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Stefan Grünewald and Sophie Henning and Alexander Koller
Department of Language Science and Technology

Saarland University, Saarbrücken, Germany
{stefang|shenning|koller}@coli.uni-saarland.de

Abstract

Chart constraints, which specify at which
string positions a constituent may begin or
end, have been shown to speed up chart
parsers for PCFGs. We generalize chart
constraints to more expressive grammar
formalisms and describe a neural tagger
which predicts chart constraints at very
high precision. Our constraints accelerate
both PCFG and TAG parsing, and combine
effectively with other pruning techniques
(coarse-to-fine and supertagging) for an
overall speedup of two orders of magni-
tude, while improving accuracy.

1 Introduction

Effective and high-precision pruning is essential for
making statistical parsers fast and accurate. Exist-
ing pruning techniques differ in the source of pars-
ing complexity they tackle. Beam search (Collins,
2003) bounds the number of entries in each cell of
the parse chart; supertagging (Bangalore and Joshi,
1999; Clark and Curran, 2007; Lewis et al., 2016)
bounds the number of lexicon entries for each input
token; and coarse-to-fine parsing (Charniak et al.,
2006) blocks chart cells that were not useful when
parsing with a coarser-grained grammar.

One very direct method for limiting the chart
cells the parser considers is through chart con-
straints (Roark et al., 2012): a tagger first identifies
string positions at which constituents may begin or
end, and the chart parser may then only fill cells
which respect these constraints. Roark et al. found
that begin and end chart constraints accelerated
PCFG parsing by up to 8x. However, in their orig-
inal form, chart constraints are limited to PCFGs
and cannot be directly applied to more expressive
formalisms, such as tree-adjoining grammar (TAG,
Joshi and Schabes (1997)).

Chart constraints prune the ways in which
smaller structures can be combined into bigger
ones. Intuitively, they are complementary to su-
pertagging, which constrains lexical ambiguity in
lexicalized grammar formalisms such as TAG and
CCG, and has been shown to drastically improve
efficiency and accuracy for these (Bangalore et al.,
2009; Lewis et al., 2016; Kasai et al., 2017). For
CCG specifically, Zhang et al. (2010) showed that
supertagging combines favorably with chart con-
straints. To our knowledge, similar results for other
grammar formalisms are not available.

In this paper, we make two contributions. First,
we generalize chart constraints to more expressive
grammar formalisms by casting them in terms of
allowable parse items that should be considered
by the parser. The Roark chart constraints are the
special case for PCFGs and CKY; our view applies
to any grammar formalism for which a parser can
be specified in terms of parsing schemata. Second,
we present a neural tagger which predicts begin
and end constraints with an accuracy around 98%.
We show that these chart constraints speed up a
PCFG parser by 18x and a TAG chart parser by 4x.
Furthermore, chart constraints can be combined
effectively with coarse-to-fine parsing for PCFGs
(for an overall speedup of 70x) and supertagging for
TAG (overall speedup of 124x), all while improving
the accuracy over those of the baseline parsers. Our
code is part of the Alto parser (Gontrum et al.,
2017), available at http://bitbucket.org/
tclup/alto.

2 Generalized chart constraints

Roark et al. define begin and end chart constraints.
A begin constraint B for the string w is a set of
positions in w at which no constituent of width two
or more may start. Conversely, an end constraint E
describes where constituents may not end.

Roark et al. focus on speeding up the standard
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Figure 1: (a) Chart-constraint tagger; (b) TAG ad-
junction.

CKY parser for PCFGs with chart constraints.
They do this by declaring a cell [i, k] of the CKY
parse chart as closed if i ∈ B or k ∈ E, and modi-
fying the CKY algorithm such that no nonterminals
may be entered into closed cells. They show this
to be very effective for PCFG parsing; but in its
reliance on CKY chart cells, their algorithm is not
directly applicable to other parsing algorithms or
grammar formalisms.

2.1 Allowable items
In this paper, we take a more general perspective
on chart constraints, which we express in terms of
parsing schemata (Shieber et al., 1995). A parsing
schema consists of a set I of items, which are de-
rived from initial items by applying inference rules.
Once all derivable items have been calculated, we
can calculate the best parse tree by following the
derivations of the goal items backwards.

Many parsing algorithms can be expressed in
terms of parsing schemata. For instance, the CKY
algorithm for CFGs uses items of the form [A, i, k]
to express that the substring from i to k can be
derived from the nonterminal A, and derives new
items out of old ones using the inference rule

[B, i, j] [C, j, k] A→ B C

[A, i, k]

The purpose of a chart constraint is to describe
a set of allowable items A ⊆ I. We restrict the
parsing algorithm so that the consequent item of an
inference rule may only be derived if it is allowable.
If all items that are required for the best derivation
are allowable, the parser remains complete, but may
become faster because fewer items are derived.

For the specific case of the CKY algorithm for
PCFGs, we can simulate the behavior of Roark
et al.’s algorithm by defining an item [A, i, k] as
allowable if i 6∈ B and k 6∈ E.

2.2 Chart constraints and binarization
One technical challenge regarding chart constraints
arises in the context of binarization. Chart con-

straints are trained to identify constituent bound-
aries in the original treebank, where nodes may
have more than two children. However, an efficient
chart parser for PCFG can combine only two adja-
cent constituents in each step. Thus, if the original
tree used the rule A → B C D, the parser needs
to first combine B with C, say into the substring
[i, k], and then the result with D (or vice versa).
This intermediate parsing item for [i, k] must be
allowable, even if k ∈ E, because it does not rep-
resent a real constituent; it is only a computation
step on the way towards one.

We solve this problem by keeping track in the
parse items whether they were an intermediate re-
sult caused by binarization, or a complete con-
stituent. This generalizes Roark et al.’s cells that
are “closed to complete constituents”. For instance,
when converting a PCFG grammar to Chomsky
normal form, one can distinguish the “new” non-
terminals generated by the CNF conversion from
those that were already present in the original gram-
mar. We can then let an item [A, i, k] be allowable
if i 6∈ B and either k 6∈ E or A is new.

2.3 Allowable items for TAG parsing
By interpreting chart constraints in terms of allow-
able parse items, we can apply them to a wide
range of grammar formalisms beyond PCFGs. We
illustrate this by defining allowable parse items for
TAG. Parse items for TAG (Shieber et al., 1995;
Kallmeyer, 2010) are of the form [X , i, j, k, l],
where i, l are string positions, and j, k are either
both string positions or both are NULL. X is a
complex representation of a position in an elemen-
tary tree, which we do not go into here; see the
literature for details. The item describes a deriva-
tion of the string from position i to l. If j and k
are NULL, then the derivation starts with an initial
tree and covers the entire substring. Otherwise, it
starts with an auxiliary tree, and there is a gap in
its string yield from j to k. Such an item will later
be adjoined at a node which covers the substring
from j to k using the following inference rule (see
Fig. 1b):

[X , i, j, k, l] [Y, j, r, s, k]
[Y ′, i, r, s, l]

Assuming begin and end constraints as above, we
define allowable TAG items as follows. First, an
item [X , i, j, k, l] is not allowable if i ∈ B or l ∈ E.
Second, if j and k are not NULL, then the item is
not allowable if j ∈ B or k ∈ E (else there will be
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no constituent from j to k at which the item could
be adjoined). Otherwise, the item is allowable.

2.4 Allowable states for IRTG parsing

Allowable items have a particularly direct interpre-
tation when parsing with Interpreted Regular Tree
Grammars (IRTGs, Koller and Kuhlmann (2011)),
a grammar formalism which generalizes PCFG,
TAG, and many others. Chart parsers for IRTG
describe substructures of the input object as states
of a finite tree automaton D. When we encode
a PCFG as an IRTG, these states are of the form
[i, k]; when we encode a TAG grammar, they are
of the form [i, j, k, l]. Thus chart constraints de-
scribe allowable states of this automaton, and we
can prune the chart simply by restricting D to rules
that use only allowable states.

In the experiments below, we use the Alto IRTG
parser (Gontrum et al., 2017), modified to imple-
ment chart constraints as allowable states. We con-
vert the PCFG and TAG grammars into IRTG gram-
mars and use the parsing algorithms of Groschwitz
et al. (2016): “condensed intersection” for PCFG
parsing and the “sibling-finder” algorithm for TAG.
Both of these implement the CKY algorithm and
compute charts which correspond to the parsing
schemata sketched above.

3 Neural chart-constraint tagging

Roark et al. predict the begin and end constraints
for a string w using a log-linear model with man-
ually designed features. We replace this with a
neural tagger (Fig. 1a), which reads the input sen-
tence token by token and jointly predicts for each
string position whether it is in B and/or E.

Technically, our tagger is a two-layer bidirec-
tional LSTM (Kiperwasser and Goldberg, 2016;
Lewis et al., 2016; Kummerfeld and Klein, 2017).
In each time step, it reads as input a pair xi =
(wi, pi) of one-hot encodings of a word wi and a
POS tag pi, and embeds them into dense vectors
(using pretrained GloVe word embeddings (Pen-
nington et al., 2014) for wi and learned POS tag
embeddings for pi). It then computes the proba-
bility that a constituent begins (ends) at position
i from the concatenation vi = vF2

i ◦ vB2
i of the

hidden states vF2 and vB2 of the second forward
and backward LSTM at position i:

P (B | w, i) = softmax(WB · vi + bB)
P (E | w, i) = softmax(WE · vi + bE)

B E
θ acc prec recall acc prec recall
0.5 97.6 97.4 97.8 98.1 98.7 98.7
0.9 96.7 98.8 95.2 97.2 99.4 96.7
0.99 93.7 99.6 87.9 93.0 99.7 90.5

Figure 2: Chart-constraint tagging accuracy.

We let B = {i | P (B|w, i) < 1 − θ}; that is, the
network predicts a begin constraint if the proba-
bility of B exceeds a threshold θ (analogously for
E). The threshold allows us to trade off precision
against recall; this is important because false pos-
itives can prevent the parser from discovering the
best tree.

4 Evaluation

We evaluated the efficacy of chart-constraint prun-
ing for PCFG and TAG parsing. All runtimes are
on an AMD Opteron 6380 CPU at 2.5 GHz, us-
ing Oracle Java version 8. See the Supplementary
Materials for details on the setup.

4.1 PCFG parsing
We trained the chart-constraint tagger on WSJ Sec-
tions 02–21. The tagging accuracy on WSJ Section
23 is shown in Fig. 2. As expected, an increasing
threshold θ increases precision and decreases re-
call. Precision and recall are comparable to Roark
et al.’s log-linear model for E. Our tagger achieves
94% recall for B at a precision of 99%, compared
to Roark et al.’s recall of just over 80% – with-
out the feature engineering effort required by their
system.1

We extracted a PCFG grammar from a right-
binarized version of WSJ Sections 02–21 using
maximum likelihood estimation, applying a hori-
zontal markovization of 2 and using POS tags as
terminal symbols to avoid sparse data issues. We
parsed Section 23 using a baseline parser which
does not prune the chart, obtaining a low f-score of
71, which is typical for such a simple PCFG. We
also parsed Section 23 with parsers which utilize
the chart constraints predicted by the tagger (on the
original sentences and gold POS tags) and the gold
chart constraints from Section 23. The results are
shown in Fig. 3; “time” is the mean time to com-
pute the chart for each sentence, in milliseconds.

Chart constraints by themselves speed the parser
up by factor of 18x at θ = 0.5; higher values of θ
did not increase the parsing accuracy further, but

1Note that the numbers are not directly comparable be-
cause Roark et al. evaluate their tagger on Section 24.



629

Parser f-score time speedup % gold
Unpruned 71.0 2599 1.0x 4.4
CC (θ = 0.5) 75.0 143 18.2x 91.8
CC (gold) 77.6 143 18.2x 100.0
CTF 67.6 194 13.4x 20.1
CTF + CC (θ=0.5) 72.4 37 70.1x 94.3
CTF + CC (gold) 75.3 38 68.4x 100.0

Figure 3: Results for PCFG parsing.

yielded smaller speedups. This compares to an 8x
speedup in Roark et al.; the difference may be due
to the higher B recall of our neural tagger. Further-
more, when we combine chart constraints with the
coarse-to-fine parser of Teichmann et al. (2017),
using their threshold of 10−5 for CTF pruning, the
two pruning methods amplify each other, yielding
an overall speedup of up to 70x.2

4.2 TAG parsing

For the TAG experiments, we converted WSJ Sec-
tions 02–21 into a TAG corpus using the method
of Chen and Vijay-Shanker (2004). This method
sometimes adjoins multiple auxiliary trees to the
same node. We removed all but the last adjunction
at each node to make the derivations compatible
with standard TAG, shortening the sentences by
about 40% on average. To combat sparse data, we
replaced all numbers by NUMBER and all words
that do not have a GloVe embedding by UNK.

The neural chart-constraint tagger, trained on the
shortened corpus, achieves a recall of 93% for B
and 98% for E at 99% precision on the (shortened)
Section 00. We chose a value of θ = 0.95 for
the experiments, since in the case of TAG parsing,
false positive chart constraints frequently prevent
the parser from finding any parse at all, and thus
lower values of θ strongly degrade the f-scores.

We read a PTAG grammar (Resnik, 1992) with
4731 unlexicalized elementary trees off of the train-
ing corpus, binarized it, and used it to parse Section
00. This grammar struggles with unseen words,
and thus achieves a rather low f-score (see Fig. 4).
Chart constraints by themselves speed the TAG
parser up by 3.8x, almost matching the perfor-
mance of gold chart constraints. This improvement
is remarkable in that Teichmann et al. (2017) found
that coarse-to-fine parsing, which also prunes the
substrings a finer-grained parser considers, did not
improve TAG parsing performance.

2Our CTF numbers differ slightly from Teichmann et al.’s
because they only parse sentences with up to 40 words and
use a different binarization method.

Parser f-score time speedup % gold

bi
na

ri
ze

d Unpruned 51.4 9483 1.0x 5.3
CC (θ = 0.95) 53.6 2489 3.8x 76.7
CC (gold) 53.9 2281 4.2x 100.0
supertag (k = 3) 77.5 137 69.4x 29.7

un
bi

na
ri

ze
d

supertag (k = 3) 78.5 132 72.0x 30.2
. . . + CC (0.95) 78.4 76 124.3x 91.6
. . . + CC (0.99) 79.2 80 119.2x 86.1
. . . + CC (gold) 78.3 74 127.9x 100.0
. . . + B/E (0.95) 79.2 87 108.9x 74.5
. . . + B/E (0.8) 78.4 84 113.3x 76.9
supertag (k = 10) 79.4 1768 5.4x 1.5
. . . + CC (0.95) 80.6 265 35.8x 71.3
. . . + CC (0.99) 81.0 288 33.0x 60.3
. . . + CC (gold) 81.9 252 37.6x 100.0
. . . + B/E (0.95) 81.1 397 23.9x 35.6
. . . + B/E (0.8) 80.7 386 24.6x 38.6

Figure 4: Results for TAG parsing.

Supertagging. We then investigated the combi-
nation of chart constraints with a neural supertagger
along the lines of Lewis et al. (2016). We modified
the output layer of Fig. 1a such that it predicts the
supertag (= unlexicalized elementary tree) for each
token. Each input token is represented by a 200D
GloVe embedding.

To parse a sentence w of length n, we ran the
trained supertagger on w and extracted the top k
supertags for each token wi of w. We then ran the
Alto PTAG parser on an artificial string “1 2 . . .n”
and a sentence-specific TAG grammar which con-
tains, for each i, the top k elementary trees for wi,
lexicalized with the “word” i and weighted with the
probability of its supertag. This allowed us to use
the unmodified Alto parser, while avoiding the pos-
sible mixing of supertags for multiple occurrences
of the same word. We then obtained the best parse
trees for the original sentence w by replacing each
artificial token i in the parse tree by the original
token wi.

The sentence-specific grammars are so small that
we can parse the test corpus without binarizing
them. As Fig. 4 indicates, supertagging speeds up
the parser by 5x (k = 10) to 70x (k = 3); the
use of word embeddings boosts the coverage to
almost 100% and the f-score to around 80. Adding
chart constraints on top of supertagging further
improves the parser, yielding the best speed (at
k = 3) and accuracy (at k = 10). We achieve an
overall speedup of two orders of magnitude with a
drastic increase in accuracy.

Allowable items for TAG. Instead of requiring
that a TAG chart item is only allowable if neither
the string [i, l] nor its gap [j, k] violate a chart con-
straint (as in Section 2.3), one could instead adopt
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a simpler definition by which a TAG chart item
is allowable if i and l satisfy the chart constraints,
regardless of the gap.3

We evaluated the original definition from Sec-
tion 2.3 (“CC”) against this baseline definition
(“B/E”). As the results in Fig. 4 indicate, the B/E
strategy achieves higher accuracy and lower pars-
ing speeds than the CC strategy at equal values of θ.
This is to be expected, because CC has more oppor-
tunities to prune chart items early, but false positive
chart constraints can cause it to overprune. When
θ is scaled so both strategies achieve the same ac-
curacy – i.e., B/E θ = 0.8 for CC θ = 0.95, or CC
θ = 0.99 for B/E θ = 0.95 –, CC is faster than
B/E. This suggests that imposing chart constraints
on the gap is beneficial and illustrates the flexibility
and power of the “admissible items” approach we
introduce here.

4.3 Discussion

The effect of using chart constraints is that the
parser considers fewer substructures of the input
object – potentially to the point that the asymptotic
parsing complexity is reduced below that of the
underlying grammar formalism (Roark et al., 2012).
In practice, we observe that the percentage of chart
items whose begin positions and end positions are
consistent with the gold standard tree (“% gold” in
the figures) is increased by CTF and supertagging,
indicating that these suppress the computation of
many spans that are not needed for the best tree.
However, chart constraints prune useless spans out
much more directly and completely, leading to a
further boost in parsing speed.

Because we remove multiple adjunctions in the
TAG experiment, most sentences in the corpus are
shorter than in the original. This might skew the
parsing results in favor of pruning techniques that
work best on short sentences. We checked this
by plotting sentence lengths against mean parsing
times for a number of pruning methods in Fig. 5
(supertagging with k = 10, chart constraints with
θ = 0.95). As the sentence length increases, pars-
ing times of supertagging together with chart con-
straints grows much more slowly than the other
methods. Thus we can expect the relative speedup
to increase for corpora of longer sentences.

3We thank an anonymous reviewer for suggesting this
comparison.

Figure 5: TAG parsing speed as a function of sen-
tence length.

5 Conclusion

Chart constraints, computed by a neural tagger, ro-
bustly accelerate parsers both for PCFGs and for
more expressive formalisms such as TAG. Even
highly effective pruning techniques such as CTF
and supertagging can be further improved through
chart constraints, indicating that they target differ-
ent sources of complexity.

By interpreting chart constraints in terms of al-
lowable chart items, we can apply them to arbi-
trary chart parsers, including ones for grammar
formalisms that describe objects other than strings,
e.g. graphs (Chiang et al., 2013; Groschwitz et al.,
2015). The primary challenge here is to develop
a high-precision tagger that identifies allowable
subgraphs, which requires moving beyond LSTMs.

An intriguing question is to what extent chart
constraints can speed up parsing algorithms that do
not use charts. It is known that chart constraints can
speed up context-free shift-reduce parsers (Chen
et al., 2017). It would be interesting to see how a
neural parser, such as (Dyer et al., 2016), would
benefit from chart constraints calculated by a neural
tagger.
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