
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 612–618
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

612

An Empirical Study of Building a Strong Baseline
for Constituency Parsing

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto Morishita, and Masaaki Nagata
NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
{suzuki.jun, takase.sho, kamigaito.hidetaka,

morishita.makoto, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper investigates the construction
of a strong baseline based on general
purpose sequence-to-sequence models for
constituency parsing. We incorporate sev-
eral techniques that were mainly devel-
oped in natural language generation tasks,
e.g., machine translation and summariza-
tion, and demonstrate that the sequence-
to-sequence model achieves the current
top-notch parsers’ performance without
requiring explicit task-specific knowledge
or architecture of constituent parsing.

1 Introduction

Sequence-to-sequence (Seq2seq) models have
successfully improved many well-studied NLP
tasks, especially for natural language genera-
tion (NLG) tasks, such as machine translation
(MT) (Sutskever et al., 2014; Cho et al., 2014)
and abstractive summarization (Rush et al., 2015).
Seq2seq models have also been applied to con-
stituency parsing (Vinyals et al., 2015) and pro-
vided a fairly good result. However one obvi-
ous, intuitive drawback of Seq2seq models when
they are applied to constituency parsing is that
they have no explicit architecture to model latent
nested relationships among the words and phrases
in constituency parse trees, Thus, models that di-
rectly model them, such as RNNG (Dyer et al.,
2016), are an intuitively more promising approach.
In fact, RNNG and its extensions (Kuncoro et al.,
2017; Fried et al., 2017) provide the current state-
of-the-art performance. Sec2seq models are cur-
rently considered a simple baseline of neural-
based constituency parsing.

After the first proposal of an Seq2seq con-
stituency parser, many task-independent tech-
niques have been developed, mainly in the NLG

research area. Our aim is to update the Seq2seq
approach proposed in Vinyals et al. (2015) as a
stronger baseline of constituency parsing. Our
motivation is basically identical to that described
in Denkowski and Neubig (2017). A strong base-
line is crucial for reporting reliable experimental
results. It offers a fair evaluation of promising new
techniques if they solve new issues or simply re-
solve issues that have already been addressed by
current generic technology. More specifically, it
might become possible to analyze what types of
implicit linguistic structures are easier or harder to
capture for neural models by comparing the out-
puts of strong Seq2seq models and task-specific
models, e.g., RNNG.

The contributions of this paper are summarized
as follows: (1) a strong baseline for constituency
parsing based on general purpose Seq2seq mod-
els1, (2) an empirical investigation of several
generic techniques that can (or cannot) contribute
to improve the parser performance, (3) empiri-
cal evidence that Seq2seq models implicitly learn
parse tree structures well without knowing task-
specific and explicit tree structure information.

2 Constituency Parsing by Seq2seq

Our starting point is an RNN-based Seq2seq
model with an attention mechanism that was ap-
plied to constituency parsing (Vinyals et al., 2015).
We omit detailed descriptions due to space limita-
tions, but note that our model architecture is iden-
tical to the one introduced in Luong et al. (2015a)2.

A key trick for applying Seq2seq models to
constituency parsing is the linearization of parse

1Our code and experimental configurations for reproduc-
ing our experiments are publicly available:
https://github.com/nttcslab-nlp/strong s2s baseline parser

2More specifically, our Seq2seq model fol-
lows the one implemented in seq2seq-attn
(https://github.com/harvardnlp/seq2seq-attn), which is
the alpha-version of the OpenNMT tool (http://opennmt.net).

https://github.com/nttcslab-nlp/strong_s2s_baseline_parser
https://github.com/harvardnlp/seq2seq-attn
http://opennmt.net


613

Original input John has a dog .
Output: S-exp. (S (NP NNP ) (VP VBZ (NP DT NN ) ) . )
Linearized form (S (NP NNP )NP (VP VBZ (NP DT NN )NP )VP . )S
w/ POS normalized (S (NP XX )NP (VP XX (NP XX XX )NP )VP . )S

Table 1: Examples of linearization and POS-tag
normalization (Vinyals et al., 2015)

trees (Vinyals et al., 2015). Roughly speaking, a
linearized parse tree consists of open, close brack-
eting and POS-tags that correspond to a given in-
put raw sentence. Since a one-to-one mapping ex-
ists between a parse tree and its linearized form
(if the linearized form is a valid tree), we can
recover parse trees from the predicted linearized
parse tree. Vinyals et al. (2015) also introduced
the part-of-speech (POS) tag normalization tech-
nique. They substituted each POS tag in a lin-
earized parse tree to a single XX-tag3, which al-
lows Seq2seq models to achieve a more compet-
itive performance range than the current state-of-
the-art parses4. Table 1 shows an example of a
parse tree to which linearization and POS-tag nor-
malization was applied.

3 Task-independent Extensions

This section describes several generic techniques
that improve Seq2seq performance5. Table 2 lists
the notations used in this paper for a convenient
reference.

3.1 Subword as input features
Applying subword decomposition has recently be-
come a leading technique in NMT literature (Sen-
nrich et al., 2016; Wu et al., 2016). Its primary
advantage is a significant reduction of the serious
out-of-vocabulary (OOV) problem. We incorpo-
rated subword information as an additional feature
of the original input words. A similar usage of
subword features was previously proposed in Bo-
janowski et al. (2017).

Formally, the encoder embedding vector at en-
coder position i, namely, ei, is calculated as fol-
lows:

ei = Exk +
∑

k′∈ψ(wi)

Fsk′ , (1)

3We did not substitute POS-tags for punctuation symbols
such as “.”, and “,”.

4Several recently developed neural-based constituency
parsers ignore POS tags since they are not evaluated in the
standard evaluation metric of constituency parsing (Bracket-
ing F-measure).

5Figure in the supplementary material shows the brief
sketch of the method explained in the following section.

D : dimension of the embeddings
H : dimension of the hidden states
i : index of the (token) position in input sentence
j : index of the (token) position in output linearized format of parse tree
V(e) : vocabulary of word for input (encoder) side
V(s) : vocabulary of subword for input (encoder) side

E : encoder embedding matrix for V(e), where E ∈ RD×|V(e)|

F : encoder embedding matrix for V(s), where F ∈ RD×|V(s)|

wi : i-th word (token) in the input sentence, wi ∈ V(e)

xk : one-hot vector representation of the k-th word in V(e)

sk : one-hot vector representation of the k-th subword in V(s)

u : encoder embedding vector of unknown token
φ(·) : function that returns the index of given word in the vocabulary V(e)

ψ(·) : function that returns a set of indices in the subword vocabulary V(s)

generated from the given word. e.g., k ∈ ψ(wi)
ei : encoder embedding vector at position i in encoder
V(d) : vocabulary of output with POS-tag normalization
V(q) : vocabulary of output without POS-tag normalization

W (o) : decoder output matrix for V(d), where W (o) ∈ R|V
(o)|×H

W (q) : decoder output matrix for V(q), where W (q) ∈ R|V
(q)|×H

zj : final hidden vector calculated at the decoder position j
oj : final decoder output scores at decoder position j
qj : output scores of auxiliary task at decoder position j
b : additional bias term in the decoder output layer for mask
pj : vector format of output probability at decoder position j
A : number of models for ensembling
C : number of candidates generating for LM-reranking

Table 2: List of notations used in this paper.

where k = φ(wi). Note that the second term
of RHS indicates our additional subword features,
and the first represents the standard word em-
bedding extraction procedure. Among several
choices, we used the byte-pair encoding (BPE) ap-
proach proposed in Sennrich et al. (2016) applying
1,000 merge operations6.

3.2 Unknown token embedding as a bias
We generally replace rare words, e.g., those ap-
pearing less than five times in the training data,
with unknown tokens in the Seq2seq approach.
However, we suspect that embedding vectors,
which correspond to unknown tokens, cannot be
trained well for the following reasons: (1) the
occurrence of unknown tokens remains relatively
small in the training data since they are obvi-
ous replacements for rare words, and (2) Seq2seq
is relatively ineffective for training infrequent
words (Luong et al., 2015b). Based on these ob-
servations, we utilize the unknown embedding as
a bias term b of linear layer (Wx + b) when ob-
taining every encoder embeddings for overcoming
infrequent word problem. Then, we modify Eq. 2
as follows:

ei = (Exk + u) +
∑

k′∈ψ(wi)

(Fsk′ + u). (2)

Note that if wi is unknown token, then Eq. 2 be-
comes ei = 2u+

∑
k′∈ψ(wi)

(Fsk′ + u).

6https://github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt


614

3.3 Multi-task learning
Several papers on the Seq2seq approach (Luong
et al., 2016) have reported that the multi-task
learning extension often improves the task perfor-
mance if we can find effective auxiliary tasks re-
lated to the target task. From this general knowl-
edge, we re-consider jointly estimating POS-tags
by incorporating the linearized forms without the
POS-tag normalization as an auxiliary task. In
detail, the linearized forms with and without the
POS-tag normalization are independently and si-
multaneously estimated as oj and qj , respectively,
in the decoder output layer by following equation:

oj = W (o)zj , and qj = W (q)zj . (3)

3.4 Output length controlling
As described in Vinyals et al. (2015), not all the
outputs (predicted linearized parse trees) obtained
from the Seq2seq parser are valid (well-formed) as
a parse tree. Toward guaranteeing that every out-
put is a valid tree, we introduce a simple extension
of the method for controlling the Seq2seq output
length (Kikuchi et al., 2016).

First, we introduce an additional bias term b in
the decoder output layer to prevent the selection of
certain output words:

pj = softmax(oj + b). (4)

If we set a large negative value at them-th element
in b, namely bm≈−∞, then the m-th element in
pj becomes approximately 0, namely pj,m ≈ 0,
regardless of the value of the k-th element in oj .
We refer to this operation to set value −∞ in b
as a mask. Since this naive masking approach is
harmless to GPU-friendly processing, we can still
exploit GPU parallelization.

We set b to always mask the EOS-tag and
change b when at least one of the following con-
ditions is satisfied: (1) if the number of open and
closed brackets generated so far is the same, then
we mask the XX-tags (or the POS-tags) and all
the closed brackets. (2) if the number of predicted
XX-tags (or POS-tags) is equivalent to that of the
words in a given input sentence, then we mask
the XX-tags (or all the POS-tags) and all the open
brackets. If both conditions (1) and (2) are satis-
fied, then the decoding process is finished. The
additional cost for controlling the mask is to count
the number of XX-tags and the open and closed
brackets so far generated in the decoding process.

Dim. of embeddingD 300 Dim. of hidden stateH 200
Encoder RNN unit bi-LSTM Num. of layers L 2
Decoder RNN unit LSTM with attention Dropout rate 0.3

Optimizer SGD Gradient clippingG 1.0
Learning rate decay 0.9 (after 50 epoch) Initial learning rate 1.0
Mini-batch sizeM 16 (shuffled at each epoch)
Stopping criterion 100 epochs (w/o early stopping)

Beam size (at Test)B 5

Table 3: List of model and optimization configu-
rations (hyper-parameters) in our experiments

3.5 Pre-trained word embeddings

The pre-trained word embeddings obtained from
a large external corpora often boost the final task
performance even if they only initialize the input
embedding layer. In constituency parsing, several
systems also incorporate pre-trained word embed-
dings, such as Vinyals et al. (2015); Durrett and
Klein (2015). To maintain as much reproducibil-
ity of our experiments as possible, we simply ap-
plied publicly available pre-trained word embed-
dings, i.e., glove.840B.300d7, as initial val-
ues of the encoder embedding layer.

3.6 Model ensemble

Ensembling several independently trained models
together significantly improves many NLP tasks.
In the ensembling process, we predict the out-
put tokens using the arithmetic mean of predicted
probabilities computed by each model:

pj =
1

A

∑A

a=1
p
(a)
j , (5)

where p
(a)
j represents the probability distribution

at position j predicted by the a-th model.

3.7 Language model (LM) reranking

Choe and Charniak (2016) demonstrated that
reranking the predicted parser output candidates
with an RNN language model (LM) significantly
improves performance. We refer to this reranking
process as LM-rerank. Following their success, we
also trained RNN-LMs on the PTB dataset with
their published preprocessing code8 to reproduce
the experiments in Choe and Charniak (2016) for
our LM-rerank. We selected the current state-
of-the-art LM (Yang et al., 2018)9 as our LM-
reranker, which is a much stronger LM than was
used in Choe and Charniak (2016).

7https://nlp.stanford.edu/projects/glove/
8https://github.com/cdg720/emnlp2016
9We used the identical hyper-parameters introduced in

their site: https://github.com/zihangdai/mos.

https://nlp.stanford.edu/projects/glove/
https://github.com/cdg720/emnlp2016
https://github.com/zihangdai/mos


615

Development Data (PTB Sec.22) Test Data (PTB Sec.23)
Bracketing F1 (Bra.F) Complete match (CM) Bra.F CM Bra.F CM

ID Method category ave. ±stdev min / max ave. ±stdev min / max ave. ±stdev ave. ±stdev (dev.max model)
(a) Seq2seq w/ attn (+post-proc for valid parse tree) 88.08±0.41 87.27 / 88.72 35.80±0.78 34.88 / 37.41 88.13±0.22 35.05±0.79 88.39 35.97
(b) (a) + Dec.control (§3.4) dec. mask. 88.35±0.37 87.70 / 88.83 35.89±0.80 34.94 / 37.47 – – – –
(c) (b) + Subword (§3.1) enc. feature 89.76±0.23 89.40 / 90.03 39.79±0.79 38.47 / 40.88 – – – –
(d) (c) + Unk bias (§3.2) enc. featture 90.10±0.24 89.77 / 90.54 40.98±0.82 39.59 / 42.18 – – – –
(e) (d) + Pos (§3.3) dec. multitask 90.21±0.20 89.85 / 90.48 41.09±0.98 39.35 / 42.82 90.38±0.28 40.76±0.74 90.62 41.39
(f) (a) + Pre-trained emb. (§3.5) enc. initialization 89.99±0.17 89.75 / 90.34 40.69±0.83 39.41 / 41.76 90.14±0.12 40.40±0.44 90.32 40.89
(g) (f) + Dec.control (§3.4) dec. mask. 90.28±0.15 90.10 / 90.55 40.78±0.84 39.53 / 41.88 – – – –
(h) (g) + Subword (§3.1) enc. feature 90.34±0.10 90.20 / 90.53 41.19±0.64 40.12 / 42.06 – – – –
(i) (h) + Unk bias (§3.2) enc. feature 90.92±0.17 90.67 / 91.17 43.38±0.57 42.47 / 44.29 – – – –
(j) (i) + Pos (§3.3) dec. multitask 90.93±0.14 90.68 / 91.07 42.76±0.38 42.00 / 43.18 91.18±0.12 42.39±0.68 91.36 43.50

Table 4: Results on English PTB data: Results were average (ave), worst (min), and best (max) per-
formance of ten models independently trained with distinct random initial values. Test data was only
evaluated on baseline and our best setting ((a), (e), (f) and (j)) to prevent over-tuning to the test
data. We confirmed that all our results contained no malformed parse trees.

Dev. Test
ID Method Bra.F CM Bra.F CM
(k) (e) + ensembleA = 8 (§3.6) 92.32 45.76 92.18 45.90
(l) (k) + LM-rerank C = 80 (§3.7) 94.31 53.59 94.14 52.69
(m) (j) + ensembleA = 8 (§3.6) 92.90 47.85 92.74 47.27
(n) (m) + LM-rerank C = 80 (§3.7) 94.30 54.12 94.32 52.81

Table 5: Ensembling and reranking results

(a) Mini-batch sizeM (b) Gradient clippingG
method Bra.F CM

(j) M = 16 90.93 42.76
M = 64 89.85 40.94
M = 256 89.41 40.41

method Bra.F CM
(j) G = 1 90.93 42.76

G = 5 87.36 36.71

(c) Hidden dimH and layer L (d) Beam sizeB
method Bra.F CM

(j) H = 200, L = 2 90.93 42.76
H = 200, L = 3 90.75 43.00
H = 200, L = 4 90.55 42.84
H = 512, L = 2 90.59 43.38

method Bra.F CM
B = 1 90.55 42.49

(j) B = 5 90.93 42.76
B = 20 90.98 42.76
B = 50 91.01 42.76

(e) usage of subword information (feature or split)
method Bra.F CM

(h) word split with 1K subword feature 90.93 42.76
8K subword split 87.39 33.62
16K subword split 87.20 31.21

Table 6: Impact of hyper-parameter selections. We
only evaluated the development data (PTB Sec.
22) to prevent over-tuning to the test data.

4 Experiments

Our experiments used the English Penn Treebank
data (Marcus et al., 1994), which are the most
widely used benchmark data in the literature. We
used the standard split of training (Sec.02–21),
development (Sec.22), and test data (Sec.23) and
strictly followed the instructions for the evalua-
tion settings explained in Vinyals et al. (2015).
For data pre-processing, all the parse trees were
transformed into linearized forms, which include
standard UNK replacement for OOV words and
POS-tag normalization by XX-tags. As explained
in Vinyals et al. (2015), we did not apply any parse
tree binarization or special unary treatment, which
were used as common techniques in the literature.

Table 3 summarizes the model configurations
and the optimization settings used in our experi-

System (Brief description) Bra.F
[Trained (strictly) from PTB only, no additional resources]

(Kamigaito et al., 2017) Seq2seq, sup.attention 89.5
(Cross and Huang, 2016a) Shift-reduce 89.95
Ours; Seq2seq 90.62
(Watanabe and Sumita, 2015) Shift-reduce 90.68
(Shindo et al., 2012) 91.1
(Cross and Huang, 2016b) Shift-reduce 91.3
(Kamigaito et al., 2017) Seq2seq, sup.attention, ensemble 91.5
(Dyer et al., 2016) Shift-reduce, discriminative 91.7
(Liu and Zhang, 2017) Shift-reduce 91.7
(Stern et al., 2017a) Top-down 91.79
Ours; Seq2seq, ensemble 92.18
(Shindo et al., 2012) ensemble 92.4
(Stern et al., 2017b) Top-down, rerank 92.56
(Choe and Charniak, 2016) CKY, LM-rerank 92.6
(Dyer et al., 2016) Shift-reduce, generative 93.3
(Kuncoro et al., 2017) Shift-reduce, rerank 93.6
Ours; Seq2seq, ensemble, LM-rerank(80) 94.14
(Fried et al., 2017) Shift-reduce, ensemble, rerank 94.25
[PTB only, but utilizing pre-trained emb. from external corpus for init.]

(Vinyals et al., 2015) Seq2seq 88.3
(Vinyals et al., 2015) Seq2seq, ensemble 90.5
(Durrett and Klein, 2015) CKY 91.1
Ours; Seq2seq 91.36
Ours; Seq2seq, ensemble 92.74
Ours best; Seq2seq, ensemble, LM-rerank(80) 94.32

[Trained from PTB and other external silver data]
(Choe and Charniak, 2016) CKY, LM-rerank 93.8
(Fried et al., 2017) Shift-reduce, ensemble, rerank 94.66

Table 7: List of bracketing F-measures on test data
(PTB Sec.23) reported in recent top-notch sys-
tems: scores with bold font represent our scores.

ments unless otherwise specified.

4.1 Results

Table 4 shows the main results of our experiments.
We reported the Bracketing F-measures (Bra.F)
and the complete match scores (CM) evaluated
by the EVALB tool10. The averages (ave), stan-
dard deviations (stdev), lowest (min), and high-
est (max) scores were calculated from ten inde-
pendent runs of each setting trained with different
random initialization values. This table empiri-
cally reveals the effectiveness of individual tech-
niques. Each technique gradually improved the
performance, and the best result (j) achieved ap-

10http://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/


616

proximately 3 point gain from the baseline con-
ventional Seq2seq model (a) on test data Bra.F.

One drawback of Seq2seq approach is that it
seems sensitive to initialization. Comparing only
with a single result for each setting may produce
inaccurate conclusions. Therefore, we should
evaluate the performances over several trials to im-
prove the evaluation reliability.

The baseline Seq2seq models, (a) and (f),
produced the malformed parse trees. We post-
processed such malformed parse trees by simple
rules introduced in (Vinyals et al., 2015). On the
other hand, we confirmed that all the results apply-
ing the technique explained in Sec. 3.4 produced
no malformed parse trees.
Ensembling and Reranking: Table 5 shows the
results of our models with model ensembling and
LM-reranking. For ensemble, we randomly se-
lected eight of the ten Seq2seq models reported
in Table 4. For LM-reranking, we first generated
80 candidates by the above eight ensemble models
and selected the best parse tree for each input in
terms of the LM-reranker. The results in Table 5
were taken from a single-shot evaluation, unlike
the averages of ten independent runs in Table 4.
Hyper-parameter selection: We empirically in-
vestigated the impact of the hyper-parameter se-
lections. Table 6 shows the results. The follow-
ing observations appear informative for building
strong baseline systems: (1) Smaller mini-batch
size M and gradient clipping G provided the bet-
ter performance. Such settings lead to slower
and longer training, but higher performance. (2)
Larger layer size, hidden state dimension, and
beam size have little impact on the performance;
our setting, L = 2, H = 200, and B = 5 looks
adequate in terms of speed/performance trade-off.
Input unit selection: As often demonstrated in
the NMT literature, using subword split as input
token unit instead of standard tokenized word unit
has potential to improve the performance. Table 6
(e) shows the results of utilizing subword splits.
Clearly, 8K and 16K subword splits as input to-
ken units significantly degraded the performance.
It seems that the numbers of XX-tags in output and
tokens in input should keep consistent for better
performance since Seq2seq models look to some-
how learn such relationship, and used it during
the decoding. Thus, using subword information as
features is one promising approach for leveraging
subword information into constituency parsing.

4.2 Comparison to current top systems

Table 7 lists the reported constituency parsing
scores on PTB that were recently published in the
literature. We split the results into three categories.
The first category (top row) contains the results
of the methods that were trained only from the
pre-defined training data (PTB Sec.02–21), with-
out any additional resources. The second category
(middle row) consists of the results of methods
that were trained from the pre-defined PTB train-
ing data as well as those listed in the top row, but
incorporating word embeddings obtained from a
large-scale external corpus to initialize the encoder
embedding layer. The third category (bottom row)
shows the performance of the methods that were
trained using high-confidence, auto-parsed trees in
addition to the pre-defined PTB training data.

Our Seq2seq approach successfully achieved
the competitive level as the current top-notch
methods: RNNG and its variants. Note here that,
as described in Dyer et al. (2016), RNNG uses
Berkeley parser’s mapping rules for effectively
handling singleton words in the training corpus.
In contrast, we demonstrated that Seq2seq models
have enough power to achieve a competitive state-
of-the-art performance without leveraging such
task-dependent knowledge. Moreover, they need
no explicit information of parse tree structures,
transition states, stacks, (Stanford or Berkeley)
mapping rules, or external silver training data dur-
ing the model training except general purpose
word embeddings as initial values. These obser-
vations from our experiments imply that recently
developed Seq2seq models have enough ability to
implicitly learn parsing structures from linearized
parse trees. Our results argue that Seq2seq models
can be a strong baseline for constituency parsing.

5 Conclusion

This paper investigated how well general purpose
Seq2seq models can achieve the higher perfor-
mance of constituency parsing as a strong baseline
method. We incorporated several generic tech-
niques to enhance Seq2seq models, such as incor-
porating subword features, and output length con-
trolling. We experimentally demonstrated that by
applying ensemble and LM-reranking techniques,
a general purpose Seq2seq model achieved almost
the same performance level as the state-of-the-art
constituency parser without any task-specific or
explicit tree structure information.



617

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5:135–146.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2331–2336.

James Cross and Liang Huang. 2016a. Incremental
parsing with minimal features using bi-directional
lstm. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 32–37.

James Cross and Liang Huang. 2016b. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1–11.

Michael Denkowski and Graham Neubig. 2017.
Stronger baselines for trustable results in neural ma-
chine translation. In Proceedings of the 1st Work-
shop on Neural Machine Translation (WNMT).

Greg Durrett and Dan Klein. 2015. Neural CRF pars-
ing. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics
(ACL) and the 7th International Joint Conference on
Natural Language Processing, pages 302–312.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 199–209.

Daniel Fried, Mitchell Stern, and Dan Klein. 2017. Im-
proving neural parsing by disentangling model com-
bination and reranking effects. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 161–166.

Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu
Hirao, Hiroya Takamura, Manabu Okumura, and
Masaaki Nagata. 2017. Supervised attention for
sequence-to-sequence constituency parsing. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 7–12, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1328–1338.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings of the
15th European Chapter of the Association for Com-
putational Linguistics (EACL), pages 1249–1258.

Jiangming Liu and Yue Zhang. 2017. Shift-reduce
constituent parsing with neural lookahead features.
Transactions of the Association for Computational
Linguistics, 5:45–58.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In Proceedings of the
4th International Conference on Learning Represen-
tations (ICLR).

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Minh-Thang Luong, Ilya Sutskever, Quoc Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Address-
ing the rare word problem in neural machine trans-
lation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL) and the 7th International Joint Conference on
Natural Language Processing.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1994. Building a Large Annotated Corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A Neural Attention Model for Abstrac-
tive Sentence Summarization. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 379–389.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 1715–1725.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian symbol-refined
tree substitution grammars for syntactic parsing. In
Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–448. Association for Com-
putational Linguistics.



618

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017a.
A minimal span-based neural constituency parser.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 818–827.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017b.
Effective inference for generative neural parsing. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1695–1700.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 28th Annual Con-
ference on Neural Information Processing Systems
(NIPS).

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a Foreign Language. Advances in Neural In-
formation Processing Systems 28, pages 2773–2781.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL) and the 7th In-
ternational Joint Conference on Natural Language
Processing, pages 1169–1179.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the
gap between human and machine translation. arXiv
preprint arXiv:1609.08144.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax
bottleneck: A high-rank RNN language model. In
Proceedings of the 6th International Conference on
Learning Representations (ICLR).


