
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 566–571
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

566

GNEG: Graph-Based Negative Sampling for word2vec

Zheng Zhang
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Abstract

Negative sampling is an important com-
ponent in word2vec for distributed word
representation learning. We hypothesize
that taking into account global, corpus-
level information and generating a differ-
ent noise distribution for each target word
better satisfies the requirements of nega-
tive examples for each training word than
the original frequency-based distribution.
In this purpose we pre-compute word co-
occurrence statistics from the corpus and
apply to it network algorithms such as ran-
dom walk. We test this hypothesis through
a set of experiments whose results show
that our approach boosts the word anal-
ogy task by about 5% and improves the
performance on word similarity tasks by
about 1% compared to the skip-gram neg-
ative sampling baseline.

1 Introduction

Negative sampling, as introduced by Mikolov
et al. (2013b), is used as a standard compo-
nent in both the CBOW and skip-gram models
of word2vec. For practical reasons, instead of
using a softmax function, earlier work explored
different alternatives which approximate the soft-
max in a computationally efficient way. These
alternative methods can be roughly divided into
two categories: softmax-based approaches (hier-
archical softmax (Morin and Bengio, 2005), dif-
ferentiated softmax (Chen et al., 2015) and CNN-
softmax (Kim et al., 2016)) and sampling-based
approaches (importance sampling (Bengio et al.,
2003), target sampling (Jean et al., 2014), noise
contrastive estimation (Mnih and Teh, 2012) and
negative sampling Mikolov et al. (2013b)). Gener-
ally speaking, among all these methods, negative

sampling is the best choice for distributed word
representation learning (Ruder, 2016).

Negative sampling replaces the softmax with bi-
nary classifiers. For instance, in the skip-gram
model, word representations are learned by pre-
dicting a training word’s surrounding words given
this training word. When training, correct sur-
rounding words provide positive examples in con-
trast to a set of sampled negative examples (noise).
To find these negative examples, a noise distribu-
tion is empirically defined as the unigram distribu-
tion of the words to the 3/4th power:

Pn(w) = U(w)
3
4 /

|vocab|∑
i=1

U(wi)
3
4 (1)

Although this noise distribution is widely used and
significantly improves the distributed word repre-
sentation quality, we believe there is still room for
improvement in the two following aspects: First,
the unigram distribution only takes into account
word frequency, and provides the same noise dis-
tribution when selecting negative examples for dif-
ferent target words. Labeau and Allauzen (2017)
already showed that a context-dependent noise
distribution could be a better solution to learn a
language model. But they only use information on
adjacent words. Second, unlike the positive target
words, the meaning of negative examples remain
unclear: For a training word, we do not know what
a good noise distribution should be, while we do
know what a good target word is (one of its sur-
rounding words).

Our contributions: To address these two prob-
lems, we propose a new graph-based method to
calculate noise distribution for negative sampling.
Based on a word co-occurrence network, our noise
distribution is targeted to training words. Besides,
through our empirical exploration of the noise dis-
tribution, we get a better understanding of the
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meaning of ‘negative’ and of the characteristics of
good noise distributions.

The rest of the paper is organized as follows:
Section 2 defines the word co-occurrence network
concepts and introduces our graph-based negative
sampling approach. Section 3 shows the experi-
mental settings and results, then discusses our un-
derstanding of the good noise distributions. Fi-
nally, Section 4 draws conclusions and mentions
future work directions.

2 Graph-based Negative Sampling

We begin with the word co-occurrence network
generation (Section 2.1). By comparing it with the
word2vec models, we show the relation between
the stochastic matrix of the word co-occurrence
network and the distribution of the training word
contexts in word2vec. We introduce three methods
to generate noise distributions for negative sam-
pling based on the word co-occurrence network:

• Directly using the training word context
distribution extracted from the word co-
occurrence network (Section 2.2)

• Calculating the difference between the orig-
inal unigram distribution and the training
word context distribution (Section 2.3)

• Performing t-step random walks on the word
co-occurrence network (Section 2.4)

We finally insert our noise distribution into the
word2vec negative sampling training (Sec. 2.5).

2.1 Word Co-occurrence Network and
Stochastic Matrix

A word co-occurrence network is a graph of
word interactions representing the co-occurrence
of words in a corpus. An undirected edge
can be created when two words co-occur within
a sentence; these words are possibly non-
adjacent, with a maximum distance defined by
a parameter dmax (Ferrer-i-Cancho and Solé,
2001). Given two words wiu and wjv that
co-occur within a sentence at positions i and
j (i, j ∈ {1 . . . l}), we define the distance
d(wiu, w

j
v) = |j − i| and the co-occurrence of

wu and wv at a distance δ as cooc (δ, wu, wv) =∣∣{ (wiu, wjv) ∣∣ d (wiu, wjv) = δ
}∣∣. We define the

weight w(dmax, wu, wv) of an edge (wu, wv) as
the total number of co-occurrences of wu and wv

with distances δ ≤ dmax:

w (dmax, wu, wv) =
dmax∑
δ=1

cooc(δ, wu, wv).

An undirected weighted word co-occurrence
network can also be represented as a symmetric
adjacency matrix (Mihalcea and Radev, 2011), a
square matrix A of dimension |W | × |W |. In our
case, W is the set of words used to generate the
word co-occurrence network, and the matrix ele-
ments Auv and Avu have the same value as the
weight of the edge w(dmax, wu, wv). Then each
row of the adjacency matrix A can be normalized
(i.e., so that each row sums to 1), turning it into a
right stochastic matrix S.

Negative sampling, in the skip-gram model,
uniformly draws at random for each training word
one of its surrounding words as the (positive) tar-
get word. This range is determined by the size of
the training context c. In other words, a surround-
ing word ws of the training word wt must satisfy
the following condition: d(wit, w

j
s) ≤ c.

For the same corpus, let us set dmax equal to
c in word2vec and generate a word co-occurrence
network of the whole corpus. Then element Suv
in the adjacency matrix extracted from the net-
work represents the probability that word wv be
selected as the target word for training word wu
(Pbigram(wu, wv) in Eq. 2). Row Su thus shows
the distribution of target words for training word
wu after training the whole corpus. Note that no
matter how many training iterations are done over
the corpus, this distribution will not change.

Pbigram(wu, wv) =

dmax∑
δ=1

cooc(δ, wu, wv)

|vocab|∑
i=1

dmax∑
δ=1

cooc(δ, wu, wi)

= Suv

(2)
Networks and matrices are interchangeable.

The adjacency matrix of the word co-occurrence
network can also be seen as the matrix of word-
word co-occurrence counts calculated in a statis-
tical way as in GloVe (Pennington et al., 2014).
But unlike Glove, where the matrix is used for fac-
torization, we use word co-occurrence statistics to
generate a network, then use network algorithms.

2.2 Training-Word Context Distribution

As discussed in Section 2.1, the stochastic ma-
trix S of the word co-occurrence network repre-
sents the context distribution of the training words.
Here, we use S directly as one of the three types
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of bases for noise distribution matrix calculation.

The idea behind this is to perform nonlinear
logistic regression to differentiate the observed
data from some artificially generated noise. This
idea was introduced by Gutmann and Hyvärinen
(2010) with the name Noise Contrastive Estima-
tion (NCE). Negative sampling (NEG) can be con-
sidered as a simplified version of NCE that follows
the same idea and uses the unigram distribution as
the basis of the noise distribution. We attempt to
improve this by replacing the unigram distribution
with a bigram distribution (word co-occurrence,
not necessarily contiguous) to make the noise dis-
tribution targeted to the training word (see Eq. 2).

Compared to the word-frequency-based uni-
gram distribution, the word co-occurrence based
bigram distribution is sparser. With the unigram
distribution, for any training word, all the other
vocabulary words can be selected as noise words
because of their non-zero frequency. In con-
trast, with the bigram distribution, some vocabu-
lary words may never co-occur with a given train-
ing word, which makes them impossible to be se-
lected for this training word. To check the influ-
ence of this zero co-occurrence case, we also pro-
vide a modified stochastic matrix S′ smoothed by
replacing all zeros in matrix S with the minimum
non-zero value of their corresponding rows.

2.3 Difference Between the Unigram
Distribution and the Training Words
Contexts Distribution

Contrary to the hypothesis underlying the previous
section, here we take into account the positive tar-
get words distribution in the training word context
distribution. Starting from the ‘white noise’ uni-
gram distribution, for each training word wu, we
subtract from it the corresponding context distri-
bution of this training word. Elements in this new
basis matrix Sdifferenceu,v of noise distribution are:

Pdifference(wu, wv) = Pn(wu)− Suv (3)

where wv is one of the negative examples of wu,
Pn is the unigram distribution defined in Eq. 1 and
S is the stochastic matrix we used in Section 2.2.
For zeros and negative values in this matrix, we
reset them to the minimum non-zero value of the
corresponding row Pdifference(wu).

2.4 Random Walks on the Word
Co-occurrence Network

After generating the word co-occurrence network,
we apply random walks (Aldous and Fill, 2002)
to it to obtain yet another noise distribution matrix
for negative sampling.

Let us define random walks on the co-
occurrence network: Starting from an initial ver-
tex wu , at each step we can cross an edge attached
to wu that leads to another vertex, say wv. For a
weighted word co-occurrence network, we define
the transition probability P (wu, wv) from vertex
wu to vertex wv as the ratio of the weight of the
edge (wu, wv) over the sum of weights on all ad-
jacency edges of vertex wu. Using the adjacency
matrix A and the right stochastic matrix S pre-
sented in Section 2.1, Pu,v can be calculated by:

P (wu, wv) = Auv/
|Au|∑
i=1

Aui = Suv.

As we want to learn transition probabilities for
all training words, we apply random walks on all
vertices by making each training word an initial
vertex of one t-step random walk at the same time.

The whole set of transition probabilities can be
represented as a transition matrix, which is ex-
actly the right stochastic matrix S of the word co-
occurrence network in our case. We found that the
self-loops (edges that start and end at the same ver-
tex: the main diagonal of an adjacency matrix or
a stochastic matrix) in matrix S represent the oc-
currence of a word in its own context, which may
happen in repetitions. We hypothesize they con-
stitute spurious events and therefore test the t-step
random walk both on matrix S and its smoothed
version R′ in which the self-loops are removed.
To see the effect of the self-loops, we perform the
t-step random walk on both matrices S and R′.

Based on that, the elements of the t-step random
walk transition matrix can be calculated by:

Prandom-walk (wu, wv) = Stuv or (R
′)tuv (4)

Ferrer-i-Cancho and Solé (2001) showed that a
word co-occurrence network is highly connected.
For such networks, random walks converge to a
steady state in just a few steps. Steady state means
that no matter which vertex one starts with, the
distribution of the destination vertex probabilities
remains the same. In other words, all St columns
will have the same value. So we set the maximum
step number tmax to 4. We will use these t-step
random walk transition matrices as the basis for
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one of our noise distributions matrices for negative
sampling.

2.5 Noise Distribution Matrix

Starting from the basic noise distribution matrix,
we use the power function to adjust the distribu-
tion. Then we normalize all rows of this adjusted
matrix to let each row sum to 1. Finally, we get:

Pn(wu, wv) = (Buv)
p/

|Bu|∑
i=1

(Bui)
p (5)

where B is the basic noise distribution calculated
according to Eq. 2, 3 or 4 and p is the power.

When performing word2vec training with neg-
ative sampling, for each training word, we use the
corresponding row in our noise distribution matrix
to replace the original unigram noise distribution
for the selection of noise candidates.

3 Experiments and Results

3.1 Set-up and Evaluation Methods

We use the skip-gram negative sampling model
with window size 5, vocabulary size 10000, vec-
tor dimension size 200, number of iterations 5
and negative examples 5 to compute baseline word
embeddings. Our three types of graph-based skip-
gram negative sampling models share the parame-
ters of the baseline. In addition to these common
parameters, they have their own parameters: the
maximum distance dmax for co-occurrence net-
works generation, a Boolean replace zeros to con-
trol whether or not to replace zeros with the mini-
mum non-zero values, a Boolean no self loops to
control whether or not to remove the self-loops,
the number of random walk steps t (Eq. 4) and the
power p (Eq. 5).

All four models are trained on an English
Wikipedia dump from April 2017 of three sizes:
about 19M tokens, about 94M tokens (both are
for detailed analyses and non-common parameters
grid search in each of the three graph-based mod-
els) and around 2.19 billion tokens (for four mod-
els comparison). During corpus preprocessing, we
use CoreNLP (Manning et al., 2014) for sentence
segmentation and word tokenization, then convert
tokens to lowercase, replace all expressions with
numbers by 0 and replace rare tokens with UNKs.

We perform a grid search on the ∼19M to-
kens corpus, with dmax ∈ {2, . . . 10}, t ∈
{1, . . . 4}, p ∈ {−2,−1, 0.01, 0.25, 0.75, 1, 2}

and True, False for the two Boolean parameters.
We retain the best parameters obtained by this grid
search and perform a tighter grid search around
them on the ∼94M tokens corpus. Then based on
the two grid search results, we select the final pa-
rameters for the entire Wikipedia dump test. We
evaluate the resulting word embeddings on word
similarity tasks using WordSim-353 (Finkelstein
et al., 2001) and SimLex-999 (Hill et al., 2014)
(correlation with humans), and on the word anal-
ogy task of Mikolov et al. (2013a) (% correct).
Therefore, we use the correlation coefficients be-
tween model similarity judgments and human sim-
ilarity judgments for WordSim-353 and SimLex-
999 tasks and the accuracy of the model prediction
with gold standard for the word analogy task (the
metrics in Table 1) as objective functions for these
parameter tuning processes.

3.2 Results

The best grid search parameters are shown in Ta-
ble 2, final evaluation results on the entire English
Wikipedia in Table 1. The results show that graph-
based negative sampling boosts the word analogy
task by about 5% and improves word similarity by
about 1%.

As vocabulary size is set to 10000, not all data
in evaluation datasets is used. We report here the
sizes of the datasets and of the subsets that con-
tained no unknown word, that we used for eval-
uation: WordSim-353: 353; 261; SImLex-999:
999; 679; Word Analogy: 19544; 6032. We also
computed the statistical significance of the differ-
ences between our models and the baseline model.
Both word similarity tasks use correlation coeffi-
cients, so we computed Steiger’s Z tests (Steiger,
1980) between the correlation coefficients of each
of our models (bigram distribution, difference dis-
tribution and random walk distribution) versus
the word2vec skip-gram negative sampling base-
line. For WordSim-353, differences are signif-
icant (2-tailed p < 0.05) for difference distribu-
tion and random walk distribution for both Pear-
son and Spearman correlation coefficients; differ-
ences are not significant for bigram distribution.
For SimLex-999, no difference is significant (all
2-tailed p > 0.05). The word analogy task uses
accuracy, we tested statistical significance of the
differences by approximate randomization (Yeh,
2000). Based on 10000 shuffles, we confirmed
that all differences between the accuracies of our
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WordSim-353 SimLex-999 Word Analogy
Pearson Spearman Pearson Spearman Semantic Syntactic Total

baseline word2vec 66.12% 69.60% 37.36% 36.33% 73.00% 70.67% 71.37%
bigram distr. (Eq. 2) 66.10% 69.77% 38.05% 37.18% 77.36%† 75.55%† 76.09%†

difference distr. (Eq. 3) 67.71%† 71.51%† 37.65% 36.58% 77.14%† 75.98%† 76.33%†

random walk (Eq. 4) 66.94%† 70.70%† 37.73% 36.74% 77.75%† 74.86%† 75.73%†

Table 1: Evaluation results on WordSim-353, SimLex-999 and the word analogy task for the plain
word2vec model and our three graph-based noise distributions on the entire English Wikipedia dump. A
dagger† marks a statistically significant difference to the baseline word2vec.

distribution dmax p others
bigram 3 0.25 replace zeros=T
difference 3 0.01
random walk 5 0.25 t = 2, no self loops=T

Table 2: Best parameters

models and the accuracy of word2vec skip-gram
are statistically significant (p < 0.0001).

The time complexity when using our modified
negative sampling distribution is similar to that of
the original skip-gram negative sampling except
that the distribution from which negative exam-
ples are sampled is different for each token. We
pre-compute this distribution off-line for each to-
ken so that the added complexity is proportional
to the size of the vocabulary. Specifically, pre-
computing the co-occurrences and graphs using
corpus2graph (Zhang et al., 2018) takes about 2.5
hours on top of 8 hours for word2vec alone on the
entire Wikipedia corpus using 50 logical cores on
a server with 4 Intel Xeon E5-4620 processors :
the extra cost is not excessive.

Let us take a closer look at each graph-based
model. First, the word context distribution based
model: we find that all else being equal, replac-
ing zero values gives better performance. We be-
lieve a reason may be that for a training word, all
the other words should have a probability to be se-
lected as negative examples—the job of noise dis-
tributions is to assign these probabilities. We note
that for SimLex-999, all combinations of param-
eters in our grid search outperform the baseline.
But unfortunately the differences are not signifi-
cant. Initially it sounds contradictory that directly
using the word context distribution S as the noise
distribution: a higher probability denotes that the
word wv is more likely to be the target word of
wu (i.e., positive example). So we tried assigning
different negative powers to adjust the distribution

S (Section 2.5) so as to make lower co-occurrence
frequencies lead to higher probability of being se-
lected as negative examples. But all these perform
poorly for all three tasks.

Second, the difference model: the word analogy
task results show a strong dependency on power p:
the lower the power p, the higher the performance.

Third, the random-walk model: we observe that
all top 5 combinations of parameters in the grid
search do random walks after removing self-loops.

4 Conclusion

We presented in this paper three graph-based neg-
ative sampling models for word2vec. Experiments
show that word embeddings trained by using these
models can bring an improvement to the word
analogy task and to the word similarity task.

We found that pre-computing graph informa-
tion extracted from word co-occurrence networks
is useful to learn word representations. Possible
extensions would be to test whether using this in-
formation to select target words (positive exam-
ples) could improve training quality, and whether
using it to reorder training words could improve
training efficiency.
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