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Abstract
Named Entity Disambiguation (NED) sys-
tems perform well on news articles and
other texts covering a specific time inter-
val. However, NED quality drops when
inputs span long time periods like in
archives or historic corpora. This paper
presents the first time-aware method for
NED that resolves ambiguities even when
mention contexts give only few cues. The
method is based on computing temporal
signatures for entities and comparing these
to the temporal contexts of input mentions.
Our experiments show superior quality on
a newly created diachronic corpus.1

1 Introduction

Problem. Schumacher convinced to win on Sun-
day. When this news headline is fed into modern
tools for Named Entity Disambiguation (NED),
virtually all of them would map the mention
Schumacher onto the former Formula One cham-
pion Michael Schumacher, as the best-fitting en-
tity from a Wikipedia-centric knowledge base
(KB). However, knowing that Sunday refers to
August 14, 1949, i.e., ignoring the surface form
but exploiting normalized information, it becomes
clear that the text actually refers to the German
politician Kurt Schumacher. State-of-the-art NED
methods (see surveys by Hachey et al. (2013),
Ling et al. (2015), Shen et al. (2015)) tend to
miss this because they are designed and trained
for temporally focused input corpora such as cur-
rent news, and do not cope well with longitudi-
nal archives and other diachronic corpora that span
decades. Standard NED benchmarks from CoNLL
and TAC do not reflect this difficulty either.

1The diaNED corpus and the temporal signatures of en-
tities are publicly available: https://www.mpi-inf.
mpg.de/yago-naga/dianed/.

(a) (b) (c)

Figure 1: Temporal signatures of candidate enti-
ties for the following three sample sentences (ver-
tical lines represent temporal contexts):
a) Ronaldo comeback cut to 14 minutes. (2001)
b) Bush to stress domestic issues in speech. (1989)
c) Schumacher convinced to win on Sunday. (1949)

What is needed here is a better way of captur-
ing temporal context, for both the mention Schu-
macher and each of the candidate entities. Fig-
ure 1 illustrates “time profiles” for sample entities
with highly ambiguous names. Normalized tem-
poral information from the input context, such as
Sunday (1949-08-14), can provide additional
cues for proper disambiguation. The problem ad-
dressed in this paper is how to model and capture
temporal contexts and how to enhance NED with
this novel asset.
Contribution. Our approach to this problem is
to compute temporal signatures for entities in the
KB, and to use these as expressive features when
comparing candidate entities against the context of
an input mention. Temporal signatures are embed-
dings that reflect the importance of different years
for entities. They are automatically constructed by
extracting and normalizing temporal expressions
in entity descriptions such as Wikipedia articles.
Analogously, temporal signals are captured in the
contexts of textual mentions and represented by
embeddings.

The time-aware NED method that we devise
with these features can robustly cope with inputs

https://www.mpi-inf.mpg.de/yago-naga/dianed/
https://www.mpi-inf.mpg.de/yago-naga/dianed/
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from diachronic corpora. We propose a new eval-
uation benchmark, based on the New York Times
Archive, spanning more than 20 years, and the his-
tory collection historynet.com, spanning several
centuries. Our experiments demonstrate that time-
aware NED substantially outperforms some of the
best standard NED tools.

2 Temporal Signatures and Contexts

Better context representation improves disam-
biguation quality (see, e.g., Shen et al. (2015)). As
the underlying entity descriptions (e.g., Wikipedia
articles) are not only textually but also temporally
related to their mentions, we enrich the context
representation with a temporal dimension, which
no prior work handles explicitly.

We model the temporal dimension by embed-
ding vectors. The embeddings represent the tem-
poral signatures of entities in a KB and the tem-
poral contexts of entity mentions in text in a joint
vector space. Then, the similarity between them
quantifies their temporal relatedness.

Temporal vector space. We use 2,050 dimen-
sions (years 1 AD to 2050) to define the vector
space. Coarser and finer granularities than years
could be used, but finer ones (e.g., days) are rarely
needed for NED and coarser granularities (e.g.,
centuries) are too vague.2

Temporal signatures of entities. We use
the temporal tagger HeidelTime (Strötgen and
Gertz, 2010; Strötgen and Gertz, 2015) to ex-
tract and normalize date expressions from an en-
tity’s Wikipedia page3 and aggregate them by
years. This results in a count-based temporal vec-
tor tcbe = (t0001, ..., ti, ..., t2050) where ti is the to-
tal number of temporal expressions extracted from
e’s Wikipedia page referring to year i. Temporal
expressions of finer granularities are mapped to re-
spective years and expressions of coarser granular-
ities than year are currently ignored.

As the count-based vectors may overfit to the
entity descriptions and to avoid discontinuity in
the temporal signatures, we apply exponential
smoothing and get smoothed temporal vectors

2In an analysis of temporal expressions extracted with
HeidelTime from the Wikipedia corpus (August 2016 dump),
we find that there are on average 18.500 expressions per year
value (with year values ranging from 0001 AD to 2050
AD) in contrast to only 9.64 expressions per day value (with
day values ranging from 0001-01-01 to 2050-12-31).
Therefore, using year level identifiers to define our temporal
vector space results in short and non-sparse temporal vectors.

3August 2016 Wikipedia dump

tse = (ts0001, ..., t
s
i , ..., t

s
2050) such that tsi = α ·

tcbi + (1 − α) · tsi−1, for i > 0001 where α is the
smoothing factor with 0 ≤ α ≤ 1. For further
smoothing, this procedure can be recursively ap-
plied n times. In experiments, we set α = 0.2 and
n = 2 based on cross-validation.

Temporal contexts of entity mentions. We ex-
ploit temporal expressions in the surrounding text
of entity mentions and the texts’ publication dates.
In news-style articles, entities are likely to be re-
lated to the document creation time (dct), while
dates in the content are important for other types
of documents (Strötgen and Gertz, 2016).

Temporal vectors for mentions tm are thus a
combination of a one-hot temporal vector tdctm =
(0, ..., ti, ..., 0) where ti=1 if i is the dct’s year, and
tcontentm containing dates extracted by a temporal
tagger in the immediate context of the mention
(e.g., in the same sentence or paragraph), aggre-
gated by year. tdctm and tcontentm are linearly com-
bined as tm = λ · tdctm +(1−λ) · tcontentm where λ
(with 0 ≤ λ ≤ 1) weights the components.

Relatedness. We calculate the temporal relat-
edness between a mention and all candidate enti-
ties as the cosine similarity between tm and te.

3 Time-aware NED

To test the importance of time-awareness for NED,
we use two settings. We enhance a basic NED sys-
tem and a state-of-the-art system by enriching both
with temporal signatures and contexts.

diaNED-1, as basic NED system, uses a
mention-entity prior reflecting entity prominence
and a keyphrase-based language model for the
similarity of mention and entity contexts (as sug-
gested by Hoffart et al. (2011)). These com-
ponents are cast into edge weights for a graph
over which the final disambiguation is computed.
Hyper-parameters for the relative influence of the
two components are tuned using an SVM.

We added the temporal dimension to the feature
set and retrained the model accordingly to get new
feature weights.

diaNED-2 based on Yamada et al. (2016):
This is a learning-to-rank-based model. Besides
mention-entity priors and string-similarity fea-
tures, it uses word and entity embeddings trained
in a joint vector space to model context and coher-
ence. The intuition is that a good candidate entity
vector must be close to the word and entity vectors
appearing in the same context.
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Yamada et al. (2016) measures entity context
by averaging the word vectors of the proper noun
neighbors and calculating the cosine similarity
with each candidate entity. Similarly, the coher-
ence between entities is measured by computing
the cosine similarity between candidates and the
average of the other entities in the neighborhood.

diaNED-2 enhances this model as follows. We
compute the cosine similarity between the men-
tion’s and the candidate entities’ temporal vectors,
and normalize the time relatedness scores across
candidate entities. Finally, all similarity features
are used to train a binary classifier with gradient-
boosted decision trees. The top-ranked candidate
entity in each pool of candidates is assigned to the
mention being evaluated.

4 A Diachronic NED Data Set

Datasets for NED evaluation contain articles pub-
lished within a short period. Consequently, all
mentions share a temporal context making it dif-
ficult to evaluate temporal variability. CoNLL-
AIDA (Hoffart et al., 2011) are newswire articles
from 1996, TAC 2010 (Ji et al., 2010) news and
forum articles from 2004–2007, and Microposts-
2014 (Cano et al., 2014) tweets from 2011.

To account for this limitation, we create a
new diachronic benchmark containing documents
with heterogeneous temporal context. As in
Microposts-2014, we limit documents to sin-
gle sentences and headlines from HistoryNet.com
(HN) and The New York Times corpus (NYT). For
the annotation process, we followed the entity an-
notation guidelines, which have been used for an-
notating CoNLL-AIDA (Hoffart et al., 2011).

HN is an online resource of world history with
information on popular historical topics. Its sec-
tion Today in History contains short texts on what
happened on a specific day with a total of 7,061
facts/events (excluding born today). Using Stan-
ford NER (Finkel et al., 2005), we extracted
13,773 entity mentions and randomly selected 350
of them. We annotated all entity mentions in re-
spective sentences with their Wikipedia ids. Af-
ter removing NER errors and out-of-KB entities,
the dataset contains 865 gold entity mentions in
334 sentences. Examples are: “Conrad II claims
the throne in France” from 1032 or “The Old Pre-
tender, son of James III dies” from 1766.

NYT contains more than 1.5 million documents
published between 1987 and 2007. After apply-

ing the same procedure, the dataset contains 368
manually annotated mentions in 290 news head-
lines. Examples are “Arafat’s Faction is Said to
Avoid Guerrilla Actions” from 1989 or “U.N. Aide
to Meet Milosevic, Angering Some” from 1999.

As HN texts come without further context, en-
tity mentions are rather explicit. Entity mentions
in NYT ’s headlines are more ambiguous as more
information is available in the articles and the en-
tities are mostly, at the time of publication, promi-
nent and obvious to the reader.

Finally, we created a third subset from the 7,061
documents of HistoryNet.com with 13,773 entity
mentions. It contains the sentences with all the
entity mentions which are linked to different en-
tities by diaNED-2 depending on whether it uses
its time-awareness or not, i.e., whether diaNED-
2 is trained with or without the temporal feature.
This set (HN-timediff ) contains 567 manually an-
notated entities from 547 documents. It is the most
challenging subset as all entity mentions are diffi-
cult to disambiguate.

5 Evaluation

To evaluate the importance of temporal infor-
mation in NED, we focus in our analysis on
the newly created diaNED corpus. As standard
NED datasets CoNLL-AIDA and TAC 2010 con-
tain only articles published within a short period
of time, they are not suited for evaluating time-
aware NED (cf. Section 4), and experiments on
these datasets showed no significant differences
between using diaNED-1 and diaNED-2 with or
without their time-awareness features.

Note that the temporal contexts in the HN sen-
tences and the NYT headlines of the diaNED cor-
pus are part of the metadata. Thus, to ensure a
fair comparison among all systems, we added the
temporal contexts in the form of year information
to all documents to allow the non-time-aware sys-
tems to exploit the temporal context in case the re-
spective year number occurs as part of the entities’
textual context.4

5.1 Intra-system Comparison

As described above, we (re-)implemented two
NED systems as diaNED-1 and diaNED-2. To al-

4Disambiguation quality of non-time-aware systems was
generally lower without this additional information. The dia-
NED corpus contains all sentences with and without year in-
formation so that evaluation results can be reproduced for
both settings.
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HN subset NYT subset
Feature set w/o time w time w/o time w time

Prior 72.26 80.48* 38.14 54.24*
Context 63.63 66.10* 48.31 62.71*
* significant over w/o time (Welch’s t-test at level of 0.01)

Table 1: Micro-accuracy of diaNED-1 with and
without time-awareness feature.

HN subset NYT subset
Feature set w/o time w time w/o time w time

Base 89.44 90.23* 85.81 87.36*
String 89.40 90.00* 86.28 87.07*
Context 91.10 91.81* 87.07 88.34*
Coherence 91.16 91.98* 86.83 88.69*
* significant over w/o time (Welch’s t-test at level of 0.01)

Table 2: Micro-accuracy of diaNED-2 with and
without time-awareness feature.

low the systems to adapt to the diachronic corpus
without considering temporal information explic-
itly, we retrained the systems so that appropriate
weights are learnt for each standard feature. Due
to the rather small size of the diaNED corpus, we
use bootstrapping (i.e., train and evaluate on 50
randomly shuffled versions of the corpus) with and
without using the time-awareness feature.

diaNED-1. Table 1 shows micro-accuracy for
our basic NED system on the HN and NYT sets
of diaNED. Significant gains are achieved when
combining the prior and context features with the
time-awareness feature. This demonstrates that
NED systems with standard features can be im-
proved by making them time-aware.

diaNED-2. Table 2 shows micro-accuracy
for our re-implementation of Yamada et al.
(2016)’s initial features with and without the time-
awareness feature. As can be seen in the table,
adding the temporal feature improves the results
significantly in each setting on both sets, which
demonstrates that even state-of-the-art systems
can be improved by making them time-aware.

5.2 Inter-system Comparison
In Table 3, we compare the time-aware NED ap-
proach diaNED-2 to various NED tools available
via GERBIL (v. 1.2.5) (Usbeck et al., 2015) and
to the recent work by Gupta et al. (2017). As all
systems are used with standard settings, we also
trained diaNED-2 on standard NED training data
(CoNLL-AIDA) with the temporal context of en-
tity mentions being the respective article’s year

system HN NYT

xLisa-NGRAM (Zhang and Rettinger, 2014) 87.07 66.30
WAT (Ferragina and Scaiella, 2012) 82.26 70.95
PBOH (Ganea et al., 2016) 90.26 71.75
FREME NER (Dojchinovski and Kliegr, 2013) 48.50 45.27
FRED (Consoli and Recupero, 2015) 23.18 15.44
FOX (Speck and Ngomo, 2014) 77.85 54.25
Dexter (Ceccarelli et al., 2013) 69.66 49.12
DBpedia Spotlight(Mendes et al., 2011) 56.92 61.91
AIDA (Hoffart et al., 2011) 82.35 70.14
AGDISTIS (Usbeck et al., 2014) 70.77 50.14
Gupta et al. (2017) 62.82 43.33

reimpl. of (Yamada et al., 2016) 90.87 72.55
diaNED-2 w time 91.68 76.09

Table 3: F1-scores of various systems on the HN
and NYT subsets of the diaNED benchmark.

overall person location organization

time-agnostic 27.51 9.63 40.07 33.77
time-aware 42.50 39.91 45.22 40.26

Table 4: Micro-accuracy of diaNED-2 on HN-
timediff with and without time-awareness feature.

of publication. However, due to the differences
in what kind of entities the systems consider and
what kind of candidate entity lookup dictionaries
they use, the systems are not directly comparable
and the performance differences should be inter-
preted with a grain of salt. Nevertheless, time-
awareness further increases the distance between
(Yamada et al., 2016) and the second best sys-
tem significantly, which demonstrates its useful-
ness for NED.

5.3 Type-based Analysis

To gain further insights about the importance
of time-awareness, we analyzed the results of
diaNED-2 with and without temporal feature on
the HN-timediff set of our benchmark (Table 4).
On these particularly challenging documents, the
time-awareness feature helps to improve NED
quality for all entity types. While location and
organization entities moderately benefit, there is
a huge performance increase for person entities.
The explanation that person entities benefit most
could be that person entities have comparably
short life spans and are thus most time-sensitive.

6 Related Work

Starting with the early work of Bunescu and
Paşca (2006), Cucerzan (2007), Mihalcea and
Csomai (2007), and Milne and Witten (2008),
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NED methods and tools have been greatly ad-
vanced and become mature. Many systems use a
combination of (i) local features like string sim-
ilarities, lexico-syntactic characteristics and con-
text between mentions and candidate entities and
(ii) global features like the coherence among a
set of selected entities. The inference over this
feature space is typically performed by proba-
bilistic graphical models, learning-to-rank tech-
niques or algorithms related to such models (see,
e.g., Ratinov et al. (2011), Hoffart et al. (2011),
Ferragina and Scaiella (2012), Cheng and Roth
(2013), Guo and Barbosa (2014), Durrett and
Klein (2014), Chisholm and Hachey (2015), Per-
shina et al. (2015), Lazic et al. (2015), Nguyen
et al. (2016), Globerson et al. (2016), Eshel et al.
(2017), and Ganea and Hofmann (2017)). The
GERBIL framework (Usbeck et al., 2015) pro-
vides a unified way of evaluating a wide variety
of NED tools and services.

A recent line of work uses representational
learning to characterize contexts through em-
beddings (e.g., He et al. (2013), Sun et al.
(2015), Francis-Landau et al. (2016), Yamada
et al. (2016), Gupta et al. (2017), Yamada et al.
(2017)). These approaches naturally lend them-
selves towards inference by neural networks such
as LSTMs. In our experiments, the Neural Text-
Entity Encoder by Yamada et al. (2016) serves as
state-of-the-art baseline.

While temporal information was used as a
global feature to compute coherence between en-
tity lifespans (Hoffart et al., 2013), no prior work
on named entity disambiguation made explicit
use of temporal information as a local feature.
However, the value of time has been shown in
a variety of other information extraction tasks,
such as relation extraction (UzZaman et al., 2013;
Mirza and Tonelli, 2016), event extraction (Kuzey
et al., 2016; Spitz and Gertz, 2016), and slot fill-
ing (Ji et al., 2011; Surdeanu et al., 2011; Sur-
deanu, 2013), as well as in the context of informa-
tion retrieval (Berberich et al., 2010; Agarwal and
Strötgen, 2017) and fact checking (Popat et al.,
2017). In this paper, inspired by the importance
of temporal information for many NLP tasks, we
analyzed its value for NED.

7 Conclusions and Ongoing Work

We proposed the first NED method with explicit
consideration of temporal background. As demon-

strated in our experiments, this time-awareness
improves NED quality over diachronic texts that
span long time periods. The diaNED dataset and
the temporal signatures of entities are publicly
available.5

Currently, we integrate a strategy for handling
out-of-KB entities to determine how temporal
affinity may help in the nil detection problem. Fur-
thermore, we plan large-scale experiments with
distant supervision data which will also allow to
evaluate the effectiveness of considering temporal
expressions in the context of the entity mentions as
further temporal context information. Finally, us-
ing a multilingual temporal tagger (Strötgen and
Gertz, 2015), the value of time for NED could be
studied for further languages.
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Ngonga Ngomo, Ciro Baron, Andreas Both, Mar-
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