
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 546–551
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

546

Sense-Aware Neural Models for Pun Location in Texts

Yitao Cai and Yin Li and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{caiyitao,xyz1305121,wanxiaojun}@pku.edu.cn

Abstract

A homographic pun is a form of wordplay
in which one signifier (usually a word)
suggests two or more meanings by exploit-
ing polysemy for an intended humorous
or rhetorical effect. In this paper, we fo-
cus on the task of pun location, which
aims to identify the pun word in a given
short text. We propose a sense-aware neu-
ral model to address this challenging task.
Our model first obtains several WSD re-
sults for the text, and then leverages a bidi-
rectional LSTM network to model each se-
quence of word senses. The outputs at
each time step for different LSTM net-
works are then concatenated for predic-
tion. Evaluation results on the benchmark
SemEval 2017 dataset demonstrate the ef-
ficacy of our proposed model.

1 Introduction

There exists a class of language constructs known
as puns in natural language utterances and texts,
and the speaker or writer intends for a certain word
or other lexical item to be interpreted as simulta-
neously carrying two or more separate meanings.
Though puns are an important feature in many dis-
course types, they have attracted relatively little at-
tention in the area of natural language processing.

A pun is a form of wordplay in which a word
suggests two or more meanings by exploiting pol-
ysemy, homonymy, or phonological similarity to
another word, for an intended humorous or rhetor-
ical effect (Miller et al., 2017). Puns where the two
meanings share the same pronunciation are known
as homographic puns, which are the focus of this
study. For example, the following punning joke
exploits contrasting meanings of the word “inter-
est” and it is a homographic pun.

I used to be a banker but I lost interest.
Since the pun word plays the key role in form-

ing a pun, it is very important and meaningful to
identify the pun word in a given text. The task
of identifying the pun word is known as pun lo-
cation, which is defined in SemEval 2017 Task
71. In order to address this special task, various
approaches have been attempted, including rule
based approach (Vechtomova, 2017), knowledge-
based approach (Indurthi and Oota, 2017; Xiu
et al., 2017) and supervised approach (Pramanick
and Das, 2017; Mikhalkova and Karyakin, 2017).
However, these approaches do not achieve good
results, and the best F1 score for homographic pun
location is just 0.6631, which is achieved by the
Idiom Savant system with a knowledge based ap-
proach (Doogan et al., 2017). The results demon-
strate that pun location is a very challenging task.

In order to address this challenging task and
improve the state-of-the-art results, we propose a
sense-aware neural model in this study. Our model
first obtains several WSD (Word Sense Disam-
biguation) results for the text, and leverages a bidi-
rectional LSTM network to model each sequence
of word senses. The outputs at each time step for
different LSTM networks are then concatenated
for pun word prediction. Evaluation results of
cross-validation on the benchmark SemEval 2017
dataset demonstrate the efficacy of our proposed
model.

The contributions of this paper are summarized
as follows:

• We propose a novel sense-aware neural model
to address the pun location task.

• Our proposed model outperforms several base-
line neural models and achieves the state-of-the-
art performance.

1http://alt.qcri.org/semeval2017/task7/



547

2 Related Work

Pun detection aims to determine whether a given
short text contains a pun (Miller et al., 2017).
Various methods have been proposed to address
this task, including WSD based methods (Ped-
ersen, 2017), PMI-based methods (Sevgili et al.,
2017) supervised methods (Xiu et al., 2017; In-
durthi and Oota, 2017; Pramanick and Das, 2017;
Mikhalkova and Karyakin, 2017; Vadehra, 2017).
More specifically, the bi-directional RNN has been
used in (Indurthi and Oota, 2017), and vote-based
ensemble classifier is used by (Vadehra, 2017).

Pun location is a more challenging task than
pun detection, because it aims to find the actual
pun word in the given text. Previous works find
some clues about puns in the texts. For example,
pun is more likely appeared towards the end of
sentences (Pedersen, 2017; Miller and Turković,
2016). Many puns have a particularly strong asso-
ciations with other words in the contexts (Sevgili
et al., 2017). A variety of methods have been pro-
posed to locate the pun words. For example, UWa-
terloo system constructs a rule-based pun locator
that scores candidate words according to eleven
simple heuristics (Vechtomova, 2017). BuzzSaw
system attempts to locate the pun in a sentence by
selecting the polysemous word with the two most
dissimilar senses (Oele and Evang, 2017). Du-
luth system identifies the last word which changed
senses between different word sense disambigua-
tion results (Pedersen, 2017). Fermi system uses
Bi-directional RNN to learn a classification model
(Indurthi and Oota, 2017). Idiom Savant system
uses n-grams features, and only content words in-
cluding nouns, verbs, adverbs and adjectives are
considered as candidate words (Doogan et al.,
2017). Pun interpretation is considered a subse-
quent step for pun location, and it aims to annotate
the two meanings of the given pun by reference to
WordNet sense keys. In the work of (Miller and
Gurevych, 2015), traditional language-agnostic
WSD approaches are adapted to “disambiguate”
puns, and rather to identify their double meanings.

Word Sense Disambiguation (WSD) is also re-
lated to our work. Some prior works compute
overlaps of glosses between the target word and
its context (Lesk, 1986). These approaches de-
rive information from some lexicon thesauruses
for WSD, including WordNet (Fellbaum, 1998)
and BabelNet (Navigli and Ponzetto, 2012). Su-
pervised models, including neural models, have

been successfully applied to WSD (Yuan et al.,
2016; Raganato et al., 2017).

3 Baseline Neural Model (BM)

The task of pun location needs to locate the ex-
act pun word in each short text or sentence. We
regard pun location as a word-level classification
task, and attempt to train a model that can predict
whether a word in a sentence is a pun or not. A
word will be regarded as a pun word with high
probability when it is a noun, verb, adjective or
adverb, therefore, we only try to make prediction
of one word when it has one of the four kinds of
parts of speech tags.

Our baseline model for pun word prediction is
similar to (Indurthi and Oota, 2017) and it adopts
a bi-directional LSTM network to accomplish this
task. The neural network architecture of the model
is shown in Figure 1. The input to the net-
work is the embeddings of words, and we use the
pre-trained word embeddings by using word2vec
(Mikolov et al., 2013) on the Wikipedia corpus
whose size is over 11G. The hidden state of the
forward LSTM and the hidden state of the back-
ward LSTM are concatenated at each time step
(word), and we get the concatenated hidden vec-
tors for all words: h1, ..., hn. The vector hi for
each word having one of the four kinds of POS
tags is then sent to a two-layer feed-forward neu-
ral network with tanh as activation function, and
the output is a real number oi. We then use the sig-
moid function σ on oi to make prediction. Since in
the experimental data there is only one pun word
in each sentence, we will take the k-th word as pun
word if and only if ok is the largest number out of
all oi, i = 1, ..., n, and σ(ok) > 0.5. We use the
cross-entropy loss in this model.

4 Sense-Aware Neural Model (SAM)

The baseline neural model is built on the word
level and the word senses can only be implicitly
captured by the model. Moreover, a pun word
usually has two senses in the sentence, while the
baseline neural model cannot disambiguate them.
In order to improve the prediction performance,
we propose a sense-award neural model which is
built on WSD results. Two or more WSD results
are obtained by using different WSD algorithms or
different configurations, and the WSD results may
be different. The sequence of word senses cor-
responding to each WSD result is modeled by a



548

Figure 1: Baseline neural model with bidirectional
LSTMs

bi-directional LSTM network and the outputs of
different LSTM networks are then concatenated
for prediction. In this way, the different senses of
words can be well captured by our model.

Different from the Duluth system (Peder-
sen, 2017) which identifies the last word which
changed senses between different runs of the
WordNet::SenseRelate::AllWords disambiguation
algorithm, we do not use the WordNet-based WSD
results. Furthermore, we do not heuristically iden-
tify the pun word but propose a neural model to
achieve this goal.

4.1 Word Sense Disambiguation and Sense
Embedding

In order to obtain sense inventory and the sense
embeddings for each word, we choose SenseGram
(Pelevina et al., 2016). The SenseGram toolkit
is available online2, and it can take as an input
the word embeddings and split different senses of
the input words. For instance, the vector for the
word “table” will be split into “table (data)” and
“table (furniture)”. SenseGram induces sense in-
ventory from existing word embeddings via clus-
tering of ego-networks of related words. In our
work, the Wikipedia corpus is used to train word
embeddings (together with contextual embeddings
of words) by using word2vec and then the word
embeddings are used by SenseGram for inducing
sense inventory and sense embeddings. The word
similarity graph used by SenseGram is built based
on the similarity between word embeddings. Note

2https://github.com/tudarmstadt-lt/sensegram

that we do not use WordNet as sense inventory be-
cause the sense inventory is too fine-grained and
many words are not included in WordNet.

Given each target word ω and its context words
C = {c1, ..., ck} in the sentence, we want to as-
sign a sense vector to ω from the set of its sense
vectors S = {s1, ..., sm}. We use two simple
WSD methods for achieving this. The first WSD
strategy is based on the sigmoid function. cc is the
mean of the contextual embeddings of words in C
and the sense embedding of ω is chosen as

s∗ = argmax
si∈S

1

1 + e−cc·si
(1)

Let cw be the mean of the word embeddings of
words in C, which is different from cc. The sec-
ond disambiguation strategy is based on the cosine
similarity function.

s∗ = argmax
si∈S

cw · si
‖cw‖ · ‖si‖

(2)

For each WSD strategy, we can set different
window sizes of 3 and 50 (the maximum sentence
length in the corpus) as different configurations.
By obtaining different WSD results, we expect
to well capture the characteristics of homographic
puns.

4.2 Neural Model Details

The proposed sense-aware neural model differs
from the baseline neural model in that it mod-
els multiple sequences of word senses correspond-
ing to different WSD results. In other words, the
sense-aware model works on the sense level, but
the baseline model works on the word level.

The architecture of the sense-aware model is il-
lustrated in Figure 2, which contains several bi-
directional LSTM networks. For each WSD result,
the sequence of sense embeddings is taken as input
for a bi-directional LSTM network. Assuming we
haveK WSD results, the outputs hji (j = 1, ...,K)
by K different bi-directional LSTM networks for
the same i-th word (i.e., the i-th time step) are then
concatenated into one vector, and the vector is sent
to a two-layer feed-forward neural network and a
sigmoid function for prediction. The loss func-
tion is the same as that of the baseline model. Our
sense-aware model can be considered as applying
the baseline model on different WSD results and
then combining the outputs for prediction.



549

Figure 2: Sense-aware neural model with bidirec-
tional LSTMs

4.3 Model Training

We use stochastic gradient descent to train the neu-
ral models with a batch size of 225 and 512 hidden
units, and the learning rate is 0.0001 and the size
of embeddings and hidden vectors is 300.

5 Experiments

5.1 Dataset

We use the benchmark dataset from SemEval 2017
Task 7. There are a total of 2250 sentences in the
dataset, 1607 of which contain a pun. For Pun
Location, we only use sentences with pun words
for evaluation, the same as the task setting. Since
no training data is provided, so we test our mod-
els with 10-fold cross validation. We combine the
output results on each test set of all 10 folds and
then calculate precision, recall and F-score on the
combined set. Thus the scores are comparable to
the official results based on the whole test set.

5.2 Word Sense Disambiguation

As is mentioned in section 4.1, we can obtain four
WSD results with two different strategies and two
different window sizes. We make three groups
based on four WSD results: Group 1 (G1) contains
two WSD results with the first WSD strategy with
two window sizes of 3 and 50; Group 2 (G2) con-
tains two WSD results with the second WSD strat-
egy with two window sizes; Group 3 (G3) contains
all results in Group 1 and Group 2.

5.3 Evaluation Results

We compared our proposed SAM model (w/ three
groups of WSD results) with the baseline model
BM. We also apply the bi-directional LSTM
model on the sequence of senses for each single
WSD result and thus get BiLSTM-WSD1 through
BiLSTM-WSD4. Moreover, we apply SVM and
CRF models with various features (e.g., ngram,
POS tagging, word location, word similarity, etc.)
on this task.

Table 1 shows the results. In the table, we
also present the results of the best participating
system Idiom Savant, and two official baselines
(last word and max. polysemy). We can see that
the baseline BM model does not perform well,
while the CRF model performs very well. The re-
sults of BiLSTM-WSD1 through BiLSTM-WSD4
are much better than the BM model, which indi-
cates that the sense-level prediction is more suit-
able than the word-level prediction. Our proposed
SAM model with different groups of WSD results
can further improve the performance, because dif-
ferent WSD results may provide complementary
information for pun location. The SAM model
with G1 performs the best, even outperforming the
SAM model with more WSD results (G3), which
indicates the necessity for choosing proper WSD
results.

6 Conclusion

In this work, we apply the neural network mod-
els to the pun location task. We proposed a novel
sense-aware neural model to leveraging multiple
WSD results. Evaluation results on the benchmark
SemEval 2017 dataset demonstrate the efficacy of
our proposed model. In future work, we will test
with more advanced WSD algorithms and try to
address the pun interpretation task.



550

Method Precision Recall F-Score
SVM 0.717 0.717 0.717
CRF 0.759 0.759 0.759
BM 0.751 0.617 0.677

BiLSTM-WSD1 0.751 0.742 0.746
BiLSTM-WSD2 0.754 0.745 0.750
BiLSTM-WSD3 0.735 0.726 0.730
BiLSTM-WSD4 0.742 0.732 0.737

SAM-G1 0.815 0.747 0.780
SAM-G2 0.828 0.731 0.776
SAM-G3 0.804 0.745 0.773

Idiom Savant 0.664 0.663 0.663
last word 0.470 0.470 0.470

max. polysemy 0.180 0.180 0.180

Table 1: Comparison results.

Acknowledgment

This work was supported by National Natural Sci-
ence Foundation of China (61772036, 61331011)
and Key Laboratory of Science, Technology and
Standard in Press Industry (Key Laboratory of In-
telligent Press Media Technology). We thank the
anonymous reviewers for their helpful comments.
Xiaojun Wan is the corresponding author.

References
Samuel Doogan, Aniruddha Ghosh, Hanyang Chen,

and Tony Veale. 2017. Idiom savant at semeval-
2017 task 7: Detection and interpretation of en-
glish puns. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 103–108.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Cambridge, MA: MIT Press,
Cambridge, UK.

Vijayasaradhi Indurthi and Subba Reddy Oota. 2017.
Fermi at semeval-2017 task 7: Detection and in-
terpretation of homographic puns in english lan-
guage. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 457–460.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries:how to tell a
pine cone from an ice cream cone. In Acm Special
Interest Group for Design of Communication, pages
24–26.

Elena Mikhalkova and Yuri Karyakin. 2017. Pun-
fields at semeval-2017 task 7: Employing roget’s
thesaurus in automatic pun recognition and interpre-
tation. arXiv preprint arXiv:1707.05479.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Computer Science.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of english puns. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 719–729.

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. Semeval-2017 task 7: Detection
and interpretation of english puns. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 58–68.

Tristan Miller and Mladen Turković. 2016. Towards
the automatic detection and identification of english
puns. The European Journal of Humour Research,
4(1):59–75.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
Babelnet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193(6):217–
250.

Dieke Oele and Kilian Evang. 2017. Buzzsaw at
semeval-2017 task 7: Global vs. local context for
interpreting and locating homographic english puns
with sense embeddings. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 444–448.

Ted Pedersen. 2017. Duluth at semeval-2017 task 7 :
Puns upon a midnight dreary, lexical semantics for
the weak and weary. CoRR, abs/1704.08388.

Maria Pelevina, Nikolay Arefiev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word
embeddings. In The Workshop on Representation
Learning for Nlp, pages 174–183.

Aniket Pramanick and Dipankar Das. 2017. Ju-cse-nlp
at semeval 2017 task 7: Employing rules to detect
and interpret english puns. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 432–435.

Alessandro Raganato, Claudio Delli Bovi, and Roberto
Navigli. 2017. Neural sequence learning models for
word sense disambiguation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1156–1167.

Özge Sevgili, Nima Ghotbi, and Selma Tekir. 2017. N-
hance at semeval-2017 task 7: A computational ap-
proach using word association for puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 436–439.

Ankit Vadehra. 2017. Uwav at semeval-2017 task
7: Automated feature-based system for locating
puns. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 449–452.

http://arxiv.org/abs/1704.08388
http://arxiv.org/abs/1704.08388
http://arxiv.org/abs/1704.08388


551

Olga Vechtomova. 2017. Uwaterloo at semeval-2017
task 7: Locating the pun using syntactic character-
istics and corpus-based metrics. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 421–425.

Yuhuan Xiu, Man Lan, and Yuanbin Wu. 2017. Ecnu at
semeval-2017 task 7: Using supervised and unsuper-
vised methods to detect and locate english puns. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 453–
456.

Dayu Yuan, Julian Richardson, Ryan Doherty, Colin
Evans, and Eric Altendorf. 2016. Semi-supervised
word sense disambiguation with neural models.
arXiv preprint arXiv:1603.07012.


