fatf-gafi.org/
publications/ and https://www.icij.org/
investigations/paradise-papers/
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as a parallel component for evidence mining. At
any given point of time the module starts fetching
data from different sources, such as news sources
and social media in order to find clues of the tar-
get entity, after that it analyses the sentiment of
collected news and other data sources and projects
the results into a geo-graph and a time-series chart
to identify geo and temporal patterns. The goal
of this module is to identify potential negative ev-
idence involving crime, fraud and ML etc. As
shown in Figure 2, the results are visualized with
the time-stamp to reveal the trend. The idea behind
viewing the sentiment over time is that continu-
ously growing negative enduring sentiment for an
entity indicates something suspicious and the ne-
cessity of in-depth investigation. In Figure 2, Red
indicates the negative sentiment, Green represents
the positive sentiment, and Yellow is the average
sentiment of target entity’s competitors. Blue is
the averaged sentiment from Twitter data. It can be
seen that negative sentiment regarding to financial
fraud is dominant for the target entity, and hence
an in-depth investigation is necessary. The news
are complied and presented along with the graph
so that the actual content can also be presented.
Geographical distribution in terms of sentiment re-
garding the target entity is also visualized, which
reflects the risks of the target entity involved in the
ML activities in terms of location.

Figure 4: Knowledge Graph from News Article

The next part of our system is designed to per-
form entity resolution and linking through NER,
RE, link analysis (LA). NER and RE are per-
formed over collected unstructured negative news
data to extract relational facts in real time and
build an entity-specific KG regarding the target
entity as shown in Figure 4. Subsequently, these
entity-specific KGs are merged with the existing

knowledge graph by entity linking. In this process,
an entity disambiguation technique is also used to
find out the same entity with different mentions.
Given the updated KG, we then carry out inspec-
tion and reasoning regarding the suspicious entity
considering that a direct or indirect connection be-
tween a target entity and any number of existing
ML/fraud entities. Direct and indirect connections
can be a strong evidence implying that the inves-
tigated transaction might be illegal. This process
not only serves evidence mining for a particular
suspicious transaction but also enriches the exist-
ing KB continuously by adding a large number of
entities that are collected from different sources.

Finally, for a suspicious transaction, confidence
scores are generated along with evidences from
each module: TM, fraud-base name screening,
fraud KB matching, SA trend and entity disam-
biguation module. The scores are normalized
within a range of 0.00 to 1.00 for each module
and are presented to a user. Based on these scores,
the user approves, blocks or transfers the transac-
tion to higher authorities for action. The goal of
our solution is not to replace human compliance
personnels, but to augment their capability and to
make a more accurate decision efficiently.

4 NLP Models

In this section, we introduce the modeling details
for each NLP modules in our system.

4.1 Sentiment Analysis

Sentiment analysis is a task of identifying the po-
larity of sentiment (e.g. positive, neutral or neg-
ative) in a content at different levels, e.g. term,
aspect, sentence and document.

For our AML task, we develop two different SA
models, namely the document-level and sentence-
level models. The former is a multi-channel con-
volutional neural network (CNN) based sentiment
classifier (Kim, 2014) and used to process finan-
cial news articles; the latter is also a CNN based
model (Tang et al., 2014; Deriu et al., 2016) for
social media data.

One challenge for the document-level SA model
is that annotated resources in the financial domain
are hard to obtain. To solve this problem, we pro-
pose a voting scheme to label the training data as
follows: Financial news are gathered using a list of
keywords4 and news search APIs, afterwards they

4https://www3.nd.edu/˜mcdonald/Word_
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(headlines and the first paragraph of a news) go
through some public sentiment APIs to generate
the sentiment score. Finally, a voting mechanism
is used to obtain the final result in terms of posi-
tive or negative sentiment for each document. Our
document-level SA classifier, trained on automatic
labeled 12,467 of such financial news articles, and
it achieves 76.96% in terms of accuracy compared
to a public sentiment API5 on the RT-polarity6

data set. With respect to the Twitter SA classi-
fier, it is trained and evaluated on SemEval-2016
task 47 data set, and achieves 63.10% in terms of
accuracy, comparable to the best system (63.30%)
in the shared task. Different from previous shared
tasks, the SemEval-2016 task 4 is designed to es-
timate the percentage of tweets that are positive
and the percentage of tweets that are negative in
a given set of tweets about a topic. Thus, in this
circumstance, this dataset is very helpful for us to
verify our SA models for AML scenario because
in one period there might have many tweets dis-
cussing a suspicious entity (e.g. an organisation).

4.2 Relation Extraction

Relation extraction involves the prediction of se-
mantic relations between pairs of nominals or en-
tities in a sentence (Bunescu and Mooney, 2005).
We use the pipeline modeling methods for rela-
tion extraction tasks, i.e. recognising and disam-
biguating named entities (Wang et al., 2012) first,
and then performing relation extraction on these
recognised entities. NER is performed using a
combined strategy: (1) Stanford NER Recognizer;
(2) a neural NRE which is implemented using
a LSTM-CRF framework (Lample et al., 2016);
and (3) we combine the recognised named enti-
ties from these two models, and select out those
that we want based on specific types. Seven dif-
ferent types of named entities are defined in our
system, namely Person, Organisation, Location,
Date, Time, Money and Miscellaneous. Given two
entities and a sentence containing these two enti-
ties, our LSTM-based model predicts the relation
between them. We evaluate it on SemEval 2010
task 8 (Hendrickx et al., 2010) data and it achieves

Lists.html
5We use https://www.ibm.com/watson/

alchemy-api.html and it achieves 75.56% in terms of
accuracy.

6https://www.cs.cornell.edu/people/
pabo/movie-review-data/rt-polaritydata.
README.1.0.txt

7Prediction of five-point scale polarity of a tweet.

80.62% in terms of macro-F1 measure.
Moreover, to handle multi-instance problem in

the distant supervision RE (i.e. for one entity pair,
there exists multiple instances containing this en-
tity pair, where some instances are valid and some
are noise), we develop an attentive RNN frame-
work (Lin et al., 2016) with a word-level and a
sentence-level attentions for relation prediction,
where the word-level attention can learn lexical
contexts and the sentence-level attention can se-
lect valid instances for relation prediction. We
evaluate our model on the publicly available New
York Time data set and achives 88.00% accuracy
in terms of P@100 measure.

5 Evaluation and Feedbacks from AML
Practitioners

As discussed in above section, different valida-
tion and evaluation methods are applied to dif-
ferent NLP models, where the tweet SA model,
news SA model or attentive RE model achieves
or is comparable to the state-of-the-art in terms of
accuracy. At present, the entire system is at pi-
loting stage with our banking clients across US,
Europe and Asia. It is currently being tested and
evaluated by professional AML practitioners for
AML and KYC investigations. From the feed-
backs that we collected so far, the end users are
optimistic on achieving the objective of reducing
on average 30% of their time of investigating the
red-alerted suspicious transactions and making a
decision more efficiently. We have been invited
to give keynote talks about different aspects (not
the entire one) of this system at highly respected
events, such as World Mobile Conference (WMC)
2018, Europe Financial Information Management
Conference (FIMA) 2017 etc. Worth mention-
ing that some of our NLP models were also uti-
lized by our clients in different domains. For in-
stance, one of our diamond clients adopted our
news and tweets sentiment analysis models for
monitoring their brand reputation. Given the sen-
sitivity of their business, they cannot release the
performance metrics to us. However, their overall
feedback and experience have been very positive.

6 Conclusions and Future Work

In this paper, we present a novel distributed frame-
work of applying and visualizing different deep
learning based NLP technologies to augment the
anti money laundering investigation. Our system
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is modularized and distributed which enables it
to be deployed on scale and on demand. Each
component is a micro-service which allows mul-
tiple instances of the same module to be created
and deployed and used in tandem. By harness-
ing knowledge graph, sentiment analysis, name
screening, named entity recognition, relation ex-
traction, entity linking and link analysis, our sys-
tem can provide different evidence extracted and
analyzed from different data sources to facilitate
human investigators. From the human evaluation
and clients’ feedback, our system can reduce by
30% in terms of human investigation effort.

In the future, we will (1) improve our mod-
els with more domain specific data, and fine tune
the parameters; (2) scale and deploy the system
on cloud-based servers for real-time processing of
large volume of data; (3) tailor the solution and
evaluate it in other domains such as KYC, and (4)
adapt our system to multilingual use cases.
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Abstract 

In this paper, we present a project 

where existing text-based core technolo-

gies were ported to Java-based web ser-

vices from various architectures. These 

technologies were developed over a period 

of eight years through various government 

funded projects for 10 resource-scarce 

languages spoken in South Africa. We de-

scribe the API and a simple web front-end 

capable of completing various predefined 

tasks. 

1 Introduction 

With the establishment of large-scale e-

infrastructures, there has been an international 

move towards making software available as a ser-

vice. Web services are a way of exposing the func-

tionality of an information system and making it 

available through standard web technologies 

(Alonso et al., 2004). A natural language pro-

cessing (NLP) web service refers to one or more 

technologies that focus on natural (human) speech 

or text and that are exposed programmatically to 

allow anyone with internet access, on multiple 

platforms, to gain access to the output of the tech-

nology. By hosting NLP web services, the devel-

opment of end-user-facing applications could be 

facilitated in the sense that software developers 

and researchers get access to the latest versions of 

such technologies via simple web queries. 

A web service also provides an architecture that 

will allow human language technologies (HLTs) 

to be integrated into larger software systems. By 

adopting a service-orientated architecture, existing 

resources and tools can also be used to develop 

complex component-based systems (Boehlke, 

2010). Several such systems already exist in Eu-

rope and the United States, for example Stanford 

CoreNLP1 (Manning et al., 2014), Aylien2, Web-

                                                      
1 http://nlp.stanford.edu:8080/corenlp/process 
2 http://aylien.com/ 

licht3 (Hinrichs et al., 2010), and Tanl Pipeline4 

(Attardi et al., 2010). etc. Furthermore, web ser-

vices can be updated relatively quickly, allowing 

users to get the latest version of the technologies 

at all times. 

In this paper, we describe a project where 61 

existing text-based core technologies were ported 

to Java-based web services from various architec-

tures. The first part of this paper provides a brief 

background and details on the relevant languages 

the technologies were developed for. This is fol-

lowed by a short description of three previous pro-

jects in which the technologies were developed, as 

well as a description of the technologies them-

selves. We then describe the API and a simple 

web front-end capable of completing various pre-

defined tasks in the following sections. We con-

clude with some information on a current project 

and future considerations. 

2 Background 

The South African community, with its rich di-

versity of 11 official languages, is an emerging 

market where the development of language re-

sources and HLTs contribute to the promotion of 

multilingualism and language development. The 

development of language resources for the official 

languages contributes significantly to bridging the 

divide between the privileged and the marginal-

ised in terms of access to information. 

There are 11 official languages in South Africa, 

generally categorised into five language family 

groups. The conjunctively written Nguni lan-

guages include isiZulu (ZU), isiXhosa (XH), 

isiNdebele (NR), and SiSwati (SS). The disjunc-

tively written languages include the Sotho lan-

guages Sesotho (ST), Setswana (TN), Sesotho sa 

Leboa (NSO), and Tshivenḓ a (VE) and the dis-

junctively written Tswa-Ronga language, Xitson-

ga (TS). Finally, there are two Germanic lan-

guages, English (EN) and Afrikaans (AF) 
                                                      
3 http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/ 
4 http://tanl.di.unipi.it/en/api 
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(Prinsloo & de Schryver, 2002). Apart from Eng-

lish, all South African languages are considered 

resource-scarce with relatively little data that can 

be used to develop NLP applications and technol-

ogies. 

Over the past two decades, the South African 

government has continuously supported HLT re-

lated text and speech projects. These projects have 

generated NLP resources in the form of data, core 

technologies, applications and systems that are 

immensely valuable for the future development of 

the official South African languages. Although 

these resources can be obtained in a timely fash-

ion from the Language Resource Management 

Agency of the South African Centre for Digital 

Language Resources5 (SADiLaR), access to these 

resources can still be considered limited, in the 

sense that technically proficient persons or organi-

sations are required to utilise these technologies. 

One way to improve access to these technologies 

is to make them available as web services. At the 

Centre for Text Technology, we previously devel-

oped freely available web services for machine 

translation between several South African lan-

guage pairs6, and build on this experience to de-

velop the web services. 

The web services described in this paper entails 

the implementation of existing technologies as 

web services that are accessible via an application 

programming interface (API) and a user-friendly 

web application which leverages the API, de-

scribed in Section 5. These services can process 

word lists, running text, documents or scanned 

images as input. The following section provides a 

brief overview of the individual technologies that 

have been implemented in the API. 

3 Technologies 

All the technologies included in the web ser-

vices were developed over a period of eight years 

through three projects, NCHLT Text: Phase I, II 

and III. These projects were initiated and funded 

by the National Centre for Human Language 

Technology (NCHLT) of the Department of Arts 

and Culture (South African government). The 

technologies and resources described below were 

only developed for 10 of the South African lan-

guages, since there are well known and readily 

available text-based technologies for English, 

                                                      
5 http://repo.sadilar.org/handle/20.500.12185/7 
6 https://mt.nwu.ac.za/ 

such as the Stanford CoreNLP, that can be used on 

South African English. The three projects and the 

resulting technologies of each, are briefly de-

scribed in the following subsections. 

3.1 NCHLT Text: Phase I 

The first phase of the NCHLT Text project fo-

cussed on establishing the foundational resources 

and technologies for further development of the 

NLP industry in South Africa. For each language, 

text corpora from government domain sources 

were collected to develop a one-million-word cor-

pus for each language. From these corpora, lan-

guage experts for each of the 10 languages anno-

tated 50,000 tokens per language (and an addi-

tional 5,000 tokens for testing) on three levels, 

namely part of speech (POS), lemma, and mor-

phological composition. In addition to the anno-

tated corpora, five core technologies were devel-

oped for each language. These technologies were 

sentence separators, tokenisers, lemmatisers, mor-

phological decomposers, and POS taggers. Brief 

descriptions of each technology developed during 

this phase of the project and ported to web ser-

vices, are provided below. More detailed descrip-

tions of the technologies are available in Eiselen 

and Puttkammer (2014). 

Sentence separation is a pre-processing step for 

tokenisation in a typical NLP pipeline. The sen-

tence separators developed during this project are 

rule-based and split sentences based on language 

specific characteristics, to ensure that abbrevia-

tions and numbering correctly remain part of dif-

ferent sentences. 

The tokenisers are also language-specific, rule-

based technologies that split sentences into tokens, 

typically words and punctuation, and are a neces-

sary pre-process for all other NLP tasks. 

The POS taggers developed during the project 

were trained on the 50,000 POS annotated data 

tokens developed in the project. The implementa-

tion uses the open source Hidden Markov Model 

(HMM) tagger, HunPos (Halácsy et al., 2007). 

Since HunPos is not a Java-compliant library, it 

was necessary to port the POS taggers to a Java 

library, nlp4j7. 

For the initial development and release of the 

web services, the lemmatisers and morphological 

decomposers were not included as they are rule-

based technologies, with more than 150 rules 

                                                      
7 https://emorynlp.github.io/nlp4j/ 
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each. See Section 7 for more detail on a current 

project tasked with additional annotation in order 

to develop machine learning-based technologies. 

3.2 NCHLT Text: Phase II 

Building on the resources created during the 

first NCHLT Text project, the second phase fo-

cussed on named entity recognition, phrase 

chunking and language identification. Named en-

tity recognisers and phrase chunkers were devel-

oped from an additional 15,000 tokens per lan-

guage annotated during the project. The language 

identifier (LID), which was developed to classify 

text as one of the 11 official languages, was 

trained on the text corpora collected during the 

first NCHLT Text project along with an English 

corpus also collected from government domain 

sources. 

The named entity recognisers were trained us-

ing linear-chain conditional random fields (CRF) 

with L2 regularisation. See Eiselen (2016a) for 

details on development, evaluation, and accuracy. 

The phrase chunkers were also trained with lin-

ear-chain CRFs from annotated data, and addi-

tionally use the POS tags as a feature by employ-

ing the previously developed POS taggers. Eiselen 

(2016b) provides the full details on development, 

evaluation, and accuracy of the phrase chunkers. 

Both the named entity recognition and phrase 

chunking core technologies were implemented in 

the web services using the CRF++8 Java library. 

LID employs character level n-gram language 

models (n=6) and measures the Euclidean dis-

tance between the relative frequencies of a test 

model and all language models, selecting the one 

with the lowest distance as the probable language. 

In the web services, LID is performed on line lev-

el, and returns the probable language for each line 

in the input text. The first version of the LID was 

implemented in Python, and the web services ver-

sion was implemented in Java. Evaluation results 

and implementation details are available in 

Hocking (2014). 

3.3 NCHLT Text: Phase III 

The third phase of the NCHLT Text project saw 

the development of Optical Character Recognition 

(OCR) models as well as improving access to all 

the technologies through the development of the 

web services. 

                                                      
8 https://github.com/taku910/crfpp 

The OCR models for the South African lan-

guages were developed using Tesseract9 and ac-

commodate the diacritic characters required for 

four of the South African languages. See Hocking 

and Puttkammer (2016) for the development and 

evaluation results of these OCR models. For the 

implementation of OCR in the web services, 

tess4j10 was used. 

4 Implementation 

The web services are implemented as a simple 

three-tiered Java application, consisting of the 

API, a Core Technology Manager (Manager for 

the remainder of the paper) and the individual 

core technology modules. 

The API is responsible for handling all incom-

ing requests, validating parameters and headers, 

sending parameter data to the Manager for pro-

cessing and for relaying processing results back to 

the requestor. The Manager is responsible for ini-

tialising and loading the technologies, processing 

the data from the API, and sending the result back 

to the API. The core technology modules process 

the input data and perform the various required 

analyses. Each of these tiers are described in more 

detail below. 

4.1 NCHLT web services API 

The API is a RESTful web service that is both 

maintainable and scalable. The service is based on 

the Jersey framework11, as it is an open source, 

production quality framework for developing 

RESTful services in Java. The API is also de-

signed in such a way that new language and tech-

nologies can be added at any point without affect-

ing existing API calls. The API uses an authentica-

tion process providing restricted access to the 

available services of the API. The authentication 

process uses token-based authentication and pro-

vides the requestor with a session token that gives 

the requestor permission to access any future re-

quests made to the API until the requestor’s ses-

sion expires. The access to the list of languages 

and technologies requests is not protected by the 

authentication process, and is therefore open to 

use without obtaining a session token. The API al-

so allows the requestor to request the progress of a 

                                                      
9 https://github.com/tesseract-ocr/ 
10 http://tess4j.sourceforge.net 
11 https://jersey.github.io/ 
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technology that is being used to process the re-

questor’s data. 

Four functions are supported by the API, which 

can be accessed by either GET or PUT calls, de-

pending on whether a string of text or a file is sent 

for processing. The first two calls do not require 

authentication as described above, and return ei-

ther the set of languages that are supported for a 

particular core technology, or a list of core tech-

nologies that are supported for a particular lan-

guage. These two functions ensure that callers can 

correctly access those technologies that are avail-

able for particular languages. 

The two functions that require authentication 

are the call to a specific core technology, and the 

progress call, which provides progress infor-

mation on a user’s call to a specific technology. 

Most of the technologies available via the API 

require a language parameter in the form of an 

ISO-639 abbreviation of two or three letters, and 

some form of textual input in the form of either a 

list, running text or a file. The OCR module does 

require a language to be specified, but can only 

process image files in one of the standard image 

formats (.png, .jpg, .tiff, or .pdf), while LID only 

needs text or a file as it returns the language for 

each line in the input.  

The API is called using a GET call12 and should 

always consist of the following information: 

• the server (and optional port number) on 

which the service is being hosted; 

• the technology, either by number or short-

ened name; 

• the ISO-639 two-letter language code; 

• Unicode text that should be processed by 

the technology; and 

• the authentication token included in the re-

quest header as the authToken property. 

Upon receiving a request, the API validates the 

parameters and the session token to ensure that all 

the information needed to use the relevant tech-

nology is present. If the request passes the valida-

tion, the input and language information is sub-

mitted to the Manager that handles the initialisa-

tion of the requested core technology module. The 

Manager then validates the parameter data once 

again, sends the data for processing by the rele-

vant core technology and returns the result back to 

the API. 

                                                      
12 http://{server:port}/CTexTWebAPI/services? 

core={technology}&lang={code}&text={text} 
 

4.2 Core technology manager 

The Manager is tasked with handling the dif-

ferent core technology modules that are loaded for 

different languages across one or more threads or 

servers. The Manager controls this by keeping a 

register of all the modules that have been 

launched, as well as progress information to de-

termine whether any given module is available for 

processing when a new request is received from 

the API. Technologies are loaded in memory as 

they are requested by the Manager. This allows 

the technologies to process the data more effi-

ciently and in effect improves the response times 

to the requestor. Since many of the modules load-

ed by the Manager require relatively large statisti-

cal models to process data, and many of the mod-

ules are reused in several of the module pipelines, 

modules are not immediately discarded. Rather 

than destroying the loaded module, it is kept in 

memory to be available for a new call, which sig-

nificantly reduces the processing time, since it is 

not necessary to reload the module or its underly-

ing models for each new API call. 

In addition to managing the individual modules 

that are loaded at any given time, the Manager al-

so manages shared tasks, such as file handles and 

error handling, which can be reused by any of the 

core technology modules as necessary. This simp-

ly ensures that all file upload and download pro-

cedures are managed in a consistent, reusable 

fashion. Finally, it is also important to note that all 

the modules reuse models and attributes that are 

shared between multiple instances of the class and 

are thread-safe. Consequently, running multiple 

instances simultaneously does not cause any in-

formation corruption, race conditions, or related 

multithreading problems, while limiting the load 

time and memory required to process data. 

4.3 Core technology modules 

As mentioned earlier, the development of the 

web services focussed on transferring existing lin-

guistic core technologies for South African lan-

guages to a shared code base that was accessible 

via a RESTful API. Over the course of the previ-

ous projects, various developers used different 

underlying technologies and programming lan-

guages to implement the core technologies. Dur-

ing this project, it was decided to consolidate 

these disparate technologies into a single code 

base, with various shared components that will 
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make maintenance and updates of these technolo-

gies significantly more efficient. 

During the design phase it was decided to port 

all core technologies to Java, for three reasons. 

First, Java is supported across most operating sys-

tems, allowing the deployment of the technologies 

and services across many different architectures. 

Second, Java provides a wide array of freely 

available and well tested libraries to facilitate the 

development and distribution of the technologies 

and web services. A third factor that was taken in-

to consideration is that the core technology mod-

ules developed for the web service could also be 

reused in other user-facing applications, specifi-

cally an offline corpus search and processing envi-

ronment developed in parallel to the web services, 

CTexTools, version 213. To facilitate distributed 

computing across multiple servers, each of the 

core technology modules are also implemented as 

servlets, which can be initialised by the manager. 

This allows for multiple versions of the same 

technology to be run on multiple threads and serv-

ers as necessary. 

Although the primary focus of transferring the 

modules was for inclusion in the web services, 

this transfer also allowed for better integration be-

tween the different modules that have been devel-

oped at the Centre for Text Technology. All the 

transferred modules are based on a shared inter-

face class, ICoreTechnology, which in turn im-

plements a shared abstract class CoreTechnology. 

These are relatively simple shared classes, but 

have the significant benefit that all the core tech-

nologies can be called and handled by the Manag-

er in a systematic, consequent manner. This in 

turn means that adding technologies to the set of 

available modules is relatively straightforward, 

and would immediately iterate through the rest of 

the API architecture, without requiring updates to 

the API or Manager itself. 

Another consideration in the transfer of the 

technologies to a shared code base, is the fact that 

most of the technologies have an interdependence, 

typically forming pipelines that are required to 

process a string. As an example, the phrase 

chunker for a particular language is dependent on 

the output of the POS tagger as one of its features. 

The POS tagger in turn is dependent on tokenisa-

tion for that language, and tokenisation is depend-

ent on sentence separation to complete its pro-

cessing. This means that for phrase chunking to be 
                                                      
13 https://hdl.handle.net/20.500.12185/480 

performed, first sentence separation must be per-

formed, then tokenisation, then POS tagging, and 

only then can the feature set be created for the 

string that must be phrase chunked. In the current 

architecture, this entire chain is inherently imple-

mented, and the phrase chunker only needs to call 

the POS tagging module for the specific language, 

which then in turn calls the module(s) that are 

necessary for tagging to be performed. See Figure 

1. 

The modules required for each technology 

module are entirely handled by the Manager, 

which means that core technologies that are typi-

cally used in most modules, such as tokenisation, 

can effectively be reused by various instances of 

modules that require the shared module. 

Due to several factors, the web services are cur-

rently only deployed on a single 12 core virtual 

server with 32Gb memory. In order to test the re-

liability of the technologies and the responsive-

ness of the service, a set of load tests were per-

formed on the web services, simulating 70 users 

simultaneously processing text files of approxi-

mately 100,000 tokens, with different technolo-

gies in different languages. The entire scenario of 

processing the approximately 7 million tokens 

completes within 10 minutes, equating to a pro-

cessing rate of around 11,700 tokens per second. 

In a secondary test on the slowest of the technolo-

gies, i.e. named entity recognition, for 10 concur-

rent users, each processing 100,000 words, the 

service completes in 3.5 minutes, for a rate of 

1,400 tokens per second. This is primarily due to 

the fact that named entity recognition uses the 

most intricate pipeline, including tokenisation, 

 

Figure 1: Example of system workflow 
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sentence separation, part of speech tagging, and 

extended feature extraction. 

5 Web application 

To make the technologies developed during the 

various phases of the NCHLT project more acces-

sible, a simple web application was also created. 

This application specifically aims to accommo-

date users who are unaccustomed to service-

orientated architectures, and for whom using these 

types of architectures can be quite challenging. As 

such, it was prudent to develop a basic interface to 

assist users in using the services to complete cer-

tain tasks. Thus, we developed a web-based, user-

friendly graphical user interface capable of com-

pleting various tasks by providing predefined 

chains of the web services detailed above. For ex-

ample, if a user needs to perform POS tagging on 

a document, the user can upload the document and 

select POS tagging and the relevant language. The 

system will automatically perform tokenisation 

and sentence separation before using the POS tag-

ging service to tag the user’s document. To facili-

tate easy and quick processing, a user can provide 

text, select the required options, process the text, 

and view or download the results. Detailed docu-

mentation on using the API, as well as the web 

application, is also provided. The tag sets used for 

all annotation are provided in the help page. The 

web application is available at 

http://hlt.nwu.ac.za/. 

6 Conclusion and future work 

In this paper, we provided an overview of a 

new web service and application that provides ac-

cess to 61 different text technologies for South Af-

rican languages. This implementation allows any 

developer to access and integrate one of these lan-

guage technologies in their own environment, 

while ensuring that the latest versions of these 

technologies are used at any time. Finally, a sim-

ple, user-friendly, web application was described 

that provides access to predefined chains of NLP 

technologies for use by end-users who are not as 

technically proficient, but can use the technologies 

in their own research work. 

Given the flexible nature of the web services 

and underlying infrastructure, it is foreseen that 

other language technologies will be included in 

the service as they become available. The South 

African government also recently established 

SADiLaR, a national research infrastructure fo-

cussing on the development and distribution of 

linguistic and natural language processing re-

sources. 

There is currently a project underway to ex-

tend the set of annotated text corpora from 

50,000 to approximately 100,000 tokens. These 

extended annotated data sets could then be used 

to create improved core technologies for the 

South African languages.  
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Abstract

We present an event extraction framework
to detect event mentions and extract events
from the document-level financial news.
Up to now, methods based on supervised
learning paradigm gain the highest perfor-
mance in public datasets (such as ACE
20051, KBP 20152). These methods heav-
ily depend on the manually labeled train-
ing data. However, in particular areas,
such as financial, medical and judicial do-
mains, there is no enough labeled data due
to the high cost of data labeling process.
Moreover, most of the current methods
focus on extracting events from one sen-
tence, but an event is usually expressed
by multiple sentences in one document.
To solve these problems, we propose a
Document-level Chinese Financial Event
Extraction (DCFEE) system which can au-
tomatically generate a large scaled labeled
data and extract events from the whole
document. Experimental results demon-
strate the effectiveness of it.

1 Introduction

Event Extraction (EE), a challenging task in Na-
ture Language Processing (NLP), aims at discov-
ering event mentions3 and extracting events which
contain event triggers4 and event arguments5 from
texts. For example, in the sentence E16 as shown

1http://projects.ldc.upenn.edu/ace/
2https://tac.nist.gov//2015/KBP/
3A sentence that mentions an event, including a distin-

guished trigger and involving arguments.
4The word that most clearly expresses the occurrence of

an event.
5The entities that fill specific roles in the event.
6All the examples in this article are translated from Chi-

nese.

in Figure 1, an EE system is expected to dis-
cover an Equity Freeze event mention (E1 it-
self) triggered by frozen and extract the corre-
sponding five arguments with different roles: Na-
gafu Ruihua (Role=Shareholder Name), 520,000
shares (Role=Num of Frozen Stock), People’s
Court of Dalian city (Role=Frozen Institution),
May 5,2017 (Role=Freezing Start Date) and 3
years (Role=Freezing End Date). Extracting event
instances from texts plays a critical role in build-
ing NLP applications such as Information Extrac-
tion (IE), Question Answer (QA) and Summariza-
tion (Ahn, 2006). Recently, researchers have built
some English EE systems, such as EventRegistry7

and Stela8. However, in financial domain, there
is no such effective EE system, especially in Chi-
nese.

Financial events are able to help users obtain
competitors’ strategies, predict the stock market
and make correct investment decisions. For exam-
ple, the occurrence of an Equity Freeze event will
have a bad effect on the company and the share-
holders should make correct decisions quickly to
avoid the losses. In business domain, official an-
nouncements released by companies represent the
occurrence of major events, such as Equity Freeze
events, Equity Trading events and so on. So it
is valuable to discover event mention and extract
events from the announcements. However, there
are two challenges in Chinese financial EE.

Lack of data: most of the EE methods usually
adopted supervised learning paradigm which re-
lies on elaborate human-annotated data, but there
is no labeled corpus for EE in the Chinese finan-
cial field.

Document-level EE: most of the current meth-
ods of EE are concentrated on the sentence-level

7http://eventregistry.org/
8https://www.nytsyn.com/
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C1:摾⫋䍝≍㈀㘈䖃ᴉⴁ⋷520,000侠垪⠦廝ⴁᶹ㬐㯔敡ᶍ20175㘇5㓤₼䷔ȼ
C2:₼䷔㘞敏ᴹ3ȼ

E1:The 520,000 shares held by Nagafu Ruihua were frozen by the people's Court of Dalian cityin May 5, 2017. 
E2:The period of freezing is 3 years.

Trigger

Shareholder Name

Number of Frozen Stock

Frozen Institution

Freezing Start Date

Freezing End DateTrigger

Figure 1: Example of an Equity Freeze event triggered by “frozen” and containing five arguments.

text (Chen et al., 2015) (Nguyen et al., 2016). But
an event is usually expressed with multiple sen-
tences in a document. In the financial domain da-
ta set constructed in this paper, there are 91% of
the cases that the event arguments are distributed
in the different sentences. For example, as shown
in Figure 1, E1 and E2 describe an Equity Freeze
event together.

To solve the above two problems, we present
a framework named DCFEE which can extract
document-level events from announcements based
on automatically labeled training data. We make
use of Distance Supervision (DS) which has been
validated to generate labeled data for EE (Chen
et al., 2017) to automatically generate large-scaled
annotated data. We use a sequence tagging mod-
el to automatically extract sentence-level events.
And then, we propose a key-event detection mod-
el and an arguments-filling strategy to extract the
whole event from the document.

In summary, the contributions of this article are
as follows:

• We propose the DCFEE framework which
can automatically generate large amounts
of labeled data and extract document-level
events from the financial announcements.

• We introduce an automatic data labeling
method for event extraction and give a series
of useful tips for constructing Chinese finan-
cial event dataset. We propose a document-
level EE system mainly based on a neural se-
quence tagging model, a key-event detection
model, and an arguments-completion strate-
gy. The experimental results show the effec-
tiveness of it.

• The DCFEE system has been successful-
ly built as an online application which can
quickly extract events from the financial an-

nouncements 9.

Text data

SEE DEE

Sentence-level labeled data Document-level labeled data

1. Data Generation

2. Event Extraction

Input (one announcement) Output (structured data)

Financial event 
knowledge base

Figure 2: Overview of the DCFEE framework.

2 Methodology

Figure 2 describes the architecture of our proposed
DCFEE framework which primarily involves the
following two components: (i) Data Genera-
tion, which makes use of DS to automatically
label event mention from the whole documen-
t (document-level data) and annotate triggers and
arguments from event mention (sentence-level da-
ta); (ii) EE system, which contains Sentence-level
Event Extraction (SEE) supported by sentence-
level labeled data and Document-level Event Ex-
traction (DEE) supported by document-level la-
beled data. In the next section, we briefly describe
the generation of labeled data and architecture of
the EE system.

2.1 Data Generation

Figure 3 describes the process of labeled data gen-
eration based on the method of DS. In this section,
we first introduce the data sources (structured data
and unstructured data) that we use. And then we
describe the method of automatically labeling da-
ta. Finally, we will introduce some tips that can be
used to improve the quality of the labeled data.

9http://159.226.21.226/financial graph/online-
extract.html
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Figure 3: The process of labeled data generation.

Data sources: two types of data resources are
required to automatically generate data: a finan-
cial event knowledge database containing a lot of
structured event data and unstructured text data
containing event information. (i) The financial
event knowledge database used in this paper is
structured data which includes nine common fi-
nancial event types and is stored in a table format.
These structured data which contains key event ar-
guments is summarized from the announcements
by financial professionals. An Equity Pledge event
is taken as an example, as shown on the left of Fig-
ure 3, in which key arguments include Shareholder
Name (NAME), Pledge Institution (ORG), Num-
ber of Pledged Stock (NUM), Pledging Start Date
(BEG) and Pledging End Date (END). (ii) The un-
structured text data come from official announce-
ments released by the companies which are stored
in an unstructured form on the web. We obtain
these textual data from Sohu securities net10.

Method of data generation: annotation data
consists of two parts: sentence-level data gener-
ated by labeling the event trigger and event argu-
ments in the event mention; document-level data
generated by labeling the event mention from the
document-level announcement. Now the question
is, how to find the event triggers. Event arguments
and event mention that correspond to the struc-
tured event knowledge database are summarized
from a mass of announcements. DS has proved
its effectiveness in automatically labeling data for
Relation Extraction (Zeng et al., 2015) and Event
Extraction (Chen et al., 2017). Inspired by D-
S, we assume that one sentence contains the most
event arguments and driven by a specific trigger is
likely to be an event mention in an announcement.
And arguments occurring in the event mention are

10http://q.stock.sohu.com/cn/000001/gsgg.shtml

likely to play the corresponding roles in the even-
t. For each type of financial event, we construct
a dictionary of event triggers such as frozen in E-
quity Freeze event and pledged in Equity Pledge
event. So the trigger word can be automatical-
ly marked by querying the pre-defined dictionary
from the announcements. through these pretreat-
ments, structured data can be mapped to the event
arguments within the announcements. Therefore,
we can automatically identify the event mention
and label the event trigger and the event arguments
contained in it to generate the sentence-level da-
ta, as shown at the bottom of Figure 3. Then, the
event mention is automatically marked as a pos-
itive example and the rest of the sentences in the
announcement are marked as negative examples to
constitute the document-level data, as shown on
the right of Figure 3. The document-level data and
the sentence-level data together form the training
data required for the EE system.

Tips: in reality, there are some challenges in
data labeling: the correspondence of financial
announcements and event knowledge base; the
ambiguity and abbreviation of event arguments.
There are some tips we used to solve these
problems, examples are shown in Figure 3.
(i) Decrease the search space: the search space of
candidate announcements can be reduced through
retrieving key event arguments such as the publish
date and the stock code of the announcements.
(ii) Regular expression: more event arguments can
be matched to improve the recall of the labeled
data through regular expression. for example,
LONCIN CO LTD (Role=Shareholder Name) in
the financial event database, but LONCIN in the
announcement. We can solve this problem by
regular expression and label the LONCIN as an
event argument
(iii) Rules: some task-driven rules can be used to
automatically annotate data. for example, we can
mark 12 months (Role=Pledging End Date) by
calculating the date difference between 2017-02-
23 (Role=Pledging Start Date) and 2018-02-23
(Role=Pledging End Date).

2.2 Event Extraction (EE)

Figure 4 depicts the overall architecture of the
EE system proposed in this paper which primar-
ily involves the following two components: The
sentence-level Event Extraction (SEE) purposes to
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extract event arguments and event triggers from
one sentence; The document-level Event Extrac-
tion (DEE) aims to extract event arguments from
the whole document based on a key event detec-
tion model and an arguments-completion strategy.

2.2.1 Sentence-level Event Extraction (SEE)
We formulate SEE as a sequence tagging task and
the training data supported by sentence-level la-
beled data. Sentences are represented in the BIO
format where each character (event triggers, even-
t arguments and others) is labeled as B-label if
the token is the beginning of an event argumen-
t, I-label if it is inside an event argument or O-
label if it is otherwise. In recent years, neural
networks have been used in most NLP tasks be-
cause it can automatically learn features from the
text representation. And the Bi-LSTM-CRF mod-
el can produce state of the art (or close to) accu-
racy on classic NLP tasks such as part of speech
(POS), chunking and NER (Huang et al., 2015). It
can effectively use both past and future input fea-
tures thanks to a Bidirectional Long Short-Term
Memory (BiLSTM) component and can also use
sentence-level tag information thanks to a Condi-
tional Random Field (CRF) layer.

The specific model implementation of the SEE,
as shown on the left of Figure 4, is made up
of a Bi-LSTM neural network and a CRF layer.
Each Chinese character in a sentence is represent-
ed by a vector as the input of the Bi-LSTM lay-
er11 (Mikolov et al., 2013). The output of the Bi-
LSTM layer is projected to score for each char-
acter. And a CRF layer is used to overcome the
label-bias problem. The SEE eventually returns
the result of the sentence-level EE for each sen-
tence in the document.

2.2.2 Document-level Event Extraction(DEE)
The DEE is composed of two parts: a key event
detection model which aims to discover the even-
t mention in the document and an arguments-
completion strategy which aims to pad the missing
event arguments.

Key event detection: as shown on the right of
figure 4, the input of the event detection is made
up of two parts: one is the representation of the
event arguments and event trigger come from the
output of SEE (blue), and the other is the vector
representation of the current sentence(red). The

11Word vectors are trained with a version of word2vec on
Chinese WiKi corpus
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Figure 4: The architecture of event extraction.

two parts are concatenated as the input feature of
the Convolutional Neural Networks(CNN) layer.
And then the current sentence is classified into two
categories: a key event or not.

Arguments-completion strategy: We have ob-
tained the key event which contains most of the
event arguments by the DEE, and the event ex-
traction results for each sentence in a documen-
t by the SEE. For obtaining complete event in-
formation, we use arguments-completion strate-
gy which can automatically pad the missing even-
t arguments from the surrounding sentences. As
shown in figure 4, an integrated Pledge event con-
tains event arguments in event mention Sn and
filled event argument 12 months obtained from the
sentence Sn+1.

3 Evaluation

3.1 Dataset

We carry out experiments on four types of fi-
nancial events: Equity Freeze (EF) event, Equity
Pledge (EP) event, Equity Repurchase (ER) even-
t and Equity Overweight (EO) event. A total of
2976 announcements have been labeled by auto-
matically generating data. We divided the labeled
data into three subsets: the training set (80% of
the total number of announcements), developmen-
t set (10%) and test set (10%). Table 1 shows
the statistics of the dataset. NO.ANN represents
the number of announcements can be labeled au-
tomatically for each event type. NO.POS repre-
sents the total number of positive case sentences
(event mentions). On the contrary, NO.NEG rep-
resents the number of negative case sentences. The
positive and negative case sentences constitute the
document-level data as the training data for the
DEE. The positive sentences which contain event
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trigger and a series of event arguments, are labeled
as sentence-level training data for the SEE.

Dataset NO.ANN NO.POS NO.NEG
EF 526 544 2960
EP 752 775 6392
EB 1178 1192 11590
EI 520 533 11994

Total 2976 3044 32936

Table 1: Statistics of automatically labeled data.

We randomly select 200 samples (contain 862
event arguments) to manually evaluate the preci-
sion of the automatically labeled data. The aver-
age precision is shown in Table 2 which demon-
strates that our automatically labeled data is of
high quality.

Stage Mention labeling Arguments Labeling
Number 200 862

Average Precision 94.50 94.08

Table 2: Manual Evaluation Results.

3.2 Performance of the System
We use the precision(P ), recall(R) and (F1) to
evaluate the DCFEE system. Table 3 shows the
performance of the pattern-based method12 and
the DCFEE in the extraction of the Equity Freeze
event. The experimental results show that the per-
formance of the DCFEE is better than that of the
pattern-based method in most event arguments ex-
traction.

Method Pattern-based DCFEE
Type P (%) R(%) F1(%) P (%) R(%) F1(%)

ORG 79.44 72.22 75.66 88.41 61.62 72.62
NUM 57.14 54.55 55.81 59.20 52.02 56.38

NAME 63.84 57.07 60.27 89.02 73.74 80.66
BEG 65.79 63.13 64.43 81.88 61.62 70.42
END 67.62 35.86 46.86 85.00 68.00 75.56

Table 3: P , R, F1 of pattern-based and DCFEE
on the Equity Freeze event.

Table 4 shows the P , R, F1 of SEE and DEE on
the different event types. It is noteworthy that the
golden data used in SEE stage is the automatically
generated data and the golden data used in DEE
stage comes from the financial event knowledge
base. The experimental results show that the effec-
tiveness of SEE and DEE, the acceptable precision

12Example of a pattern for a freeze event: (Frozen
institution(ORG)+, Trigger word(TRI)+, Shareholder
names(NAME)+,time)

and expansibility of the DCFEE system presented
in this paper.

Stage SEE DEE
Type P (%) R(%) F1(%) P (%) R(%) F1(%)

EF 90.00 90.41 90.21 80.70 63.40 71.01
EP 93.31 94.36 93.84 80.36 65.91 72.30
ER 92.79 93.80 93.29 88.79 82.02 85.26
EO 88.76 91.88 90.25 80.77 45.93 58.56

Table 4: P , R, F1 of SEE, DEE on the different
event types.

In conclusion, the experiments show that the
method based on DS can automatically generate
high-quality labeled data to avoid manually label-
ing. It also validates the DCFEE proposed in this
paper, which can effectively extract events from
the document-level view.

4 Application of the DCFEE

The application of the DCFEE system: an online
EE service for Chinese financial texts. It can help
financial professionals quickly get the event infor-
mation from the financial announcements. Fig-
ure 5 shows a screenshot of the online DCFEE
system. Different color words represent differ-
ent event arguments’ types, underlined sentences
represent the event mention in the document. As
shown in figure 5, we can obtain a complete Equity
Freeze event from unstructured text (an announce-
ment about Equity Freeze).

(Shareholder Name)

(Frozen Institution)

(Number of Frozen Stock)

(Freezing Start Date)

(Freezing End Date)

(Trigger)

(Equity Freeze)

Overview Result Text
Return

Event Mention : Intermediate people's courthas of the Changchun city held a judicial freeze
on the 43,070 million sharesheld by long group. …From August 12, 2016to August 11, 2018.

Figure 5: A screen shot of the online DCFEE
system9.

5 Related Work

The current EE approaches can be mainly classi-
fied into statistical methods, pattern-based method
and hybrid method (Hogenboom et al., 2016).

54



Statistical method can be divided into two cat-
egories: traditional machine learning algorithm
based on feature extraction engineering (Ahn,
2006), (Ji and Grishman, 2008), (Liao and Gr-
ishman, 2010), (Reichart and Barzilay, 2012) and
neural network algorithm based on automatic fea-
ture extraction (Chen et al., 2015), (Nguyen et al.,
2016), (Liu et al., 2017). The pattern method
is usually used in industry because it can achieve
higher accuracy, but meanwhile a lower recall. In
order to improve recall, there are two main re-
search directions: build relatively complete pat-
tern library and use a semi-automatic method to
build trigger dictionary (Chen et al., 2017), (Gu
et al., 2016). Hybrid event-extraction method-
s combine statistical methods and pattern-based
methods together (Jungermann and Morik, 2008),
(Bjorne et al., 2010). To our best knowledge, there
is no system that automatically generates labeled
data, and extracts document-level events automat-
ically from announcements in Chinese financial
field.

6 Conclusion

We present DCFEE, a framework which is able
to extract document-level events from Chinese fi-
nancial announcements based on automatically la-
beled data. The experimental results show the ef-
fectiveness of the system. We successfully put
the system online and users can quickly get even-
t information from the financial announcements
through it9.
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Abstract 

We present a computer-assisted learning 
system, Jastudy1, which is particularly de-
signed for Chinese-speaking learners of 
Japanese as a second language (JSL) to 
learn Japanese functional expressions with 
suggestion of appropriate example sen-
tences. The system automatically recog-
nizes Japanese functional expressions us-
ing a free Japanese morphological analyz-
er MeCab, which is retrained on a Condi-
tional Random Fields (CRF) model. In or-
der to select appropriate example sentenc-
es, we apply Support Vector Machines for 
Ranking (SVMrank) to estimate the com-
plexity of the example sentences using 
Japanese-Chinese homographs as an im-
portant feature. In addition, we cluster the 
example sentences that contain Japanese 
functional expressions to discriminate dif-
ferent meanings and usages, based on part-
of-speech, conjugation forms and semantic 
attributes, using the k-means clustering al-
gorithm. Experimental results demonstrate 
the effectiveness of our approach. 

1 Introduction 

In the process of Japanese learning, learners must 
study many vocabulary words as well as various 
functional expressions. Since a large number of 
Chinese characters (Kanji characters in Japanese) 
are commonly used both in Chinese and Japa-
nese, one of the most difficult and challenging 
problem for Chinese-speaking learners of Japa-
nese as a second language (JSL) is the acquisition 
of Japanese functional expressions (Dongli Han, 
and Xin Song. 2011). Japanese has various types 
of compound functional expressions that consist 
of more than one word including both content 
words and functional words, such as “ざるをえ

                                                        
1 http://jastudy.net/jastudy.php 

ない (have to)”, “ことができる (be able to)”. 
Due to various meanings and usages of Japanese 
functional expressions, it is fairly difficult for JSL 
learners to learn them. 
    In recent years, certain online Japanese learn-
ing systems are developed to support JSL learn-
ers, such as Reading Tutor2, Asunaro3, Rikai4, and 
WWWJDIC5. Some of these systems are particu-
larly designed to enable JSL learners to read and 
write Japanese texts by offering the word infor-
mation with their corresponding difficulty infor-
mation or translation information (Ohno et al., 
2013; Toyoda 2016). However, learners’ native 
language background has not been taken into ac-
count in these systems. Moreover, these systems 
provide learners with limited information about 
the various types of Japanese functional expres-
sions, which learners actually intend to learn as a 
part of the procedure for learning Japanese. 
Therefore, developing a learning system that can 
assist JSL learners to learn Japanese functional 
expressions is crucial in Japanese education.  
    In this paper, we present Jastudy, a computer-
assisted learning system, aiming at helping Chi-
nese-speaking JSL learners with their study of 
Japanese functional expressions. We train a CRF 
model and use a Japanese morphological analyzer 
MeCab 6  to detect Japanese functional expres-
sions. To select the appropriate example sentenc-
es, we take Japanese-Chinese homographs as an 
important feature to estimate the complexity of 
example sentences using SVMrank7. In addition, 
in order to suggest example sentences that con-
tain the target Japanese functional expression 
with the same meaning and usage, we cluster the 
                                                        
2 http://language.tiu.ac.jp/ 
3 https://hinoki-project.org/asunaro/ 
4 http://www.rikai.com/perl/Home.pl 
5 http://nihongo.monash.edu/cgi-bin/wwwjdic?9T 
6 http://taku910.github.io/mecab/ 
7 https://www.cs.cornell.edu/people/tj/svm_light/ 
  svm_rank.html 
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example sentences, based on part-of-speech, con-
jugation forms and semantic attributes of the 
neighboring words, using the k-means clustering 
algorithm in Scikit-learn8. 

2 General Method 

As shown in Figure 1, our proposed system is 
mainly composed of three processes: automatic 
detection of Japanese functional expressions, sen-
tence complexity estimation and sentence cluster-
ing. In this section, we explain them in detail. 
 

 
Figure 1: The processing stages of the system 

2.1 Detection of Functional Expressions 

Several previous researches have been especially 
paid attention on automatic detection of Japanese 
functional expressions (Tsuchiya et al., 2006; 
Shime et al., 2007; Suzuki et al., 2012). However, 
recognition of Japanese functional expressions is 
still a difficult problem. For automatic detection of 
Japanese functional expressions, we apply a Japa-
nese morphological analyzer Mecab, which em-
ploys CRF algorithm to build the feature-based 
statistical model for morphological analysis. 
    While MeCab provides a pre-trained model us-
ing RWCP Text Corpus as well as Kyoto Univer-
sity Corpus (KC), we train a new CRF model us-
ing our training corpus, hoping MeCab can detect 
more Japanese functional expressions. To prepare 
the training corpus, we firstly referenced certain 
Japanese grammar dictionaries (Xiaoming Xu and 
Reika, 2013; Estuko Tomomastu, Jun Miyamoto 
and Masako Wakuki, 2016) to construct a list of 

                                                        
8 http://scikitlearn.org/stable/modules/ 
  clustering.html#clustering 

Japanese functional expressions. As a result, we 
collected approximately 4,600 types of various 
surface forms in our list. Then we gathered 21,435 
sentences from Tatoeba9 corpus, HiraganaTime10 
corpus, BCCWJ11 and some grammar dictionaries 
(Jamashi and Xu, 2001; Xu and Reika, 2013) and 
segmented each sentence into word level using 
MeCab. Finally, we manually annotated part-of-
speech information for each Japanese functional 
expression in our training corpus. Figure 2 shows 
an example sentence after pre-processing. 

 

 
Figure 2: An example sentence (I will go to sleep 

after I take a bath.) after pre-processing. In the 
sentence, the Japanese functional expression and 

its part-of-speech information are in bold. 

2.2 Sentence Complexity Estimation 

There are a large number of Japanese words writ-
ten with Chinese characters. Most of the words 
share identical or similar meaning with the Chi-
nese words. We define these words as Japanese-
Chinese homographs in our study. For Chinese-
speaking learners, it is easy to understand their 
meanings even though they have never learned 
Japanese. Therefore, Japanese-Chinese homo-
graphs should be considered as an important fea-
ture in estimating sentence complexity. 

In order to construct a list of Japanese-Chinese 
homographs, we firstly extracted Japanese words 
written only with Chinese characters from two 
Japanese dictionaries: IPA (mecab-ipadic-2.7.0-
20070801)12 and UniDic (unidic-mecab 2.1.2)13. 
These two dictionaries are used as the standard 
dictionaries for the Japanese morphological ana-
lyzer MeCab, with appropriate part-of-speech in-
formation for each expression. We then extracted 
the Chinese translations of these Japanese words 
from two online dictionary websites: Wiktionary14 

                                                        
9 https://tatoeba.org/eng/ 
10 http://www.hiraganatiomes.com/ 
11 http://pj.ninjal.ac.jp/corpus_center/bccwj/en/ 
12 https://sourceforge.net/projects/mecab/files/ 
   mecab-ipadic/2.7.0-20070801/mecab-ipadic-2.7.0-  
   20070801.tar.gz/download 
13 http://osdn.net/project/unidic/ 
14 http://ja.wictionary.org/wiki/ 

Input 

Functional Expression Detection CRF++ 

Example Sentence Extraction 

Sentence Complexity Estimation SVMrank 

Example Sentence Clustering K-means 

Example Sentence Suggestion 
ordered from Easy to Difficult  

お	 接頭詞,名詞接続,*,*,*,*,お,オ,オ	

風呂	 名詞,一般,*,*,*,*,風呂,フロ,フロ	

に	 助詞,格助詞,一般,*,*,*,に,ニ,ニ	

入っ	 動詞,自立,*,*,五段・ラ行,連用タ接続,入る,ハイッ,ハイッ	

てから	 助詞,接続助詞,機能表現,*,*,*,てから,テカラ,テカラ	

寝	 動詞,自立,*,*,一段,連用形,寝る,ネ,ネ	

ます	 助動詞,*,*,*,特殊・マス,基本形,ます,マス,マス	

。	 記号,句点,*,*,*,*,。,。,。	
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and Weblio15. We compared the character forms of 
Japanese words with their Chinese translations to 
identify whether the Japanese word is a Japanese-
Chinese homograph or not. Since Japanese words 
use both the simplified Chinese characters and the 
traditional Chinese characters, we first replaced all 
the traditional Chinese characters with the corre-
sponding simplified Chinese characters. If the 
character form of a Japanese word is the same as 
the character form of the Chinese translation, the 
Japanese word is recognized as a Japanese-
Chinese homograph, as illustrated in Table 1.  

Considering unknown words in the above 
online dictionaries, we also referenced an online 
Chinese encyclopedia: Baike Baidu16 and a Japa-
nese dictionary: Kojien fifth Edition (Shinmura, 
1998). If a Japanese word and its corresponding 
Chinese translation share an identical or a similar 
meaning, the Japanese word is also identified as a 
Japanese-Chinese homograph. Ultimately, we cre-
ated a list of Japanese-Chinese homographs that 
consists of approximately 14,000 words. 
 

Original  
Japanese  

word 

Simplified 
Chinese 

characters 

Chinese 
translation 

Japanese-
Chinese 

homographs 
社会 (society) 社会 社会 Yes 
緊張 (nervous) 紧张 紧张 Yes 
手紙 (letter) 手纸 信件 No 
Table 1: Examples of Identification of Japanese–

Chinese homographs 
 
To estimate sentence complexity, we follow the 

standard of the JLPT (Japanese Language Profi-
ciency Test). The JLPT consists of five levels, 
ranging from N5 (the least difficult level) to N1 
(the most difficult level)17. We employ the follow-
ing 12 features as the baseline feature set: 

 
l Numbers of N0–N5 Japanese words in a 

sentence (Here, N0 implies unknown 
words in the vocabulary list of JLPT.) 

l Numbers of N1–N5 Japanese functional 
expressions in a sentence 

l Length of a sentence 
 
Different from the standard of the JLPT, the 

words in the list of Japanese–Chinese homographs 
(JCHs) were categorized separately as a new fea-
ture. Ultimately, we combine the following new 
                                                        
15 http://cjjc.weblio.jp 
16 https://baike.baidu.com 
17 http://jlpt.jp/e/about/levelsummary.html 

features with the baseline features (all 17 fea-
tures), forming our feature set. 
 

l Numbers of JCHs in a sentence 
l Numbers of verbs in a sentence 
l Numbers of syntactic dependencies in a 

sentence 
l Average length of syntactic dependencies 
l Maximum number of child phrases 

 
    The last three features are to measure syntactic 
complexity of a sentence. We used a well-known 
Japanese dependency structure analyzer Cabo-
Cha 18  to divide an example sentence into base 
phrases (called bunsetsu) and to obtain its syntac-
tic dependency structure. For example, the exam-
ple sentence “彼は人生に満足して死んだ。

(He died content with his life.)” is divided into 
four phrases: “彼は”, “人生に”, “満足して”, “死
んだ”. In this sentence, the first, and the third 
phrases depend on the fourth, and the second 
phrase depends on the third. The numbers of syn-
tactic dependencies in this sentence is 3. The 
length of syntactic dependencies is the numbers of 
phrases between arbitrary phrase and its depend-
ent. In this sentence, the average length of syntac-
tic dependencies is 1.7 (the length of syntactic de-
pendency between the first and the fourth is 3, the 
length of syntactic dependency between the se-
cond and the third is 1, and the length of syntactic 
dependency between the third and the fourth is 1). 
The fourth phrase has two child’s phrases while 
the third has only one child phrase, so the maxi-
mum number of child phrases in this sentence is 2. 

2.3 Sentence Clustering 

Some Japanese functional expressions have two 
or more meanings and usages. For example, the 
following two example sentences contain the 
identical Japanese functional expression “そう
だ”, but have different meanings. However, we 
can distinguish the meaning of “そうだ” through 
part-of-speech and conjugation forms of the words 
that appear just before “そうだ”.  
 
雨が降りそうだ。 (It looks like it will rain.) 
雨が降るそうだ。 (It’s heard that it will rain.) 
 

To obtain example sentences for each of dis-
tinct usages of a functional expression, we apply a 
                                                        
18 https://taku910.github/cabocha/ 
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clustering algorithm with a small number of 
known examples (those appear in dictionaries) 
and a large number of untagged example sentenc-
es. For the features of sentence clustering, we uti-
lize the following features: part-of-speech, conju-
gation form, and semantic attribute of the word 
that appear just before or after the target Japanese 
functional expression. 

3 Experiments and Results 

3.1 Automatically Detecting Japanese Func-
tional Expressions 

This experiment evaluates automatic detection of 
Japanese functional expressions. 

We apply CRF++19, which is an open source 
implementation of CRF for segmenting sequential 
data. We utilized nine features including surface 
forms and their part-of-speech in our training. The 
training corpus mentioned in Section 2.1 was used 
in the CRF++. The CRF++ learned the training 
corpus and outputted a model file as the learning 
result. We then applied MeCab, trained on our 
training corpus, to automatically recognize the 
Japanese functional expressions. 

For the test data, we randomly extracted 200 
example sentences from Tatoeba, HiraganaTimes 
and BCCWJ. Table 2 shows some examples of de-
tected Japanese functional expressions by our sys-
tem. The final evaluation results are shown in Ta-
ble 3. We obtained 86.5% accuracy, indicating our 
approach has certain validity. 
 

Correctly detected Japanese functional expressions 
Input: 今、雪が降っている。 (It is snowing now.) 
Output: 今	、	雪	が	降っ	ている	。 
Input: この箱を開けてください。 (Please open this box.)	
Output: この	箱	を	開け	てください	。	
Incorrectly detected Japanese functional expressions 
Input: 彼女は火にあたってからだを暖めた。 
(She warmed herself by the fire.)	
Output: 彼女	は	火	にあたって	からだ	を	暖め	た	。 

Table 2: Detection of Japanese functional expres-
sions. In the sentences, Japanese functional ex-

pressions are in bold and underlined. 
 

Correctly recognized 173 (86.5%) 
Incorrectly recognized 27(13.5%) 
Total 200 (100%) 

Table 3: Experimental results on detection of Jap-
anese functional expressions 

                                                        
19 https://taku910.github.io/crfpp/ 

3.2 Estimating Sentence Complexity 

This experiment evaluates sentence complexity 
estimation, using an online machine learning tool 
SVMrank. 
    We first collected 5,000 example sentences 
from Tatoeba, HiraganaTimes, BCCWJ and ran-
domly paired them and constructed 2,500 sen-
tence pairs. Then 15 native Chinese-speaking JSL 
learners, all of whom have been learning Japanese 
for about one year, were invited to read the pairs 
of example sentences and asked to choose the one 
which is easier to understand. We asked three 
learners to compare each pair and the final deci-
sion was made by majority voting. We finally ap-
plied a set of five-fold cross-validations with each 
combination of 4,000 sentences as the training da-
ta and 1,000 sentences as the test data. 

The experimental results using baseline features 
and our method using all of the proposed features 
are presented in Tables 4 and 5. Compared with 
the results using the baseline features, our method 
enhances the average accuracy by 3.3%, partially 
demonstrating the effectiveness of our features. 
 

Features Cross-validations Accuracy 

Baseline Features 

1 83.2% 
2 84% 
3 80.4% 
4 82% 
5 81.8% 

Average 82.3% 
   Table 4: Experimental results using baseline 

features. 
 

Features Cross-validations Accuracy 

Proposed Features 

1 87.6% 
2 86.4% 
3 84.6% 
4 83.8% 
5 85.4% 

Average 85.6% 
        Table 5: Experimental results using our 

proposed features 
 

3.3 Clustering Example Sentences 

This experiment evaluates the performance of sen-
tence clustering, using the k-means clustering al-
gorithm in Scikit-learn. 

Here in our study, we took five different types 
of Japanese functional expressions as the exam-
ples. For the test data, we collected 10 example 
sentences, which were used for the reference, 
from Japanese functional expression dictionaries 
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and 20 example sentences from Tatoeba, Hiraga-
naTimes, and BCCWJ for each type of Japanese 
functional expressions, respectively. We conduct-
ed our experiments with the number of clusters 
ranging from four to six. The clustering result was 
evaluated based on whether the test data that was 
clustered into one cluster share the same usage of 
a Japanese functional expression. The experi-
mental results are shown in Table 6. The average 
results of accuracies for the number of clusters 
ranging from four to six are 89%, 93%, 92%, in-
dicating the usefulness of the sentence clustering 
method for classifying sentences in the same us-
age. 
 

Functional 
Expressions 

Numbers of 
Clusters Accuracy 

そうだ	
(it looks like / 
it’s heard that)	

4 97% 
5 97% 
6 97% 

とともに	
(together with / 

at the same time)	

4 87% 
5 97% 
6 87% 

ため（に）	
(because / 
in order to)	

4 83% 
5 83% 
6 90% 

に対して	

(to / every / 
in contrast to)	

4 87% 
5 93% 
6 93% 

次第（だ）	

(as soon as / 
depends on)	

4 93% 
5 93% 
6 93% 

Average 
4 89% 
5 93% 
6 92% 

       Table 6: Experimental results of sentence 
clustering 

4 Featured functions of the Demo 

In our proposed demo, we have implemented the 
following main functions. 
    1. The function to detect Japanese functional 
expressions. Given a sentence, Jastudy automati-
cally segments the input sentence into individual 
words using MeCab. Difficult Japanese functional 
expressions (N2 and above) in the input sentence 
are simplified with easier Japanese functional ex-
pressions (N3 and below) or with phrases and 
shown in the output sentence, using a “Simple 
Japanese Replacement List” (Jun Liu and Yuji 
Matsumoto, 2016). An example is shown in Fig-
ure 3. Moreover, Jastudy represents detailed in-
formation about the surface-form, part-of-speech 
of each word in the input sentence and the output 
sentence, respectively. 

 

 
Figure 3: “投資しようにも金がない。(I have no 

money to invest.)” is typed in the system. 
 

2. The function to provide JSL learners with the 
detail information about the meaning, usage and 
example sentences of the Japanese functional ex-
pression which appears in the input sentence and 
the output sentence, respectively. An example is 
shown in Figure 4. Learners can also choose the 
Japanese functional expressions they want to 
learn, based on their Japanese abilities.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                    (a)                                               (b) 
Figure 4: Detailed information of Japanese func-
tional expressions appeared in the input sentence 

(a) and the output sentence (b). 
 
    3. The function to suggest comprehensive ex-
ample sentences. The JSL learners can search 
more example sentences through the following 
three aspects: 1) only keyword, 2) only usage, 3) 
both keyword and usage. For example, the learner 
inputs the Japanese functional expression “そう
だ” as a keyword and selects its meaning and us-
age “it looks like” from drop-down list, a list of 
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example sentences that contain the functional ex-
pression sharing the same meaning are retrieved 
to form the corpus, as shown in Figure 5. The only 
sentences whose complexity is equal to or below 
the learner’s level are retrieved. 

 

 
Figure 5: Example sentences suggested by the 

system, given “そうだ” with its meaning as “様
態(it looks like)” 

5 Conclusion and Future Work 

In this paper, we presented a computer-assisted 
leaning system of Japanese language for Chinese-
speaking learners with their study of Japanese 
functional expressions. The system detects Japa-
nese functional expressions using MeCab that 
employs the CRF model we trained. We apply 
SVMrank to estimate sentence complexity using 
the Japanese-Chinese homographs as an important 
feature to suggest example sentences that are easy 
to understand for Chinese-speaking JSL learners. 
Moreover, we cluster example sentences contain-
ing the Japanese functional expressions with the 
same meanings and usages. The experimental re-
sults indicate effectiveness of our method. 
    We plan to examine the run-time effectiveness 
of the system for JSL learners. This will be our fu-
ture task for improving the performance of our 
system. 
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Abstract

In a corruption of John Searle’s famous
AI thought experiment, the Chinese Room
(Searle, 1980), we twist its original intent
by enabling humans to translate text, e.g.
from Uyghur to English, even if they don’t
have any prior knowledge of the source
language. Our enabling tool, which we
call the Chinese Room, is equipped with
the same resources made available to a
machine translation engine. We find that
our superior language model and world
knowledge allows us to create perfectly
fluent and nearly adequate translations,
with human expertise required only for the
target language. The Chinese Room tool
can be used to rapidly create small corpora
of parallel data when bilingual translators
are not readily available, in particular for
low-resource languages.

1 Introduction

Domain adaptation for machine translation is a
well-studied problem.1 Most works assume a
system-builder has an adequate amount of out-
of-domain or ‘general’ domain parallel sentence
training data and some smaller corpus of in-
domain data that can be used, depending on the
size of the in-domain corpus, for additional train-
ing, for parameter estimation, or, if the in-domain
corpus is very small, simply for system evaluation.
Very little, however, is said of the scenario where
there is no in-domain parallel data available, and
yet an in-domain system must be built.

In such scenarios one may try to mine paral-
lel data from comparable corpora (Munteanu and
Marcu, 2005), but in cases where even scant (but

1See http://www.statmt.org/survey/Topic/
DomainAdaptation for a survey of methodologies.

not zero) in-domain monolingual resources are
available this is not a feasible strategy and the only
way to obtain any reliably measure of quality is
to solicit human translations. However, it may be
difficult to recruit translators to prepare such data,
if the language is underrepresented or politically
sensitive.

Al-Onaizan et al. (2002) describe an experiment
where individual humans translated 10 sentences
from Tetun to English, without any prior knowl-
edge of Tetun, based solely on an in-domain bi-
text of 1,102 sentences. Without any prior tools,
translation was very tedious, inefficient, and im-
practical for the 10 sentences, taking about one
sentence per hour. But the experiment success-
fully showed in principle the feasibility of human
translation without prior knowledge of the source
language.

We introduce a tool, the Chinese Room, to fa-
cilitate efficient human translation without prior
knowledge of a source language. The name is in-
spired from Searle (1980) who envisioned a mono-
lingual English-speaking human equipped with in-
structions for answering Chinese questions by ma-
nipulating symbols of a Chinese information cor-
pus and the question text to form answers. While
Searle used this idea to argue against ‘strong’ AI,
we thought the setup, i.e. giving a human the tools
an NLP model is given (in this case, a machine
translation model), was a good one for rapidly
generating useful translation data.

Apart from generating human translation data,
an additional use of the Chinese Room is to
support computational linguists in identifying the
challenges of machine translation for a specific
language pair and language resources. By plac-
ing humans in the role of the MT, we may bet-
ter understand the nature and magnitude of out-of-
vocabulary gaps, and whether they might be due to
morphological complexity, compounding, assimi-
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lation, spelling variations, insufficient or out-of-
domain parallel corpora or dictionaries, etc. We
found that the Chinese Room can be a useful tool
to help generate new ideas for machine translation
research.

1.1 Features

Our Chinese Room tool has the following features:

1. Glosser accommodates a variety of NLP and
source language resources

2. User can explore alternative translations
3. Grammar support (such as prefixes, suffixes,

function words)
4. Optional romanization of source text
5. Robust to spelling variations
6. Optional confidence levels
7. Propagation of user translations
8. Dictionary search function (allowing regular

expressions)
9. User accounts with login, password, work-

sets, separate workspaces
10. Web-based

2 System Description

2.1 Dictionary and T-table Lookup

The principal glossing resources are dictionaries
and translation probability tables (t-tables) that
are automatically computed from parallel corpora
(Brown et al., 1993). The Chinese Room tool will
present the top 10 t-table entries and all dictionary
entries, including multi-word entries.

2.2 Out-of-Vocabulary Words

However, particularly for low-resource languages,
words will frequently not be found that easily. Due
to morphological inflection, affixes, compound-
ing, assimilation, and typos, a source word might
not occur in a dictionary or t-table.

Low-resource languages often lack consistent
spelling due to dialects, lack of spelling standards,
or lack of education. For example, even a small
Uyghur corpus included six different spellings for
the Uyghur word for kilometer: kilometer, kilome-
tir, kilomitir, kilometr, kilomitr, klometir.

It is therefore critical to be able to identify
dictionary and t-table entries that approximately
match a word or a part hereof. We address this
challenge with a combination of multiple indexes
and a weighted string similarity metric.

2.3 Multiple Indexes For String Matching
We currently use the following indexing heuris-
tics: (1) stemming, (2) hashing, (3) drop-letter,
and (4) long substring. Inspired by phonetic
matching (Philips, 2000), our current hash func-
tion first removes duplicate letters and then re-
moves vowels, except for any leading vowels that
get mapped to a canonical e. For example, both
break and broke are hashed to brk.

The drop-letter heuristic allows to find entries
for words with typos due to letter deletion, addi-
tion, substitution and juxtaposition. For example,
“crocodile” and “cocodrile” share the drop-letter
sequence “cocodile”.

The long (7+ letters) substring heuristic finds
dictionary entries that contain additional content.

2.4 Weighted String Distance Metric
Traditional edit distance metrics (Levenshtein,
1966) do not consider the particular characters
being added, subtracted, or substituted, and will
therefore typically assign a higher cost to (gram,
gramme) than to (gram, tram). Such uniform edit
distance costs are linguistically implausible.

The Chinese Room Editor therefore uses a mod-
ified metric that leverages a resource of edit dis-
tance costs. In particular, costs for vowels and du-
plicate letters are cheap.

Table 1: String similarity rule examples.
::s1 = string 1; ::left1 = left context of string 1;
::lc1 = language code of string 1.

The first rule in Table 1 assigns a cost of 0.1
for o/u substitution, well below the default cost of
1. The second and third rule reduce the string dis-
tance cost of (gram, gramme) to 0.12. Cost en-
tries for pairs of substrings can be restricted to
specific left and right contexts or to specific lan-
guages. The last rule in Table 1 assigns a low cost
to word-initial silent k in English. The manually
created resource currently has 590 entries, includ-
ing a core set of 252 language-independent cost
entries that are widely applicable.

2.5 Romanization
For a similarity metric to be widely practical, the
strings need to be in the same script. We therefore
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Figure 1: Chinese Room process. Blue rectangles represent data, pink ovals programs and processes.

romanize before computing string similarity.
An additional motivation for romanization in

the Chinese Room is based on the observation that
foreign scripts present a massive cognitive barrier
to humans who are not familiar with them. See
Table 2 for examples.

Table 2: Texts in Uyghur, Amharic and Tibetan.

We found that when we asked native English
speakers to use the Chinese Room to translate text
from languages such as Uyghur or Bengali to En-
glish, they strongly preferred working on a roman-
ized version of the source language compared to
its original form and indeed found using the native,
unfamiliar script to be a nearly impossible task.

By default, we therefore romanize non-Latin-
script text, using the universal romanizer uroman2

(Hermjakob et al., 2018). The Chinese Room
Editor includes the option to display the original
text or both the original and romanized source
text. The Uyghur text in Table 2 is romanized as

yaponie fukushima 1-yadro elektir
istansisining toet genratorlar guruppisi

which facilitates the recognition of cognates.
2bit.ly/uroman

2.6 Grammar Resource Files

An additional optional resource is a set of gram-
mar entries for affixes and function words that dic-
tionaries and t-tables do not cover very well. Ta-
ble 3 shows examples for five Hungarian affixes
and two Tagalog function words.

Table 3: Grammar entries for Hungarian, Tagalog.

The grammar files have been built manually,
typically drawing on external resources such as
Wiktionary.3 The size is language specific, rang-
ing from a few dozen entries to several hundred
entries for extremely suffix-rich Hungarian.

2.7 Process

Figure 1 provides an overview of the Chinese
Room process. Given a set of NLP resources and a
workset of source language sentences, the Chinese
Room Glosser builds a Chinese Room File, which
can be edited in the Chinese Room Editor. The
resulting Chinese Room Corpus can be used for
machine translation and other NLP applications.

3https://en.wiktionary.org, e.g. https://en.wiktionary.org/
wiki/Appendix:Hungarian suffixes
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Figure 2: Screenshot of Chinese Room Editor with Uyghur example. Demo site: bit.ly/chinese-room

2.8 Chinese Room Example

Figure 2 shows an example from a Uyghur article
about an earthquake. For the (romanized) Uyghur
word asaslanghanda, the tool shows several rele-
vant entries that guide the translator to the correct
gloss based (on). Note the information regarding
the suffixes -maq, -ghan, and -da.

2.9 Gloss Propagation

Words and expressions often occur multiple times
in a document. When a translator edits a gloss,
the edited gloss is propagated to other yet unedited
glosses of the same word(s) in a document. The
propagated glosses can be overwritten, but that is
rarely necessary.

Additionally, the edited glosses are collected
as an additional translation resource, which can
be compiled and propagated to other documents.
This allows the sharing of newly discovered trans-
lations between translators.

At times, some sentences will be difficult to
fully translate, particularly if there are multiple
unknown words. The meaning of some of those
words will become apparent in other sentences
with a stronger context, which in turn will help
comprehension of the original difficult sentence.

The discovery of morphological bridge forms is
one such case. In (romanized) Uyghur, for exam-
ple, a translator might struggle with the meaning
of panahliniwetiptu, but later in the text find a re-
lated word panahlinish, which in turn is similar
enough to the dictionary entry panalinish = shelter

to be found by the tool. With additional grammar
guidance for the suffixes -wet, -ip, -tu, and -sh, the
originally hard word can now be glossed and the
sentence translated.

3 Chinese Room Editor User Interface4

The Chinese Room URL is bit.ly/chinese-room.
Temporary visitors are invited to login as guest.

3.1 Loading a Workset

To get started, click the load button, wait a mo-
ment, select a source language (e.g. Uyghur), and
a workset (e.g. earthquake-jp-2011-wo-cr-corpus).

3.2 Exploring and Editing Glosses

The initial gloss will often provide a good first idea
of what the sentence is about. To explore alterna-
tives to the glosses provided, hover the mouse over
a gloss that you want to explore. A blue info box
will appear in the lower part of the screen, provid-
ing you with a range of entries related to the word.
To edit a gloss, or just to fix an info box for subse-
quent scrolling, click on a gloss, and the gloss be-
comes editable. To move on to another gloss, click
that gloss. To exit gloss editing mode, press Enter
(while the cursor is in a gloss box). Alternatively,
you can click on a translation in the info box to
select that translation as a gloss. Double-clicking
on a source word will copy it to the gloss; this is

4For more details, please consult the Chinese Room Edi-
tor manual at bit.ly/chinese-room-manual.
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useful for words that don’t need translations, such
as names.

3.3 Editing Sentence Translations

To edit the translation of the full sentence, click on
the current translation (in green), initially empty.
Type text, or adopt a gloss by clicking on it. Press
Enter to exit sentence editing.

3.4 Grouping, Ungrouping, Confidence

In the Special ops section, click on group to com-
bine words to a multi-word expression, or ungroup
to undo. You may optionally assign a confidence
level to glosses and sentence translations, which
allows you flag uncertainty, for later review by
you or somebody else, or to inform a subsequent
user (such as a learning algorithm). For more info,
hover over a special-op name.

4 Experiments

We have built Chinese Rooms for Bengali,
Hungarian, Oromo, Somali, Swahili, Tagalog,
Tigrinya, and Uyghur.

For Bengali, two of the authors of this paper
translated an article of 10 Bengali sentences to En-
glish, without any prior knowledge of Bengali, us-
ing the Chinese Room. To evaluate the results, we
asked a native speaker from Bangladesh, a grad-
uate student living in the US who is not a pro-
fessional translator, to first translate the same 10
sentences independently and then to evaluate our
translations. According to the native speaker our
translations were better; we only missed one Ben-
gali word in translation, and were actually aware
of it, but were unable to decode it with the re-
sources at hand.

We used the Chinese Room to create small cor-
pora of parallel data in a time-constrained MT
system-building scenario. In this scenario we were
required to translate documents from Uyghur to
English describing earthquakes and disaster relief
efforts. However, we had no parallel data dealing
with this topic, and our use of an unrelated test set
(see Figure 3) to estimate overall task performance
was not reliable. We thus wanted to construct an
in-domain Uyghur-English parallel corpus.

In the scenario we were given a small number
of one-hour sessions with a native informant (NI),
a Uyghur native who spoke English and was not
a linguistics or computer science expert. We ini-
tially asked the NI use the time to translate docu-

ments, one sentence at a time. This was accom-
plished at a rate of 360 words per hour, but re-
quired another 30-60 minutes of post-editing to
ensure fluency. We next tried typing for the NI
(and ensured fluency); this yielded 320 words/hr
but did not require post-editing. Finally we used
the Chinese Room to translate and asked the NI to
point out any errors. This hour yielded 480 words.
Machine translation quality on the resulting in-
domain set tracked much better with performance
on the evaluation set. Later on we built a second
in-domain set but did not have any further access
to the NI. Using this set of approximate translation
to tune parameters yielded a 0.3 BLEU increase in
system performance.

We have trained more than 20 people to use
the Chinese Room with very good results for
the training test case, Somali. We are similarly
confident in our translations for Hungarian and
Uyghur. Tagalog and Swahili are recent builds,
and translations look very promising.

However, we found the dictionary and bitext
resources for Tigrinya (to a lesser degree) and
Oromo (to a larger degree) to be too small to con-
fidently translate most sentences. We were able
to translate some sentences completely, and many
others partially, but had to rely on the support
of non-professional native speakers to complete
the translations. The Chinese Room nevertheless
proved to be very useful in this very-low-resource
scenario. We could already build glosses for many
words and provide a partial translations, so that
the native speaker could finish a sentence faster
than starting from scratch. The Chinese Room
also helped the native speaker to more easily find
the English words he/she was looking for, and al-
lowed us to make sure that the translation covered
all essential parts of the original text.

5 Related Work

Callison-Burch (2005); Albrecht et al. (2009);
Koehn (2010) and Trados5 have built computer-
aided translation systems for high-resource lan-
guages, with an emphasis on post-editing.

Hu et al. (2011) describe a monolingual trans-
lation protocol that combines MT with not only
monolingual target language speakers, but, unlike
the Chinese Room, also monolingual source lan-
guage speakers.

5https://www.sdltrados.com
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Figure 3: MT performance on an out-of-domain corpus (‘test’) does not predict performance on the
evaluation (’eval’) set but performance on our ‘domain’ data set which comprises NI translations and
Chinese Room post-edits, is predictive.

6 Future Work

We have observed that by using the Chinese
Room, human translators start to learn some of the
vocabulary and grammar of the source language.
It might therefore be worthwhile to explore how
the Chinese Room tool, with a few modifications,
could be used in foreign language learning.

7 Conclusion

We have established the feasibility of a practical
system that enables human translation from an un-
familiar language, supporting even low-resource
languages. We found that we were able to create
perfectly fluent and nearly adequate translations,
far exceeding the quality of a state-of-the-art ma-
chine translation system (Cheung et al., 2017) us-
ing the same resources as the Chinese Room, by
exploiting the human translators’ target language
model and their world knowledge, both of which
are still far superior to those of a computer.
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Abstract

Supervised machine learning algorithms re-
quire training data whose generation for
complex relation extraction tasks tends to
be difficult. Being optimized for relation
extraction at sentence level, many annota-
tion tools lack in facilitating the annota-
tion of relational structures that are widely
spread across the text. This leads to non-
intuitive and cumbersome visualizations,
making the annotation process unnecessar-
ily time-consuming. We propose SANTO,
an easy-to-use, domain-adaptive annota-
tion tool specialized for complex slot filling
tasks which may involve problems of cardi-
nality and referential grounding. The web-
based architecture enables fast and clearly
structured annotation for multiple users in
parallel. Relational structures are formu-
lated as templates following the conceptual-
ization of an underlying ontology. Further,
import and export procedures of standard
formats enable interoperability with exter-
nal sources and tools.

1 Introduction

In most scientific and technical domains, the main
medium for knowledge communication is unstruc-
tured text. Growing efforts are spent into literature-
based knowledge discovery (Henry and McInnes,
2017) using information extraction or machine
reading approaches for knowledge base population.
The goal is to automatically transform the available
domain knowledge into structured formats that can
be leveraged for downstream analytical tasks.

Recent approaches reduced information extrac-
tion problems to binary relation extraction tasks
at sentence level (Adel et al., 2016; Zhang et al.,

∗The first two authors contributed equally to this paper.

2017, i. a.). In such cases, the annotation procedure
is comparably straight-forward to formulate. How-
ever, a substantial subset of information extraction
tasks can be described as typed n-ary relation ex-
traction or slot filling, in which pre-defined sets of
typed slots (templates) need to be assigned from
information that may be widely spread across a
text (Freitag, 2000). As such templates can con-
tain many slots which may be recursively nested,
an appropriate visualization is mandatory during
annotation to handle the complexity of the task.

Relevant use cases for template-based informa-
tion extraction exist in several fields of application:
In the biomedical domain, there is a large body of
work on database population from text in order to
support translational medicine (Zhu et al., 2013;
ter Horst et al., 2018, i. a.). In digital humanities,
there is a vital interest in detecting descriptions of
historical events or artifacts from cultural heritage
(Ruotsalo et al., 2009; Segers et al., 2011). In the
context of manufacturing or retail, structured prod-
uct descriptions are extracted from web pages or
customer reviews (Bing et al., 2016; Petrovski and
Bizer, 2017) to enable product comparisons.

In this work, we present SANTO, a lightweight,
easy-to-use, domain-adaptive, web-based annota-
tion tool specialized for complex slot filling tasks.
SANTO is designed to address particular user
needs that are recurrent in such scenarios. It en-
ables data annotation and export into a machine-
readable format based on the following features:
• Being based on information models such as

ontologies for specifying the template scheme,
it can be flexibly adapted to different domains
and use cases.
• It enables annotations both at the textual and

the template level; it is designed to support
fast and seamless instantiation of new tem-
plates and their population from textual anno-
tations, particularly in cases where slot fillers
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pertaining to one template are widely dis-
tributed across the text.
• As common in slot filling, the tool builds on

top of the fact that extraction models do not
need to find every mention of an entity or
relation in the text. Instead, the focus is on
enabling the user to instantiate the correct car-
dinality of templates and ensuring referential
uniqueness of slot fillers or templates.
• Annotations can be flexibly imported from

different external sources. The RDF export
of annotated relations within templates is con-
form to the underlying information model.
• It enables easy curation of annotations (e. g.,

from multiple imports).
• It is implemented as a web service in order

to support remote annotation workflows for
multiple users in parallel.

Availability and License. A demo installa-
tion is available at http://psink.techfak.
uni-bielefeld.de/santo/. The source
code of the application is publicly available under
the Apache 2.0 License at https://github.
com/ag-sc/SANTO.

2 Related Work

Most annotation frameworks for text focus on the
sentence level. Examples include syntactic pars-
ing (Burchardt et al., 2006) or semantic role label-
ing (Kakkonen, 2006; Yimam et al., 2013). Other
tools focus on segmentation annotation tasks, for
instance Callisto (Day et al., 2004), WordFreak
(Morton and LaCivita, 2003), MMax2 (Müller and
Strube, 2006), or GATE Teamware (Bontcheva
et al., 2013) (though the latter also supports more
complex schemata).

Brat (Stenetorp et al., 2012), WebAnno (Yimam
et al., 2013), eHost (South et al., 2012) and CAT
(Lenzi et al., 2012) support approaches for rela-
tional annotations. These tools are easy to use and
highly flexible regarding the specification of anno-
tation schemes. Projects are easy to manage due
to administration interfaces and remote annotation
is supported. However, these approaches share the
limitation that all relational structures need to be
anchored at the textual surface. Thus, annotating
complex templates as in Figure 1 becomes tedious
and visually cumbersome, especially in cases of
complex nestings within or across templates, or
when fillers are widely dispersed across multiple
sentences in a text.




ORGANISMMODEL


AGE “six-week-old”
SPECIES SpragueDawleyRat
GENDER Female
AGECATEGORY Adult
WEIGHT “192–268g“







Figure 1: Example template following a schema
derived from the Spinal Cord Injury Ontology.

We propose a tool to frame complex relational
annotation problems as slot filling tasks. To our
knowledge, the only existing tool for this purpose
is the Protégé plugin Knowtator (Ogren, 2006),
which is, however, not web-based, comparably dif-
ficult to use with multiple annotators, and no longer
actively supported since 2009. Thus, our main con-
tribution is an annotation tool which combines the
advantages of (i) enabling complex relational slot
filling with distant fillers, and (ii) ease of use in
web-based environments in order to facilitate re-
mote collaboration.

SANTO is ontology-based, i. e., entity and re-
lation types are derived from an underlying ontol-
ogy. The same idea is prominent in several annota-
tion tools within the Semantic Web community (cf.
Oliveira and Rocha, 2013). Contrary to SANTO,
these tools support annotations only at the level
of individual entities without capturing relational
structures as given in template-based slot filling.

3 Use Case: Information Extraction for
Database Population

SANTO is designed to create machine-readable
annotation data. As a motivating example, our pre-
sentation is guided by the use case of generating
annotated training data for an ontology-based in-
formation extraction system that supports database
population in the PSINK project1 (ter Horst et al.,
2018). In this context, our goal is to annotate sci-
entific publications reporting on the outcomes of
pre-clinical trials in the spinal cord injury domain.
The annotation schema complies to definitions of
the Spinal Cord Injury Ontology (SCIO; Brazda
et al., 2017). SCIO provides the concept RESULT

as a top-level class which subsumes all classes
and properties to represent the key parameters of
an outcome in a study. Several properties are re-
cursively sub-structured (e. g., EXPERIMENTAL-

1http://psink.de
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Figure 2: Entity Annotation: Relevant text mentions spanning one or multiple tokens are highlighted in
green; entity type annotations are displayed on top of them. A new WEIGHT annotation is being added
using the filtered drop-down menu.

Figure 3: Curation: Annotations of several annotators are displayed colorized. Annotations on the same
token are on top of each other. Correct or spurious annotations can be accepted or rejected, respectively.
Accepted annotations keep the color code, but are marked with dotted boundaries.

GROUPs, INVESTIGATIONMETHOD, ORGANISM-
MODEL). The annotation task is framed as slot
filling, i. e., pre-defined templates (corresponding
to classes in SCIO) need to be populated based on
evidence found in the document.

Figure 1 shows an example template which un-
folds the ORGANISMMODEL concept from SCIO
into slots (corresponding to ontological properties)
and their fillers. Fillers for such templates may
be distributed across an entire document, which
holds in particular for complex, recursively sub-
structured templates such as RESULT.

4 User Interface and Annotation
Workflow

Our web application provides three views to the
user, which reflect the typical annotation workflow
that is encountered in (slot filling) annotation tasks:
(i) entity annotation, (ii) curation, (iii) template
instantiation and slot filling.

4.1 Entity Annotation

In order to annotate entities at the level of tokens in
the text, we support two workflows: Annotations
are created by an annotator from scratch, or ex-
isting annotations can be imported in order to be
altered by the annotator. In SANTO, this is done
in the entity annotation view (cf. Figure 2). A new
annotation can be created by selecting tokens in the
text. Being forced to span full tokens, annotations
are automatically adjusted to the onset of the first
and the offset of the last token. Entity types are

chosen from a drop-down menu2. Discontinuous
annotations are supported as well. Existing anno-
tations can be altered by expanding or shrinking
their span, or by changing the entity type (with-
out the need to remove the existing annotation and
adding a new one). After a document has been
marked as complete by an annotator, it is available
for curation.

4.2 Curation

The curation view is designed to help a curator ad-
judicating possibly divergent mention annotations
produced by several annotators. For that purpose,
the curator can select annotations of multiple an-
notators that should be displayed for adjudication.
Each annotator corresponds to a unique color. As
can be seen from Figure 3, all annotations are ar-
ranged on top of each other in order to make di-
vergences clearly visible at a glance. Based on
this visualization, the curator can select individual
annotations and accept or reject them. Accepted an-
notations are marked with dotted boundaries while
keeping the color. During curation, the original
annotations are not altered but cloned into a new
curation document which serves as the basis for the
subsequent slot filling.3

4.3 Template Instantiation and Slot Filling

In this mode, SANTO provides a combined view
of curated entity annotations and pre-defined tem-

2The list can be filtered by name prefixes or taxonomically.
3If no curation is needed, all annotations can be easily

batch-accepted.
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Figure 4: Slot filling view displaying a combined view of curated entity annotations at text level (left) and
templates to be filled (right). Type compatibilities between annotated entities and possible target slots are
automatically highlighted by the tool.

plates to be filled (cf. Figure 4). During template
filling, it is no longer possible to change entity an-
notations. Instead, the goal is to support the user
in instantiating the correct cardinality of different
template types, and filling their slots with previ-
ously annotated entities, while taking referential
grounding into account where necessary.

Cardinality of Templates. Often, the number of
instantiations of a particular template (e. g., number
of EXPERIMENTALGROUPs in a study) is variable
and not known a priori. Thus, correctly determin-
ing the cardinality of the set of instantiated tem-
plates per type is a crucial subproblem in the slot
filling task. In SANTO, users can add, remove,
or duplicate instances of referential templates and
rename them for easy reference (e. g., naming EX-
PERIMENTALGROUPS as “ChABC-treated group”
or “Untreated control group”).

Slot Filling. Based on their pre-defined role in
the annotation schema, we distinguish three dif-
ferent types of slots in a template: simple slots,
recursive slots and template slots.

Simple slots are directly filled with entity annota-
tions (e. g., STATISTICALTEST in Figure 5). In ad-
dition to be filled with entity annotations, recursive
slots have subordinate slots (e. g., INVESTIGATION-
METHOD in Figure 5, marked with a drop-down
symbol on the left). Simple and recursive slots can
either be filled by clicking on an existing annotation
in the document, or by selecting an annotation from
a drop-down menu that appears when clicking on
the slot. Here, it is also possible to select an entity
type without textual reference, if necessary (e. g.,
JUDGEMENT in Figure 5). In order to facilitate slot
filling, all suitable annotation candidates are high-
lighted in the document while hovering over a slot
and vice versa.4 Template slots are special cases
of recursive slots in order to facilitate referential
grounding (see below).

4Based on type constraints defined in the ontology.

Figure 5: Slot filling view (template pane only) dis-
playing the six main templates according to SCIO.
The RESULT template is opened; it includes sim-
ple slots (JUDGEMENT), recursive slots (e. g., IN-
VESTIGATIONMETHOD) and template slots (e. g.,
REFERENCEEXPERIMENTALGROUP, selectable
via drop-down).

Slots can be defined to accept multiple annota-
tions from the text. In such cases, a new slot value
can be added by clicking on the + symbol (e. g.,
OBSERVATION or TESTFORFUNCTION in Fig. 5).

Referential Grounding. Slot filling tasks re-
quire referential grounding when several instances
of complex sub-templates have to be distributed
over various governing templates; e. g., an instance
of an EXPERIMENTALGROUP might take part in
several, but not all of the RESULTs reported in a
study. Moreover, the same instance of an EXPERI-
MENTALGROUP may fill the TARGETEXPERIMEN-
TALGROUP slot in one RESULT and the REFER-
ENCEEXPERIMENTALGROUP in another. SANTO
supports these cases by explicitly assigning previ-
ously instantiated templates to appropriate template
slots via a drop-down menu (cf. Figure 5 for slot
REFERENCEEXPERIMENTALGROUP), thus ensur-
ing referential uniqueness of fillers. Only templates
of the appropriate type are available for selection.
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5 Technical Properties

Application Details. The application is hosted
on a standard Linux web stack using Apache 2.4,
PHP 5.6 with a MySQL (version 5.5) database
backend. The frontend uses HTML-5, CSS-3,
jQuery5 with jQuery UI6 to provide a fast and
robust user experience compatible across modern
browsers.

Specification of Annotation Scheme. As initial
input, the system requires a description of the un-
derlying annotation scheme which can be derived
from an ontology. This includes the description
of entity types and roles (Class vs. NamedIndi-
vidual etc.), the hierarchical structure of entities
(subclass relations) and their relational structure
(object-type and data-type properties). Further, the
template types that are available for slot filling
need to be specified. All specifications are pro-
vided in configuration files in CSV format. Thus,
instead of a fully-fledged ontology, an ad-hoc in-
formation model can be provided as well. Support
for automatically translating an RDF ontology to
the custom specification format is currently lim-
ited to the following syntactic elements: owl:class,
rdfs:subClassOf, owl:NamedIndividual, rdf:type,
owl:objectTypeProperty, owl:dataTypeProperty,
and rdfs:description.

Pre-Processing of Input Documents. All docu-
ments need to be pre-processed before being up-
loaded to the application. This includes sentence
splitting and tokenization. Note that entity annota-
tions are limited to sentence boundaries and only
full tokens can be annotated.

Import and Export of Annotations. For each
document, it is possible to import entity annotations
for individual annotators from different sources
(e. g., external annotation platforms or automated
systems). The syntactic format for importing anno-
tations is based on a shallow tab-separated formal-
ism in order to facilitate a wide range of annota-
tion sources such as existing information extraction
tools, lexicon matching routines, or manual work-
flows. Entity and template annotations can be eas-
ily exported. While entity annotations are simply
described in a CSV-structured file, template annota-
tions are exported as RDF following the underlying
ontology and annotation schema.

5https://jquery.com
6https://jqueryui.com

User Management. User roles in SANTO com-
prise annotators and curators. Individual views per
annotator and curator enable multiple annotations,
curations and slot fillings for each document. The
web-based architecture supports multiple annota-
tions in parallel.

6 Conclusion

We have presented SANTO, the first web-based
annotation tool which enables easy annotation of
complex relational structures in a template-based
slot filling setting. The tool is web-based and flex-
ibly configurable. Being designed in order to ad-
dress typical user needs in slot filling workflows,
we expect SANTO to have a positive impact on
research aiming at automated acquisition of com-
prehensive, highly structured domain knowledge
from textual sources, as in biomedical information
extraction, digital humanities, or similar fields.
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Abstract

This paper describes NCRF++, a toolkit
for neural sequence labeling. NCRF++
is designed for quick implementation of
different neural sequence labeling models
with a CRF inference layer. It provides
users with an inference for building the
custom model structure through configu-
ration file with flexible neural feature de-
sign and utilization. Built on PyTorch1,
the core operations are calculated in batch,
making the toolkit efficient with the accel-
eration of GPU. It also includes the imple-
mentations of most state-of-the-art neural
sequence labeling models such as LSTM-
CRF, facilitating reproducing and refine-
ment on those methods.

1 Introduction

Sequence labeling is one of the most fundamental
NLP models, which is used for many tasks such as
named entity recognition (NER), chunking, word
segmentation and part-of-speech (POS) tagging.
It has been traditionally investigated using statis-
tical approaches (Lafferty et al., 2001; Ratinov
and Roth, 2009), where conditional random fields
(CRF) (Lafferty et al., 2001) has been proven as
an effective framework, by taking discrete features
as the representation of input sequence (Sha and
Pereira, 2003; Keerthi and Sundararajan, 2007).

With the advances of deep learning, neural se-
quence labeling models have achieved state-of-
the-art for many tasks (Ling et al., 2015; Ma
and Hovy, 2016; Peters et al., 2017). Features
are extracted automatically through network struc-
tures including long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and convolu-
tion neural network (CNN) (LeCun et al., 1989),

1http://pytorch.org/

##NetworkConfiguration##
use crf=True
word seq feature=LSTM
word seq layer=1
char seq feature=CNN
feature=[POS] emb dir=None emb size=10
feature=[Cap] emb dir=%(cap emb dir)
##Hyperparameters##
...

Figure 1: Configuration file segment

with distributed word representations. Similar to
discrete models, a CRF layer is used in many
state-of-the-art neural sequence labeling models
for capturing label dependencies (Collobert et al.,
2011; Lample et al., 2016; Peters et al., 2017).

There exist several open-source statistical CRF
sequence labeling toolkits, such as CRF++2, CRF-
Suite (Okazaki, 2007) and FlexCRFs (Phan et al.,
2004), which provide users with flexible means of
feature extraction, various training settings and de-
coding formats, facilitating quick implementation
and extension on state-of-the-art models. On the
other hand, there is limited choice for neural se-
quence labeling toolkits. Although many authors
released their code along with their sequence la-
beling papers (Lample et al., 2016; Ma and Hovy,
2016; Liu et al., 2018), the implementations are
mostly focused on specific model structures and
specific tasks. Modifying or extending can need
enormous coding.

In this paper, we present Neural CRF++
(NCRF++)3, a neural sequence labeling toolkit
based on PyTorch, which is designed for solv-
ing general sequence labeling tasks with effective
and efficient neural models. It can be regarded as
the neural version of CRF++, with both take the
CoNLL data format as input and can add hand-

2https://taku910.github.io/crfpp/
3Code is available at https://github.com/

jiesutd/NCRFpp.
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Figure 2: NCRF++ for sentence “I love Bruce Lee”. Green, red, yellow and blue circles represent
character embeddings, word embeddings, character sequence representations and word sequence repre-
sentations, respectively. The grey circles represent the embeddings of sparse features.

crafted features to CRF framework conveniently.
We take the layerwise implementation, which in-
cludes character sequence layer, word sequence
layer and inference layer. NCRF++ is:

• Fully configurable: users can design their
neural models only through a configuration file
without any code work. Figure 1 shows a seg-
ment of the configuration file. It builds a LSTM-
CRF framework with CNN to encode character
sequence (the same structure as Ma and Hovy
(2016)), plus POS and Cap features, within 10
lines. This demonstrates the convenience of de-
signing neural models using NCRF++.

• Flexible with features: human-defined fea-
tures have been proved useful in neural se-
quence labeling (Collobert et al., 2011; Chiu and
Nichols, 2016). Similar to the statistical toolkits,
NCRF++ supports user-defined features but using
distributed representations through lookup tables,
which can be initialized randomly or from exter-
nal pretrained embeddings (embedding directory:
emb dir in Figure 1). In addition, NCRF++ in-
tegrates several state-of-the-art automatic feature
extractors, such as CNN and LSTM for character
sequences, leading easy reproduction of many re-
cent work (Lample et al., 2016; Chiu and Nichols,
2016; Ma and Hovy, 2016).

• Effective and efficient: we reimplement sev-
eral state-of-the-art neural models (Lample et al.,
2016; Ma and Hovy, 2016) using NCRF++. Ex-
periments show models built in NCRF++ give
comparable performance with reported results in
the literature. Besides, NCRF++ is implemented

using batch calculation, which can be acceler-
ated using GPU. Our experiments demonstrate
that NCRF++ as an effective and efficient toolkit.
• Function enriched: NCRF++ extends the
Viterbi algorithm (Viterbi, 1967) to enable decod-
ing n best sequence labels with their probabilities.

Taking NER, Chunking and POS tagging as typ-
ical examples, we investigate the performance of
models built in NCRF++, the influence of human-
defined and automatic features, the performance
of nbest decoding and the running speed with the
batch size. Detail results are shown in Section 3.

2 NCRF++ Architecture

The framework of NCRF++ is shown in Figure 2.
NCRF++ is designed with three layers: a character
sequence layer; a word sequence layer and infer-
ence layer. For each input word sequence, words
are represented with word embeddings. The char-
acter sequence layer can be used to automatically
extract word level features by encoding the char-
acter sequence within the word. Arbitrary hand-
crafted features such as capitalization [Cap],
POS tag [POS], prefixes [Pre] and suffixes
[Suf] are also supported by NCRF++. Word
representations are the concatenation of word em-
beddings (red circles), character sequence encod-
ing hidden vector (yellow circles) and handcrafted
neural features (grey circles). Then the word se-
quence layer takes the word representations as in-
put and extracts the sentence level features, which
are fed into the inference layer to assign a label
to each word. When building the network, users
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only need to edit the configuration file to config-
ure the model structure, training settings and hy-
perparameters. We use layer-wised encapsulation
in our implementation. Users can extend NCRF++
by defining their own structure in any layer and in-
tegrate it into NCRF++ easily.

2.1 Layer Units
2.1.1 Character Sequence Layer
The character sequence layer integrates several
typical neural encoders for character sequence in-
formation, such as RNN and CNN. It is easy to se-
lect our existing encoder through the configuration
file (by setting char seq feature in Figure
1). Characters are represented by character em-
beddings (green circles in Figure 2), which serve
as the input of character sequence layer.
• Character RNN and its variants Gated Re-
current Unit (GRU) and LSTM are supported by
NCRF++. The character sequence layer uses
bidirectional RNN to capture the left-to-right and
right-to-left sequence information, and concate-
nates the final hidden states of two RNNs as the
encoder of the input character sequence.
• Character CNN takes a sliding window to cap-
ture local features, and then uses a max-pooling for
aggregated encoding of the character sequence.

2.1.2 Word Sequence Layer
Similar to the character sequence layer, NCRF++
supports both RNN and CNN as the word se-
quence feature extractor. The selection can be con-
figurated through word seq feature in Fig-
ure 1. The input of the word sequence layer is a
word representation, which may include word em-
beddings, character sequence representations and
handcrafted neural features (the combination de-
pends on the configuration file). The word se-
quence layer can be stacked, building a deeper fea-
ture extractor.
• Word RNN together with GRU and LSTM are
available in NCRF++, which are popular struc-
tures in the recent literature (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016; Yang
et al., 2017). Bidirectional RNNs are supported
to capture the left and right contexted information
of each word. The hidden vectors for both direc-
tions on each word are concatenated to represent
the corresponding word.
• Word CNN utilizes the same sliding window as
character CNN, while a nonlinear function (Glo-
rot et al., 2011) is attached with the extracted fea-

tures. Batch normalization (Ioffe and Szegedy,
2015) and dropout (Srivastava et al., 2014) are also
supported to follow the features.

2.1.3 Inference Layer
The inference layer takes the extracted word se-
quence representations as features and assigns la-
bels to the word sequence. NCRF++ supports both
softmax and CRF as the output layer. A linear
layer firstly maps the input sequence representa-
tions to label vocabulary size scores, which are
used to either model the label probabilities of each
word through simple softmax or calculate the label
score of the whole sequence.
• Softmax maps the label scores into a probabil-
ity space. Due to the support of parallel decod-
ing, softmax is much more efficient than CRF and
works well on some sequence labeling tasks (Ling
et al., 2015). In the training process, various loss
functions such as negative likelihood loss, cross
entropy loss are supported.
• CRF captures label dependencies by adding
transition scores between neighboring labels.
NCRF++ supports CRF trained with the sentence-
level maximum log-likelihood loss. During the
decoding process, the Viterbi algorithm is used to
search the label sequence with the highest proba-
bility. In addition, NCRF++ extends the decoding
algorithm with the support of nbest output.

2.2 User Interface

NCRF++ provides users with abundant network
configuration interfaces, including the network
structure, input and output directory setting, train-
ing settings and hyperparameters. By editing a
configuration file, users can build most state-of-
the-art neural sequence labeling models. On the
other hand, all the layers above are designed as
“plug-in” modules, where user-defined layer can
be integrated seamlessly.

2.2.1 Configuration
• Networks can be configurated in the three
layers as described in Section 2.1. It con-
trols the choice of neural structures in character
and word levels with char seq feature and
word seq feature, respectively. The infer-
ence layer is set by use crf. It also defines the
usage of handcrafted features and their properties
in feature.
• I/O is the input and output file directory
configuration. It includes training dir,
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Models NER chunking POS
F1-value F1-value Acc

Nochar+WCNN+CRF 88.90 94.23 96.99
CLSTM+WCNN+CRF 90.70 94.76 97.38
CCNN+WCNN+CRF 90.43 94.77 97.33
Nochar+WLSTM+CRF 89.45 94.49 97.20
CLSTM+WLSTM+CRF 91.20 95.00 97.49
CCNN+WLSTM+CRF 91.35 95.06 97.46
Lample et al. (2016) 90.94 – 97.51
Ma and Hovy (2016) 91.21 – 97.55
Yang et al. (2017) 91.20 94.66 97.55
Peters et al. (2017) 90.87 95.00 –

Table 1: Results on three benchmarks.

dev dir, test dir, raw dir, pretrained
character or word embedding (char emb dim
or word emb dim), and decode file directory
(decode dir).
• Training includes the loss function
(loss function), optimizer (optimizer)4

shuffle training instances train shuffle and
average batch loss ave batch loss.
• Hyperparameter includes most of the param-
eters in the networks and training such as learn-
ing rate (lr) and its decay (lr decay), hidden
layer size of word and character (hidden dim
and char hidden dim), nbest size (nbest),
batch size (batch size), dropout (dropout),
etc. Note that the embedding size of each hand-
crafted feature is configured in the networks con-
figuration (feature=[POS] emb dir=None
emb size=10 in Figure 1).

2.2.2 Extension
Users can write their own custom modules on all
three layers, and user-defined layers can be inte-
grated into the system easily. For example, if a
user wants to define a custom character sequence
layer with a specific neural structure, he/she only
needs to implement the part between input char-
acter sequence indexes to sequence representa-
tions. All the other networks structures can be
used and controlled through the configuration file.
A README file is given on this.

3 Evaluation

3.1 Settings
To evaluate the performance of our toolkit, we
conduct the experiments on several datasets. For
NER task, CoNLL 2003 data (Tjong Kim Sang

4Currently NCRF++ supports five optimizers:
SGD/AdaGrad/AdaDelta/RMSProp/Adam.

Features P R F
Baseline WLSTM+CRF 80.44 87.88 89.15

Human Feature
+POS 90.61 89.28 89.94
+Cap 90.74 90.43 90.58
+POS+Cap 90.92 90.27 90.59

Auto Feature
+CLSTM 91.22 91.17 91.20
+CCNN 91.66 91.04 91.35

Table 2: Results using different features.

and De Meulder, 2003) with the standard split
is used. For the chunking task, we perform ex-
periments on CoNLL 2000 shared task (Tjong
Kim Sang and Buchholz, 2000), data split is fol-
lowing Reimers and Gurevych (2017). For POS
tagging, we use the same data and split with Ma
and Hovy (2016). We test different combinations
of character representations and word sequence
representations on these three benchmarks. Hy-
perparameters are mostly following Ma and Hovy
(2016) and almost keep the same in all these exper-
iments5. Standard SGD with a decaying learning
rate is used as the optimizer.

3.2 Results

Table 1 shows the results of six CRF-based mod-
els with different character sequence and word
sequence representations on three benchmarks.
State-of-the-art results are also listed. In this table,
“Nochar” suggests a model without character se-
quence information. “CLSTM” and “CCNN” rep-
resent models using LSTM and CNN to encode
character sequence, respectively. Similarly, “WL-
STM” and “WCNN” indicate that the model uses
LSTM and CNN to represent word sequence, re-
spectively.

As shown in Table 1, “WCNN” based mod-
els consistently underperform the “WLSTM”
based models, showing the advantages of LSTM
on capturing global features. Character in-
formation can improve model performance sig-
nificantly, while using LSTM or CNN give
similar improvement. Most of state-of-the-art
models utilize the framework of word LSTM-
CRF with character LSTM or CNN features
(correspond to “CLSTM+WLSTM+CRF” and
“CCNN+WLSTM+CRF” of our models) (Lample
et al., 2016; Ma and Hovy, 2016; Yang et al., 2017;
Peters et al., 2017). Our implementations can
achieve comparable results, with better NER and

5We use a smaller learning rate (0.005) on CNN based
word sequence representation.
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Figure 3: Oracle performance with nbest.

chunking performances and slightly lower POS
tagging accuracy. Note that we use almost the
same hyperparameters across all the experiments
to achieve the results, which demonstrates the ro-
bustness of our implementation. The full experi-
mental results and analysis are published in Yang
et al. (2018).

3.3 Influence of Features

We also investigate the influence of different fea-
tures on system performance. Table 2 shows the
results on the NER task. POS tag and capital in-
dicator are two common features on NER tasks
(Collobert et al., 2011; Huang et al., 2015; Strubell
et al., 2017). In our implementation, each POS
tag or capital indicator feature is mapped as 10-
dimension feature embeddings through randomly
initialized feature lookup table 6. The feature em-
beddings are concatenated with the word embed-
dings as the representation of the corresponding
word. Results show that both human features
[POS] and [Cap] can contribute the NER sys-
tem, this is consistent with previous observations
(Collobert et al., 2011; Chiu and Nichols, 2016).
By utilizing LSTM or CNN to encode character
sequence automatically, the system can achieve
better performance on NER task.

3.4 N best Decoding

We investigate nbest Viterbi decoding
on NER dataset through the best model
“CCNN+WLSTM+CRF”. Figure 3 shows
the oracle entity F1-values and token accuracies
with different nbest sizes. The oracle F1-value

6feature=[POS] emb dir=None emb size=10
aaaafeature=[Cap] emb dir=None emb size=10
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Figure 4: Speed with batch size.

rises significantly with the increasement of nbest
size, reaching 97.47% at n = 10 from the baseline
of 91.35%. The token level accuracy increases
from 98.00% to 99.39% in 10-best. Results show
that the nbest outputs include the gold entities and
labels in a large coverage, which greatly enlarges
the performance of successor tasks.

3.5 Speed with Batch Size
As NCRF++ is implemented on batched calcula-
tion, it can be greatly accelerated through paral-
lel computing through GPU. We test the system
speeds on both training and decoding process on
NER dataset using a Nvidia GTX 1080 GPU. As
shown in Figure 4, both the training and the decod-
ing speed can be significantly accelerated through
a large batch size. The decoding speed reaches sat-
uration at batch size 100, while the training speed
keeps growing. The decoding speed and training
speed of NCRF++ are over 2000 sentences/second
and 1000 sentences/second, respectively, demon-
strating the efficiency of our implementation.

4 Conclusion

We presented NCRF++, an open-source neural
sequence labeling toolkit, which has a CRF ar-
chitecture with configurable neural representation
layers. Users can design custom neural models
through the configuration file. NCRF++ supports
flexible feature utilization, including handcrafted
features and automatically extracted features. It
can also generate nbest label sequences rather than
the best one. We conduct a series of experiments
and the results show models built on NCRF++
can achieve state-of-the-art results with an effi-
cient running speed.
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Abstract

We present a new web-based interface,
TALEN, designed for named entity an-
notation in low-resource settings where
the annotators do not speak the language.
To address this non-traditional scenario,
TALEN includes such features as in-place
lexicon integration, TF-IDF token statis-
tics, Internet search, and entity propaga-
tion, all implemented so as to make this
difficult task efficient and frictionless. We
conduct a small user study to compare
against a popular annotation tool, show-
ing that TALEN achieves higher precision
and recall against ground-truth annota-
tions, and that users strongly prefer it over
the alternative.

TALEN is available at:
github.com/CogComp/talen.

1 Introduction

Named entity recognition (NER), the task of find-
ing and classifying named entities in text, has been
well-studied in English, and a select few other lan-
guages, resulting in a wealth of resources, par-
ticularly annotated training data. But for most
languages, no training data exists, and annotators
who speak the language can be hard or impossible
to find. This low-resource scenario calls for new
methods for gathering training data. Several works
address this with automatic techniques (Tsai et al.,
2016; Zhang et al., 2016; Mayhew et al., 2017),
but often a good starting point is to elicit manual
annotations from annotators who do not speak the
target language.

Language annotation strategies and software
have historically assumed that annotators speak
the language in question. Although there has been

work on non-expert annotators for natural lan-
guage tasks (Snow et al., 2008), where the anno-
tators lack specific skills related to the task, there
has been little to no work on situations where an-
notators, expert or not, do not speak the language.
To this end, we present a web-based interface de-
signed for users to annotate text quickly and easily
in a language they do not speak.

TALEN aids non-speaker annotators1 with sev-
eral different helps and nudges that would be un-
necessary in cases of a native speaker. The main
features, described in detail in Section 2, are a
Named Entity (NE) specific interface, entity prop-
agation, lexicon integration, token statistics infor-
mation, and Internet search.

The tool operates in two separate modes, each
with all the helps described above. The first mode
displays atomic documents in a manner analogous
to nearly all prior annotation software. The second
mode operates on the sentence level, patterned on
bootstrapping with a human in the loop, and de-
signed for efficient discovery and annotation.

In addition to being useful for non-speaker an-
notations, TALEN can be used as a lightweight in-
spection and annotation tool for within-language
named entity annotation. TALEN is agnostic to la-
belset, which means that it can also be used for a
wide variety of sequence tagging tasks.

2 Main Features

In this section, we describe the main features indi-
vidually in detail.

Named Entity-Specific Interface

The interface is designed specifically for Named
Entity (NE) annotation, where entities are rela-

1We use ‘non-speaker’ to denote a person who does not
speak or understand the language, in contrast with ‘non-
native speaker’, which implies at least a shallow understand-
ing of the language.
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Figure 1: Document-based annotation screen. A romanized document from an Amharic corpus is shown.
The user has selected “nagaso gidadane” (Negasso Gidada) for tagging, indicated by the thin gray border,
and by the popover component. The lexicon (dictionary) is active, and is displaying the definition (in
italics) for “doctor” immediately prior to “nagaso”. (URL and document title are obscured).

tively rare in the document. The text is intention-
ally displayed organically, in a way that is familiar
and compact, so that the annotator can see as much
as possible on any given screen. This makes it
easy for an annotator to make document-level de-
cisions, for example, if an unusual-looking phrase
appears several times. To add an annotation, as
shown in Figure 1, the annotator clicks (and drags)
on a word (or phrase), and a popover appears
with buttons corresponding to label choices as de-
fined in the configuration file. Most words are not
names, so a default label of non-name (O) is as-
signed to all untouched tokens, keeping the num-
ber of clicks to a minimum. In contrast, a part-of-
speech (POS) annotation system, SAWT (Samih
et al., 2016), for example, is designed so that ev-
ery token requires a decision and a click.

Entity Propagation

In a low-resource scenario, it can be difficult to
discover and notice names because all words look
unfamiliar. To ease this burden, and to save on
clicks, the interface propagates all annotation de-
cisions to every matching surface in the document.
For example, if ’iteyop’eya (Ethiopia) shows up
many times in a document, then a single click will

annotate all of them.
In the future, we plan to make this entity prop-

agation smarter by allowing propagation to near
surface forms (in cases where a suffix or prefix
differs from the target phrase) or to cancel prop-
agation on incorrect phrases, such as stopwords.

Lexicon Integration

The main difficulty for non-speakers is that they
do not understand the text they are annotating. An
important feature of TALEN is in-place lexicon in-
tegration, which replaces words in the annotation
screen with their translation from the lexicon. For
example, in Figure 1, the English word doctor is
displayed in line (translations are marked by ital-
ics). As before, this is built on the notion that an-
notation is easiest when text looks organic, with
translations seamlessly integrated. Users can click
on a token and add a definition, which is immedi-
ately saved to disk. The next time the annotator
encounters this word, the definition will be dis-
played. If available, a bilingual lexicon (perhaps
from PanLex (Kamholz et al., 2014)), can kickstart
the process. A side effect of the definition addition
feature is a new or updated lexicon, which can be
shared with other users, or used for other tasks.
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Figure 2: Sentence-based annotation screen, with sentences corresponding to seed term ba’iteyop’eya
(annotated in the first sentence, not in the second). Two sentences are shown, and the remaining three
sentences associated with this seed term are lower on the page. Notice that hayelamareyame dasalañe
(Hailemariam Desalegn) has also been annotated in the first sentence. This will become a new seed term
for future iterations. (URL and sentence IDs are obscured).

Token Statistics
When one has no knowledge of a language, it may
be useful to know various statistics about tokens,
such as document count, corpus count, or TF-IDF.
For example, if a token appears many times in ev-
ery document, it is likely not a name. Our an-
notation screen shows a table with statistics over
tokens, including document count, percentage of
documents containing it, and TF-IDF. At first, it
shows the top 10 tokens by TF-IDF, but the user
can click on any token to get individual statistics.
For example, in Figure 1, nagaso appears 4 times
in this document, appears in 10% of the total doc-
uments, and has a TF-IDF score of 9.21. In prac-
tice, we have found that this helps to give an idea
of the topic of the document, and often names will
have high TF-IDF in a document.

Internet Search
Upon selection of any token or phrase, the popover
includes an external link to search the Internet for
that phrase. This can be helpful in deciding if a
phrase is a name or not, as search results may re-
turn images, or even autocorrect the phrase to an
English standard spelling.

3 Annotation Modes

There are two annotation modes: a document-
based mode, and a sentence-based mode. Each has
all the helps described above, but they display doc-
uments and sentences to users in different ways.

3.1 Document-based Annotation

The document-based annotation is identical to the
common paradigm of document annotation: the
administrator provides a group of documents, and
creates a configuration file for that set. The anno-
tator views one document at a time, and moves on
to the next when they are satisfied with the anno-
tations. Annotation proceeds in a linear fashion,
although annotators may revisit old documents to
fix earlier mistakes. Figure 1 shows an example of
usage in the document-based annotation mode.

3.2 Sentence-based Annotation

The sentence-based annotation mode is modeled
after bootstrapping methods. In this mode, the
configuration file is given a path to a corpus of
documents (usually a very large corpus) and a
small number (less than 10) seed entities, which

82



Figure 3: Sentence-based annotation screen showing 4 seed terms available for annotation. Notice the
Unannotated and Annotated tabs. These terms are in the active Unannotated tab because each term has
some sentences that have not yet been labeled with that seed term. For example, of the 5 sentences found
for ba’iteyop’eya, only 1 has this seed term labeled (see Figure 2).

can be easily acquired from Wikipedia. This cor-
pus is indexed at the sentence level, and for each
seed entity, k sentences are retrieved. These are
presented to the annotator, as in Figure 2, who will
mark all names in the sentences, starting with the
entity used to gather the sentence, and hopefully
discover other names in the process. As names are
discovered, they are added to the list of seed enti-
ties, as shown in Figure 3. New sentences are then
retrieved, and the process continues until a pre-
defined number of sentences has been retrieved.
At this point, the data set is frozen, no new sen-
tences are added, and the annotator is expected to
thoroughly examine each sentence to discover all
named entities.

In practice, we found that the size of k, which is
the number of sentences retrieved per seed term,
affects the overall corpus diversity. If k is large
relative to the desired number of sentences, then
the annotation is fast (because entity propagation
can annotate all sentences with one click), but the
method produces a smaller number of unique en-
tities. However, if k is small, annotation may be
slower, but return more diverse entities. In prac-
tice, we use a default value of k = 5.

4 Related Work

There are several tools designed for similar pur-
poses, although to our knowledge none are de-
signed specifically for non-speaker annotations.
Many of the following tools are powerful and flex-
ible, but would require significant refactoring to
accommodate non-speakers.

The most prominent and popular is brat: rapid
annotation tool (brat) (Stenetorp et al., 2012), a
web-based general purpose annotation tool capa-
ble of a handling a wide variety of annotation
tasks, including span annotations, and relations
between spans. brat is open source, reliable, and
available to download and run.

There are a number of tools with similar func-
tionality. Sapient (Liakata et al., 2009) is a web-
based system for annotating sentences in scientific
documents. WebAnno (de Castilho et al., 2016)
uses the frontend visualization from brat with a
new backend designed to make large-scale project
management easier. EasyTree (Little and Tratz,
2016) is a simple web-based tool for annotating
dependency trees. Callisto2 is a desktop tool for
rich linguistic annotation.

2http://mitre.github.io/callisto/

83



SAWT (Samih et al., 2016) is a sequence an-
notation tool with a focus on being simple and
lightweight, which is also a focus of ours. One
key difference is that this expects that annotators
will want to provide a tag for every word. This
is inefficient for NER, where many tokens should
take the default non-name label.

5 Experiment: Compare to brat

The brat rapid annotation tool (brat) (Stenetorp
et al., 2012) is a popular and well-featured anno-
tation tool, which makes for a natural comparison
to TALEN. In this experiment, we compare tools
qualitatively and quantitatively by hiring a group
of annotators. We can compare performance be-
tween TALEN and brat by measuring the results
after having annotators use both tools.

We chose to annotate Amharic, a language from
Ethiopia. We have gold training and test data for
this language from the Linguistic Data Consor-
tium (LDC2016E87). The corpus is composed of
several different genres, including newswire, dis-
cussion forums, web blogs, and social network
(Twitter). In the interest of controlling for the
domain, we chose only 125 newswire documents
(NW) from the gold data, and removed all annota-
tions before distribution. Since Amharic is written
in Ge’ez script, we romanized it, so it can be read
by English speakers. We partitioned the newswire
documents into 12 (roughly even) groups of docu-
ments, and assigned each annotator 2 groups: one
to be annotated in brat, the other with TALEN. This
way, every annotator will use both interfaces, and
every document will be annotated by both inter-
faces. We chose one fully annotated gold docu-
ment and copied it into each group, so that the an-
notators have an annotation example.

We employed 12 annotators chosen from our
NLP research group. Before the annotation pe-
riod, all participants were given a survey about
tool usage and language fluency. No users had fa-
miliarity with TALEN, and only one had any fa-
miliarity with brat. Of the annotators, none spoke
Amharic or any related language, although one an-
notator had some familiarity with Hebrew, which
shares a common ancestry with Amharic, and one
annotator was from West Africa.3

Immediately prior to the annotation period, we
gave a 15 minute presentation with instructions on
tool usage, annotation guidelines, and annotation

3Ethiopia is in East Africa.

DATASET PRECISION RECALL F1

brat 51.4 8.7 14.2
TALEN 53.6 12.6 20.0

DATASET TOTAL NAMES UNIQUE NAMES

Gold 2260 1154
brat 405 189
TALEN 457 174

Figure 4: Performance results. The precision, re-
call, and F1 are measured against the gold standard
Amharic training data. When counting Unique
Names, each unique surface form is counted once.
We emphasize that these results are calculated
over a very small amount of data annotated over a
half-hour period by annotators with no experience
with TALEN or Amharic. These only show a quick
and dirty comparison to brat, and are not intended
to demonstrate high-quality performance.

strategies. The tags used were Person, Organiza-
tion, Location, and Geo-Political Entity. As for
strategy, we instructed them to move quickly, an-
notating names only if they are confident (e.g. if
they know the English version of that name), and
to prioritize diversity of discovered surface forms
over exhaustiveness of annotation. When using
TALEN, we encouraged them to make heavy use
of the lexicon. We provided a short list (less than
20 names) of English names that are likely to be
found in documents from Ethiopia: local politi-
cians, cities in the region, etc.

The annotation period lasted 1 hour, and con-
sisted of two half hour sessions. For the first
session, we randomly assigned half the annota-
tors to use brat, and the other half to use TALEN.
When this 30 minute period was over, all annota-
tors switched tools. Those who had used brat use
ours, and vice versa. We did this because users are
likely to get better at annotating over time, so the
second tool presented should give better results.
Our switching procedure mitigates this effect.

At the end of the second session, each document
group had been annotated twice: once by some
annotator using brat, and once by some annotator
using TALEN. These annotations were separate, so
each tool started with a fresh copy of the data.

We report results in two ways: first, annotation
quality as measured against a gold standard, and
second, annotator feedback. Figure 4 shows ba-
sic statistics on the datasets. Since the documents
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we gave to the annotators came from a gold an-
notated set, we calculated precision, recall, and
F1 with respect to the gold labels. First, we see
that TALEN gives a 5.8 point F1 improvement over
brat. This comes mostly from the recall, which im-
proves by 3.9 points. This may be due to the auto-
matic propagation, or it may be that having a lexi-
con helped users discover more names by proxim-
ity to known translations like president. In a less
time-constrained environment, users of brat might
be more likely select and annotate all surfaces of a
name, but the reality is that all annotation projects
are time-constrained, and any help is valuable.

The bottom part of the table shows the anno-
tation statistics from TALEN compared with brat.
TALEN yielded more name spans than brat, but
fewer unique names, meaning that many of the
names from TALEN are copies. This is also likely
a product of the name propagation feature.

We gathered qualitative results from a feedback
form filled out by each annotator after the eval-
uation. All but one of the annotators preferred
TALEN for this task. In another question, they
were asked to select an option for 3 qualities of
each tool: efficiency, ease of use, and presentation.
Each quality could take the options Bad, Neutral,
or Good. On each of these qualities, brat had a
majority of Neutral, and TALEN had a majority
of Good. For TALEN, Efficiency was the highest
rated quality, with 10 respondents choosing Good.

We also presented respondents with the 4 ma-
jor features of TALEN (TF-IDF box, lexicon, en-
tity propagation, Internet search), and asked them
to rate them as Useful or Not useful in their ex-
perience. Only 4 people found the TF-IDF box
useful; 10 people found the lexicon useful; all 12
people found the entity propagation useful; 7 peo-
ple found the Internet search useful. These results
are also reflected in the free text feedback. Most
respondents were favorable towards the lexicon,
and some respondents wrote that the TF-IDF box
would be useful with more exposure, or with bet-
ter integration (e.g. highlight on hover).

6 Technical Details

The interface is web-based, with a Java backend
server. The frontend is built using Twitter boot-
strap framework,4 and a custom javascript library
called annotate.js. The backend is built with
the Spring Framework, written in Java, using the

4https://getbootstrap.com/

TextAnnotation data structure from the CogComp
NLP library (Khashabi et al., 2018) to represent
and process text.

In cases where it is not practical to run a
backend server (for example, Amazon Mechani-
cal Turk5), we include a version written entirely in
javascript, called annotate-local.js.

We allow a number of standard input file for-
mats, and attempt to automatically discover the
format. The formats we allow are: column, in
which each (word, tag) pair is on a single line,
serialized TextAnnotation format (from CogComp
NLP (Khashabi et al., 2018)) in both Java serial-
ization and JSON, and CoNLL column format, in
which the tag and word are in columns 0 and 5,
respectively.

When a user logs in and chooses a dataset to an-
notate, a new folder is created automatically with
the username in the path. When that user logs in
again, the user folder is reloaded on top of the orig-
inal data folder. This means that multiple users can
annotate the same corpus, and their annotations
are saved in separate folders. This is in contrast
to brat, where each dataset is modified in place.

7 Conclusions and Future Work

We have presented TALEN, a powerful interface
for annotation of named entities in low-resource
languages. We have explained the usage with
screenshots and descriptions, and outlined a short
user study showing that TALEN outperforms brat
in a low-resource task in both qualitative and quan-
titative measures.
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Abstract

To enable efficient exploration of Web-
scale scientific knowledge, it is neces-
sary to organize scientific publications
into a hierarchical concept structure. In
this work, we present a large-scale sys-
tem to (1) identify hundreds of thou-
sands of scientific concepts, (2) tag these
identified concepts to hundreds of mil-
lions of scientific publications by leverag-
ing both text and graph structure, and (3)
build a six-level concept hierarchy with
a subsumption-based model. The sys-
tem builds the most comprehensive cross-
domain scientific concept ontology pub-
lished to date, with more than 200 thou-
sand concepts and over one million rela-
tionships.

1 Introduction

Scientific literature has grown exponentially over
the past centuries, with a two-fold increase ev-
ery 12 years (Dong et al., 2017), and millions of
new publications are added every month. Effi-
ciently identifying relevant research has become
an ever increasing challenge due to the unprece-
dented growth of scientific knowledge. In order
to assist researchers to navigate the entirety of sci-
entific information, we present a deployed system
that organizes scientific knowledge in a hierarchi-
cal manner.

To enable a streamlined and satisfactory seman-
tic exploration experience of scientific knowledge,
three criteria must be met:

• a comprehensive coverage on the broad spec-
trum of academic disciplines and concepts
(we call them concepts or fields-of-study, ab-
breviated as FoS, in this paper);

Figure 1: Three modules of the system: concept
discovery, concept-document tagging, and con-
cept hierarchy generation.

• a well-organized hierarchical structure of sci-
entific concepts;

• an accurate mapping between these concepts
and all forms of academic publications, in-
cluding books, journal articles, conference
papers, pre-prints, etc.

To build such a system on Web-scale, the fol-
lowing challenges need to be tackled:

• Scalability: Traditionally, academic disci-
pline and concept taxonomies have been cu-
rated manually on a scale of hundreds or
thousands, which is insufficient in modeling
the richness of academic concepts across all
domains. Consequently, the low concept cov-
erage also limits the exploration experience
of hundreds of millions of scientific publica-
tions.

• Trustworthy representation: Traditional
concept hierarchy construction approaches
extract concepts from unstructured docu-
ments, select representative terms to denote
a concept, and build the hierarchy on top of
them (Sanderson and Croft, 1999; Liu et al.,
2012). The concepts extracted this way not
only lack authoritative definition, but also
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Concept Concept Hierarchy
discovery tagging building

Main scalability / trustworthy scalability / stability /
challenges representation coverage accuracy
Problem knowledge base multi-label topic hierarchy

formulation type prediction text classification construction
Solution / Wikipedia / KB / word embedding / extended
model(s) graph link analysis text + graph structure subsumption

Data scale 105 – 106 109 – 1010 106 – 107

Data update
frequency monthly weekly monthly

Table 1: System key features at a glance.

contain erroneous topics with subpar quality
which is not suitable for a production system.

• Temporal dynamics: Academic publica-
tions are growing at an unprecedented pace
(about 70K more papers per day according to
our system) and new concepts are emerging
faster than ever. This requires frequent inclu-
sion on latest publications and re-evaluation
in tagging and hierarchy-building results.

In this work, we present a Web-scale sys-
tem with three modules—concept discovery,
concept-document tagging, and concept-hierarchy
generation—to facilitate scientific knowledge ex-
ploration (see Figure 1). This is one of the core
components in constructing the Microsoft Aca-
demic Graph (MAG), which enables a semantic
search experience in the academic domain1. MAG
is a scientific knowledge base and a heterogeneous
graph with six types of academic entities: publica-
tion, author, institution, journal, conference, and
field-of-study (i.e., concept or FoS). As of March
2018, it contains more than 170 million publica-
tions with over one billion paper citation relation-
ships, and is the largest publicly available aca-
demic dataset to date2.

To generate high-quality concepts with com-
prehensive coverage, we leverage Wikipedia ar-
ticles as the source of concept discovery. Each
Wikipedia article is an entity in a general knowl-
edge base (KB). A KB entity associated with a
Wikipedia article is referred to as a Wikipedia en-
tity. We formulate concept discovery as a knowl-
edge base type prediction problem (Neelakantan

1The details about where and how we obtain, aggregate,
and ingest academic publication information into the system
is out-of-scope for this paper and for more information please
refer to (Sinha et al., 2015).

2https://www.openacademic.ai/oag/

and Chang, 2015) and use graph link analysis to
guide the process. In total, 228K academic con-
cepts are identified from over five million English
Wikipedia entities.

During the tagging stage, both textual informa-
tion and graph structure are considered. The text
from Wikipedia articles and papers’ meta informa-
tion (e.g., titles, keywords, and abstracts) are used
as the concept’s and publication’s textual repre-
sentations respectively. Graph structural informa-
tion is leveraged by using text from a publication’s
neighboring nodes in MAG (its citations, refer-
ences, and publishing venue) as part of the pub-
lication’s representation with a discounting factor.
We limit the search space for each publication to a
constant range, reduce the complexity to O(N) for
scalability, where N is the number of publications.
Close to one billion concept-publication pairs are
established with associated confidence scores.

Together with the notion of subsump-
tion (Sanderson and Croft, 1999), this confidence
score is then used to construct a six-level directed
acyclic graph (DAG) hierarchy with over 200K
nodes and more than one million edges.

Our system is a deployed product with regular
data refreshment and algorithm improvement. Key
features of the system are summarized in Table 1.
The system is updated weekly or monthly to in-
clude fresh content on the Web. Various docu-
ment and language understanding techniques are
experimented with and incorporated to incremen-
tally improve the performance over time.

2 System Description

2.1 Concept Discovery

As top level disciplines are extremely important
and highly visible to system end users, we man-
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ually define 19 top level (“L0”) disciplines (such
as physics, medicine) and 294 second level (“L1”)
sub-domains (examples are machine learning, al-
gebra) by referencing existing classification3 and
get their correspondent Wikipedia entities in a
general in-house knowledge base (KB).

It is well understood that entity types in a gen-
eral KB are limited and far from complete. Enti-
ties labeled with FoS type in KB are in the lower
thousands and noisy for both in-house KB and
latest Freebase dump4. The goal is to identify
more FoS type entities from over 5 million English
Wikipedia entities in an in-house KB. We formu-
late this task as a knowledge base type prediction
problem, and focus on predicting only one specific
type—FoS.

In addition to the above-mentioned “L0” and
“L1” FoS, we manually review and identify over
2000 high-quality ones as initial seed FoS. We it-
erate a few rounds between a graph link analysis
step for candidate exploration and an entity type
based filtering and enrichment step for candidate
fine-tuning based on KB types.

Graph link analysis: To drive the process of
exploring new FoS candidates, we apply the in-
tuition that if the majority of an entity’s nearest
neighbours are FoS, then it is highly likely an FoS
as well. To calculate nearest neighbours, a dis-
tance measure between two Wikipedia entities is
required. We use an effective and low-cost ap-
proach based on Wikipedia link analysis to com-
pute the semantic closeness (Milne and Witten,
2008). We label a Wikipedia entity as an FoS can-
didate if there are more than K neighbours in its
top N nearest ones are in a current FoS set. Em-
pirically, N is set to 100 and K is in [35, 45] range
for best results.

Entity type based filtering and enrichment:
The candidate set generated in the above step con-
tains various types of entities, such as person,
event, protein, book topic, etc.5 Entities with
obvious invalid types are eliminated (e.g. per-
son) and entities with good types are further in-
cluded (e.g. protein, such that all Wikipedia enti-
ties which have labeled type as protein are added).

3http://science-metrix.com/en/
classification

4https://developers.google.com/
freebase/

5Entity types are obtained from the in-house KB, which
has higher type coverage compared with Freebase, details on
how the in-house KB produces entity types is out-of-scope
and not discussed in this paper.

The results of this step are used as the input for
graph link analysis in the next iteration.

More than 228K FoS have been identified with
this iterative approach, based on over 2000 initial
seed FoS.

2.2 Tagging Concepts to Publications
We formulate the concept tagging as a multi-label
classification problem; i.e. each publication could
be tagged with multiple FoS as appropriate. In a
naive approach, the complexity could reach M ·N
to exhaust all possible pairs, where M is 200K+
for FoS and N is close to 200M for publications.
Such a naive solution is computationally expen-
sive and wasteful, since most scientific publica-
tions cover no more than 20 FoS based on empiri-
cal observation.

We apply heuristics to cut candidate pairs ag-
gressively to address the scalability challenge, to
a level of 300–400 FoS per publication6. Graph
structural information is incorporated in addition
to textual information to improve the accuracy and
coverage when limited or inadequate text of a con-
cept or publication is accessible.

We first define simple representing text (or SRT)
and extended representing text (or ERT). SRT is
the text used to describe the academic entity it-
self. ERT is the extension of SRT and leverages
the graph structural information to include textual
information from its neighbouring nodes in MAG.

A publishing venue’s full name (i.e. the jour-
nal name or the conference name) is its SRT. The
first paragraph of a concept’s Wikipedia article is
used as its SRT. Textual meta data, such as title,
keywords, and abstract is a publication’s SRT.

We sample a subset of publications from a given
venue and concatenate their SRT. This is used as
this venue’s ERT. For broad disciplines or do-
mains (e.g. L0 and L1 FoS), Wikipedia text be-
comes too vague and general to best represent its
academic meanings. We manually curate such
concept-venue pairs and aggregate ERT of venues
associated with a given concept to obtain the ERT
for the concept. For example, SRT of a subset of
papers from ACL are used to construct ERT for
ACL, and subsequently be part of the ERT for nat-
ural language processing concept. A publication’s
ERT includes SRT from its citations, references
and ERT of its linked publishing venue.

6We include all L0s and L1s and FoS entities spotted in
a publication’s extended representing text, which is defined
later in this section
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We use hps and hpe to denote the representation
of a publication (p)’s SRT and ERT, hvs and hve for
a venue (v)’s SRT and ERT. Weight w is used to
discount different neighbours’ impact as appropri-
ate. Equation 1 and 2 formally define publication
ERT and venue ERT calculation.

hpe = hps +
∑

i∈Cit

wih
p
s(i)+

∑

j∈Ref

wjh
p
s(j)+wvh

v
e

(1)

hve =
∑

i∈V
hps(i) + hvs (2)

Four types of features are extracted from the
text: bag-of-words (BoW), bag-of-entities (BoE),
embedding-of-words (EoW), and embedding-of-
entities (EoE). These features are concatenated for
the vector representation h used in Equation 1 and
2. The confidence score of a concept-publication
pair is the cosine similarity between these vector
representations.

We pre-train the word embeddings by us-
ing the skip-gram (Mikolov et al., 2013) on
the academic corpus, with 13B words based on
130M titles and 80M abstracts from English sci-
entific publications. The resulting model con-
tains 250-dimensional vectors for 2 million words
and phrases. We compare our model with pre-
trained embeddings based on general text (such as
Google News7 and Wikipedia8) and observe that
the model trained from academic corpus performs
better with higher accuracy on the concept-tagging
task with more than 10% margin.

Conceptually, the calculation of publication and
venue’s ERT is to leverage neighbours’ informa-
tion to represent itself. The MAG contains hun-
dreds of millions of nodes with billions of edges,
hence it is computationally prohibitive by optimiz-
ing the node latent vector and weights simultane-
ously. Therefore, in Equation 1 and 2, we initial-
ize hps and hvs based on textual feature vectors de-
fined above and adopt empirical weight values to
directly compute hpe and hve to make it scalable.

After calculating the similarity for about 50 bil-
lion pairs, close to 1 billion are finally picked
based on the threshold set by the confidence score.

7https://code.google.com/archive/p/
word2vec/

8https://fasttext.cc/docs/en/
pretrained-vectors.html

Figure 2: Extended subsumption for hierarchy
generation.

2.3 Concept Hierarchy Building
In this subsection, we describe how to build a con-
cept hierarchy based on concept-document tag-
ging results. We extend Sanderson and Croft’s
early work (1999) which uses the notion of
subsumption—a form of co-occurrence—to asso-
ciate related terms. We say term x subsumes y if
y occurs only in a subset of the documents that x
occurs in. In the hierarchy, x is the parent of y.
In reality, it is hard for y to be a strict subset of x.
Sanderson and Croft’s work relaxed the subsump-
tion to 80% (e.g. P (x|y) ≥ 0.8, P (y|x) < 1).

In our work, we extend the concept co-
occurrence calculation weighted with the concept-
document pair’s confidence score from previous
step. More formally, we define a weighted rela-
tive coverage score between two concepts i and j
as below and illustrate in Figure 2.

RC(i, j) =

∑
k∈(I∩J)wi,k∑

k∈I wi,k
−

∑
k∈(I∩J)wj,k∑

k∈J wj,k
(3)

Set I and J are documents tagged with concepts
i and j respectively. I ∩J is the overlapping set of
documents that are tagged with both i and j. wi,k

denotes the confidence score (or weights) between
concept i and document k, which is the final con-
fidence score in the previous concept-publication
tagging stage. When RC(i, j) is greater than a
given positive threshold9, i is the child of j. Since

9It is usually in [0.2, 0.5] based on empirical observation.
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Figure 3: Deployed system homepage at March
2018, with all six types of entities statistics: over
228K fields-of-study.

this approach does not enforce single parent for
any FoS, it results in a directed acyclic graph
(DAG) hierarchy.

With the proposed model, we construct a six
level FoS hierarchy (from L0 and L5) on over
200K concepts with more than 1M parent-child
pairs. Due to the high visibility, high impact and
small size, the hierarchical relationships between
L0 and L1 are manually inspected and adjusted if
necessary. The remaining L2 to L5 hierarchical
structures are produced completely automatically
by the extended subsumption model.

One limitation of subsumption-based models is
the intransitiveness of parent-child relationships.
This model also lacks a type-consistency check
between parents and children. More discussions
on such limitations with examples will be in eval-
uation section 3.2.

3 Deployment and Evaluation

3.1 Deployment

The work described in this paper has been de-
ployed in the production system of Microsoft Aca-
demic Service10. Figure 3 shows the website
homepage with entity statistics. The contents of
MAG, including the full list of FoS, FoS hierarchy
structure, and FoS tagging to papers, are accessi-
ble via API, website, and full graph dump from
Open Academic Society11.

Figure 4 shows the example for word2vec con-
cept. Concept definition with linked Wikipedia
page, its immediate parents (machine learning,
artificial intelligence, natural language process-
ing) in the hierarchical structure and its related

10https://academic.microsoft.com/
11https://www.openacademic.ai/oag/

Step Accuracy
1. Concept discovery 94.75%
2. Concept tagging 81.20%
3. Build hierarchy 78.00%

Table 2: Accuracy results for each step.

concepts12 (word embedding, artificial neural net-
work, deep learning, etc.) are shown on the
right rail pane. Top tagged publications (without
word2vec explicitly stated in their text) are recog-
nized via graph structure information based on ci-
tation relationship.

3.2 Evaluation

For this deployed system, we evaluate the accu-
racy on three steps (concept discovery, concept
tagging, and hierarchy building) separately.

For each step, 500 data points are randomly
sampled and divided into five groups with 100 data
points each. On concept discovery, a data point
is an FoS; on concept tagging, a data point is a
concept-publication pair; and on hierarchy build-
ing, a data point is a parent-child pair between two
concepts. For the first two steps, each 100-data-
points group is assigned to one human judge. The
concept hierarchy results are by nature more con-
troversial and prone to individual subjective bias,
hence we assign each group of data to three judges
and use majority voting to decide final results.

The accuracy is calculated by counting positive
labels in each 100-data-points group and averag-
ing over 5 groups for each step. The overall accu-
racy is shown in Table 2 and some sampled hierar-
chical results are listed in Table 3.

Most hierarchy dissatisfaction is due to the in-
transitiveness and type-inconsistent limitations of
the subsumption model. For example, most pub-
lications that discuss the polycystic kidney disease
also mention kidney; however, for all publications
that mentioned kidney, only a small subset would
mention polycystic kidney disease. According to
the subsumption model, polycystic kidney disease
is the child of kidney. It is not legitimate for a dis-
ease as the child of an organ. Leveraging the en-
tity type information to fine-tune hierarchy results
is in our plan to improve the quality.

12Details about how to generate related entities are out-of-
scope and not included in this paper.
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Figure 4: Word2vec example, with its parent FoS, related FoS and top tagged publications.

L5 L4 L3 L2 L1 L0
Convolutional Deep Deep belief Deep Artificial Machine Computer

Belief Networks network learning neural network learning Science
(Methionine synthase) Methionine Amino Biochemistry / Chemistry /

reductase synthase Methionine acid Molecular biology Biology
(glycogen-synthase-D) Phosphorylase Glycogen

phosphatase kinase synthase Glycogen Biochemistry Chemistry
Fréchet Generalized extreme Extreme

distribution value distribution value theory Statistics Mathematics
Hermite’s Hermite Spline Mathematical
problem spline interpolation Interpolation analysis Mathematics

Table 3: Sample results for FoS hierarchy.

4 Conclusion

In this work, we demonstrated a Web-scale pro-
duction system that enables an easy exploration of
scientific knowledge. We designed a system with
three modules: concept discovery, concept tagging
to publications, and concept hierarchy construc-
tion. The system is able to cover latest scientific
knowledge from the Web and allows fast iterations
on new algorithms for document and language un-
derstanding.

The system shown in this paper builds the
largest cross-domain scientific concept ontology
published to date, and it is one of the core
components in the construction of the Microsoft
Academic Graph, which is a publicly available
academic knowledge graph—a data asset with
tremendous value that can be used for many tasks
in domains like data mining, natural language un-
derstanding, science of science, and network sci-
ence.
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Abstract

ScoutBot is a dialogue interface to phys-
ical and simulated robots that supports
collaborative exploration of environments.
The demonstration will allow users to is-
sue unconstrained spoken language com-
mands to ScoutBot. ScoutBot will prompt
for clarification if the user’s instruction
needs additional input. It is trained
on human-robot dialogue collected from
Wizard-of-Oz experiments, where robot
responses were initiated by a human wiz-
ard in previous interactions. The demon-
stration will show a simulated ground
robot (Clearpath Jackal) in a simulated en-
vironment supported by ROS (Robot Op-
erating System).

1 Introduction

We are engaged in a long-term project to create
an intelligent, autonomous robot that can collab-
orate with people in remote locations to explore
the robot’s surroundings. The robot’s capabili-
ties will enable it to effectively use language and
other modalities in a natural manner for dialogue
with a human teammate. This demo highlights the
current stage of the project: a data-driven, auto-
mated system, ScoutBot, that can control a simu-
lated robot with verbally issued, natural language
instructions within a simulated environment, and
can communicate in a manner similar to the in-
teractions observed in prior Wizard-of-Oz experi-
ments. We used a Clearpath Jackal robot (shown
in Figure 1a), a small, four-wheeled unmanned
ground vehicle with an onboard CPU and iner-
tial measurement unit, equipped with a camera and
light detection and ranging (LIDAR) mapping that

∗Contributions were primarily performed during an in-
ternship at the Institute for Creative Technologies.

readily allows for automation. The robot’s task is
to navigate through an urban environment (e.g.,
rooms in an apartment or an alleyway between
apartments), and communicate discoveries to a hu-
man collaborator (the Commander). The Com-
mander verbally provides instructions and guid-
ance for the robot to navigate the space.

The reasons for an intelligent robot collabora-
tor, rather than one teleoperated by a human, are
twofold. First, the human resources needed for
completely controlling every aspect of robot mo-
tion (including low-level path-planning and nav-
igation) may not be available. Natural language
allows for high-level tasking, specifying a desired
plan or end-point, such that the robot can figure
out the details of how to execute these natural lan-
guage commands in the given context and report
back to the human as appropriate, requiring less
time and cognitive load on humans. Second, the
interaction should be robust to low-bandwidth and
unreliable communication situations (common in
disaster relief and search-and-rescue scenarios),
where it may be impossible or impractical to ex-
ercise real-time control or see full video streams.
Natural language interaction coupled with low-
bandwidth, multimodal updates addresses both
of these issues and provides less need for high-
bandwidth, reliable communication and full atten-
tion of a human controller.

We have planned the research for developing
ScoutBot as consisting of five conceptual phases,
each culminating in an experiment to validate the
approach and collect evaluation data to inform
the development of the subsequent phase. These
phases are:

1. Typed wizard interaction in real-world environment
2. Structured wizard interaction in real environment
3. Structured wizard interaction in simulated environment
4. Automated interaction in simulated environment
5. Automated interaction in real environment
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(a) Real-World Jackal (b) Simulated Jackal

Figure 1: Jackal Robot

The first two phases are described in Marge
et al. (2016) and Bonial et al. (2017), respec-
tively. Both consist of Wizard-of-Oz settings in
which participants believe that they are interact-
ing with an autonomous robot, a common tool in
Human-Robot Interaction for supporting not-yet
fully realized algorithms (Riek, 2012). In our two-
wizard design, one wizard (the Dialogue Man-
ager or DM-Wizard) handles the communication
aspects, while another (the Robot Navigator or
RN-Wizard) handles robot navigation. The DM-
Wizard acts as an interpreter between the Com-
mander and robot, passing simple and full instruc-
tions to the RN-Wizard for execution based on the
Commander instruction (e.g., the Commander in-
struction, Now go and make a right um 45 degrees
is passed to the RN-Wizard for execution as, Turn
right 45 degrees). In turn, the DM-Wizard informs
the Commander of instructions the RN-Wizard
successfully executes or of problems that arise
during execution. Unclear instructions from the
Commander are clarified through dialogue with
the DM-Wizard (e.g., How far should I turn?).
Additional discussion between Commander and
DM-Wizard is allowed at any time. Note that be-
cause of the aforementioned bandwidth and relia-
bility issues, it is not feasible for the robot to start
turning or moving and wait for the Commander to
tell it when to stop - this may cause the robot to
move too far, which could be dangerous in some
circumstances and confusing in others. In the first
phase, the DM-Wizard uses unconstrained texting
to send messages to both the Commander and RN-
Wizard. In the second phase, the DM-Wizard
uses a click-button interface that facilitates faster
messaging. The set of DM-Wizard messages in
this phase were constrained based on the messages
from the first phase.

This demo introduces ScoutBot automation of
the robot to be used in the upcoming phases: a
simulated robot and simulated environment to sup-
port the third and fourth project phases, and initial
automation of DM and RN roles, to be used in the

fourth and fifth phases. Simulation and automa-
tion were based on analyses from data collected in
the first two phases. Together, the simulated envi-
ronment and robot allow us to test the automated
system in a safe environment, where people, the
physical robot, and the real-world environment are
not at risk due to communication or navigation er-
rors.

2 System Capabilities

ScoutBot engages in collaborative exploration di-
alogues with a human Commander, and controls a
robot to execute instructions and navigate through
and observe an environment. The real-world
Jackal robot measures 20in x 17in x 10in, and
weights about 37lbs (pictured in Figure 1a). Both
it and its simulated counterpart (as seen in Fig-
ure 1b) can drive around the environment, but can-
not manipulate objects or otherwise interact with
the environment. While navigating, the robot uses
LIDAR to construct a map of its surroundings as
well as to indicate its position in the map. The
Commander is shown this information, as well as
static photographs of the robot’s frontal view in the
environment (per request) and dialogue responses
in a text interface.

Interactions with ScoutBot are collaborative in
that ScoutBot and the Commander exchange in-
formation through dialogue. Commanders issue
spoken navigation commands to the robot, request
photos, or ask questions about its knowledge and
perception. ScoutBot responds to indicate when
commands are actionable, and gives status feed-
back on its processing, action, or inability to act.
When ScoutBot accepts a command, it is carried
out in the world.

Figure 2 shows a dialogue between a Comman-
der and ScoutBot. The right two columns show
how the Commander’s language was interpreted,
and the action the robot takes. In this dialogue, the
Commander begins by issuing a single instruction,
Move forward (utterance #1), but the end-point is
underspecified, so ScoutBot responds by request-
ing additional information (#2). The Commander
supplies the information in #3, and the utterance
is understood as an instruction to move forward 3
feet. ScoutBot provides feedback to the Comman-
der as the action is begins (#4) and upon comple-
tion (#5). Another successful action is executed in
#6-8. Finally, the Commander’s request to know
what the robot sees in #9 is interpreted as a re-
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Move forward

You can tell me to move a 
certain distance or to move 

to an object.

1.

2. 

3. move forward 3 feet Go forward 3 feet

Moving… 4. (starts moving)

Done. 5. (stops moving)

6. turn right 45 degreesPivot right about 45 degrees

Turning… 7. (starts turning)

Done. 8. (stops turning)

9. send image (takes and sends image)What do you see?

Commander ScoutBot Interpreted Action Robot Action

Figure 2: Dialogue between a Commander and ScoutBot

quest for a picture from the robot’s camera, which
is taken and sent to the Commander.

ScoutBot accepts unconstrained spoken lan-
guage, and uses a statistical text classifier trained
on annotated data from the first two phases of
the project for interpreting Commander instruc-
tions. Dialogue management policies are used to
generate messages to both the Commander and
interpreted actions for automated robot naviga-
tion. Our initial dialogue management policies are
fairly simple, yet are able to handle a wide range
of phenomena seen in our domain.

3 System Overview

ScoutBot consists of several software systems,
running on multiple machines and operating sys-
tems, using two distributed agent platforms. The
architecture utilized in simulation is shown in Fig-
ure 3. A parallel architecture exists for a real-
world robot and environment. Components pri-
marily involving language processing use parts
of the Virtual Human (VH) architecture (Hartholt
et al., 2013), and communicate using the Virtual
Human Messaging (VHMSG), a thin layer on top
of the publicly available ActiveMQ message pro-
tocol1. Components primarily involving the real
or simulated world, robot locomotion, and sens-
ing are embedded in ROS2. To allow the VHMSG
and ROS modules to interact with each other, we
created ros2vhmsg, software that bridges the two
messaging architectures. The components are de-
scribed in the remainder of this section.

The system includes several distinct worksta-

1http://activemq.apache.org
2http://www.ros.org

VHMSG

ROS
GazeboSim

Push-to-Talk 
Microphone

Google 
Chrome 
Client

NPCEditor

Google ASR

Automated 
Robot 

Navigator

Jackal 
Simulator

Environment 
Simulator

Commander 
Display

Map & Pose
Photo

Utterances

ros2vhmsg Bridge

Figure 3: ScoutBot architecture interfacing with
a simulated robot and environment: Solid arrows
represent communications over a local network;
dashed arrows indicate connections with external
resources. Messaging for the spoken language in-
terface is handled via VHMSG, while robot mes-
sages are facilitated by ROS. A messaging bridge,
ros2vhmsg, connects the components.

tion displays for human participants. The Com-
mander display is the view of the collaborative
partner for the robot (lower left corner of Fig-
ure 3). This display shows a map of the robot’s lo-
cal surroundings, the most recent photo the robot
has sent, and a chat log showing text utterances
from the robot. The map is augmented as new
areas are explored, and updated according to the
robot’s position and orientation. There are also
displays for experimenters to monitor (and in the
case of Wizards-of-Oz, engage in) the interaction.
These displays show real-time video updates of
what the robot can see, as well as internal com-
munication and navigation aids.
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3.1 VHMSG Components

VHMSG includes several protocols that imple-
ment parts of the Virtual Human architecture. We
use the protocols for speech recognition, as well as
component monitoring and logging. The NPCEd-
itor and other components that use these proto-
cols are available as part of the ICT Virtual Hu-
man Toolkit (Hartholt et al., 2013). These proto-
cols have also been used in systems, as reported by
Hill et al. (2003) and Traum et al. (2012, 2015).
In particular, we used the adaptation of Google’s
Automated Speech Recognition (ASR) API used
in Traum et al. (2015). The NPCEditor (Leuski
and Traum, 2011) was used for Natural Language
Understanding (NLU) and dialogue management.
The new ros2vhmsg component for bridging the
messages was used to send instructions from the
NPCEditor to the automated RN.

3.1.1 NPCEditor

We implemented NLU using the statistical text
classifier included in the NPCEditor. The classi-
fier learns a mapping from inputs to outputs from
training data using cross-language retrieval mod-
els (Leuski and Traum, 2011). The dialogues
collected from our first two experimental phases
served as training data, and consisted of 1,500
pairs of Commander (user) utterances and the
DM-Wizard’s responses. While this approach lim-
its responses to the set that were seen in the train-
ing data, in practice it works well in our domain,
achieving accuracy on a held out test set of 86%.
The system is particularly effective at translat-
ing actionable commands to the RN for execu-
tion (e.g., Take a picture). It is robust at handling
commands that include pauses, fillers, and other
disfluent features (e.g., Uh move um 10 feet). It
can also handle simple metric-based motion com-
mands (e.g., Turn right 45 degrees, Move forward
10 feet) as well as action sequences (e.g., Turn 180
degrees and take a picture every 45). The system
can interpret some landmark-based instructions re-
quiring knowledge of the environment (e.g., Go to
the orange cone), but the automated RN compo-
nent does not yet have the capability to generate
the low-level, landmark-based instructions for the
robot.

Although the NPCEditor supports simultane-
ous participation in multiple conversations, exten-
sions were needed for ScoutBot to support multi-
floor interaction (Traum et al., 2018), in which

two conversations are linked together. Rather than
just responding to input in a single conversation,
the DM-Wizard in our first project phases often
translates input from one conversational floor to
another (e.g., from the Commander to the RN-
Wizard, or visa versa), or responds to input with
messages to both the Commander and the RN.
These responses need to be consistent (e.g. trans-
lating a command to the RN should be accom-
panied by positive feedback to the Commander,
while a clarification to the commander should not
include an RN action command). Using the di-
alogue relation annotations described in Traum
et al. (2018), we trained a hybrid classifier, includ-
ing translations to RN if they existed, and negative
feedback to the Commander where they did not.
We also created a new dialogue manager policy
that would accompany RN commands with appro-
priate positive feedback to the commander, e.g.,
response of “Moving..” vs “Turning...” as seen in
#4 and #7 in Figure 2.

3.1.2 ros2vhmsg

ros2vhmsg is a macOS application to bridge the
VHMSG and ROS components of ScoutBot. It
can be run from a command line or using a graph-
ical user interface that simplifies the configura-
tion of the application. Both VHMSG and ROS
are publisher-subscriber architectures with a cen-
tral broker software. Each component connects to
the broker. They publish messages by delivering
them to the broker and receive messages by telling
the broker which messages they want to receive.
When the broker receives a relevant message, it is
delivered to the subscribers.

ros2vhmsg registers itself as a client for both
VHMSG and ROS brokers, translating and reissu-
ing the messages. For example, when ros2vhmsg
receives a message from the ROS broker, it con-
verts the message into a compatible VHMSG for-
mat and publishes it with the VHMSG broker.
Within ros2vhmsg, the message names to translate
along with the corresponding ROS message types
must be specified. Currently, the application sup-
ports translation for messages carrying either text
or robot navigation commands. The application is
flexible and easily extendable with additional mes-
sage conversion rules. ros2vhmsg annotates its
messages with a special metadata symbol and uses
that information to avoid processing messages that
it already published.
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Figure 4: Real-world and simulated instances of
the same environment.

3.2 ROS Components

ROS provides backend support for robots to oper-
ate in both real-world and simulated environments.
Here, we describe our simulated testbed and auto-
mated navigation components. Developing auto-
mated components in simulation allows for a safe
test space before software is transitioned to the
real-world on a physical robot.

3.2.1 Environment Simulator
Running operations under ROS makes the tran-
sition between real-world and simulated testing
straightforward. Gazebo3 is a software package
compatible with ROS for rendering high-fidelity
virtual simulations, and supports communications
in the same manner as one would in real-world en-
vironments. Simulated environments were mod-
eled in Gazebo after their real-world counterparts
as shown in Figure 4. Replication took into con-
sideration the general dimensions of the physical
space, and the location and size of objects that
populate the space. Matching the realism and fi-
delity of the real-world environment in simulation
comes with a rendering trade-off: objects requir-
ing a higher polygon count due to their natural ge-
ometries results in slower rendering in Gazebo and
a lag when the robot moves in the simulation. As a
partial solution, objects were constructed starting
from their basic geometric representations, which
could be optimized accordingly, e.g., the illusion
of depth was added with detailed textures or shad-
ing on flat-surfaced objects. Environments ren-
dered in Gazebo undergo a complex workflow to
support the aforementioned requirements. Objects
and their vertices are placed in an environment,
and properties about collisions and gravity are en-
coded in the simulated environment.

3.2.2 Jackal Simulator
Clearpath provides a ROS package with a simu-
lated model of the Jackal robot (Figure 1b) and

3http://gazebosim.org/

customizable features to create different simu-
lated configurations. We configured our simulated
Jackal to have the default inertial measurement
unit, a generic camera, and a Hokuyo LIDAR laser
scanner.

As the simulated Jackal navigates through the
Gazebo environment, data from the sensors is re-
layed to the workstation views through rviz4, a vi-
sualization tool included with ROS that reads and
displays sensor data in real-time. Developers can
select the data to display by adding a panel, se-
lecting the data type, and then selecting the spe-
cific ROS data stream. Both physical and simu-
lated robot sensors are supported by the same rviz
configuration, since rviz only processes the data
sent from these sensors; this means that an rviz
configuration created for data from a simulated
robot will also work for a physical robot if the data
stream types remain the same.

3.2.3 Automated Robot Navigator

Automated robot navigation is implemented with a
python script and the ROSPY package5. The script
runs on a ROS-enabled machine running the sim-
ulation. The script subscribes to messages from
NPCEditor, which are routed through ros2vhmsg.
These messages contain text output from the NLU
classifier that issue instructions to the robot based
on the user’s unconstrained speech.

A mapping of pre-defined instructions was cre-
ated, with keys matching the strings passed from
NPCEditor via ros2vhmsg (e.g., Turn left 90 de-
grees). For movement, the map values are a ROS
TWIST message that specifies the linear motion
and angular rotation payload for navigation. These
TWIST messages are the only way to manipulate
the robot; measures in units of feet and degrees
cannot be directly translated. The mapping is
straightforward to define for metric instructions.
Included is basic coverage of moving forward or
backward between 1 and 10 feet, and turning right
and left 45, 90, 180, or 360 degrees. Pictures from
the robot’s simulated camera can be requested by
sending a ROS IMAGE message. The current map-
ping does not yet support collision avoidance or
landmark-based instructions that require knowl-
edge of the surrounding environment (e.g., Go to
the nearby chair).

4http://wiki.ros.org/rviz
5http://wiki.ros.org/rospy
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4 Demo Summary

In the demo, visitors will see the simulated robot
dynamically move in the simulated environment,
guided by natural language interaction. Visitors
will be able to speak instructions to the robot
to move in the environment. Commands can be
given in metric terms (e.g., #3 and #6 in Figure 2),
and images requested (e.g., #9). Undecipherable
or incomplete instructions will result in clarifica-
tion subdialogues rather than robot motion (e.g.,
#1). A variety of command formulations can be
accommodated by the NLU classifier based on
the training data from our experiments. Visual-
izations of different components can be seen in:
http://people.ict.usc.edu/˜traum/
Movies/scoutbot-acl2018demo.wmv.

5 Summary and Future Work

ScoutBot serves as a research platform to support
experimentation. ScoutBot components will be
used in our upcoming third through fifth develop-
ment phases. We are currently piloting phase 3
using ScoutBot’s simulated environment, with hu-
man wizards. Meanwhile, we are extending the
automated dialogue and navigation capabilities.

This navigation task holds potential for collab-
oration policies to be studied, such as the amount
and type of feedback given, how to negotiate to
successful outcomes when an initial request was
underspecified or impossible to carry out, and the
impact of miscommunication. More sophisticated
NLU methodologies can be tested, including those
that recognize specific slots and values or more de-
tailed semantics of spatial language descriptions.
The use of context, particularly references to rel-
ative landmarks, can be tested by either using
the assumed context as part of the input to the
NLU classifier, transforming the input before clas-
sifying, or deferring the resolution and requiring
the action interpreter to handle situated context-
dependent instructions (Kruijff et al., 2007).

Some components of the ScoutBot architecture
may be substituted for different needs, such as dif-
ferent physical or simulated environments, robots,
or tasks. Training new DM and RN components
can make use of this general architecture, and the
resulting components aligned back with ScoutBot.
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Abstract

The open-source SUMMA Platform is a
highly scalable distributed architecture for
monitoring a large number of media broad-
casts in parallel, with a lag behind actual
broadcast time of at most a few minutes.

The Platform offers a fully automated me-
dia ingestion pipeline capable of recording
live broadcasts, detection and transcrip-
tion of spoken content, translation of all
text (original or transcribed) into English,
recognition and linking of Named Enti-
ties, topic detection, clustering and cross-
lingual multi-document summarization of
related media items, and last but not least,
extraction and storage of factual claims in
these news items. Browser-based graphical
user interfaces provide humans with aggre-
gated information as well as structured ac-
cess to individual news items stored in the
Platform’s database.

This paper describes the intended use cases
and provides an overview over the system’s
implementation.

1 Introduction

SUMMA (“Scalable Understanding of Multilingual
Media”) is an EU-funded Research and Innova-
tion Action that aims to assemble state-of-the-art
NLP technologies into a functional media process-
ing pipeline to support large news organizations in
their daily work. The project consortium consists
of the University of Edinburgh, the Lativan Infor-
mation Agency (LETA), Idiap Research Institute,
Priberam Labs, Qatar Computing Research Insti-
tute, University College London, and Sheffield Uni-
versity as technical partners, and BBC Monitoring
and Deutsche Welle as use case partners.

1.1 Use Cases

Three use cases drive the technology integration
efforts.

1.1.1 External Media Monitoring
BBC Monitoring1 is a business unit within the
British Broadcasting Corporation (BBC). In op-
eration since 1939 and with a staff of currently ca.
300 regional expert journalists, it provides media
monitoring and analysis services to the BBC’s own
news rooms, the British government, and other
subscribers.
Each staff journalist monitors up to four live

broadcasts in parallel, plus several other informa-
tion sources such as social media feeds. Assuming
work distributed around the clock in three shifts,2
BBC Monitoring currently has, on average, the ca-
pacity to actively monitor about 400 live broad-
casts at any given time. At the same time, it has
access to over 1,500 TV stations and ca. 1,350 ra-
dio stations world-wide via broadcast reception, as
well as a myriad of information sources on the in-
ternet. The main limiting factor in maintaining
(or even extending) monitoring coverage is the cost
and availability of the staff required to do so.
Continuous live monitoring of broadcast chan-

nels by humans is not the most effective use of their
time. Entertainment programming such as movies
and sitcoms, commercial breaks, and repetitions of
content (e.g., on 24/7 news channels), for example,
are of limited interest to monitoring operations.
What is of interest are emerging stories, new devel-
opments, and shifts in reporting. By automatically
recording, monitoring, and indexing media content
from a large number of media streams, and storing
it in a database within a very short period of time
after it has been published, the Platform allows an-
alysts to focus on media content that is most rel-
evant to their work and alleviates them from the
tedious task of just monitoring broadcast streams
in search of such relevant content.

1.1.2 Internal Monitoring
Deutsche Welle,3 headquartered in Germany, is an
international public broadcaster covering world-

1 https://monitoring.bbc.co.uk/
2 Actual staff allocation and thus the amount of media

monitoring may vary over the course of the day.
3 http://www.dw.com
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Figure 1: Overview of the SUMMA architecture.

wide news in 30 different languages. Regional news
rooms produce and broadcast content indepen-
dently; journalistic and programming decisions are
not made by a central authority within Deutsche
Welle. This means that it is difficult for the organi-
zation at large, from regional managers in charge of
several news rooms to top management, to main-
tain an accurate and up-to-date overview of what
is being broadcast, what stories have been covered,
and where there is potential for synergies, for ex-
ample by using journalistic background work that
was performed for one story to produce similar con-
tent for a different audience in a different broadcast
region and language.
The SUMMA Platform’s cross-lingual story clus-

tering and summarization module with the corre-
sponding online visualization tool addresses this
need. It provides an aggregate view of recent cap-
tured broadcasts, with easy access to individual
broadcast segments in each cluster.

1.1.3 Data Journalism
The third use case is the use of the platform (or
more specifically, it’s database API) by journalists
and researchers (e.g., political scientists) who want
to perform data analyses based on large amounts
of news reports. Potential uses are the plotting of
events or time series of events on maps, analysis of
bias or political slant in news reporting, etc. This
use case is the most open-ended and, unlike the
other two, has not been a major driving force in the
actual design and implementation of the Platform
so far.

2 System Architecture

2.1 Design

Figure 1 shows a schematic overview over the
Platform’s workflow. The Platform comprises
three major parts: a data ingestion pipeline build
mostly upon existing state-of-the-art NLP technol-
ogy; a web-based user front-end specifically devel-
oped with the intended use cases in mind, and a
database at the center that is continuously updated
by the data ingestion pipeline and accessed by end
users through the web-based GUI, or through a
REST API by downstream applications.

Services within the Platform — technical such
as the database server or the message queue, and
services performing natural language processing
tasks — run independently in individual Docker4
application containers. This encapsulation allows
for mostly independent development of the com-
ponents by the consortium partners responsible for
them.
Each NLP service augments incoming media

items (represented as json structures) with addi-
tional information: automatic speech recognition
(ASR) services add transcriptions, machine trans-
lation (MT) engines add translations, and so forth.
The flow of information within the Platform is

realized via a message queues5. Each type of task
(e.g., speech recognition in a specific language, ma-
chine translation from a specific language into En-
glish, etc.) has a queue for pending tasks and
another queue for completed tasks; task workers
pop a message off the input queue, acknowledge it
upon successful completion, and push the output
of the completed task onto the output queue. A
task scheduler (the only component that needs to
“know” about the overall structure of the process-
ing pipeline) orchestrates the communication.
The use of a message queues allows for easy scal-

ability of the Platform — if we need more through-
put, we add more workers, which all share the same
queues.
The central database for orchestration of media

item processing is an instance of RethinkDB,6 a
document-oriented database that allows clients to
subscribe to a continuous stream of notifications
about changes in the database. Each document
consists of several fields, such as the URL of the
original news item, a transcript for audio sources,
or the original text, a translation into English if
applicable, entities such as persons, organisations
or locations mentioned in the news items, etc.
For the user-facing front end, we use an in-

stance of PostgreSQL7 that pulls in new arrivals
periodically from the RethinkDB. The PostgreSQL
database was not part of the original platform de-
sign. It was introduced out out of performance con-
cerns, when we noticed at at some point that Re-
thinkDB’s reponsiveness was deteriorating rapidly
as the database grew. We ultimately determined
that this was due to an error in our set-up of the
database — we had failed to set up indexing for
certain fields in the database, resulting in linear
searches through the database that grew longer
and longer as the number of items in the database
increased. However, we did not realise this until af-
ter we had migrated the user front-ends to interact

4 www.docker.com
5 www.rabbitmq.com
6 www.rethinkdb.com
7 www.postgresql.org
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with a PostgreSQL database. The Platform also
provides an export mechanism into ElasticSearch8

databases.
The web-based graphical user front-end was de-

veloped specifically for SUMMA, based on wire-
frame designs from our use case partners. It is im-
plemented in the Aurelia JavaScript Client Frame-
work9.
In the following section, we briefly present the in-

dividual components of the data ingestion pipeline.

3 Data Ingestion Pipeline
Components

3.1 Live Stream Recorder and Chunker
The recorder and chunker monitors one or more
live streams via their respective URLs. Broad-
cast signals received via satellite are converted into
transport streams suitable for streaming via the in-
ternet and provided via a web interface. All data
received by the Recorder is recorded to disk und
chunked into 5-minutes segments for further pro-
cessing. Within the Platform infrastructure, the
recorder and chunker also serves as the internal
video server for recorded transitory material.
Once downloaded and chunked, a document stub

with the internal video URL is entered into the
database, which then schedules them for down-
stream processing.
Video and audio files that are not transitory but

provided by the original sources in more persistent
forms (i.e., served from a permanent location), are
currently not recorded but retrieved from the orig-
inal source when needed.

3.2 Other Data Feeds
Text-based data is retrieved by data feed modules
that poll the providing source at regular intervals
for new data. The data is downloaded and entered
into the database, which then schedules the new
arrivals for downstream processing.
In addition to a generic RSS feed monitor, we

use custom data monitors that are tailored to spe-
cific data sources, e.g. the specific APIs that
broadcaster-specific news apps use for updates.
The main task of these specialized modules is to
map between data fields of the source API’s spe-
cific (json) response and the data fields used within
the Platform.

3.3 Automatic Speech Recognition
The ASR modules within the Platform are built on
top of CloudASR (Klejch et al., 2015); the underly-
ing speech recognition models are trained with the
Kaldi toolkit (Povey et al., 2011). Punctuation is
added using a neural MT engine that was trained

8 www.elastic.co
9 aurelia.io

to translate from un-punctuated text to punctua-
tion. The training data for the punctuation module
is created by stripping punctuation from an exist-
ing corpus of news texts. The MT engine used
for punctuation insertion uses the same software
components as the MT engines used for language
translation. Currently, the Platform supports ASR
of English, German, Arabic, Russian, Spanish, and
Latvian; systems for Farsi, Portuguese and Ukra-
nian are planned.

3.4 Machine Translation
The machine translation engines for language
translation use the Marian decoder (Junczys-
Dowmunt et al., 2016) for translation, with neu-
ral models trained with the Nematus toolkit (Sen-
nrich et al., 2017). In the near future, we plan to
switch to Marian entirely for training and trans-
lation. Currently supported translation directions
are from German, Arabic, Russian, Spanish, and
Latvian into English. Systems for translation from
Farsi, Portuguese and Ukranian into English are
planned.

3.5 Topic Classification
The topic classifier uses a hierarchical attention
model for document classification (Yang et al.,
2016) trained on nearly 600K manually annotated
documents in 8 languages.10

3.6 Storyline Clustering and Cluster
Summarization

Incoming stories are clustered into storylines with
the online clustering algorithm by Aggarwal and
Yu (2006). The resulting storylines are summa-
rized with the extractive summarization algorithm
by Almeida and Martins (2013).

3.7 Named Entity Recognition and
Linking

For Named Entity Recognition, we use TurboEnti-
tyRecognizer, a component within TurboParser11
(Martins et al., 2009). Recognized entities and re-
lations between them (or propositions about them)
are linked to a knowledge base of facts using AMR
techniques developed by Paikens et al. (2016).

3.8 Trained systems and their
performance

Space contraints prevent us from discussing the
NLP components in more detail here. Detailed in-
formation about the various components can be
found in the project deliverables 3.1, 4.1, and 5.1,

10 The Platform currently is designed to handle 9 lan-
guages: English, Arabic, Farsi, German, Latvian,
Portuguese, Russian, Spanish, and Ukrainian.

11 https://github.com/andre-martins/TurboParser
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Figure 2: Trending media item views: histogram
(top), and list (bottom)

which are available from the SUMMA project’s
web page.12

4 User Interfaces
The platform provides several user interfaces
(“views”), to accommodate different user’s needs.
The trending media item views (Fig 2) rely on

recognised Named Entities. For each entity rec-
ognized by the Named Entity recognizer, the his-
togram view (top) shows a bar chart with the num-
ber of media items that mention said entity within
each hour for the past n hours. The order of the
list of histograms corresponds to the recent promi-
nence of the respective entity. In the list view (bot-
tom), recent arrivals for a specific Named Entity
are sorted most-recent-first. The screenshot shows
the result of a full text search.
Figure 3 shows the view of a recorded video seg-

ment. The video player panel is on the left. On
the right, we see topic labels (top), a summary
of the transcript (middle), and the original tran-
script. The transcript is synchronized with the
video, so that recognized speech is automatically
highlighted in the transcript as the video is played,
and a click into the transcript takes the user to the
corresponding position in the video.
The document cluster view (Fig. 4) gives a bird

eye’s view of the clustered media items; the area

12 www.summa-project.eu/deliverables

occupied by each cluster corresponding to the num-
ber of items within the cluster. A click on the re-
spective tile shows a multi-document summary of
the cluster and a list of related media items.
The trending media item views correspond most

to our first use case: journalists keeping track of
specific stories linked to specific entities and iden-
tifying emerging topics.
The document cluster ciew corresponds best to

the needs of our second use case: internal monitor-
ing of a media organisation’s output.
In addition to these visual user interfaces, the

platform can also expose a database API, so that
users wishing to access the database directly with
their own analysis or visualisation tools can do so.
A number of ideas for such tools were explored
recently at BBC’s SUMMA-related #NewsHack
event in London in November 2017.13 They in-
clude a slackbot that allows journalists to query
the database in natural language via a chat inter-
face, automatic generation of short videos captur-
ing and summarizing the news of the days in a
series of captioned images, or contrasting the cov-
erage by a specific media outlet against a larger
pool of information sources.

5 Hardware Requirements and
Performance Analysis

When designing the system, we made a deliberate
decision to avoid reliance on GPUs for processing,
due to the high cost of the hardware, especially
when rented from cloud computing services. This
constraint does not apply to the training of the
underlying models, which we assume to be done
offline. For most components, pre-trained models
are available for download.

5.1 Disk Space
A basic installation of the platform with models
for 6 languages / 5 translation directions currently
requires about 150GB of disk space. Recording
of live video streams requires approximately 10–25
GB per stream per day, depending on the resolu-
tion of the underlying video. We do not transcode
incoming videos to a lower resolution, due to the
high processing cost of transcoding.

5.2 CPU Usage and Memory
Requirements

Table 1 shows a snapshot of performance moni-
toring on a singe-host deployment of the Platform
that we use for user interface testing and user expe-
rience evaluation, measured over a period of about
20 minutes. The deployment’s host is a large server

13 http://bbcnewslabs.co.uk/2017/11/24/
summa-roundup. The event attracted 63 regis-
trations; subtracting no-shows, the event had ca. 50
attendees.
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Figure 3: Single media item view

Figure 4: Document cluster view

with 32 CPU cores and 287 GB of memory, of
which ca. 120GB are currently used by the Plat-
form, supporting transcription in 6 languages and
translation from 5 into English. Not shown in the
table are the ASR, Punctuation and MT compo-
nents for Latvian and German, as they were idle
at the time.

Notice that except for the Named Entity recog-
nizer, no component has a peak memory use of
more than 4 GB, so that individual components
can be run on much smaller machines in a dis-
tributed set-up.

Speech recognition is clearly the bottleneck and
resource hog in the pipeline. The ASR engine cur-
rently is a single-threaded process that can tran-
scribe speech at about half the “natural” speaking

rate.14 Each segment is transcribed in one chunk;
we use multiple workers (2-3) per channel to keep
up with the speed of data arrival.
The multi-threaded MT engines use all avail-

able cores to translate in parallel and are able to
translate some 500 words per minute per thread.15
For comparison: the typical speaking rate of an
English-speaking news speaker is about 160 words
per minute. A single MT engine can thus easily ac-
commodate transcripts from multiple transcribed
live streams.

14 For segments without speech, the processing speed
may be about 8 times real time, as the speech recog-
nizer gets confused and explores a much larger search
space.

15 Junczys-Dowmunt et al. (2016) report 141 words per
second on a 16-thread machine; this means ca. 528
words per minute per thread.
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Table 1: Relative use of CPU time and peak mem-
ory use (per container) for various tasks in the NLP
processing pipeline.

Task CPU RAM
ASR (ar) 27.26% 1359 MiB
ASR (en) 26.53% 2594 MiB
ASR (ru) 22.40% 2044 MiB
ASR (es) 13.44% 2800 MiB
MT (ar) 3.34% 926 MiB
MT (ru) 3.14% 1242 MiB
Summarization 1.21% 3609 MiB
Semantic parsing 0.97% 3290 MiB
MT (es) 0.34% 1801 MiB
Job queue 0.30% 326 MiB
Topic identification 0.27% 1418 MiB
Named entity recognition 0.18% 12625 MiB
Punctuation (en) 0.16% 362 MiB
Database 0.16% 3021 MiB
Recording and chunking 0.15% 337 MiB
Punctuation (ru) 0.04% 285 MiB
Punctuation (ar) 0.03% 276 MiB
DB REST interface 0.02% 153 MiB
Clustering 0.01% 1262 MiB
Data feed (not streamed) 0.01% 141 MiB
Punctuation (es) 0.01% 240 MiB
Task creation 0.01% 1076 MiB
Result writer 0.01% 1003 MiB
(msg. queue to DB)

In a successful scalability test with docker swarm
in January 2018 we were able to ingest 400 TV
streams simultaneously on Amazon’s AWS EC2
service, allocating 2 t2.2xlarge virtual machines (8
CPUs, 32GB RAM) per stream, although 1 ma-
chine per stream probably would have be sufficient.
For this test, we deployed several clones of the en-
tire platform for data ingestion, all feeding into a
single user-facing PostgreSQL database instance.

6 Conclusion

The SUMMA Platform successfully integrates a
multitude of state-of-the-art NLP components to
provide an integrated platform for multi-lingual
media monitoring and analysis. The Platform de-
sign provides for easy scalability and facilitates
the integration of additional NLP analysis mod-
ules that augment existing data.

Availability

The Platform infrastructure and most of its com-
ponents are currently scheduled to be released
as open-source software in late August 2018 and
will available through the project home page at

http://www.summa-project.eu
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Abstract

We present a system, CRUISE, that
guides ordinary software developers to
build a high quality natural language
understanding (NLU) engine from scratch.
This is the fundamental step of building a
new skill for personal assistants. Unlike
existing solutions that require either
developers or crowdsourcing to manually
generate and annotate a large number
of utterances, we design a hybrid rule-
based and data-driven approach with the
capability to iteratively generate more and
more utterances. Our system only requires
light human workload to iteratively prune
incorrect utterances. CRUISE outputs
a well trained NLU engine and a large
scale annotated utterance corpus that third
parties can use to develop their custom
skills. Using both benchmark dataset
and custom datasets we collected in real-
world settings, we validate the high quality
of CRUISE generated utterances via both
competitive NLU performance and human
evaluation. We also show the largely
reduced human workload in terms of both
cognitive load and human pruning time
consumption.

1 Introduction

Artificially intelligent voice-enabled personal
assistants have been emerging in our daily life,
such as Alexa, Google Assistant, Siri, Bixby, etc.
Existing off-the-shelf personal assistants provide a
large number of capabilities, referred to as skills,
and the number of skills keeps growing rapidly.
Thus, it is critically desirable to design an easy
to use system that facilitates developers to quickly
build high quality new skills.

The key of developing a new skill is to
understand all varieties of user utterances and
carry out the intent of users, referred to as
natural language understanding (NLU) engine.
Existing industrial personal assistant products
or open source tools (e.g., API.ai, WIT.ai)
require software developers themselves or via
crowdsourcing to manually input various natural
utterances and annotate the slots for each
utterance. Recently, researches have been made
to bootstrap the utterance generations. These
approaches first generate canonical utterances
based on either lexicon/grammar (Wang et al.,
2015) or language/SQL templates (Iyer et al.,
2017); then utilize crowdsourcing to create
paraphrases and correct labels. Unfortunately,
they require software developers to have natural
language expertise and still heavily rely on costly
crowdsourcing. Thus, it is significantly and
crucially desirable to develop a system for helping
ordinary developers quickly build a high quality
skill for personal assistants.

In this paper, we present a system, called
Cold-start iteRative Utterance generatIon for Skill
dEvelopment (CRUISE). As the name suggests,
CRUISE aims to guide software developers to
build a new skill from scratch, a.k.a., cold-start.
It is defined from two aspects: cold-start software
developers which refer to the ordinary developers
who do not have either linguistic expertise or
complete functionalities of the new skill in mind;
and cold-start dataset which means that there
is zero or very few training samples available.
Specifically, CRUISE initially takes the list of
intents in a new skill as inputs from software
developers and runs a hybrid rule-based and data-
driven algorithm to automatically generate more
and more new utterances for each intent. During
the whole process, software developers only need
to iteratively prune the incorrect samples. As
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such, CRUISE does not depend on crowdsourcing
to conduct the heavy task of manually generating
utterances and annotating slots.

2 Background and Related Work

Natural language understanding is a key
component in skill development. In personal
assistants, since users intend to use spoken
language to interact with personal assistant
agents, most industrial products are focused
on spoken language understanding (SLU) in
which it is sufficient to understand user query by
classifying the intent and identifying a set of slots
(Liu and Lane, 2016). One class of approaches
is to paraphrase user utterances to increase the
number of training set (Barzilay and Lee, 2003;
Quirk et al., 2004; Kauchak and Barzilay, 2006;
Zhao et al., 2009; Prakash et al., 2016). However,
these approaches depend on the existence of
large amount of dataset for training paraphrasing
model. As discussed above, the most relevant
works (Wang et al., 2015; Iyer et al., 2017)
bootstrapped the utterances based on grammar
and SQL templates respectively and then relied on
crowdsourcing to increase the utterance varieties
and correct the labels. Unfortunately, they require
both linguistic expertise from software developers
and heavy human workload. In this paper, we use
NLU and SLU engines equivalently.

3 CRUISE System Overview

3.1 Our Settings
Settings for Software Developers: To build a
new skill S, a software developer starts with
providing a list of predefined intents in this skill
S. For each intent, as shown in Figure 1,
the software developer first reviews and prunes
an automatically constructed knowledge base.
Next, the only human labor of a developer is to
iteratively prune incorrect generated utterances. In
the end, CRUISE will automatically outputs both
a well-trained NLU engine for skill S and a large
number of annotated correct utterances that can
be used directly by third parties to train their own
NLU engines.
Offline Preprocessed Components: CRUISE
also consists of the following components which
have been preprocessed offline without the
involvement of software developers: (1) Publicly
available InfoBox template Ω (InfoBox, 2017):
contains a subset of information/attributes about

an object, i.e., a set of object-attribute pairs. For
example, the object food has attributes such as
course, region, etc. (2) Language model: pre-
trained on a public corpus (e.g., Wikipedia). (3)
Pre-built concept hash table: for each word in
the language model vocabulary, we use MS term
conceptualizer (Wang and Wang, 2016) to find its
most likely concept/category. For example, the
word pizza is considered as an instance of the
concept food. Then a hash table is constructed
to map each concept to its instances.

3.2 CRUISE Design

We discuss the goals of CRUISE system design
and the key ideas to achieve them.
Cold start Support: As discussed in introduction,
the first trade-off in CRUISE design is between
cold start (lack of training data and expertise from
developers) and a high quality NLU engine. In
order to accommodate the developers who do
not have any linguistic expertise and reduce their
workload to manually generate various utterances,
we design an Iterative Utterance Generation
approach. It starts from an intent as a simplest
natural language utterance and decomposes the
complex utterance generation into small tasks to
tackle them one by one iteratively.
Reduced Human Workload: Another trade-off
in CRUISE design is between human workload
minimization and high quality of generated
utterances. To address this, we design CRUISE
from two aspects: (1) Human-in-the-loop Pruning
allows developers iteratively prune the incorrect
generated utterances. In next iteration, more
utterances are generated only based on the
previously selected correct utterances. (2)
Automated Utterance Annotation generates an
utterance corpus that can be directly used to train
NLU engine without extra human efforts. The
idea is to generate tagged utterances in which each
tag can be simply coupled with its corresponding
instances to automatically annotate the slots. For
example, a tagged utterance contains @food and
@size tags rather than their instances such as
pizza and large (in Figure 1).

3.3 CRUISE Components & Workflow

As the running example shows in Figure 1,
CRUISE has two main steps, knowledge base
construction and iterative utterance generation.

Step 1. Knowledge Base Construction: for each
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Iterative Utterance Generation
Iteration 1:

Utterance Expansion
find @size @food

find @food from @country
find @food with @ingredient

find @ingredient @food
find @food the @size

NLU EngineNatural Language Utterances with Labeled Intent Class and Slots

Iteration 2:
Expanded Utterances Combination

find @size @food from @country
find @food of @size from @country
find @ingredient @food the @size

find @size @ingredient @food
find @ingredient @food at @time

Iteration 3:
Utterance Paraphrasing

get @size @food from @country
where to have @size @food
show me @ingredient @food

i want @food with @ingredient
can i grab @size @food

Knowledge Base Construction
(attributes, their relations & instances)

find → @time: morning, noon, seventh

@food → @size: large, small, king

@food → @image: [NONE]

Intent: FIND_FOOD
verb: find

object tag: @food

Figure 1: A running example of CRUISE system: it takes
a new intent “FIND FOOD” as input and outputs both
annotated natural language utterances (each utterance
with an intent label and slots labels) and a trained NLU
engine. Each black box corresponds to a component
in CRUISE, with both correct outputs (in green) and
incorrect outputs (in red) to be pruned by developers.
The underlined words are generated by the data-driven
tagged sentence filler (Section 4.2) and the other words
are generated by rules (Section 4.1).

intent (e.g., “FIND FOOD” includes a verb find
and an object tag @FOOD), CRUISE constructs
a knowledge base with the following information:
(1) identified list of attribute tags depending on
object tag using Infobox template Ω (e.g. attribute
tag @SIZE depends on object tag @FOOD); (2) the
sample instances belong to each tag using pre-built
concept hash table (e.g. instances “large”, “small”
for tag @SIZE). In addition, developers can also
add or remove the tags and instances of each tag.

Step 2. Iterative Utterance Generation:
CRUISE iteratively generates more and more
utterances with human-in-the-loop pruning.
CRUISE outputs the generated natural language
utterances with both intent and slots annotations
as well as a ready-to-use NLU engine trained on
these utterances.

4 Iterative Utterance Generation

In this section, we describes the details of
utterance generation in each iteration. The key
idea to generate utterances in each iteration is the
hybrid of rule-based and data-driven approaches.
In brief, we utilize a small set of rules to derive
a list of incomplete tagged utterances with blanks
(word placeholders); then use data-driven tagged
utterance filler algorithm to fill in the blanks. The
rest of this section includes rule-based iteration
design and data-driven tagged utterance filler
algorithm respectively.

4.1 Rule-based Iteration Design

The key idea is to decompose the task of
generating complex utterances into three subtasks
and tackle each task in one iteration. Specifically,
we divide the utterance generation task into
the following subtasks in three iterations (idea

i would like to fnd of small @SIZE with @INGREDIENT by @TIME

Attributive Attributive Adjunct

Iteratio 1: uteraoce expaosiio ti geoerate 
atributies aod adjuocts

(noun phrase) + iverb

Iteratio 3: uteraoce paraphrasiog 
ti rephrase predicate (aod subject)

Iteratio 2: Expaoded Uteraoces Cimbioatio ti swap atributies aod adjuocts

@FOOD

i would like to find of @size with @ingredient from @country

Attribute Attribute Attribute

Iteration 1: Utterance Expansion to generate 
additional attribute tags

(noun phrase) + verb

Iteration 3: Utterance Paraphrasing 
to rephrase predicate (and subject)

Iteration 2: Expanded Utterances Combination to swap attributes

@FOOD

Figure 2: A running example to illustrate subtasks in each
iteration towards generating a tagged utterance

illustration in Figure 2 and examples in Figure
1): (1) Utterance Expansion: generate attributives
and adjuncts to expand an utterance into utterances
with an additional new tag. (2) Expanded
Utterances Combination: swap attributives and
adjuncts to concatenate previously expanded
utterances. (3) Utterance Paraphrasing: rephrase
predicate (and subject) to paraphrase each
utterance. At the end of each iteration i, we
provide all generated utterances to the software
developer for pruning such that only the selected
correct utterances will be the input of next
iteration. At last, we output the natural language
utterances by substituting instances into tags with
slot annotations.

Iteration 1. Utterance Expansion: Given an
intent as a simplest verb phrase consisting of only
a verb and its direct object (tag), the goal is to
expand it into utterances such that each generated
utterance has an additional attribute tag associated
with the object tag. Thanks to the simple verb
phrase, the expansion has no semantic ambiguity.
Thus, for each new tag t, we expand the utterance
by inserting t before and after the object tag.
While it is straightforward to insert t directly
before the object, the insertion of t after the object
need joiner words where we introduce blanks. In
the end, we fill out the blanks (usually 1-3) in
tagged utterances as described in Section 4.2.

Iteration 2. Expanded Utterances
Combination: The goal is to combine the
previously generated correct utterances (two tags
in each utterance) into long utterances with all
combination of different tags in each utterance.
We generate the permutations of attribute tags
themselves (and with joiner words) before (after)
the object. This iteration then outputs utterances
these attribute tag permutations before and after
the object with non-overlapping attribute tags.
Thanks to the correct input utterances, most of
combined utterances are surely correct, which
saves a lot of pruning efforts.

Iteration 3. Utterance Paraphrasing: Since
the previous iterations have covered the varieties
for attributives phrases and clauses, the goal
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of iteration 3 is to increase the varieties of
predicates. We generate different predicates for a
tagged utterance as follows: (1) verb replacement,
(2) wh-word question rephrasing, and (3) “I”
started utterance rephrasing. Both (2) and (3)
are motivated by the application of personal
assistants that help the user who initiates the
utterance. Likewise, we invoke tagged utterance
filler to fill out the blanks (usually 3) for each
predicate. In order to further reduce the human
pruning workload, we group the same predicates
for developers to prune them at once instead of
pruning every single utterance again and again.

4.2 Data-driven Tagged Sentence Filler

As a key data-driven subroutine, this module
takes a tagged utterance with blanks (i.e., word
placeholders) u as the input and outputs the
complete tagged utterance with all blanks filled
by natural language words, called filler words.
We first instantiate the attribute and object tags
in u using their mapped instances in the pre-built
concept hash table. Since all instances belong to
the vocabulary of the pre-trained language model,
we avoid tackling out of vocabulary problem.
Based on the intuition that good filler words are
usually generated repeatedly in many instantiated
utterances, we fill out the blanks in all instantiated
utterances and return the Kt (up to 20) filler words
ranked by the frequency of their appearances.

To fill out the blanks in an incomplete natural
language utterance, we use an efficient beam
search algorithm via RNN based pre-trained
language models. This returns a list of Kn (up
to 30) best filler words, ranked according to their
likelihood scores.

5 Experimental Evaluation

We implement the CRUISE system with an easy-
to-use user interface (Figure 3) with the thumb
up/down mechanism for efficient human pruning.
We have internal developers to use and evaluate
this real system in terms of both utterance quality
and human workload.

5.1 Data Quality Evaluation

5.1.1 Objective Evaluation via NLU Engines
We validate our CRUISE system by first
evaluating the performance of existing NLU
engines trained using our generated utterances
compared with using benchmark or manually

Figure 3: CRUISE User Interface

Table 1: Human NLU engine vs. CRUISE NLU engine
results in benchmark and custom datasets

Human NLU CRUISE NLU

Dataset NLU
Engine

Intent
Accuracy

Slot Tagging
F-1 Score

Intent
Accuracy

Slot Tagging
F-1 Score

ATIS RASA 93.29% 90.84 83.33% 80.25
RNN 97.96% 96.02 82.60% 84.70

Food RASA 99.4% 91.92 99.58% 93.91
RNN 99.31 % 92.28 99.73% 94.70

Hotel RASA - 92.22 - 89.92
RNN - 92.09 - 94.85

generated utterances. For simplicity, we refer
to our CRUISE generated datasets as CRUISE
Dataset in comparison of Benchmark/Human
Dataset. Correspondingly, the NLU engines
trained on CRUISE and benchmark human
generated datasets are referred to as CRUISE
NLU and Human NLU engines respectively.
Both NLU engines are evaluated by testing on
benchmark or user generated utterances.
NLU Engines & Performance Metrics: To
maximally reduce the bias from NLU engines, we
evaluate the performance using different existing
NLU engines: open source RASA (RASA, 2017)
and deep learning based RNN NLU engine with
joint learning of intent classifier and slot tagger
(Liu and Lane, 2016). Both NLU engines target
on classifying the intent of each whole utterance
and identifying tags/entities (a.k.a. slot tagging).
Thus, we use the accuracy and F-1 score as
the metrics for intent classifier and slot tagging
respectively. We run RASA NLU engine using
their default parameters.

Benchmark Dataset Evaluation: Although
the benchmark NLU trained on crowdsourced data
is expected to perform much better than CRUISE
NLU trained on machine generated dataset from
cold start, we show that CRUISE NLU still
achieves a high accuracy and efficiently trades off
NLU performance and human workload.

We evaluate our system on the ATIS (Airline
Travel Information Systems) dataset (Hemphill
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Figure 4: Mixed NLU results in ATIS Dataset

et al., 1990), a widely used dataset in SLU
research. It contains 4,978 training utterances and
893 testing utterances with 127 distinct slot labels
and 22 different intents. We generate 767,985
unique tagged utterances using CRUISE system.
For a fair comparison, we randomly sample 5,000
utterances from CRUISE dataset as training set.
Since ATIS is relatively larger, we select both
word embedding and LSTM hidden dimension as
128 with 1 hidden layer in RNN NLU.

Table 1 reports the result of NLU performance
comparison. As one can see, the performance
of CRUISE NLU engine is roughly around
10-15% worse than benchmark NLU engine
trained on crowdsourced benchmark data for both
intent classification and slot tagging. After a
detailed analysis, we find that CRUISE data
has smaller vocabulary size (301 words) than
the crowdsourced benchmark data (949 words)
due to the selection of high likelihood words in
beam search. Hence, we attribute a significant
cause of errors because of the out-of-vocabulary
words in test set. We further test CRUISE
NLU on the subset of test set without out-of-
vocabulary words and observe 5-6% improvement
of NLU performance. Importantly, we observe
that CRUISE NLU performs much better on more
complex utterances, e.g., “show me fares for
round trip flights with first class of delta from
miami into houston”, where the benchmark NLU
fail for both intent classification and slot tagging.

In addition to CRUISE NLU, we further
test the performance of NLU engines which
are trained by mixed CRUISE and benchmark
datasets, named Mixed NLU. The benchmark
data is treated as the manual entry data from
developers such that we can better study another
trade-off between additional human workload and
NLU engine performance. Figure 4 reports the
result of mixed NLU engine performance with
half CRUISE data and half benchmark data. Both
the mixed and benchmark NLU engines achieve
similar performance for different sizes of training
set on the costly crowdsourced ATIS dataset.

This implies that we can reduce nearly half
human workload for developing a skill, given the
negligible pruning effort (Section 5.2).

Real-World Setting Evaluation: We further
evaluate CRUISE in a simulated real-world
scenario when a software developer starts to
develop a new skill. In order to do so, we create
two custom datasets: (a) Food and (b) Hotel. Food
data has three intents and hotel data has only one
intent. Each intent is associated with six to eight
different attributes/tags selected from InfoBox
template or provided by internal developers. For
each intent, we ask two developers to generate
a list of tagged utterances manually and using
our CRUISE system respectively. The total sizes
of human and CRUISE generated utterances are
5,352 and 21,429 in food and hotel datasets
respectively. For fairness, we randomly select a
subset from human dataset as a standard test data
to test both NLU engines. Table 1 shows that
CRUISE NLU outperforms human NLU in most
cases. This is because CRUISE dataset has a larger
number and varieties of high quality utterances
than human dataset.

5.1.2 Subjective Human Evaluation

We further evaluate the CRUISE dataset
subjectively by soliciting judgments from
Amazon Mechanical Turkers. Each turker was
presented a task of rating utterances sampled from
mixed CRUISE and human generated datasets.
Turkers rate each question on a 5 point Likert
scale (Likert, 1932) as to whether the utterance is
natural and grammatically correct. Ratings range
from 1 (worst) to 5 (best). Thus, our evaluation
provides more detailed rating than what automatic
metrics such as BLEU can provide (Papineni
et al., 2002). In order to control the evaluation
quality, we further judge the trustworthiness of
each turker by scoring their performance on 20-30
gold-standard utterances that were internally rated
by experts. Based on this trustworthiness score,
we establish a group of trusted turkers. Then, we
collect 10 ratings for each utterance from these
trusted turkers. Finally, we compute the average
score over all trusted ratings on 300-500 randomly
sampled utterances in each dataset.

Table 2 reports human evaluation results
between CRUISE and human generated data. We
observe that CRUISE generated dataset achieves
close performance in terms of both metrics in
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Table 2: Human Evaluation Results

Dataset Naturalness Grammar Overall

ATIS CRUISE 3.32 3.37 3.35
Human 3.74 3.78 3.76

Custom CRUISE 3.60 3.41 3.50
Human 3.35 3.08 3.21

ATIS, which is collected via costly crowdsourcing.
More importantly, for human data generated by
only a single developer in custom datasets, the
results show that CRUISE data has better quality
than human data in terms of both metrics.

5.2 Human Workload Analysis

We analyze the cognitive load via preliminary
qualitative analysis from internal developers.
Specifically, we interview the participated
developers regarding different types of cognitive
load (Sweller et al., 1998). In terms of intrinsic
cognitive load about the inherent difficulty level
to use CRUISE system, the developers concluded
CRUISE as a more easy-to-use system than both
existing industrial tools and academic solutions.
Extraneous cognitive load is also largely reduced
since our design enables batch processing
of human pruning by one-click marking of all
utterances in each page. At last, the developers are
also satisfied with the reduced germane cognitive
load due to the iterative pruning design in
CRUISE which dramatically minimize the whole
pruning effort by generating more utterances only
based on the correct ones in previous iteration.

Next, we report the time consumption of human
pruning to evaluate the workload quantitatively.
As shown in Figure 5, we observe that it takes less
than 0.15s on average to prune each utterance, and
as low as 0.01s for some intents. This is because
iteration design in our CRUISE system enables
the capability that each picked correct utterance
can generate many utterances at one time. In
comparison, we observe that human developers
take around 30 seconds on average to generate and
annotate an utterance in our custom dataset. In the
example of ATIS dataset, it takes around 0.05s on
average to prune each utterance. Thus, a developer
only needs to spend less than 5 mins on average to
prune incorrect utterances in order to find 5,000
correct utterance for training a competitive NLU
engine. For frequent intents, it takes less time to
prune as CRUISE intends to generate more correct
utterances determined by a better language model.
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Abstract

In this system demonstration we present
the latest developments of Praaline, an
open-source software system for constitut-
ing and managing, manually and automati-
cally annotating, visualising and analysing
spoken language and multimodal corpora.
We review the system’s functionality and
design architecture, present current use
cases and directions for future develop-
ment.

1 Introduction

In this system demonstration, we present Praaline.
Praaline is an open-source application for creating
and managing speech and multi-modal corpora,
annotating them manually or automatically, visu-
alising the speech signal and annotations, query-
ing the data and creating concordances, and per-
forming statistical analyses. The system was first
presented in (Christodoulides, 2014). Praaline is
a cross-platform standalone application that runs
on Windows, Mac OSX and Linux. It is writ-
ten in C++ using the Qt framework. The ap-
plication is available for download at https:
//www.praaline.org and the source code is
available on GitHub (https://github.com/
praaline), under the GPL version 3 license.

Several tools are being used currently in spo-
ken language research. In the phonetics and
prosody domain, the most widely used tool is
Praat (Boersma and Weenink, 2018); in the prag-
matics and discourse studies community Exmar-
alda (Schmidt and Wörner, 2009) is appreciated
for its concordancing functionality; for multi-
modal and signed language corpora, ELAN (Brug-
man and Russel, 2004) is often preferred; and
large corpora have been transcribed using Tran-
scriberAG (Barras et al., 1998).

We have focused on creating a tool that will
cover the needs of researchers working simultane-
ously on speech (phonetics, phonology, prosody)
and discourse (syntax, semantics, pragmatics).
Praaline should help an individual researcher or-
ganise their data using the best practices in corpus
design and data management, and allow them to
work independently. At the same time, our system
aims to facilitate depositing the corpus data to a
central repository at the end of a research project,
using a structure that will facilitate long-term stor-
age and reuse. For these reasons, we have decided
to use an SQL relational database for data stor-
age: an SQLite database for local projects, or a
MySQL or PostgreSQL database for using Praa-
line in a network environment. Furthermore the
system provides extensive support for importing
and exporting data between Praaline and other
annotation tools (Praat, Exmaralda, ELAN, Tran-
sriberAG, other formats), as well as support for
importing and exporting annotation data in the
XML and JSON formats.

In the following, we will present the main func-
tionality of Praaline, describe its design architec-
ture and conclude with our plans for future devel-
opment.

2 Features

2.1 Corpus Management

A collection of recordings (audio and video) con-
stitutes a Corpus, which can be stored in a Cor-
pus Repository. A repository provides a com-
mon structure for metadata and annotations (see
next section). A Corpus contains a collection of
Communications and Speakers. Each Communi-
cation consists of one or more Recordings and cor-
responding Annotation documents. Speakers are
linked to the Communications in which they are
involved though Participation objects. The six ba-
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sic objects can all be described using a set of meta-
data. Praaline does not impose any schema for
metadata: the user can define their own metadata
schema per Repository. The Corpus Explorer (see
Figure 1) is used to constitute the corpus and to
edit its metadata: corpus objects can be browsed
in a tree (possibly grouped based on metadata in-
formation); the user can also edit metadata using a
spreadsheet-like display.

Figure 1: Corpus Explorer

2.2 Metadata and Annotation Structure
Each Corpus Repository will have a defined data
structure for its metadata and annotations. Tem-
plates are provided to help individual researchers;
it is also possible to standardise these struc-
tures when multiple users are accessing the same
database. Praaline includes an editor for metadata
and annotation structures: the editors perform data
definition language (DDL) queries to change the
SQL database structure. The metadata structure
editor allows the user to define the fields that will
be stored for each of the six main objects described
in the previous section. Annotations are organised
in Levels and Attributes: a Level describes a unit
of linguistic analysis (e.g. a syllable, a token, an
utterance etc) and contains a label and an arbitrary
number of Attributes. Each Annotation Level cor-
responds to a table in the SQL database and At-
tributes correspond to columns. The data structure
editor for annotations is shown in Figure 2).

The metadata and annotation structure editors
allow the user to define fields having any of the
standard SQL data types (integers, real numbers,
strings, boolean values etc.). Furthermore, a sys-
tem for defining and importing/exporting name-
value lists is available. A name-value list (NVL)
can be associated with any number of metadata
fields or annotation attributes. The NVL subsys-
tem can improve data quality by enforcing ref-

Figure 2: Annotation Structure and Vocabularies

erential integrity rules and help users in annotat-
ing data based on a closed vocabulary (e.g. a de-
fined set of part-of-speech tags, dependency re-
lations, discourse relations, phoneme labels etc.).
The metadata and annotation structure of a corpus
repository can be exported as an XML or JSON
file; when these files are imported on another
repository, Praaline recreates the corresponding
database structures and NVL data.

2.3 Annotation

Annotations can be added to the corpus using one
of the Manual Annotation editors: a spreadsheet-
like editor that can combine multiple levels of an-
notation; a transcriber interface; an editor for se-
quences or for relations. The tabular editor is show
in Figure 3.

Figure 3: Manual Annotation Editor

The annotation tools offered attempt to cover
the entire workflow of constructing a speech cor-
pus: collecting recordings, transcribing them or
re-using existing transcriptions, speech-text align-
ment, enrichment of the annotations with addi-
tional levels and feature extraction (before pro-
ceeding with analysing the data). The Transcriber
module provides a user interface for quick manual
transcription, especially in the presence of multi-
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ple speakers. The Long Sound Aligner module al-
lows the user to reuse existing, possibly imperfect,
transcriptions of the corpus materials. The Long
Sound Aligner uses the output of a speech recog-
nition engine and the transcription text to pro-
duce iteratively refined alignments of transcrip-
tion utterances to the speech signal (similar to
other long sound alignment tools, e.g. Katsama-
nis et al. (2011)). The Forced Alignment mod-
ule allows the user to produce alignments at the
phone, syllable and token level, based on a pro-
nunciation dictionary or other system for phoneti-
sation, and an ASR engine. The currently sup-
ported ASR engines in Praaline are HTK(Young
et al., 2006), PocketSphinx (Walker et al., 2004)
and Kaldi (Povey et al., 2011).

The annotation framework in Praaline is lan-
guage independent: annotations are stored in
Unicode format and no assumptions are made
about language. However, several tasks require
language-specific resources: tokenisation rules,
pronunciation dictionaries, acoustic models and
language models for the ASR engine. A collection
of open resources is available, and the develop-
ment of language resources for the back-end tools
in the context of other open source projects can be
harnessed.

Much of the functionality in Praaline comes
from its automatic annotation plug-ins. The user
can run a cascade of automatic annotation plugins,
after setting the relevant parameters (each plugin
defines its own set) on the entire corpus or on a
subset of corpus items. The user interface for these
operations is shown in Figure 4.

Figure 4: Automatic Annotation Plugins

Currently, plugins are available for the follow-
ing tasks:

• Part-of-speech tagging and syntactical analy-
sis of spoken language, in several languages,

using the DisMo plug-in (Christodoulides
et al., 2014). Statistical models for many
languages are provided, based on the work
by the Universal Dependencies project (Nivre
et al., 2016).

• Prosodic feature extraction and pitch styli-
sation, using either the Prosogram (Mertens,
2004) system, or the INTSINT/MoMel sys-
tem (Hirst, 2007) for intonation annotation.

• Automatic detection and annotation of
prosodic events, with language-specific
statistical models extracted from manually
annotated corpora.

2.4 Visualisation
The Visualisation module of Praaline reuses and
extends the code of Sonic Visualiser (Cannam
et al., 2010), which is also an open-source (GPL)
project written in C++/Qt and used in the field
of musicology. The user can create the visualisa-
tion that best suits their needs by combining panes
and layers, containing: annotation tiers, points,
curves, histograms, colour-coded regions, spec-
trograms etc. Extensions have been added for
visualising intonation information, for studies in
prosody. Visualisation templates can be saved in
XMl and JSON formats; a collection of available
visualisation templates is presented to the user. An
example of a visualisation is show in Figure 5.

Figure 5: Visualisation

An annotation editor can be combined with the
visualisation user interface, to facilitate use cases
where the user codes a linguistic phenomenon
with the aid of a visual representation. Visuali-
sations can be exported in image formats for use
in presentations and publications. A system of
Bookmarks allows the user to save points of in-
terest in the corpus: the identification data of the
Communication, Recording and Annotation along
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with a time-code constitute a Bookmark that can
be stored in collections of bookmarks for easy ac-
cess. The results of a concordance search (see next
section) can also be exported as bookmarks.

2.5 Queries and Concordances

The user can perform queries on any of the an-
notation levels or a combination of these levels.
The results are displayed in keyword-in-context
(KWIC) concordances and can be exported for
further analysis. It is possible to search for se-
quences and patterns. The Concordancer results
can be exported as Bookmarks for immediate ac-
cess in the Annotation editors and in the Visu-
aliser. The Concordancer is show in Figure 6.

Figure 6: Concordancer

Furthermore, an interface is provided for cre-
ating datasets. Using a dataset, information from
multiple annotation levels can be combined, a set
of basic statistic operations can be applied and
the results can be saved for further analysis. As
an example, in a corpus annotated on four lev-
els (phones, syllables, tokens, discourse units), the
user may export a dataset containing: all the syl-
lables in the corpus, their acoustic features (ex-
tracted from upstream plug-ins), the correspond-
ing tokens and associated attributes (e.g. POS
tags), the corresponding discourse units and asso-
ciated attributes, and some metadata attributes. A
dataset has a minimum unit (in the previous ex-
ample, the syllable) and lower-level (grouped) or
higher-level (associated) data.

2.6 Statistics

Praaline includes a set of statistical analysis plu-
gins, covering a range of common analyses in
speech research: basic counts; temporal anal-
ysis (pauses, speech rate, dialogue dynamics);
prosodic and disfluency analysis; clustering cor-
pus items using principal component analysis. The

results of the analysis can be exported, and the
basic graphics can be immediately accessed from
within Praaline. For more advanced statistical
analysis of corpus data, users can use R scripts (R
Core Team, 2018) that take advantage of the fact
that the corpus data and annotations are stored in
SQL format. An example of a PCA analysis is
shown in Figure 7.

Figure 7: Statistics (PCA plot)

3 System Architecture and Extensibility

The system is following a modular design. A core
library (Praaline Core) contains all the basic func-
tionality needed to access and manage Praaline
corpus metadata and annotations. The library can
be reused in other software (see also next section).
At the next level, a set of modules (Praaline Li-
braries) contain the functionality needed for auto-
matic speech recognition, the application of ma-
chine learning algorithms, feature extraction etc.
These libraries are often wrappers of existing and
well-established open-source NLP tools, such as
Sphinx, OpenSmile, HTK, CRF++ etc. An addi-
tional module contains the user interface elements
(e.g. widgets for visualisation). All these modules
are brought together in the main application.

An API for the Core library and for interfacing
with the main application allows for the creation
of plugins. Plugins add functionality to Praaline
and include implementations of automatic annota-
tion algorithms, statistical analysis plugins or new
visualisation elements.

Examples of plug-in development are provided
on the project’s website: a skeleton C++ project is
given, and Python scripts using the Praaline Core
library, or other modules of the Praaline Libraries
illustrate the use of these resources for common
NLP tasks. The Praaline Core library can be used
as a tool for input-output and interfacing with an-
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notation information without using Praaline’s user
interface.

4 Future Development

Praaline is under active development. The main
priorities for adding features are as follows:

• A signal annotation editor strongly resem-
bling Praat. We have found that researchers
in some communities are strongly attached
to this user interface, and this addition will
facilitate the acceptance of a new system on
their part.

• Stabilise the API of the Praaline Core library
and provide Python and R bindings.

• Finalise the development of PraalineWeb, a
system that allows the publication of corpora
on the web, using Django.

• Add functionality for editing dependency re-
lations.

The development of Praaline has been mainly
driven by the expectations and needs of its users.
It is hoped that this system demonstration will pro-
vide additional feedback.
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Abstract

We present Marian, an efficient and self-
contained Neural Machine Translation
framework with an integrated automatic
differentiation engine based on dynamic
computation graphs. Marian is written en-
tirely in C++. We describe the design of the
encoder-decoder framework and demon-
strate that a research-friendly toolkit can
achieve high training and translation speed.

1 Introduction

In this paper, we present Marian,1 an efficient Neu-
ral Machine Translation framework written in pure
C++ with minimal dependencies. It has mainly
been developed at the Adam Mickiewicz Univer-
sity in Poznań and at the University of Edinburgh.
It is currently being deployed in multiple European
projects and is the main translation and training
engine behind the neural MT launch at the World
Intellectual Property Organization.2

In the evolving eco-system of open-source NMT
toolkits, Marian occupies its own niche best char-
acterized by two aspects:

• It is written completely in C++11 and inten-
tionally does not provide Python bindings;
model code and meta-algorithms are meant
to be implemented in efficient C++ code.
• It is self-contained with its own back end,

which provides reverse-mode automatic dif-
ferentiation based on dynamic graphs.

1Named after Marian Rejewski, a Polish mathematician
and cryptologist who reconstructed the German military
Enigma cipher machine sight-unseen in 1932. https://
en.wikipedia.org/wiki/Marian_Rejewski.

2https://slator.com/technology/neural-
conquers-patent-translation-in-major-
wipo-roll-out/

Marian has minimal dependencies (only Boost
and CUDA or a BLAS library) and enables barrier-
free optimization at all levels: meta-algorithms
such as MPI-based multi-node training, efficient
batched beam search, compact implementations of
new models, custom operators, and custom GPU
kernels. Intel has contributed and is optimizing a
CPU backend.

Marian grew out of a C++ re-implementation of
Nematus (Sennrich et al., 2017b), and still main-
tains binary-compatibility for common models.
Hence, we will compare speed mostly against Ne-
matus. OpenNMT (Klein et al., 2017), perhaps one
of the most popular toolkits, has been reported to
have training speed competitive to Nematus.

Marian is distributed under the MIT license
and available from https://marian-nmt.
github.io or the GitHub repository https:
//github.com/marian-nmt/marian.

2 Design Outline

We will very briefly discuss the design of Marian.
Technical details of the implementations will be
provided in later work.

2.1 Custom Auto-Differentiation Engine

The deep-learning back-end included in Marian is
based on reverse-mode auto-differentiation with
dynamic computation graphs and among the es-
tablished machine learning platforms most similar
in design to DyNet (Neubig et al., 2017). While
the back-end could be used for other tasks than
machine translation, we choose to optimize specifi-
cally for this and similar use cases. Optimization
on this level include for instance efficient imple-
mentations of various fused RNN cells, attention
mechanisms or an atomic layer-normalization (Ba
et al., 2016) operator.
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2.2 Extensible Encoder-Decoder Framework
Inspired by the stateful feature function framework
in Moses (Koehn et al., 2007), we implement en-
coders and decoders as classes with the following
(strongly simplified) interface:
class Encoder {

EncoderState build(Batch);
};

class Decoder {
DecoderState startState(EncoderState[]);
DecoderState step(DecoderState, Batch);

};

A Bahdanau-style encoder-decoder model
would implement the entire encoder inside
Encoder::build based on the content of the batch
and place the resulting encoder context inside the
EncoderState object.

Decoder::startState receives a list of
EncoderState (one in the case of the Bahdanau
model, multiple for multi-source models, none
for language models) and creates the initial
DecoderState.

The Decoder::step function consumes the tar-
get part of a batch to produce the output logits of a
model. The time dimension is either expanded by
broadcasting of single tensors or by looping over
the individual time-steps (for instance in the case
of RNNs). Loops and other control structures are
just the standard built-in C++ operations. The same
function can then be used to expand over all given
time steps at once during training and scoring or
step-by-step during translation. Current hypothe-
ses state (e.g. RNN vectors) and current logits are
placed in the next DecoderState object.

Decoder states are used mostly during transla-
tion to select the next set of translation hypotheses.
Complex encoder-decoder models can derive from
DecoderState to implement non-standard selec-
tion behavior, for instance hard-attention models
need to increase attention indices based on the top-
scoring hypotheses.

This framework makes it possible to combine
different encoders and decoders (e.g. RNN-based
encoder with a Transformer decoder) and reduces
implementation effort. In most cases it is enough to
implement a single inference step in order to train,
score and translate with a new model.

2.3 Efficient Meta-algorithms
On top of the auto-diff engine and encoder-decoder
framework, we implemented many efficient meta-
algorithms. These include multi-device (GPU or

CPU) training, scoring and batched beam search,
ensembling of heterogeneous models (e.g. Deep
RNN models and Transformer or language models),
multi-node training and more.

3 Case Studies

In this section we will illustrate how we used the
Marian toolkit to facilitate our own research across
several NLP problems. Each subsection is meant as
a showcase for different components of the toolkit
and demonstrates the maturity and flexibility of
the toolkit. Unless stated otherwise, all mentioned
features are included in the Marian toolkit.

3.1 Improving over WMT2017 systems

Sennrich et al. (2017a) proposed the highest scor-
ing NMT system in terms of BLEU during the
WMT 2017 shared task on English-German news
translation (Bojar et al., 2017a), trained with the
Nematus toolkit (Sennrich et al., 2017b). In this
section, we demonstrate that we can replicate and
slightly outperform these results with an identi-
cal model architecture implemented in Marian and
improve on the recipe with a Transformer-style
(Vaswani et al., 2017) model.

3.1.1 Deep Transition RNN Architecture
The model architecture in Sennrich et al. (2017a)
is a sequence-to-sequence model with single-layer
RNNs in both, the encoder and decoder. The RNN
in the encoder is bi-directional. Depth is achieved
by building stacked GRU-blocks resulting in very
tall RNN cells for every recurrent step (deep transi-
tions). The encoder consists of four GRU-blocks
per cell, the decoder of eight GRU-blocks with an
attention mechanism placed between the first and
second block. As in Sennrich et al. (2017a), em-
beddings size is 512, RNN state size is 1024. We
use layer-normalization (Ba et al., 2016) and varia-
tional drop-out with p = 0.1 (Gal and Ghahramani,
2016) inside GRU-blocks and attention.

3.1.2 Transformer Architecture
We very closely follow the architecture described
in Vaswani et al. (2017) and their ”base” model.

3.1.3 Training Recipe
Modeled after the description3 from Sennrich et al.
(2017a), we perform the following steps:

3The entire recipe is available in form of multi-
ple scripts at https://github.com/marian-nmt/
marian-examples.

117



System test2016 test2017

UEdin WMT17 (single) 33.9 27.5
+Ensemble of 4 35.1 28.3
+R2L Reranking 36.2 28.3

Deep RNN (single) 34.3 27.7
+Ensemble of 4 35.3 28.2
+R2L Reranking 35.9 28.7

Transformer (single) 35.6 28.8
+Ensemble of 4 36.4 29.4
+R2L Reranking 36.8 29.5

Table 1: BLEU results for our replication of the
UEdin WMT17 system for the en-de news transla-
tion task. We reproduced most steps and replaced
the deep RNN model with a Transformer model.

• preprocessing of training data, tokenization,
true-casing4, vocabulary reduction to 36,000
joint BPE subword units (Sennrich et al.,
2016) with a separate tool.5

• training of a shallow model for back-
translation on parallel WMT17 data;
• translation of 10M German monolingual news

sentences to English; concatenation of artifi-
cial training corpus with original data (times
two) to produce new training data;
• training of four left-to-right (L2R) deep mod-

els (either RNN-based or Transformer-based);
• training of four additional deep models with

right-to-left (R2L) orientation; 6

• ensemble-decoding with four L2R models re-
sulting in an n-best list of 12 hypotheses per
input sentence;
• rescoring of n-best list with four R2L models,

all model scores are weighted equally;
• evaluation on newstest-2016 (validation set)

and newstest-2017 with sacreBLEU.7

We train the deep models with synchronous
Adam on 8 NVIDIA Titan X Pascal GPUs with
12GB RAM for 7 epochs each. The back-
translation model is trained with asynchronous
Adam on 8 GPUs. We do not specify a batch size as
Marian adjusts the batch based on available mem-

4Proprocessing was performed using scripts from Moses
(Koehn et al., 2007).

5https://github.com/rsennrich/subword-
nmt

6R2L training, scoring or decoding does not require data
processing, right-to-left inversion is built into Marian.

7https://github.com/mjpost/sacreBLEU
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Figure 1: Training speed in thousands of source
tokens per second for shallow RNN, deep RNN and
Transformer model. Dashed line projects linear
scale-up based on single-GPU performance.

ory to maximize speed and memory usage. This
guarantees that a chosen memory budget will not
be exceeded during training.

All models use tied embeddings between source,
target and output embeddings (Press and Wolf,
2017). Contrary to Sennrich et al. (2017a) or
Vaswani et al. (2017), we do not average check-
points, but maintain a continuously updated expo-
nentially averaged model over the entire training
run. Following Vaswani et al. (2017), the learning
rate is set to 0.0003 and decayed as the inverse
square root of the number of updates after 16,000
updates. When training the transformer model, a
linearly growing learning rate is used during the
first 16,000 iterations, starting with 0 until the base
learning rate is reached.
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Figure 2: Example for error recovery based on dual attention. The missing word “Satz” could only be
recovered based on the original source (marked in red) as it was dropped in the raw MT output.

Model 1 8 64

Shallow RNN 112.3 25.6 15.7
Deep Transition RNN 179.4 36.5 21.0
Transformer 362.7 98.5 71.3

Table 2: Translation time in seconds for newstest-
2017 (3,004 sentences, 76,501 source BPE tokens)
for different architectures and batch sizes.

3.1.4 Performance and Results

Quality. In terms of BLEU (Table 1), we match
the original Nematus models from Sennrich et al.
(2017a). Replacing the deep-transition RNN model
with the transformer model results in a signifi-
cant BLEU improvement of 1.2 BLEU on the
WMT2017 test set.

Training speed. In Figure 1 we demonstrate the
training speed as thousands of source tokens per
second for the models trained in this recipe. All
model types benefit from using more GPUs. Scal-
ing is not linear (dashed lines), but close. The
tokens-per-second rate (w/s) for Nematus on the
same data on a single GPU is about 2800 w/s for
the shallow model. Nematus does not have multi-
GPU training. Marian achieves about 4 times faster
training on a single GPU and about 30 times faster
training on 8 GPUs for identical models.

Translation speed. The back-translation of 10M
sentences with a shallow model takes about four

hours on 8 GPUs at a speed of about 15,850 source
tokens per second at a beam-size of 5 and a batch
size of 64. Batches of sentences are translated in
parallel on multiple GPUs.

In Table 2 we report the total number of seconds
to translate newstest-2017 (3,004 sentences, 76,501
source BPE tokens) on a single GPU for different
batch sizes. We omit model load time (usually
below 10s). Beam size is 5.

3.2 State-of-the-art in Neural Automatic
Post-Editing

In our submission to the Automatic Post-Editing
shared task at WMT-2017 (Bojar et al., 2017b)
and follow-up work (Junczys-Dowmunt and Grund-
kiewicz, 2017a,b), we explore multiple neural ar-
chitectures adapted for the task of automatic post-
editing of machine translation output as implemen-
tations in Marian. We focus on neural end-to-end
models that combine both inputs mt (raw MT out-
put) and src (source language input) in a single
neural architecture, modeling {mt, src} → pe di-
rectly, where pe is post-edited corrected output.

These models are based on multi-source neural
translation models introduced by Zoph and Knight
(2016). Furthermore, we investigate the effect of
hard-attention models or neural transductors (Aha-
roni and Goldberg, 2016) which seem to be well-
suited for monolingual tasks, as well as combina-
tions of both ideas. Dual-attention models that are
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combined with hard attention remain competitive
despite applying fewer changes to the input.

The encoder-decoder framework described in
section 2.2, allowed to integrate dual encoders and
hard-attention without changes to beam-search or
ensembling mechanisms. The dual-attention mech-
anism over two encoders allowed to recover miss-
ing words that would not be recognized based on
raw MT output alone, see Figure 2.

Our final system for the APE shared task scored
second-best according to automatic metrics and
best based on human evaluation.

3.3 State-of-the-art in Neural Grammatical
Error Correction

In Junczys-Dowmunt and Grundkiewicz (2018),
we use Marian for research on transferring meth-
ods from low-resource NMT on the ground of au-
tomatic grammatical error correction (GEC). Pre-
viously, neural methods in GEC did not reach
state-of-the-art results compared to phrase-based
SMT baselines. We successfully adapt several low-
resource MT methods for GEC.

We propose a set of model-independent meth-
ods for neural GEC that can be easily applied in
most GEC settings. The combined effects of these
methods result in better than state-of-the-art neu-
ral GEC models that outperform previously best
neural GEC systems by more than 8% M2 on the
CoNLL-2014 benchmark and more than 4.5% on
the JFLEG test set. Non-neural state-of-the-art sys-
tems are matched on the CoNLL-2014 benchmark
and outperformed by 2% on JFLEG.

Figure 3 illustrates these results on the CoNLL-
2014 test set. To produce this graph, 40 GEC
models (four per entry) and 24 language models
(one per GEC model with pre-training) have been
trained. The language models follow the decoder
architecture and can be used for transfer learning,
weighted decode-time ensembling and re-ranking.
This also includes a Transformer-style language
model with self-attention layers.

Proposed methods include extensions to Mar-
ian, such as source-side noise, a GEC-specific
weighted training-objective, usage of pre-trained
embeddings, transfer learning with pre-trained lan-
guage models, decode-time ensembling of indepen-
dently trained GEC models and language models,
and various deep architectures.
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Figure 3: Comparison on the CoNLL-2014 test set
for investigated methods.

4 Future Work and Conclusions

We introduced Marian, a self-contained neural ma-
chine translation toolkit written in C++ with focus
on efficiency and research. Future work on Mar-
ian’s back-end will look at faster CPU-bound com-
putation, auto-batching mechanisms and automatic
kernel fusion. On the front-end side we hope to
keep up with future state-of-the-art models.
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Abstract

Adoption of messaging communication
and voice assistants has grown rapidly in
the last years. This creates a demand for
tools that speed up prototyping of feature-
rich dialogue systems. An open-source li-
brary DeepPavlov is tailored for develop-
ment of conversational agents. The library
prioritises efficiency, modularity, and ex-
tensibility with the goal to make it easier
to develop dialogue systems from scratch
and with limited data available. It sup-
ports modular as well as end-to-end ap-
proaches to implementation of conversa-
tional agents. Conversational agent con-
sists of skills and every skill can be decom-
posed into components. Components are
usually models which solve typical NLP
tasks such as intent classification, named
entity recognition or pre-trained word vec-
tors. Sequence-to-sequence chit-chat skill,
question answering skill or task-oriented
skill can be assembled from components
provided in the library.

1 Introduction

Dialogue is the most natural way of interaction be-
tween humans. As many other human skills are al-
ready being mastered by machines, meaningful di-
alogue is still a grand challenge for artificial intel-
ligence research. Conversational intelligence has
multiple real-world applications. Dialogue sys-
tems can significantly ease mundane tasks in tech-
nical support, online shopping and consulting ser-
vices.

However, at the moment the research and de-
velopment in dialogue systems and chatbots are
hampered by the scarcity of open-source baselines

and impossibility to effectively reuse existing code
in new solutions. Therefore, in order to improve
upon state-of-the-art dialogue models one needs
to implement such a system from scratch. This
slows down the progress in the field. In order to
overcome this limitation we create DeepPavlov1

— an open-source library for fast development of
dialogue systems. DeepPavlov is designed for:

• development of production-ready chatbots
and complex conversational systems;
• research in dialogue systems and NLP in gen-

eral.

Our goal is to enable AI application developers
and researchers with:

• a set of pre-trained NLP models, pre-defined
dialogue system components (ML/DL/Rule-
based) and pipeline templates;
• a framework for implementing and testing

their own dialogue models;
• tools for integration of applications with ad-

jacent infrastructure (messengers, helpdesk
software etc.);
• a benchmarking environment for conversa-

tional models and uniform access to relevant
datasets.

The library has a wide range of state-of-the-art
solutions for NLP tasks which are used in dia-
logue systems. These NLP functions address low-
level tasks such as tokenisation and spell-checking
as well as a more complex, e.g. recognition of
user intents and entities. They are implemented
as modules with unified structures and are easily
combined into a pipeline. A user of library also
has a set of pre-trained models for easy start. A

1https://github.com/deepmipt/
DeepPavlov
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model that suits user’s task best can be adapted and
fine-tuned to achieve required performance. Un-
like many other frameworks, DeepPavlov allows
combining trainable components with rule-based
components and neural networks with non-neural
ML methods. In addition to that, it allows end-to-
end training for a pipeline of neural models.

The paper is organised as follows. In section
2 we review the existing NLP libraries and ex-
plain how they differ from our work. Section 3
describes architecture of DeepPavlov, and in sec-
tion 4 we talk about features which are available
for user of the library and ways of extending it.
Section 5 presents some components of the library
and benchmarks. Finally, in section 6 we conclude
and outline directions for future work.

2 Related work

One of the closest analogues of DeepPavlov is
Rasa Stack 2 tool. In terms of purpose it is similar
to our library. It provides building blocks for creat-
ing dialogue agents: natural language understand-
ing, dialogue state tracking and policy. Rasa’s ca-
pabilities are mainly focused on task oriented dia-
logue, so unlike our library, it is not readily appli-
cable for constructing agents with multiple skills
including chit-chat. It is also important that Rasa
Stack exports ML components from other libraries
and DeepPavlov includes its’ own models. That
makes easier for developers to fit trainable parts of
the system to the task at hand or add custom ML
models. In addition to that, DeepPavlov is more
general, and allows defining any NLP pipeline, not
only the one related to task oriented dialogue.

Another framework for dialogue agents is Par-
lAI (Miller et al., 2017). ParlAI is in essence a col-
lection of dialogue datasets and models. It defines
standard interfaces for accessing the data, provides
instruments for training models with any regis-
tered dataset and easy integration with Amazon
Mechanical Turk. ParlAI does not have any re-
strictions on models which are implemented there.
The only requirement is to support the standard in-
terface. This enables efficient sharing, training and
testing dialogue models. Alternatively, in Deep-
Pavlov all agents, skills and models must have a
standard structure to ensure reusability.

OpenDial3 is a toolkit for developing spoken
dialogue systems. It was designed to perform di-

2http://rasa.com/products/rasa-stack/
3http://www.opendial-toolkit.net/
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Dialogue systems (DS) features
Modular architecture of DS X X
Framework for training and testing DS X X
Collection of datasets and DSs X
Interactive data labeling and training X X
Integration with messaging platforms X X
Dialogue manager X X
Slot filling X X
NLP features
Text pre-processing X X X X X X
Word embedding X X X X X X
Intent recognition X X X X
Entity recognition X X X X
POS tagging X X X
Dependency parsing X X X
Semantic role labelling X X
Sentence embedding X X

Table 1: Comparison of DeepPavlov with other li-
braries and frameworks.

alogue management tasks, but then extended for
building full-fledged dialogue systems, integrat-
ing speech recognition, language understanding,
generation, speech synthesis, multimodal process-
ing and situation awareness. OpenDial includes a
number of advanced components but lacks recent
deep learning models. Unfortunately ecosystem
of deep learning models in Python is not easily ac-
cessible from OpenDial because it is Java-based.

AllenNLP (Gardner et al., 2017) is another ex-
ample of a powerful NLP framework. It contains
numerous solutions for NLP tasks, but does not in-
clude any dialogue models yet. Tailored for NLP
research deep learning components of AllenNLP
implemented in PyTorch (Paszke et al., 2017) li-
brary, which is more convenient for research, then
for industrial applications. On the other hand,
DeepPavlov by default uses TensorFlow4 produc-
tion grade machine learning framework. Another
limitation of AllenNLP is the fact that it has only
neural models, whereas in DeepPavlov it is pos-
sible to combine in a single pipeline heteroge-
neous components, such as rule-based modules,
non-neural ML models and neural networks.

General NLP frameworks can be also used for
development of dialogue systems, as they provide
low-level operations such as tokenisation, lemma-
tisation, part-of-speech tagging and syntactic pars-

4https://www.tensorflow.org/
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ing. The most notable examples of such frame-
works are Stanford CoreNLP (Manning et al.,
2014) and spaCy5. Both frameworks provide a
set of pre-trained NLP models and functionality
for training but have no specific tools and compo-
nents related to the development of dialogue sys-
tems. Stanford tools are in Java, which compli-
cates their integration with a trove of deep learning
models in Python.

Table 1 gives comparison of DeepPavlov with
other related frameworks.

3 Architecture

The high-level architecture of the library is shown
in figure 1. It has several core concepts.

The smallest building block of the library is
Model. Model stands for any kind of function
in an NLP pipeline. It can be implemented as
a neural network, a non-neural ML model or a
rule-based system. Besides that, Model can have
nested structure, i.e. a Model can include other
Model(s). The library currently has models for
intent classification, entity recognition, dialogue
state tracking, spell-checking and ranking of texts
by similarity.

Models can be joined into a Skill. Skill
solves a larger NLP task compared to Model.
However, in terms of implementation Skills are
not different from Models. The only restriction
for Skills is that their input and output should
both be strings. Therefore, Skills are usually
associated with dialogue tasks. There are currently
three Skills implemented in the library, namely,
modular and sequence-to-sequence goal-oriented
skills as well as question answering module.

Finally, the core concept of the library is an
Agent. Agent is supposed to be a multi-purpose
dialogue system that comprises several Skills
and can switch between them. It can be a dialogue
system that contains a goal-oriented and chatbot
skills and chooses which one to use for generating
the answer depending on user input.

The choice of Skill relevant to the cur-
rent dialogue state is managed by a Skills
Manager. This is similar to architecture of Mi-
crosoft Cortana (Sarikaya et al., 2016) where Ex-
perience providers correspond to Skills, and
selection between them is conducted by a sepa-
rate module based on context and providers’ re-
sponses. Systems with multiple skills and their

5https://spacy.io/

dynamic selection are state of the art in develop-
ment of dialogue agents, but there is currently no
available implementations of such technique.
Models are joined in a Skill via Chainer.

Chainer takes configuration file in JSON format
and sets parameters of Models and the order of
their execution. Joining heterogeneous models is a
striking feature of DeepPavlov library which dis-
tinguishes it from other frameworks. Unlike Al-
lenNLP or Tensor2Tensor where all adjacent mod-
els need to be neural, in DeepPavlov the pipeline
can include neural networks, other ML models,
and rule-based models.

4 Usage

The DeepPavlov library is implemented in Python
3.6 and uses Keras and TensorFlow frame-
works. It is open-source and available on GitHub
under Apache 2.0 license.

A typical use scenario is the following. A devel-
oper takes a pre-build agent, for example, a mod-
ular task-oriented bot, and adapts it to the target
task. Alternatively, an agent can be built from
scratch. In this case skills or models are selected
from available Skills and Models, or created
by developer. The models which are included into
the agent are trained according to a pipeline de-
fined in a JSON file. DeepPavlov has a collection
of pre-trained models, so training is not needed in
many cases.

4.1 Training

DeepPavlov supports end-to-end training.
Models implemented on top of TensorFlow
can be stacked and trained jointly. This feature
is sought after in many NLP tasks, in particular
in goal-oriented dialogue systems. Usually
task-oriented modular systems consist of indepen-
dently trained building blocks, such as, natural
language understanding module, user intent
classification module, dialogue policy manager,
etc. (Chen et al., 2017). There exist efforts of
training such systems in the end-to-end mode (Li
et al., 2018). However, such works are difficult
to replicate and build upon because of lack of
open implementations of end-to-end training.
To the best of our knowledge, DeepPavlov is
the only NLP framework which allows easy
and configurable end-to-end training of dialogue
agents created from interchangeable functional
neural network blocks.
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Figure 1: Conceptual architecture of DeepPavlov library.

4.2 Extension of the library

User can easily extend DeepPavlov library by reg-
istering a new Model or Skill. In order to in-
clude a new Model, a developer should imple-
ment a number of standard classes which are used
to communicate with the environment:

• dataset reader — reads data and returns it in
a specified format,
• dataset iterator — partitions data into train-

ing, validation and test sets, divides the data
into batches,
• vocabulary — performs data indexing, e.g.

converts words into indexes,
• model — performs training.

The library contains base classes which im-
plement these functions (DatasetReader,
DatasetIterator, Vocab classes). Develop-
ers can use them or write their own classes inher-
ited from these base classes. Class for a model can
be inherited from an abstract class NNModel if it
is a neural network, or from a class Estimator
if it is a non-neural ML model. In addition to that,
a user should define a pipeline for the model.

5 Implemented Models and Skills

The library is currently being actively developed
with a large set of Models and Skills already
implemented. Some of them are available for in-
teractive online testing.6

Skill: Goal-Oriented Dialogue System. The
skill implements Hybrid Code Networks (HCNs)
described in (Williams et al., 2017). It allows pre-
dicting responses in goal-oriented dialogue. The
model is configurable: embeddings, slot filling
component and intent classifier can be switched
on and off on demand. Table 2 shows the perfor-
mance of our goal-oriented bot on DSTC2 dataset
(Henderson et al., 2014). The results demonstrate

6http://demo.ipavlov.ai

that our system is close to the state-of-the-art per-
formance.

Model Test accuracy
Bordes and Weston (2016) 41.1%
Perez and Liu (2016) 48.7%
Eric and Manning (2017) 48.0%
Williams et al. (2017) 55.6%
Deeppavlov∗ 55.0%

Table 2: Accuracy of predicting bot answers on
DSTC2 dataset. ∗Figures cannot be compared di-
rectly, because DeepPavlov model used a different
train/test data partition of the dataset.

Model: Entity Recognition. This model is
based on BiLSTM-CRF architecture described in
(Anh et al., 2017). It is also used for the slot-filling
component of the library. Here fuzzy Levenshtein
search is used on the recognition results, since the
incoming utterances could be noisy. In addition
to that, we provide pre-trained NER models for
Russian and English. The performance of entity
recognition on OntoNotes 5.0 dataset7 is given in
table 3. It shows that our implementation is on par
with best-performing models.

Model F1-score
DeepPavlov 87.07 ± 0.21
Strubell at al. (2017) 86.84 ± 0.19
Spacy 85.85
Chiu and Nichols (2015) 86.19 ± 0.25
Durrett and Klein (2014) 84.04

Table 3: Performance of DeepPavlov NER module
on OntoNotes 5.0 dataset. Average F1-score for
18 classes.

Model: Intent Classification. The model im-
plements neural network architecture based on
shallow-and-wide Convolutional Neural Network

7https://catalog.ldc.upenn.edu/
ldc2013t19
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(Kim, 2014) and allows multi-label classification
of sentences. We do benchmarking for this model
on SNIPS dataset8 and compare its performance
with a number of available NLP services. The re-
sults given in the table 4 show that our intent clas-
sification model is comparable with other existing
solutions.

Model F1-score
DeepPavlov 99.10
api.ai 98.68
IBM Watson 98.63
Microsoft LUIS 98.53
Wit.ai 97.97
Snips.ai 97.87
Recast.ai 97.64
Amazon Lex 97.59

Table 4: Performance of DeepPavlov intent recog-
nition on SNIPS dataset. Average F1-score for 7
categories. All scores except DeepPavlov are from
Inten.to study10.

Model: Spelling Correction. The component
is based on work (Brill and Moore, 2000) and
uses statistics-based error model, a static dictio-
nary and an ARPA language model (Paul and
Baker, 1992) to correct spelling errors. We tested
it on the dataset released for SpellRuEval11 —
a competition on spelling correction for Rus-
sian. In table 5 we compare its performance with
Yandex.Speller12 service and open-source spell-
checker GNU Aspell13. Our model is worse than
Yandex.Speller, but it is better then Aspell which
is the only freely available spelling correction tool.
Even our baseline model outperforms Aspell by
large margin, and use of a language model further
boosts its performance.

Other Models. The library also contains a
sequence-to-sequence goal-oriented bot, and a
model for ranking texts by similarity. There are
also models which are currently being developed
and prepared for publication.

8https://github.com/snipsco/
nlu-benchmark/tree/master/
2017-06-custom-intent-engines/

11http://www.dialog-21.ru/en/
evaluation/2016/spelling_correction/

12https://tech.yandex.ru/speller/
13http://aspell.net/

Method Precision Recall F-score
Yandex.Speller 83.09 59.86 69.59
DeepPavlov 41.42 37.21 39.20
DeepPavlov + LM 51.92 53.94 52.91
GNU Aspell 27.85 34.07 30.65

Table 5: Performance of DeepPavlov spell-
checker for Russian.

6 Conclusion

DeepPavlov is an open-source library for develop-
ing dialogue agents in Python. It allows assem-
bling a dialogue system from building blocks that
implement models for required NLP functional-
ity. These blocks can be recombined and reused
in agents for different dialogue tasks. Such mod-
ularity opens possibilities for fast prototyping and
knowledge transfer. The library supports creation
of multi-purpose agents with diverse Skills.
This is important for real life application scenarios
because skills can be added, upgraded or removed
independently when a dialogue system is already
deployed. New products and conversational solu-
tions can utilise existing skills for faster develop-
ment. The library currently contains a range of
Models for solving various NLP tasks, as well as
three Skills: two goal-oriented and a question-
answering one. The library can be easily extended
with new Models and Skills.

DeepPavlov is now being actively developed,
and there are many directions for future work. Im-
plementation of models for Skill Manager to
enable developers assemble full-fledged dialogue
agents with a possibility to switch between multi-
ple Skills is one of the priorities. Other changes
are in progress to improve the usability of the li-
brary. Users will be able to define the pipeline
directly in the code bypassing a JSON config file.
Furthermore, data loading and reading will be sim-
plified, i.e. the majority of datasets will be loaded
by a universal data reader.

Finally, we are working on publishing pre-
trained models for Russian. This often involves
not only training of a model on a Russian dataset,
but sometimes changing the model itself.

We recognise that collaboration is an essen-
tial part of any scientific, technological and open-
source project. DeepPavlov is open to comments,
bug reports, feature requests and contributions to
our GitHub repo.
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Abstract

We compare the fast training and decod-
ing speed of RETURNN of attention mod-
els for translation, due to fast CUDA
LSTM kernels, and a fast pure Tensor-
Flow beam search decoder. We show that
a layer-wise pretraining scheme for recur-
rent attention models gives over 1% BLEU
improvement absolute and it allows to
train deeper recurrent encoder networks.
Promising preliminary results on max. ex-
pected BLEU training are presented. We
obtain state-of-the-art models trained on
the WMT 2017 German↔English trans-
lation task. We also present end-to-end
model results for speech recognition on
the Switchboard task. The flexibility of
RETURNN allows a fast research feed-
back loop to experiment with alternative
architectures, and its generality allows to
use it on a wide range of applications.

1 Introduction

RETURNN, the RWTH extensible training frame-
work for universal recurrent neural networks, was
introduced in (Doetsch et al., 2017). The source
code is fully open1. It can use Theano (Theano
Development Team, 2016) or TensorFlow (Ten-
sorFlow Development Team, 2015) for its com-
putation. Since it was introduced, it got ex-
tended by comprehensive TensorFlow support. A
generic recurrent layer allows for a wide range of
encoder-decoder-attention or other recurrent struc-
tures. An automatic optimization logic can opti-
mize the computation graph depending on train-
ing, scheduled sampling, sequence training, or
beam search decoding. The automatic optimiza-
tion together with our fast native CUDA imple-
mented LSTM kernels allows for very fast train-

1
https://github.com/rwth-i6/returnn

ing and decoding. We will show in speed compar-
isons with Sockeye (Hieber et al., 2017) that we
are at least as fast or usually faster in both train-
ing and decoding. Additionally, we show in ex-
periments that we can train very competitive mod-
els for machine translation and speech recogni-
tion. This flexibility together with the speed is the
biggest strength of RETURNN.

Our focus will be on recurrent attention mod-
els. We introduce a layer-wise pretraining scheme
for attention models and show its significant ef-
fect on deep recurrent encoder models. We show
promising preliminary results on expected maxi-
mum BLEU training. The configuration files of
all the experiments are publicly available2.

2 Related work

Multiple frameworks exist for training attention
models, most of which are focused on machine
translation.

• Sockeye (Hieber et al., 2017) is a generic
framework based on MXNet (Chen et al.,
2015) which is most compareable to RE-
TURNN as it is generic although we argue
that RETURNN is more flexible and faster.

• OpenNMT (Levin et al., 2017a,b) based on
Lua (Ierusalimschy et al., 2006) which is dis-
continued in development. Separate PyTorch
(PyTorch Development Team, 2018) and
TensorFlow implementation exists, which are
more recent. We will demonstrate that RE-
TURNN is more flexible.

• Nematus (Sennrich et al., 2017) is based on
Theano (Theano Development Team, 2016)
which is going to be discontinued in devel-
opment. We show that RETURNN is much
faster in both training and decoding as can
be concluded from our speed comparison to

2
https://github.com/rwth-i6/returnn-experiments/tree/

master/2018-attention

128



Sockeye and the comparisons performed by
the Sockeye authors (Hieber et al., 2017).

• Marian (Junczys-Dowmunt et al., 2016) is
implemented directly in C++ for perfor-
mance reasons. Again by our speed compar-
isons and the comparisons performed by the
Sockeye authors (Hieber et al., 2017), one
can conclude that RETURNN is very com-
petitive in terms of speed, but is much more
flexible.

• NeuralMonkey (Helcl and Libovickỳ, 2017)
is based on TensorFlow (TensorFlow Devel-
opment Team, 2015). This framework is not
as flexible as RETURNN. Also here we can
conclude just as before that RETURNN is
much faster in both training and decoding.

• Tensor2Tensor (Vaswani et al., 2018) is based
on TensorFlow (TensorFlow Development
Team, 2015). It comes with the reference
implementation of the Transformer model
(Vaswani et al., 2017), however, it lacks sup-
port for recurrent decoder models and overall
is way less flexible than RETURNN.

3 Speed comparison

Various improved and fast CUDA LSTM kernels
are available for the TensorFlow backend in RE-
TURNN. A comparison of the speed of its own
LSTM kernel vs. other TensorFlow LSTM kernels
can be found on the website3. In addition, an au-
tomatic optimization path which moves out com-
putation of the recurrent loop as much as possible
improves the performance.

We want to compare different toolkits in train-
ing and decoding for a recurrent attention model
in terms of speed on a GPU. Here, we try to
maximize the batch size such that it still fits into
the GPU memory of our reference GPU card, the
Nvidia GTX 1080 Ti with 11 GB of memory. We
keep the maximum sequence length in a batch the
same, which is 60 words. We always use Adam
(Kingma and Ba, 2014) for training. In Table 1,
we see that RETURNN is the fastest, and also is
most efficient in its memory consumption (implied
by the larger batches). For these speed experi-
ments, we did not tune any of the hyper parame-
ters of RETURNN which explains its worse per-
formance. The aim here is to match Sockeye’s
exact architecture for speed and memory com-
parison. During training, we observed that the
learning rate scheduling settings of Sockeye are

3
http://returnn.readthedocs.io/en/latest/tf_lstm_

benchmark.html

toolkit encoder time batch BLEU [%]
n. layers [h] size 2015 2017

RETURNN 4 11.25 8500 28.0 28.4
Sockeye 11.45 3000 28.9 29.2
RETURNN 6 12.87 7500 28.7 28.7
Sockeye 14.76 2500 29.4 29.1

Table 1: Training speed and memory consumption
on WMT 2017 German→English. Train time is
for seeing the full train dataset once. Batch size is
in words, such that it almost maximizes the GPU
memory consumption. The BLEU score is for
the converged models, reported for newstest2015
(dev) and newstest2017. The encoder has one
bidirectional LSTM layer and either 3 or 5 uni-
directional LSTM layers.

more pessimistic, i.e. the decrease is slower and
it sees the data more often until convergence. This
greatly increases the total training time but in our
experience also improves the model.

For decoding, we extend RETURNN with a fast
pure TensorFlow beam search decoder, which sup-
ports batch decoding and can run on the GPU.
A speed and memory consumption comparison is
shown in Table 2. We see that RETURNN is the
fastest. We report results for the batch size that
yields the best speed. The slow speed of Sockeye
is due to frequent cross-device communication.

toolkit encoder batch size time [secs]
n. layers [seqs] 2015 2017

RETURNN 4 50 54 71
Sockeye 5 398 581
RETURNN 6 50 56 70
Sockeye 5 403 585

Table 2: Decoding speed and memory consump-
tion on WMT 2017 German→English. Time is
for decoding the whole dataset, reported for new-
stest2015 (dev) and newstest2017, with beam size
12. Batch size is the number of sequences, such
that it optimizes the decoding speed. This does not
mean that it uses the whole GPU memory. These
are the same models as in Table 1.

4 Performance comparison

We want to study what possible performance we
can get with each framework on a specific task.
We restrict this comparison here to recurrent at-
tention models.

The first task is the WMT 2017 German to En-
glish translation task. We use the same 20K byte-
pair encoding subword units in all toolkits (Sen-
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nrich et al., 2015). We also use Adam (Kingma
and Ba, 2014) in all cases. The learning rate
scheduling is also similar. In RETURNN, we use
a 6 layer bidirectional encoder, trained with pre-
training and label smoothing. It has bidirectional
LSTMs in every layer of the encoder, unlike Sock-
eye, which only has the first layer bidirectional.
We use a variant of attention weight / fertility feed-
back (Tu et al., 2016), which is inverse in our case,
to use a multiplication instead of a division, for
better numerical stability. Our model was derived
from the model presented by (Bahar et al., 2017;
Peter et al., 2017) and (Bahdanau et al., 2014).

We report the best performing Sockeye model
we trained, which has 1 bidirectional and 3 unidi-
rectional encoder layers, 1 pre-attention target re-
current layer, and 1 post-attention decoder layer.
We trained with a max sequence length of 75,
and used the ‘coverage’ RNN attention type. For
Sockeye, the final model is an average of the 4
best runs according to the development perplex-
ity. The results are collected in Table 3. We obtain
the best results with Sockeye using a Transformer
network model (Vaswani et al., 2017), where we
achieve 32.0% BLEU on newstest2017. So far,
RETURNN does not support this architecture; see
Section 7 for details.

toolkit BLEU [%]
2015 2017

RETURNN 31.2 31.3
Sockeye 29.7 30.2

Table 3: Comparison on German→English.

We compare RETURNN to other toolkits on
the WMT 2017 English→German translation task
in Table 4. We observe that our toolkit outper-
forms all other toolkits. The best result obtained
by other toolkits is using Marian (25.5% BLEU).
In comparison, RETURNN achieves 26.1%. We
also compare RETURNN to the best performing
single systems of WMT 2017. In comparison to
the fine-tuned evaluation systems that also include
back-translated data, our model performs worse by
only 0.3 to 0.9 BLEU. We did not run experiments
with back-translated data, which can potentially
boost the performance by several BLEU points.

We also have preliminary results with recur-
rent attention models for speech recognition on
the Switchboard task, which we trained on the
300h trainset. We report on both the Switch-
board (SWB) and the CallHome (CH) part of
Hub5’00 and Hub5’01. We also compare to a con-
ventional frame-wise trained hybrid deep bidirec-

System BLEU [%]
newstest2017

RETURNN 26.1
OpenNMT-py 21.8
OpenNMT-lua 22.6
Marian 25.6
Nematus 23.5
Sockeye 25.3
WMT 2017 Single Systems + bt data
LMU 26.4
+ reranking 27.0
Systran 26.5
Edinburgh 26.5

Table 4: Performance comparison on WMT 2017
English→German. The baseline systems (upper
half) are trained on the parallel data of the WMT
Enlgish→German 2017 task. We downloaded the
hypotheses from here.4 The WMT 2017 system
hypotheses (lower half) are generated using sys-
tems having additional back- translation (bt) data.
These hypotheses are downloaded from here.5

tional LSTM with 6 layers (Zeyer et al., 2017b),
and a generalized full-sum sequence trained hy-
brid deep bidirectional LSTM with 5 layers (Zeyer
et al., 2017a). The frame-wise trained hybrid
model also uses focal loss (Lin et al., 2017). All
the hybrid models use a phonetic lexicon and
an external 4-gram language model which was
trained on the transcripts of both the Switchboard
and the Fisher corpus. The attention model does
not use any external language model nor a pho-
netic lexicon. Its output labels are byte-pair en-
coded subword units (Sennrich et al., 2015). It has
a 6 layer bidirectional encoder, which also applies
max-pooling in the time dimension, i.e. it reduces
the input sequence by factor 8. Pretraining as ex-
plained in Section 6 was applied. To our knowl-
edge, this is the best reported result for an end-to-
end system on Switchboard 300h without using a
language model or the lexicon. For comparison,
we also selected comparable results from the lit-
erature. From these, the Baidu DeepSpeech CTC
model is modeled on characters and does not use
the lexicon but it does use a language model. The
results are collected in Table 5.

5 Maximum expected BLEU training

We implement expected risk minimization, i.e.
expected BLEU maximization or expected WER

4https://github.com/awslabs/sockeye/
tree/arxiv_1217/arxiv/output/rnn

5http://matrix.statmt.org/
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model training WER [%]
Hub5’00 Hub5’01

Σ SWB CH
hybrid1 frame-wise 11.2
hybrid2 LF-MMI 15.8 10.8
CTC3 CTC 25.9 20.0 31.8

hybrid frame-wise 14.4 9.8 19.0 14.7
full-sum 15.9 10.1 21.8 14.5

attention frame-wise 20.3 13.5 27.1 19.9
Table 5: Performance comparison on Switch-
board, trained on 300h. hybrid1 is the IBM 2017
ResNet model (Saon et al., 2017). hybrid2 trained
with Lattice-free MMI (Hadian et al., 2018).
CTC3 is the Baidu 2014 DeepSpeech model (Han-
nun et al., 2014). Our attention model does not use
any language model.

minimization, following (Prabhavalkar et al.,
2017; Edunov et al., 2017). The results are still
preliminary but promising. We do the approxima-
tion by beam search with beam size 4. For a 4
layer encoder network model, with forced align-
ment cross entropy training, we get 30.3% BLEU,
and when we use maximum expected BLEU train-
ing, we get 31.1% BLEU.

6 Pretraining

RETURNN supports very generic and flexible
pretraining which iteratively starts with a small
model and adds new layers in the process. A
similar pretraining scheme for deep bidirectional
LSTMs acoustic speech models was presented ear-
lier (Zeyer et al., 2017b). Here, we only study a
layer-wise construction of the deep bidirectional
LSTM encoder network of an encoder-decoder-
attention model for translation on the WMT 2017
German→English task. Experimental results are
presented in Table 6. The observations very
clearly match our expectations, that we can both
greatly improve the overall performance, and we
are able to train deeper models. A minor benefit is
faster training speed of the initial pretrain epochs.

encoder BLEU [%]
num. layers no pretrain with pretrain

2 29.3 -
3 29.9 -
4 29.1 30.3
5 - 30.3
6 - 30.6
7 - 30.9

Table 6: Pretraining comparison.

In preliminary recurrent attention experiments
for speech recognition, pretraining seems very es-
sential to get good performance.

Also, we use in all cases a learning rate schedul-
ing scheme, which lowers the learning rate if the
cross validation score does not improve enough.
Without pretraining and a 2 layer encoder in the
same setting as above, with a fixed learning rate,
we get 28.4% BLEU, where-as with learning rate
scheduling, we get 29.3% BLEU.

7 RETURNN features

Besides the fast speed, and the many features such
as pretraining, scheduled sampling (Bengio et al.,
2015), label smoothing (Szegedy et al., 2016), and
the ability to train state-of-the-art models, one of
the greatest strengths of RETURNN is its flexibil-
ity. The definition of the recurrent dependencies
and the whole model architecture are provided in
a very explicit way via a config file. Thus, e.g. try-
ing out a new kind of attention scheme, adding a
new latent variable to the search space, or drasti-
cally changing the whole architecture, is all sup-
ported already and does not need any more im-
plementation in RETURNN. All that can be ex-
pressed by the neural network definition in the
config. A (simplified) example of a network defi-
nition is given in Listing 1.

Each layer in this definition does some com-
putation, specified via the class attribute, and
gets its input from other layers via the from at-
tribute, or from the input data, in case of layer
src. The output layer defines a whole subnet-
work, which can make use of recurrent dependen-
cies via a prev: prefix. Depending on whether
training or decoding is done, the choice layer
class would return the true labels or the predicted
labels. In case of scheduled sampling or max
BLEU training, we can also use the predicted label
during training. Depending on this configuration,
during compilation of the computation graph, RE-
TURNN figures out that certain calculations can
be moved out of the recurrent loop. This automatic
optimization also adds to the speedup. This flexi-
bility and ease of trying out new architectures and
models allow for a very efficient development / re-
search feedback loop. Fast, consistent and robust
feedback greatly helps the productivity and qual-
ity. This is very different to other toolkits which
only support a predefined set of architectures.

To summarize the features of RETURNN:
• flexibility (see above),
• generality, wide range of models and appli-
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network = {
# recurrent bidirectional encoder:
"src": {"class": "linear", "n_out": 620}, # embedding
"enc0_fw": {"class": "rec", "unit": "nativelstm2", "n_out": 1000, "direction": 1, "from": ["src"]},
"enc0_bw": {"class": "rec", "unit": "nativelstm2", "n_out": 1000, "direction": -1, "from": ["src"]},
# ... more encoder LSTM layers

"encoder": {"class": "copy", "from": ["enc5_fw", "enc5_bw"]},
"enc_ctx": {"class": "linear", "from": ["encoder"], "n_out": 1000},

# recurrent decoder:
"output": {"class": "rec", "from": [], "unit": {

"output": {"class": "choice", "from": ["output_prob"]},
"trg": {"class": "linear", "from": ["output"], "n_out": 620, "initial_output": 0},
"weight_feedback": {"class": "linear", "from": ["prev:accum_a"], "n_out": 1000},
"s_tr": {"class": "linear", "from": ["s"], "n_out": 1000},
"e_in": {"class": "combine", "kind": "add", "from": ["base:enc_ctx", "weight_feedback", "s_tr"]},
"e_tanh": {"class": "activation", "activation": "tanh", "from": ["e_in"]},
"e": {"class": "linear", "from": ["e_tanh"], "n_out": 1},
"a": {"class": "softmax_over_spatial", "from": ["e"]},
"accum_a": {"class": "combine", "kind": "add", "from": ["prev:accum_a", "a"]},
"att": {"class": "generic_attention", "weights": "a", "base": "base:encoder"},
"s": {"class": "rnn_cell", "unit": "LSTMBlock", "from": ["prev:trg", "prev:att"], "n_out": 1000},
"readout": {"class": "linear", "activation": "relu", "from": ["s", "prev:trg", "att"], "n_out": 1000},
"output_prob": {"class": "softmax", "from": ["readout"], "dropout": 0.3, "loss": "ce",

"loss_opts": {"label_smoothing": 0.1}}
}},
"decision": {"class": "decide", "from": ["output"], "loss": "bleu"}
}

Listing 1: RETURNN config example for an attention model

cations, such as hybrid acoustic speech mod-
els, language models and attention models
for translation and speech recognition,

• fast CUDA LSTM kernels,
• attention models, generic recurrent layer, fast

beam search decoder,
• sequence training (min WER, max BLEU),
• label smoothing, scheduled sampling,
• TensorFlow backend and the old Theano

backend, which has a separate fast atten-
tion implementation (Doetsch et al., 2016),
fast CUDA MDLSTM kernels (Voigtlaender
et al., 2016), as well as fast sequence training
(Zeyer et al., 2017c).

One feature which is currently work-in-progress
is the support for self-attention in the recurrent
layer. The reason this needs some more work is
because we currently only support access to the
previous time step (prev:) but not to the whole
past, which is needed for self-attention. That is
why we did not present any Transformer (Vaswani
et al., 2017) comparisons yet.

8 Conclusion

We have demonstrated many promising features of
RETURNN and presented state-of-the-art systems
in translation and speech recognition. We argue
that it is a convenient testbed for research and ap-
plications. We introduced pretraining for recurrent
attention models and showed its advantages while
not having any disadvantages. Maximum expected
BLEU training seems to be promising.
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Abstract

Although deep neural networks have been
proving to be excellent tools to deliver
state-of-the-art results, when data is scarce
and the tackled tasks involve complex
semantic inference, deep linguistic pro-
cessing and traditional structure-based ap-
proaches, such as tree kernel methods, are
an alternative solution. Community Ques-
tion Answering is a research area that ben-
efits from deep linguistic analysis to im-
prove the experience of the community of
forum users. In this paper, we present a
UIMA framework to distribute the compu-
tation of cQA tasks over computer clusters
such that traditional systems can scale to
large datasets and deliver fast processing.

1 Introduction

Web forums have been developed to help users to
share their information. Given the natural use of
questions and answers in the human communica-
tion process, traditional automated Question An-
swering (QA) techniques have been recently ap-
plied to improve the forum user experience.

Community Question Answering (cQA) deals
with difficult tasks, including comment re-ranking
and question re-ranking. The former task is de-
fined as follows: given a thread of comments re-
lated to a user question, re-rank the comments in
order of relevance with respect to the question.
The latter task comes into play when a user wants
to ask a new question. In this case an automatic
system can be used to retrieve semantically simi-
lar questions, together with their threads of com-
ments, already posted in the forum, and sort them

∗This work was carried out when the author was princi-
pal scientist at QCRI.

according to their relevance against the freshly-
posted question. Solving these tasks is beneficial
both for the user, who avoids to manually look for
such information, and the forum, since related in-
formation is not spread into multiple threads.

Previous cQA challenges, e.g., (Nakov et al.,
2015, 2016, 2017) have shown that, to build ac-
curate rankers, structural information and linguis-
tic processing are required. Indeed, the results
of the challenges have shown that (i) neural ap-
proaches are not enough to deliver the state of
the art and (ii) kernel methods applied to syntactic
structures often achieve top performance (Barrón-
Cedeño et al., 2016; Filice et al., 2016).

Unfortunately, the models above are rather inef-
ficient, as they require among others the syntactic
parsing of long texts and kernel machine process-
ing. The latter can be computationally expensive
as the classification step requires quadratic time in
the number of support vectors. Thus, approaches
to speed up computation are very appealing. The
classical method in these cases is to distribute and
parallelize the computation. However, as the cQA
processing pipelines can be very complex, an en-
gineering approach to distributed computing is re-
quired.

In this paper, we propose a UIMA framework
to manage the computation distribution of the
complicated processing pipelines involved in cQA
systems. In particular, we make the computa-
tion of standard linguistic processing components,
feature/structure extractors and classification or
learning phases scalable. This way, we both at-
tain (i) the state-of-the-art accuracy of tree kernel-
based rerankers and (ii) fast response. This makes
our models useful for practical applications. We
highlight the fact that our framework is rather flex-
ible and extensible as new linguistic or machine
learning components can be easily added. Indeed,
we built two different cQA systems for English
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and Arabic (Barrón-Cedeño et al., 2016) by simply
adding basic linguistic modules, e.g., the syntactic
parsers, for both languages.

We make our software framework, based on
UIMA technology, freely available to the research
and industrial community by also providing our
toolkit with tutorials and usage options for differ-
ent degrees of user expertise.

2 Related Work

One of the first approaches to answer ranking re-
lied on metadata (Jeon et al., 2006) (e.g., click
counts). Agichtein et al. (2008) explored a
graph-based model of contributors relationships
together with both content- and usage-based fea-
tures. Some of the most recent proposals aim at
classifying whole threads of answers (Joty et al.,
2015; Zhou et al., 2015) rather than each answer
in isolation.

Regarding question ranking, Duan et al. (2008)
searched for equivalent questions by considering
the question’s focus. Zhou et al. (2011) used
a (monolingual) phrase-based translation model
and Wang et al. (2009) computed similarities on
syntactic-trees. A different approach using topic
modeling for question retrieval was introduced
by Ji et al. (2012) and Zhang et al. (2014). dos
Santos et al. (2015) applied convolutional neural
networks.

The three editions of the SemEval Task 3 on
cQA (Nakov et al., 2015, 2016, 2017) have trig-
gered a manifold of approaches. The challenges
of 2016 and 2017 included Task 3-A on comment
re-ranking and Task 3-B on question re-ranking.
For task 3-A, Tran et al. (2015) applied machine
translation, topic models, embeddings, and simi-
larities. Hou et al. (2015) and Nicosia et al. (2015)
applied supervised models with lexical, syntactic
and meta-data features.

For task 3-B The top-three participants ap-
plied SVMs as learning models (Franco-Salvador
et al., 2016; Barrón-Cedeño et al., 2016; Filice
et al., 2016). Franco-Salvador et al. (2016) re-
lied heavily on distributed representations and se-
mantic information sources, such as Babelnet and
Framenet. Both Barrón-Cedeño et al. (2016)
and Filice et al. (2016) use lexical similarities
and tree kernels on parse trees. No statistically-
significant differences were observed in the per-
formance of these three systems.

In summary, the results for both tasks show

that SVM systems based on a combination of vec-
torial features and tree kernels perform consis-
tently well on the different editions of the com-
petition (Barrón-Cedeño et al., 2016; Filice et al.,
2016, 2017): the systems described in those papers
won Task 3-A both years, placed second and first
on Task 3-B in years 2016 and 2017, respectively.

The most related demonstration papers to ours
are (Uryupina et al., 2016; Rücklé and Gurevych,
2017). As ours, the system of Uryupina et al.
(2016) is a UIMA-based pipeline. Yet in their
case the input is a single text and the output is
the result of different levels of textual annotation
(e.g., tokens, syntactic information, or wikifica-
tion). Rücklé and Gurevych (2017) developed an
architecture to perform question and answer re-
ranking in cQA based on deep learning. Their
main focus is the analysis of attention models in
these tasks.

3 Structural Linguistic Models for cQA

In this section, we describe the components of the
two learning systems.

The ranking function for both tasks can be im-
plemented by the scoring function of an SVM,
r : X ×X → R, where X is either a set of com-
ments (Task 3-A) or a set of questions (Task 3-B).
For example, r can be a linear function, r(x, x′) =
~w · φ(x, x′), where ~w is the model and φ() pro-
vides a feature vector representation of the pair,
(x, x′). The vectors φ used by Barrón-Cedeño
et al. (2016); Filice et al. (2016) are a combina-
tion of tree kernel similarity functions and features
derived from similarity measures between the two
comments/questions constituting one learning ex-
ample, as well as features extracting information
from the forum threads the comments/questions
belong to.

3.1 Tree Kernel

We use the kernel function defined by Filice et al.
(2015):

K((x1, x
′
1), (x2, x

′
2)) = TK

(
tx′1(x1), tx′2(x2)

)

+ TK
(
tx1(x

′
1), tx2(x

′
2)
)

where TK is the Partial Tree Kernel by Moschitti
(2006) and ty(x) is a function which enriches the
tree x with information derived from its structural
similarity with the tree y (see (Severyn and Mos-
chitti, 2012; Filice et al., 2016) for details).
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3.2 Feature Vectors
Various sets of features have been developed in
(Barrón-Cedeño et al., 2016; Filice et al., 2016).
A number of features which include similarities
between the two texts constituting one learning ex-
ample are computed. Such features include greedy
string tiling, longest common subsequence, Jac-
card coefficient, word containment, and cosine
similarity, which can be computed on n-grams or
bag-of-word representations. Another similarity
can be obtained by comparing syntactic trees with
the Partial Tree Kernel, i.e., TK

(
tx1(x

′
1), tx′1(x1)

)
.

Note that, different from the model in Section 3.1,
the Partial Tree Kernel here is applied to the mem-
bers of the same pair and thus only produces
one feature. In the case of question re-ranking,
the SemEval datasets include information about
the ranking of the question, as generated by the
Google search engine. Such information is ex-
ploited in two ways: “as-is”, by using directly the
position, pos, as a feature of the question, or its
inverse, pos−1.

4 Distributed Framework using UIMA

4.1 UIMA introduction
The Unstructured Information Management Ar-
chitecture (UIMA) is a software framework for
creating, combining, and deploying an arbitrary
number of language analytics. UIMA Asyn-
chronous Scaleout (UIMA-AS) is a set of func-
tionalities integrated in UIMA to enable scalabil-
ity using a distributed environment. In UIMA,
each document is contained in a Common Analy-
sis Structure (CAS), annotated by processing units
called Analysis Engines, or Annotators.

In UIMA-AS, there are basically three actors:
(i) client applications, (ii) brokers, and (iii) UIMA
pipelines. The latter is connected to the broker
and listens for requests on a queue managed by the
broker. The annotation steps are as follows: (a) the
client sends the CAS to the broker; (b) the broker,
in turn, sends it to the pipeline, which is listening
to a specific queue; (c) the pipeline annotates the
CAS and send it back to the broker; and finally,
(d) the broker send the annotated CAS back to the
client. Our pipeline is designed and developed in
this framework.

4.2 Our Pipeline
There are three main modules: (i) feature extrac-
tion, (ii) learning, and (iii) classification. Each

module is designed to be replicated in multiple in-
stances to achieve scalability. Each of these mod-
ules is a pipeline deployed as UIMA-AS service
that listens to a queue of processing requests (reg-
istered on the broker). Each module can interact
with others by means of the broker if necessary.
For instance, both learning and classification use
the feature extraction to extract the features for the
input instances.

The entire framework offers two levels of scal-
ability. The first one deploys the same pipeline
in different UIMA-AS services but listens to the
same queue. In this case, the broker distributes
the processing requests to the different CPUs. The
second one replicates the pipeline a number of
times internally to a UIMA-AS service. In this
case, UIMA-AS internally handles the parallel
processing of multiple requests.

In UIMA each annotator and pipeline is de-
scribed and configured with XML descriptors.
The descriptors of an annotator include informa-
tion related to the implementation class, config-
uration parameters and binding of resources (if
any). The descriptor of a pipeline includes in-
formation regarding the annotators it is composed
of and their order. Furthermore, the deployment
descriptors for the pipelines include information
about the location of the broker and the queue’s
name, where the pipeline listen to the processing
requests. This configuration process is fully au-
tomated in our pipeline and all the required de-
scriptors are generated automatically. Finally, the
pipeline can also be deployed on a single machine
for either local or parallel computation.

Feature Extraction. Each CAS received by this
module contains an instance of one of the afore-
mentioned tasks, i.e., a question along with a set
of comments or a set of other questions. The first
step of the feature extraction is a sequence of stan-
dard preprocessing steps, e.g., segmentation, POS-
tagging, lemmatization, syntactic parsing. The
questions and comments of each instance of the
specific task can be processed in parallel. The in-
put CASes are hence split in a way that each of
the output CASes contains either a single question
or a single comment and it is asynchronously pro-
cessed in the Preprocessing sub-pipeline. The pre-
processed CASes are then aggregated back to form
the input task instances. In its current status, our
pipeline is meant to work with pairs. Therefore,
the aggregated CASes are split in order to form
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question–comment (for comment re-ranking) or
question–question (for question re-ranking) pairs.
These are instances to be used in the learning or
classification phase.

The output CASes are fed into the Feature Com-
putation sub-pipeline. This sub-component com-
putes a set of features for each CAS using the an-
notation previously created. It is composed of a se-
quence of Vectorial Features Annotators and each
of them makes use of a Feature Computer (FC)
to compute each feature. A FC is implemented as
a resource that, given a CAS representing a pair,
computes a feature based on the first, the second,
or both members of the pair. This allows for shar-
ing FC among different annotators. After the com-
putation of all features is completed, it is possi-
ble to add additional information and/or represen-
tations of the CAS contents, e.g., syntactic parse
trees. This is done by means of the Decoration
sub-pipeline that is a sequence of Decorators. Fi-
nally, a Representation Extractor (RE) produces
the features’ representation that the learner and the
classifier expect to process. The RE uses a seri-
alizer, which is a resource in charge of serializing
the generic pair in the target representation format.
The serializer is plugged into the RE at deploy-
ment time to allow the integration of any learning
and classification component.

Learning. The learning module is composed of a
single annotator that makes use of a Learner. A
learner is a resource plugged at deployment time.
This allows to plug any algorithm by wrapping it
in a learner. Furthermore, a single instance can be
shared among multiple instances of the learning
module. Note that all representation instances are
collected before the learning process can start. The
resulting trained model is stored and the local file
path is sent back to the client in an output CAS. At
publication time, the pipeline implements SVM-
based models, but it can be extended with others.

Classification. This module is composed by a sin-
gle annotator that makes use of a resource plugged
at deployment time as well. In this case, the re-
source is a Classifier that uses one of the trained
models stored by the learning module. Again, im-
plementing the classifier as a resource allows to
plug any type of classification algorithm and to
share it among multiple instances of the classifi-
cation module. Every time the classification an-
notator receives a new instance, it computes the
prediction, updates the input CAS adding the cor-

responding information and gives it as output.

5 Software Package

Our cQA pipeline is available for download 1 and
is distributed under the terms of the Apache 2.0 Li-
cense. By taking advantage of the Apache Maven
project management tool, most dependencies are
automatically handled. The only exception is the
UIMA framework toolkit. Still, its installation is
straightforward. The pipeline is able to process
natural language texts and metadata information
associated with them and offers three main func-
tionalities:

Feature and representation extraction al-
lows to compute features, such as the ones de-
scribed in Section 3.2. Moreover, the pipeline al-
lows to compute parse trees by using any third-
party UIMA parser. Currently we integrated the
DKPro (Eckart de Castilho and Gurevych, 2014)
wrapper of the Stanford parser.

Learning and classification allow to apply a
variety of learning algorithms on vectorial or
structured data. Currently KeLP (Filice et al.,
2018) 2 is integrated in the pipeline. KeLP allows
to apply a growing number of kernel-based algo-
rithms and kernel functions to perform unsuper-
vised, online and batch supervised kernel meth-
ods. We opt for integrating KeLP because the
kernel-based cQA systems relying on it perform at
state-of-the-art level (see Section 2). Our pipeline
is able to reproduce the state-of-the-art models for
SemEval cQA tasks 3-A and 3-B.

Besides the functionalities just described, the
pipeline has a modular structure. It allows to eas-
ily plug in new components, such as alternative
natural language preprocessing components (lem-
matizers, POS taggers, parsers), features, repre-
sentations, and learning algorithms. The pipeline
can either be run on a stand-alone machine or de-
ployed on a cluster to distribute the computation
load. In either case, simple classes are provided to
run the pipeline from the command line.

Since this is an ongoing effort, we provide up-
dated information on the wiki page of the GitHub
project. The wiki provides instructions on the in-
stallation and tutorials to illustrate how to use the
three main functionalities: (i) create representa-
tions, (ii) learn models, and (iii) classify data.

1https://github.com/QAML/
S3QACoreFramework

2http://www.kelp-ml.org
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Figure 1: A prototype of the UIMA pipeline applied to a real-world forum.

Our pipeline has been used in a number of pro-
totypes. Qatarliving.com is a forum where expats
in Qatar may ask questions on a variety of dif-
ferent topics and comment on them. We imple-
mented the technology described in Section 3 both
for question and comment re-ranking 3. Fig. 1
shows an example of usage: the user asks the
question “Where can I buy a bike in Doha?”, the
systems returns similar questions in the forum to-
gether with the best overall comment. By click-
ing on a question, the right panel shows the corre-
sponding thread of comments with their relevance.

A second example is a cQA demo4 in Arabic,
which retrieves data from multiple medical forums
from middle-east. In this case physicians answer
to patients’ questions: the left panel shows a ques-
tion from a user and the right panel similar ques-
tions with the answers from the expert. In general
there is only one (good) answer from the doctor,
so this is mostly a question re-ranking task.

3http://www.qatarliving.com/betasearch
4http://cqa.iyas.qcri.org/

cQA-Arabic-Demo

6 Conclusions

We presented a UIMA framework to distribute
the computation of community question answer-
ing tasks. As a result, we can scale deep linguis-
tic analysis and kernel technology to large datasets
and deliver fast processing. Our toolkit is rather
flexible and can be extended with new linguis-
tic components as well as new machine learning
components and algorithms. In addition to sup-
port state-of-the-art community question answer-
ing frameworks, an interesting consequence of the
properties above is the fact that our framework
also enables multilingual and potentially cross-
language pipelines.
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Abstract

Chinese pinyin input method engine
(IME) lets user conveniently input Chi-
nese into a computer by typing pinyin
through the common keyboard. In addi-
tion to offering high conversion quality,
modern pinyin IME is supposed to aid us-
er input with extended association func-
tion. However, existing solutions for such
functions are roughly based on oversim-
plified matching algorithms at word-level,
whose resulting products provide limit-
ed extension associated with user input-
s. This work presents the Moon IME, a
pinyin IME that integrates the attention-
based neural machine translation (NMT)
model and Information Retrieval (IR) to
offer amusive and customizable associa-
tion ability. The released IME is im-
plemented on Windows via text services
framework.

1 Introduction

Pinyin is the official romanization representation
for Chinese and pinyin-to-character (P2C) which
concerts the inputted pinyin sequence to Chinese
character sequence is the core module of all pinyin
based IMEs. Previous works in kinds of literature
only focus on pinyin to the character itself, pay-
ing less attention to user experience with associa-
tive advances, let along predictive typing or auto-
matic completion. However, more agile associa-

∗These authors contribute equally. † Corresponding au-
thor. This paper was partially supported by National Key Re-
search and Development Program of China (No. 2017YF-
B0304100), National Natural Science Foundation of China
(No. 61672343 and No. 61733011), Key Project of Nation-
al Society Science Foundation of China (No. 15-ZDA041),
The Art and Science Interdisciplinary Funds of Shanghai Jiao
Tong University (No. 14JCRZ04).

tion outputs from IME predication may undoubt-
edly lead to incomparable user typing experience,
which motivates this work.

Modern IMEs are supposed to extend P2C with
association functions that additionally predict the
next series of characters that the user is attempting
to enter. Such IME extended capacity can be gen-
erally fallen into two categories: auto-completion
and follow-up prediction. The former will look
up all possible phrases that might match the us-
er input even though the input is incomplete. For
example, when receiving a pinyin syllable “bei”,
auto-completion module will predict “�¬” (bei-
jing, Beijing) or “Ìo” (beijing, Background) as
a word-level candidate. The second scenario is
when a user completes entering a set of words, in
which case the IME will present appropriate collo-
cations for the user to choose. For example, after
the user selects “�¬” (Beijing) from the candi-
date list in the above example, the IME will show
a list of collocations that follows the word Beijing,
such as “�” (city), “eÐ�” (Olympics).

This paper presents the Moon IME, a pinyin
IME engine with an association cloud platform,
which integrates the attention-based neural ma-
chine translation (NMT) model with diverse asso-
ciations to enable customizable and amusive user
typing experience.

Compared to its existing counterparts, Moon
IME has extraordinarily offered the following
promising advantages:
• It is the first attempt that adopts attentive NMT

method to achieve P2C conversion in both IME
research and engineering.
• It provides a general association cloud plat-

form which contains follow-up-prediction and ma-
chine translation module for typing assistance.
•With an information retrieval based module, it

realizes fast and effective auto-completion which
can help users type sentences in a more convenient
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Figure 1: Architecture of the proposed Moon IME.

and efficient manner.
• With a powerful customizable design, the

association cloud platform can be adapted to
any specific domains such as the fields of law
and medicine which contain complex specialized
terms.

The rest of the paper is organized as follows:
Section 2 demonstrates the details of our system.
Section 3 presents the feature functions of our re-
alized IME. Some related works are introduced in
Section 4. Section 5 concludes this paper.

2 System Details

Figure 1 illustrates the architecture of Moon IME.
The Moon IME is based on Windows Text Ser-
vices Framework (TSF) 1. Our Moon IME extends
the Open-source projects PIME2 with three main
components: a) pinyin text segmentation, b) P2C
conversion module, c) IR-based association mod-
ule. The nub of our work is realizing an engine to
stably convert pinyin to Chinese as well as giving
reasonable association lists.

2.1 Input Method Engine
Pinyin Segmentation For a convenient refer-
ence, hereafter a character in pinyin also refers to
an independent syllable in the case without caus-
ing confusion, and word means a pinyin syllable
sequence with respect to a true Chinese word.

1TSF is a system service available as a redistributable for
Windows 2000 and later versions of Windows operation sys-
tem. A TSF text service provides multilingual support and
delivers text services such as keyboard processors, handwrit-
ing recognition, and speech recognition.

2https://github.com/EasyIME/PIME

As (Zhang et al., 2017) proves that P2C con-
version of IME may benefit from decoding longer
pinyin sequence for more efficient inputting.
When a given pinyin sequence becomes longer,
the list of the corresponding legal character se-
quences will significantly reduce. Thus, we train
our P2C model with segmented corpora. We used
baseSeg (Zhao et al., 2006) to segment all tex-
t, and finish the training in both word-level and
character-level.

NMT-based P2C module Our P2C module is
implemented through OpenNMT Toolkit3 as we
formulize P2C as a translation between pinyin and
character sequences. Given a pinyin sequence X
and a Chinese character sequence Y , the encoder
of the P2C model encodes pinyin representation in
word-level, and the decoder is to generate the tar-
get Chinese sequence which maximizes P (Y |X)
using maximum likelihood training.

The encoder is a bi-directional long short-
term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997). The vectorized inputs are
fed to forward LSTM and backward LSTM to ob-
tain the internal features of two directions. The
output for each input is the concatenation of the
two vectors from both directions:

←→
ht =

−→
ht ‖

←−
ht.

Our decoder is based on the global attention-
al model proposed by (Luong et al., 2015) which
takes the hidden states of the encoder into con-
sideration when deriving the context vector. The
probability is conditioned on a distinct contex-
t vector for each target word. The context vec-

3http://opennmt.net
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tor is computed as a weighted sum of previously
hidden states. The probability of each candidate
word as being the recommended one is predicted
using a softmax layer over the inner-product be-
tween source and candidate target characters.

Our model is initially trained on two dataset-
s, namely the People’s Daily (PD) corpus and
Douban (DC) corpus. The former is extracted
from the People’s Daily from 1992 to 1998 that
has word segmentation annotations by Peking U-
niversity. The DC corpus is created by (Wu et al.,
2017) from Chinese open domain conversations.
One sentence of the DC corpus contains one com-
plete utterance in a continuous dialogue situation.
The statistics of two datasets is shown in Table 1.
With character text available, the needed parallel
corpus between pinyin and character texts is auto-
matically created following the approach proposed
by (Yang et al., 2012).

Chinese Pinyin

PD
# MIUs 5.04M
# Vocab 54.3K 41.1K

DC
# MIUs 1.00M
# Vocab 50.0K 20.3K

Table 1: MIUs count and vocab size statistics of our training
data. PD refers to the People’s Daily, TP is TouchPal corpus.

Here is the hyperparameters we used: (a) deep
LSTM models, 3 layers, 500 cells, (c) 13 epoch
training with plain SGD and a simple learning rate
schedule - start with a learning rate of 1.0; af-
ter 9 epochs, halve the learning rate every epoch,
(d) mini-batches are of size 64 and shuffled, (e)
dropout is 0.3. The pre-trained pinyin embed-
dings and Chinese word embeddings are trained
by word2vec (Mikolov et al., 2013) toolkit on
Wikipedia4 and unseen words are assigned unique
random vectors.

2.2 IR-based association module

We use IR-based association module to help us-
er type long sentences which can predict the w-
hole expected inputs according to the similarity
between user’s incomplete input and the candi-
dates in a corpus containing massive sentences. In
this work, we use Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) to calculate the similar-
ity measurement, which has been usually used in

4https://dumps.wikimedia.org/zhwiki/20180201/zhwiki-
20180201-pages-articles-multistream.xml.bz2

text classification and information retrieval. The
TF (term-frequency) term is simply a count of the
number of times a word appearing in a given con-
text, while the IDF (invert document frequency)
term puts a penalty on how often the word appears
elsewhere in the corpus. The final TF-IDF score
is calculated by the product of these two terms,
which is formulated as:

TF-IDF(w, d,D) = f(w, d) × log N
|{d∈D:w∈d}|

where f(w, d) indicates the number of times word
w appearing in context d, N is the total number
of dialogues, and the denominator represents the
number of dialogues in which the word w appears.

In the IME scenario, the TF-IDF vectors are
first calculated for the input context and each of
the candidate responses from the corpus. Given
a set of candidate response vectors, the one with
the highest cosine similarity to the context vector
is selected as the output. For Recall @ k, the top
k candidates are returned. In this work, we only
make use of the top 1 matched one.

3 User Experience Advantages

3.1 High Quality of P2C

We utilize Maximum Input Unit (MIU) Accuracy
(Zhang et al., 2017) to evaluate the quality of our
P2C module by measuring the conversion accura-
cy of MIU, whose definition is the longest unin-
terrupted Chinese character sequence inside a sen-
tence. As the P2C conversion aims to output a
ranked list of corresponding character sequences
candidates, the top-K MIU accuracy means the
possibility of hitting the target in the first K pre-
dicted items. We will follow the definition of
(Zhang et al., 2017) about top-K accuracy.

Our model is compared to other models in Table
2. So far, (Huang et al., 2015) and (Zhang et al.,
2017) reported the state-of-the-art results among
statistical models. We list the top-5 accuracy con-
trast to all baselines with top-10 results, and the
comparison indicates the noticeable advancement
of our P2C model. To our surprise, the top-5 result
on PD of our P2C module approaches the top-10
accuracy of Google IME. On DC corpus, the P2C
module with the best setting achieves 90.17% ac-
curacy, surpassing all the baselines. The compari-
son shows the high quality of our P2C conversion.

3.2 Association Cloud Platform

Follow-up Prediction An accurate P2C conver-
sion is only the fundamental requirement to build
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DC PD
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

(Huang et al., 2015) 59.15 71.85 76.78 61.42 73.08 78.33
(Zhang et al., 2017) 57.14 72.32 80.21 64.42 72.91 77.93

Google IME 62.13 72.17 74.72 70.93 80.32 82.23
P2C of Moon 71.31 89.12 90.17 70.51 79.83 80.12

Table 2: Comparison with previous state-of-the-art P2C models.

an intelligent IME which is not only supposed to
give accurate P2C conversion, but to help users
type sentences in a more convenient and efficient
manner. To this end, follow-up prediction is quite
necessary for input acceleration. Given an unfin-
ished input, Moon IME now enables the follow-
up prediction to help the user complete the typing.
For example, given “ë��Ì” (Fast Fourier), the
IME engine will provide the candidate “ë��Ì
öØb” (fast Fourier transform). Specifically, we
extract each sentence in the Wikipedia corpus and
use the IR-based association module to retrieve the
index continuously and give the best-matched sen-
tence as the prediction.

Pinyin-to-English Translation Our Moon IME
is also equipped with a multi-lingual typing abili-
ty. For users of different language backgrounds, a
satisfying conversation can benefit from the direct
translation in IME engine. For example, if a Chi-
nese user is using our IME chatting with a native
English speaker, but get confused with how to say
“Input Method Engine”, simply typing the word-
s “�eÕ” in mother tongue, the IME will give
the translated expression. This is also achieved by
training a Seq2Seq model from OpenNMT using
WMT17 Chinese-English dataset5.

Factoid Question Answering As an instance
of IR-based association module, we make use of
question answering (QA) corpus for automatic
question completion. Intuitively, if a user wants
to raise a question, our IME will retrieve the most
matched question in the corpus along with the
corresponding answer for typing reference. We
use the WebQA dataset (Li et al., 2016) as our
QA corpus, which contains more than 42K factoid
question-answer pairs. For example, if a user input
“	Ö	” or “	Ö&” (guitar strings), the can-
didate “	Ö	à9&” (How many strings are
there in the guitar?).

5http://www.statmt.org/wmt17/translation-task.html

Figure 2: A case study of Association Cloud Platform.

Figure 2 shows a typical result returned by
the platform when a user gives incomplete input.
When user input pinyin sequence such as “zui da
de ping”, the P2C module returns “�'�s”
as one candidate of the generated list and sends it
to association platform. Then associative predic-
tion is given according to the input mode that user
current selections. Since the demands of the user-
s are quite diverse, our platform to support such
demands can be adapted to any specific domain-
s with complex specialized terms. We provide a
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Demo homepage6 for better reference, in which
we display the main feature function of our plat-
form and provide a download link.

4 Related Work

There are variable referential natural language
processing studies(Cai et al., 2018; Li et al.,
2018b; He et al., 2018; Li et al., 2018a; Zhang
et al., 2018a; Cai et al., 2017a,b) for IME devel-
opment to refer to. Most of the engineering prac-
tice mainly focus on the matching correspondence
between the Pinyin and Chinese characters, name-
ly, pinyin-to-character converting with the highest
accuracy. (Chen, 2003) introduced a conditional
maximum entropy model with syllabification for
grapheme-to-phoneme conversion. (Zhang et al.,
2006) presented a rule-based error correction ap-
proach to improving preferable conversion rate.
(Lin and Zhang, 2008) present a statistical mod-
el that associates a word with supporting context
to offer a better solution to Chinese input. (Jiang
et al., 2007) put forward a PTC framework based
on support vector machine. (Okuno and Mori,
2012) introduced an ensemble model of word-
based and character-based models for Japanese
and Chinese IMEs. (Yang et al., 2012; Wang et al.,
2018, 2016; Pang et al., 2016; Jia and Zhao, 2013,
2014) regarded the P2C conversion as a transfor-
mation between two languages and solved it by
statistical machine translation framework. (Chen
et al., 2015) firstly use natural machine thansla-
tion method to translate pinyin to Chinese. (Zhang
et al., 2017) introduced an online algorithm to con-
struct an appropriate dictionary for IME.

The recent trend on state-of-the-art techniques
for Chinese input methods can be put into two
lines. Speech-to-text input as iFly IM7 (Zhang
et al., 2015; Saon et al., 2014; Lu et al., 2016) and
the aided input methods which are capable of gen-
erating candidate sentences for users to choose to
complete input tasks, means that users can yield
coherent text with fewer keystrokes. The chal-
lenge is that the input pinyin sequences are too
imperfect to support sufficient training. Most
existing commercial input methods offer auto-
completion to users as well as extended associa-
tion functions, to aid users input. However, the
performance of association function of existing
commercial IMEs are unsatisfactory to relevan-

6ime.leisure-x.com
7https://www.xunfei.cn/

t user requirement for oversimplified modeling.
It is worth mentioning that we delivery Moon

IME as a type of IME service rather than a simple
IME software because it can be adjusted to adap-
t to diverse domains with the Association Cloud
Platform (Zhang et al., 2018b,c; Zhang and Zhao,
2018), which helps user type long sentences and
predicts the whole expected inputs based on cus-
tomized knowledge bases.

5 Conclusion

This work makes the first attempt at establishing
a general cloud platform to provide customizable
association services for Chinese pinyin IME as to
our best knowledge. We present Moon IME, a
pinyin IME that contains a high-quality P2C mod-
ule and an extended information retrieval based
module. The former is based on an attention-
based NMT model and the latter contains follow-
up-prediction and machine translation module for
typing assistance. With a powerful customiz-
able design, the association cloud platform can be
adapted to any specific domains including com-
plex specialized terms. Usability analysis shows
that core engine achieves comparable conversion
quality with the state-of-the-art research models
and the association function is stable and can be
well adopted by a broad range of users. It is more
convenient for predicting complete, extra and even
corrected character outputs especially when user
input is incomplete or incorrect.
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