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Abstract

Encoder-decoder models typically only
employ words that are frequently used in
the training corpus to reduce the compu-
tational costs and exclude noise. How-
ever, this vocabulary set may still in-
clude words that interfere with learning in
encoder-decoder models. This paper pro-
poses a method for selecting more suit-
able words for learning encoders by uti-
lizing not only frequency but also co-
occurrence information, which we capture
using the HITS algorithm. We apply our
proposed method to two tasks: machine
translation and grammatical error correc-
tion. For Japanese-to-English translation,
this method achieves a BLEU score that is
0.56 points more than that of a baseline.
Furthermore, it outperforms the baseline
method for English grammatical error cor-
rection, with an F0.5-measure that is 1.48
points higher.

1 Introduction

Encoder-decoder models (Sutskever et al., 2014)
are effective in tasks such as machine translation
(Cho et al., 2014; Bahdanau et al., 2015) and
grammatical error correction (Yuan and Briscoe,
2016). Vocabulary in encoder-decoder models is
generally selected from the training corpus in de-
scending order of frequency, and low-frequency
words are replaced with an unknown word token
<unk>. The so-called out-of-vocabulary (OOV)
words are replaced with <unk> to not increase
the decoder’s complexity and to reduce noise.
However, naive frequency-based OOV replace-
ment may lead to loss of information that is nec-
essary for modeling context in the encoder.

∗Both authors equally contributed to the paper.

This study hypothesizes that vocabulary con-
structed using unigram frequency includes words
that interfere with learning in encoder-decoder
models. That is, we presume that vocabulary
selection that considers co-occurrence informa-
tion selects fewer noisy words for learning robust
encoders in encoder-decoder models. We apply
the hyperlink-induced topic search (HITS) algo-
rithm to extract the co-occurrence relations be-
tween words. Intuitively, the removal of words
that rarely co-occur with others yields better en-
coder models than ones that include noisy low-
frequency words.

This study examines two tasks, machine transla-
tion (MT) and grammatical error correction (GEC)
to confirm the effect of decreasing noisy words,
with a focus on the vocabulary of the encoder side,
because the vocabulary on the decoder side is rela-
tively limited. In a Japanese-to-English MT exper-
iment, our method achieves a BLEU score that is
0.56 points more than that of the frequency-based
method. Further, it outperforms the frequency-
based method for English GEC, with an F0.5-
measure that is 1.48 points higher.

The main contributions of this study are as fol-
lows:

1. The simple but effective preprocessing
method we propose for vocabulary selec-
tion improves encoder-decoder model perfor-
mance.

2. This study is the first to address noise re-
duction in the source text of encoder-decoder
models.

2 Related Work

There is currently a growing interest in apply-
ing neural models to MT (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2015; Wu
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et al., 2016) and GEC (Yuan and Briscoe, 2016;
Xie et al., 2016; Ji et al., 2017); hence, this
study focuses on improving the simple attentional
encoder-decoder models that are applied to these
tasks.

In the investigation of vocabulary restriction in
neural models, Sennrich et al. (2016) applied byte
pair encoding to words and created a partial char-
acter string set that could express all the words
in the training data. They increased the number
of words included in the vocabulary to enable the
encoder-decoder model to robustly learn contex-
tual information. In contrast, we aim to improve
neural models by using vocabulary that is appro-
priate for a training corpus—not to improve neural
models by increasing their vocabulary.

Jean et al. (2015) proposed a method of re-
placing and copying an unknown word token with
a bilingual dictionary in neural MT. They auto-
matically constructed a translation dictionary from
a training corpus using a word-alignment model
(GIZA++), which finds a corresponding source
word for each unknown target word token. They
replaced the unknown word token with the corre-
sponding word into which the source word was
translated by the bilingual dictionary. Yuan and
Briscoe (2016) used a similar method for neural
GEC. Because our proposed method is performed
as preprocessing, it can be used simultaneously
with this replace-and-copy method.

Algorithms that rank words using co-
occurrence are employed in many natural
language processing tasks. For example,
TextRank (Mihalcea and Tarau, 2004) uses
PageRank (Brin and Page, 1998) for keyword
extraction. TextRank constructs a word graph in
which nodes represent words, and edges represent
co-occurrences between words within a fixed
window; TextRank then executes the PageRank
algorithm to extract keywords. Although this is
an unsupervised method, it achieves nearly the
same precision as one state-of-the-art supervised
method (Hulth, 2003). Kiso et al. (2011) used
HITS (Kleinberg, 1999) to select seeds and
create a stop list for bootstrapping in natural
language processing. They reported significant
improvements over a baseline method using
unigram frequency. Their graph-based algorithm
was effective at extracting the relevance between
words, which cannot be grasped with a simple
unigram frequency. In this study, we use HITS

Algorithm 1 HITS
Require: hubness vector i0
Require: adjacency matrix A
Require: iteration number τ
Ensure: hubness vector i
Ensure: authority vector p
1: function HITS(i0, A, τ )
2: i← i0
3: for t = 1, 2, ..., τ do
4: p← ATi
5: i← Ap
6: normalize i and p

7: return i and p
8: end function

to retrieve co-occurring words from a training
corpus to reduce noise in the source text.

3 Graph-based Filtering of OOV Words

3.1 Hubness and authority scores from HITS

HITS, which is a web page ranking algorithm pro-
posed by Kleinberg (1999), computes hubness and
authority scores for a web page (node) using the
adjacency matrix that represents the web page’s
link (edge) transitions. A web page with high au-
thority is linked from a page with high hubness
scores, and a web page with a high hubness score
links to a page with a high authority score. Algo-
rithm 1 shows pseudocode for the HITS algorithm.
Hubness and authority scores converge by setting
the iteration number τ to a sufficiently large value.

3.2 Vocabulary selection using HITS

In this study, we create an adjacency matrix from
a training corpus by considering a word as a
node and the co-occurrence between words as an
edge. Unlike in web pages, co-occurrence be-
tween words is nonbinary; therefore, several co-
occurrence measures can be used as edge weights.
Section 3.3 describes the co-occurrence measures
and the context in which co-occurrence is defined.

The HITS algorithm is executed using the adja-
cency matrix created in the way described above.
As a result, it is possible to obtain a score indi-
cating importance of each word while considering
contextual information in the training corpus.

Figure 1 shows a word graph example. A
word that obtains a high score in the HITS al-
gorithm is considered to co-occur with a variety
of words. Figure 1 demonstrates that second or-
der co-occurrence scores (the scores of words co-
occurring with words that co-occur with various
words (Schütze, 1998)) are also high.
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Figure 1: An example word graph created for ten
sentences in the training corpus used for GEC1.

In this study, words with high hubness scores
are considered to co-occur with an important
word, and low-scoring words are excluded from
the vocabulary. Using this method appears to gen-
erate a vocabulary that includes words that are
more suitable for representing a context vector for
encoder models.

3.3 Word graph construction

To acquire co-occurrence relations, we use a com-
bination of each word and its peripheral words.
Specifically, we combine the target word with sur-
rounding words within window width N and count
the occurrences. When defining the context in this
way, because the adjacency matrix becomes sym-
metric, the same hubness and authority scores can
be obtained. Figure 2 shows an example of co-
occurrence in which N is set to two.

We use raw co-occurrence frequency (Freq) and
positive pointwise mutual information (PPMI) be-
tween words as the (x, y) element Axy of the adja-
cency matrix. However, naive PPMI reacts sensi-
tively to low-frequency words in a training corpus.
To account for high-frequency, we weight the PMI
by the logarithm of the number of co-occurrences
and use PPMI based on this weighted PMI (Equa-

1In this study, singleton words and their co-occurrences
are excluded from the graph.

Figure 2: An example of co-occurrence context.

tion 2).

Afreq
xy = |x, y| (1)

Appmi
xy = max(0,pmi(x, y) + log2 |x, y|) (2)

Equation 3 is the PMI of target word x and co-
occurrence word y. M is the number of tokens of
the combination, |x, ∗| and |∗, y| are the number
of token combinations when fixing target word x
and co-occurrence word y, respectively.

pmi(x, y) = log2
M · |x, y|
|x, ∗||∗, y|

(3)

4 Machine Translation

4.1 Experimental setting
In the first experiment, we conduct a Japanese-
to-English translation using the Asian Scientific
Paper Excerpt Corpus (ASPEC; Nakazawa et al.,
2016). We follow the official split of the train, de-
velopment, and test sets. As training data, we use
only the first 1.5 million sentences sorted by sen-
tence alignment confidence to obtain a Japanese–
English parallel corpus (sentences of more than
60 words are excluded). Our training set consists
of 1,456,278 sentences, development set consists
of 1,790 sentences, and test set consists of 1,812
sentences. The training set has 247,281 Japanese
word types and 476,608 English word types.

The co-occurrence window width N is set to
two. For combinations that co-occurred only once
within the training corpus, we set the value of el-
ement Axy of the adjacency matrix to zero. The
iteration number τ of the HITS algorithm is set to
300. As mentioned in Section 1, we only use the
proposed method on the encoder side.

For this study’s neural MT model2, we imple-
ment global dot attention (Luong et al., 2015). We
train a baseline model that uses vocabulary that is
determined by its frequency in the training corpus.
Vocabulary size is set to 100K on the encoder side
and 50K on the decoder side. Additionally, we

2https://github.com/yukio326/nmt-chainer
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baseline HITS (Freq) HITS (PPMI)
BLEU (50K) 22.24 - 22.40
BLEU (100K) 22.21 22.25 22.77
p-value - 0.35 0.01

Table 1: BLEU scores for Japanese-to-English
translation3. The parentheses indicate vocabulary
size of the encoder.

COMMON outputs DIFF outputs
baseline PPMI baseline PPMI

BLEU 22.33 22.98 21.44 21.98

Table 2: BLEU scores of the COMMON and DIFF
outputs.

conduct an experiment of varying vocabulary size
of the encoder to 50K in the baseline and PPMI
to investigate the effect of vocabulary size. Un-
less otherwise noted, we conduct an analysis of
the model using the vocabulary size of 100K. The
number of dimensions for each of the hidden and
embedding layers is 512. The mini-batch size is
150. AdaGrad is used as an optimization method
with an initial learning rate of 0.01. Dropout is
applied with a probability of 0.2.

For this experiment, a bilingual dictionary is
prepared for postprocessing unknown words (Jean
et al., 2015). When the model outputs an unknown
word token, the word with the highest attention
score is used as a query to replace the unknown
token with the corresponding word from the dic-
tionary. If not in the dictionary, we replace the un-
known word token with the source word (unk rep).
This dictionary is created based on word align-
ment obtained using fast align (Dyer et al., 2013)
on the training corpus.

We evaluate translation results using BLEU
scores (Papineni et al., 2002).

4.2 Results

Table 1 shows the translation accuracy (BLEU
scores) and p-value of a significance test (p <
0.05) by bootstrap resampling (Koehn, 2004).
The PPMI model improves translation accuracy
by 0.56 points in Japanese-to-English translation,
which is a significant improvement.

Next, we examine differences in vocabulary by
comparing each model with the baseline. Com-
pared to the vocabulary of the baseline in 100K
setting, Freq and PPMI replace 16,107 and 17,166

3BLEU score for postprocessing (unk rep) improves by
0.46, 0.44, and 0.46 points in the baseline, Freq, and PPMI,
respectively.

types, respectively; compared to the vocabulary of
the baseline in 50K setting, PPMI replaces 4,791
types.

4.3 Analysis

According to Table 1, the performance of Freq is
almost the same as that of the baseline. When
examining the differences in selected words in
vocabulary between PPMI and Freq, we find
that PPMI selects more low-frequency words in
the training corpus compared to Freq, because
PPMI deals with not only frequency but also co-
occurrence.

The effect of unk rep is almost the same in the
baseline as in the proposed method, which indi-
cates that the proposed method can be combined
with other schemes as a preprocessing step.

As a comparison of the vocabulary size 50K
and 100K, the BLEU score of 100K is higher than
that of 50K in PPMI. Moreover, the BLEU scores
are almost the same in the baseline. We suppose
that the larger the vocabulary size of encoder, the
more noisy words the baseline includes, while the
PPMI filters these words. That is why the pro-
posed method works well in the case where the
vocabulary size is large.

To examine the effect of changing the vocab-
ulary on the source side, the test set is divided
into two subsets: COMMON and DIFF. The for-
mer (1,484 sentences) consists of only the com-
mon vocabulary between the baseline and PPMI,
whereas the latter (328 sentences) includes at least
one word excluded from the common vocabulary.

Table 2 shows the translation accuracy of the
COMMON and DIFF outputs. Translation perfor-
mance of both corpora is improved.

In order to observe how PPMI improves COM-
MON outputs, we measure the similarity of the
baseline and PPMI output sentences by count-
ing the exact same sentences. In the COMMON
outputs, 72 sentence pairs (4.85%) are the same,
whereas 9 sentence pairs are the same in the DIFF
outputs (2.74%). Surprisingly, even though it uses
the same vocabulary, PPMI often outputs different
but fluent sentences.

Table 3 shows an example of Japanese-to-
English translation. The outputs of the proposed
method (especially PPMI) are improved, despite
the source sentence being expressed with common
vocabulary; this is because the proposed method
yielded a better encoder model than the baseline.
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src 有用物質の分離・抽出 ,反応性向上 ,新材料創製 ,廃棄物処理 ,分析等の分野がある。
baseline there are fields such as separation , extraction , extraction , improvement of new material creation , waste treatment ,

analysis , etc .
Freq there are separation and extraction of useful substances , the improvement of reactivity , new material creation , waste

treatment and analysis .
PPMI there are the fields such as separation and extraction of useful materials , the reaction improvement , new material

creation , waste treatment , analysis , etc ...
ref the application fields are separation and extraction of useful substances , reactivity improvement , creation of new

products , waste treatment , and chemical analysis .

Table 3: An example of Japanese-to-English translation on a source sentence from COMMON.

baseline PPMI
50K 150K 50K 150K

Precision 48.09 46.53 49.45 49.23
Recall 8.30 8.50 8.61 9.02
F0.5 24.55 24.55 25.37 26.03

Table 4: F0.5 results on the CoNLL-14 test set4.

COMMON outputs DIFF outputs
baseline PPMI baseline PPMI

P 48.26 60.07 9.40 17.32
R 0.01 0.01 0.01 0.02
F0.5 0.04 0.04 0.04 0.08

Table 5: F0.5 of COMMON and DIFF outputs.

5 Grammatical Error Correction

5.1 Experimental setting

The second experiment addresses GEC. We com-
bine the FCE public dataset (Yannakoudakis et al.,
2011), NUCLE corpus (Dahlmeier et al., 2013),
and English learner corpus from the Lang-8
learner corpus (Mizumoto et al., 2011) and re-
move sentences longer than 100 words to create
a training corpus. From the Lang-8 learner cor-
pus, we use only the pairs of erroneous and cor-
rected sentences. We use 1,452,584 sentences as
a training set (502,908 types on the encoder side
and 639,574 types on the decoder side). We evalu-
ate the models’ performances on the standard sets
from the CoNLL-14 shared task (Ng et al., 2014)
using CoNLL-13 data as a development set (1,381
sentences) and CoNLL-14 data as a test set (1,312
sentences)4. We employ F0.5 as an evaluation
measure for the CoNLL-14 shared task.

We use the same model as in Section 4.1 as a
neural model for GEC. The models’ parameter set-
tings are similar to the MT experiment, except for
the vocabulary and batch sizes. In this experiment,
we set the vocabulary size on the encoder and de-
coder sides to 150K and 50K, respectively. Ad-

4We do not consider alternative answers suggested by the
participating teams.

src Genetic refers the chance of inheriting a dis-
order or disease .

baseline Genetic refers the chance of inheriting a dis-
order or disease .

PPMI Genetic refers to the chance of inheriting a
disorder or disease .

gold Genetic risk refers to the chance of inherit-
ing a disorder or disease .

Table 6: An example of GEC using a source sen-
tence from COMMON.

ditionally, we conduct the experiment of changing
vocabulary size of the encoder to 50K to investi-
gate the effect of the vocabulary size. Unless oth-
erwise noted, we conduct an analysis of the model
using the vocabulary size of 150K. The mini-batch
size is 100.

5.2 Result
Table 4 shows the performance of the baseline and
proposed method. The PPMI model improves pre-
cision and recall; it achieves a F0.5-measure 1.48
points higher than the baseline method.

In setting the vocabulary size of encoder to
150K, PPMI replaces 37,185 types from the base-
line; in the 50K setting, PPMI replaces 10,203
types.

5.3 Analysis
The F0.5 of the baseline is almost the same while
the PPMI model improves the score in the case
where the vocabulary size increases. Similar to
MT, we suppose that the PPMI filters noisy words.

As in Section 4.3, we perform a follow-up ex-
periment using two data subsets: COMMON and
DIFF, which contain 1,072 and 240 sentences, re-
spectively.

Table 5 shows the accuracy of the error correc-
tion of the COMMON and DIFF outputs. Preci-
sion increases by 11.81 points, whereas recall re-
mains the same for the COMMON outputs.

In GEC, approximately 20% of COMMON’s
output pairs differ, which is caused by the dif-
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MT GEC
baseline PPMI baseline PPMI

tokens 52,700 27,364 126,884 70,003
Ave. tokens 3.07 1.59 3.36 1.85

Table 7: Number of words included only in either
the baseline or PPMI vocabulary.

ferences in the training environment. Unlike MT,
we can copy OOV in the target sentence from the
source sentence without loss of fluency; therefore,
our model has little effect on recall, whereas its
precision improves because of noise reduction.

Table 6 shows an example of GEC. The pro-
posed method’s output improves when the source
sentence is expressed using common vocabulary.

6 Discussion

We described that the proposed method has a pos-
itive effect on learning the encoder. However, we
have a question; what affects the performance?
We conduct an analysis of this question in this sec-
tion.

First, we count the occurrence of the words in-
cluded only in the baseline or PPMI in the training
corpus. We also show the number of the tokens
per types (“Ave. tokens”) included only in either
the baseline or PPMI vocabulary.

The result is shown in Table 7. We find that the
proposed method uses low-frequency words in-
stead of high-frequency words in the training cor-
pus. This result suggests that the proposed method
works well despite the fact that the encoder of the
proposed method encounters more <unk> than
the baseline. This is because the proposed method
excludes words that may interfere with the learn-
ing of encoder-decoder models.

Second, we conduct an analysis of the POS of
the words in GEC to find why increasing OOV
improves the learning of encoder-decoder models.
Specifically, we apply POS tagging to the training
corpus and calculate the occurrence of the POS of
the words only included in the baseline or PPMI.
We use NLTK as a POS tagger.

Table 8 shows the result. It is observed that
NOUN is the most affected POS by the proposed
method and becomes often represented by <unk>.
NOUN words in the vocabulary of the baseline
contain some non-English words, such as Japanese
or Korean. These words should be treated as OOV
but the baseline fails to exclude them using only
the frequency. According to Table 8, NUM is also

POS baseline PPMI ALL
NOUN 92,693 44,472 4,644,478
VERB 11,066 10,099 3,597,895
PRON 127 107 1,869,422
ADP 626 685 1,836,193
DET 128 202 1,473,391
ADJ 13,855 12,270 1,429,056
ADV 2,032 1,688 931,763
PRT 319 75 615,817
CONJ 62 28 537,346
PUNCT 110 11 223,573
NUM 5,585 299 207,487
OTHER 281 67 5,209
Total 126,884 70,003 17,371,630

Table 8: Number of the POS of words only in-
cluded in the baseline or PPMI.

affected by the proposed method. NUM words
of the baseline include a simple numeral such as
“119”, in addition to incorrectly segmented nu-
merals such as “514&objID”. This word appears
25 times in the training corpus owing to the noisy
nature of Lang-8. We suppose that the proposed
method excludes these noisy words and has a pos-
itive effect on training.

7 Conclusion

In this paper, we proposed an OOV filtering
method, which considers word co-occurrence in-
formation for encoder-decoder models. Unlike
conventional OOV handling, this graph-based
method selects the words that are more suitable
for learning encoder models by considering con-
textual information. This method is effective for
not only machine translation but also grammatical
error correction.

This study employed a symmetric matrix (sim-
ilar to skip-gram with negative sampling) to ex-
press relationships between words. In future re-
search, we will develop this method by using
vocabulary obtained by designing an asymmetric
matrix to incorporate syntactic relations.
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