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Abstract

In this work, we present an approach based
on combining string kernels and word em-
beddings for automatic essay scoring. String
kernels capture the similarity among strings
based on counting common character n-
grams, which are a low-level yet powerful
type of feature, demonstrating state-of-the-
art results in various text classification tasks
such as Arabic dialect identification or native
language identification. To our best knowl-
edge, we are the first to apply string kernels
to automatically score essays. We are also
the first to combine them with a high-level
semantic feature representation, namely the
bag-of-super-word-embeddings. We report
the best performance on the Automated Stu-
dent Assessment Prize data set, in both in-
domain and cross-domain settings, surpass-
ing recent state-of-the-art deep learning ap-
proaches.

1 Introduction

Automatic essay scoring (AES) is the task of as-
signing grades to essays written in an educational
setting, using a computer-based system with nat-
ural language processing capabilities. The aim of
designing such systems is to reduce the involve-
ment of human graders as far as possible. AES is a
challenging task as it relies on grammar as well as
semantics, pragmatics and discourse (Song et al.,
2017). Although traditional AES methods typi-
cally rely on handcrafted features (Larkey, 1998;
Foltz et al., 1999; Attali and Burstein, 2006; Dikli,
2006; Wang and Brown, 2008; Chen and He,
2013; Somasundaran et al., 2014; Yannakoudakis
et al., 2014; Phandi et al., 2015), recent results in-
dicate that state-of-the-art deep learning methods
reach better performance (Alikaniotis et al., 2016;
Dong and Zhang, 2016; Taghipour and Ng, 2016;
Dong et al., 2017; Song et al., 2017; Tay et al.,
2018), perhaps because these methods are able to

capture subtle and complex information that is rel-
evant to the task (Dong and Zhang, 2016).

In this paper, we propose to combine string
kernels (low-level character n-gram features) and
word embeddings (high-level semantic features)
to obtain state-of-the-art AES results. Since
recent methods based on string kernels have
demonstrated remarkable performance in various
text classification tasks ranging from authorship
identification (Popescu and Grozea, 2012) and
sentiment analysis (Giménez-Pérez et al., 2017;
Popescu et al., 2017) to native language iden-
tification (Popescu and Ionescu, 2013; Ionescu
et al., 2014; Ionescu, 2015; Ionescu et al., 2016;
Ionescu and Popescu, 2017) and dialect identifi-
cation (Ionescu and Popescu, 2016; Ionescu and
Butnaru, 2017), we believe that string kernels can
reach equally good results in AES. To the best
of our knowledge, string kernels have never been
used for this task. As string kernels are a simple
approach that relies solely on character n-grams as
features, it is fairly obvious that such an approach
will not to cover several aspects (e.g.: semantics,
discourse) required for the AES task. To solve
this problem, we propose to combine string ker-
nels with a recent approach based on word embed-
dings, namely the bag-of-super-word-embeddings
(BOSWE) (Butnaru and Ionescu, 2017). To our
knowledge, this is the first successful attempt to
combine string kernels and word embeddings. We
evaluate our approach on the Automated Student
Assessment Prize data set, in both in-domain and
cross-domain settings. The empirical results in-
dicate that our approach yields a better perfor-
mance than state-of-the-art approaches (Phandi
et al., 2015; Dong and Zhang, 2016; Dong et al.,
2017; Tay et al., 2018).

2 Method

String kernels. Kernel functions (Shawe-Taylor
and Cristianini, 2004) capture the intuitive no-
tion of similarity between objects in a specific do-
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main. For example, in text mining, string ker-
nels can be used to measure the pairwise similar-
ity between text samples, simply based on charac-
ter n-grams. Various string kernel functions have
been proposed to date (Lodhi et al., 2002; Shawe-
Taylor and Cristianini, 2004; Ionescu et al., 2014).
One of the most recent string kernels is the his-
togram intersection string kernel (HISK) (Ionescu
et al., 2014). For two strings over an alphabet Σ,
x, y ∈ Σ∗, the intersection string kernel is for-
mally defined as follows:

k∩(x, y) =
∑
v∈Σn

min{numv(x), numv(y)}, (1)

where numv(x) is the number of occurrences of
n-gram v as a substring in x, and n is the length
of v. In our AES experiments, we use the inter-
section string kernel based on a range of charac-
ter n-grams. We approach AES as a regression
task, and employ ν-Support Vector Regression (ν-
SVR) (Suykens and Vandewalle, 1999; Shawe-
Taylor and Cristianini, 2004) for training.

Bag-of-super-word-embeddings. Word embed-
dings are long known in the NLP community
(Bengio et al., 2003; Collobert and Weston, 2008),
but they have recently become more popular due
to the word2vec (Mikolov et al., 2013) framework
that enables the building of efficient vector repre-
sentations from words. On top of the word embed-
dings, Butnaru and Ionescu (2017) developed an
approach termed bag-of-super-word-embeddings
(BOSWE) by adapting an efficient computer vi-
sion technique, the bag-of-visual-words model
(Csurka et al., 2004), for natural language process-
ing tasks. The adaptation consists of replacing the
image descriptors (Lowe, 2004) useful for recog-
nizing object patterns in images with word embed-
dings (Mikolov et al., 2013) useful for recognizing
semantic patterns in text documents.

The BOSWE representation is computed as fol-
lows. First, each word in the collection of training
documents is represented as word vector using a
pre-trained word embeddings model. Based on the
fact that word embeddings carry semantic infor-
mation by projecting semantically related words in
the same region of the embedding space, the next
step is to cluster the word vectors in order to ob-
tain relevant semantic clusters of words. As in the
standard bag-of-visual-words model, the cluster-
ing is done by k-means (Leung and Malik, 2001),
and the formed centroids are stored in a random-
ized forest of k-d trees (Philbin et al., 2007) to re-

duce search cost. The centroid of each cluster is
interpreted as a super word embedding or super
word vector that embodies all the semantically re-
lated word vectors in a small region of the embed-
ding space. Every embedded word in the collec-
tion of documents is then assigned to the nearest
cluster centroid (the nearest super word vector).
Put together, the super word vectors generate a vo-
cabulary (codebook) that can further be used to
describe each document as a bag-of-super-word-
embeddings. To obtain the BOSWE represenation
for a document, we just have to compute the oc-
currence count of each super word embedding in
the respective document. After building the repre-
sentation, we employ a kernel method to train the
BOSWE model for our specific task. To be con-
sistent with the string kernel approach, we choose
the histogram intersection kernel and the same re-
gression method, namely ν-SVR.

Model fusion. In the primal form, a linear classi-
fier takes as input a feature matrix X of r samples
(rows) with m features (columns) and optimizes
a set of weights in order to reproduce the r train-
ing labels. In the dual form, the linear classifier
takes as input a kernel matrix K of r × r com-
ponents, where each component kij is the similar-
ity between examples xi and xj . Kernel methods
work by embedding the data in a Hilbert space and
by searching for linear relations in that space, us-
ing a learning algorithm. The embedding can be
performed either (i) implicitly, by directly speci-
fying the similarity function between each pair of
samples, or (ii) explicitly, by first giving the em-
bedding map φ and by computing the inner prod-
uct between each pair of samples embedded in the
Hilbert space. For the linear kernel, the associ-
ated embedding map is φ(x) = x and options (i)
or (ii) are equivalent, i.e. the similarity function
is the inner product. Hence, the linear kernel ma-
trix K can be obtained as K = X · X ′, where
X ′ is the transpose of X . For other kernels, e.g.
the histogram intersection kernel, it is not possible
to explicitly define the embedding map (Shawe-
Taylor and Cristianini, 2004), and the only solu-
tion is to adopt option (i) and compute the cor-
responding kernel matrix directly. Therefore, we
combine HISK and BOSWE in the dual (kernel)
form, by simply summing up the two correspond-
ing kernel matrices. However, summing up kernel
matrices is equivalent to feature vector concatena-
tion in the primal Hilbert space. To better explain
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Prompt Number of Essays Score Range

1 1783 2-12
2 1800 1-6
3 1726 0-3
4 1726 0-3
5 1772 0-4
6 1805 0-4
6 1569 0-30
6 723 0-60

Table 1: The number of essays and the score
ranges for the 8 different prompts in the Auto-
mated Student Assessment Prize (ASAP) data set.

this statement, let us suppose that we can define
the embedding map of the histogram intersection
kernel and, consequently, we can obtain the cor-
responding feature matrix of HISK with r × m1

components denoted by X1 and the correspond-
ing feature matrix of BOSWE with r ×m2 com-
ponents denoted by X2. We can now combine
HISK and BOSWE in two ways. One way is to
compute the corresponding kernel matrices K1 =
X1 ·X ′1 andK2 = X2 ·X ′2, and to sum the matrices
into a single kernel matrix K+ = K1 + K2. The
other way is to first concatenate the feature ma-
trices into a single feature matrix X+ = [X1X2]
of r × (m1 + m2) components, and to compute
the final kernel matrix using the inner product,
i.e. K+ = X+ · X ′+. Either way, the two ap-
proaches, HISK and BOSWE, are fused before the
learning stage. As a consequence of kernel sum-
mation, the search space of linear patterns grows,
which should help the kernel classifier, in our case
ν-SVR, to find a better regression function.

3 Experiments

Data set. To evaluate our approach, we use the
Automated Student Assessment Prize (ASAP) 1

data set from Kaggle. The ASAP data set contains
8 prompts of different genres. The number of es-
says per prompt along with the score ranges are
presented in Table 1. Since the official test data of
the ASAP competition is not released to the pub-
lic, we, as well as others before us (Phandi et al.,
2015; Dong and Zhang, 2016; Dong et al., 2017;
Tay et al., 2018), use only the training data in our
experiments.
Evaluation procedure. As Dong and Zhang
(2016), we scaled the essay scores into the range

1
https://www.kaggle.com/c/asap-aes/data

0-1. We closely followed the same settings for
data preparation as (Phandi et al., 2015; Dong and
Zhang, 2016). For the in-domain experiments,
we use 5-fold cross-validation. The 5-fold cross-
validation procedure is repeated for 10 times and
the results were averaged to reduce the accuracy
variation introduced by randomly selecting the
folds. We note that the standard deviation in all
cases in below 0.2%.

For the cross-domain experiments, we use the
same source→target domain pairs as (Phandi
et al., 2015; Dong and Zhang, 2016), namely,
1→2, 3→4, 5→6 and 7→8. All essays in the
source domain are used as training data. Target
domain samples are randomly divided into 5 folds,
where one fold is used as test data, and the other
4 folds are collected together to sub-sample tar-
get domain train data. The sub-sample sizes are
nt = {10, 25, 50, 100}. The sub-sampling is re-
peated for 5 times as in (Phandi et al., 2015; Dong
and Zhang, 2016) to reduce bias. As our approach
performs very well in the cross-domain setting,
we also present experiments without sub-sampling
data from the target domain, i.e. when the sub-
sample size is nt = 0. As evaluation metric, we
use the quadratic weighted kappa (QWK).

Baselines. We compare our approach with state-
of-the-art methods based on handcrafted features
(Phandi et al., 2015), as well as deep features
(Dong and Zhang, 2016; Dong et al., 2017; Tay
et al., 2018). We note that results for the cross-
domain setting are reported only in some of these
recent works (Phandi et al., 2015; Dong and
Zhang, 2016).

Implementation choices. For the string ker-
nels approach, we used the histogram intersection
string kernel (HISK) based on the blended range
of character n-grams from 1 to 15. To compute the
intersection string kernel, we used the open-source
code provided by Ionescu et al. (2014). For the
BOSWE approach, we used the pre-trained word
embeddings computed by the word2vec toolkit
(Mikolov et al., 2013) on the Google News data
set using the Skip-gram model, which produces
300-dimensional vectors for 3 million words and
phrases. We used functions from the VLFeat li-
brary (Vedaldi and Fulkerson, 2008) for the other
steps involved in the BOSWE approach, such as
the k-means clustering and the randomized forest
of k-d trees. We set the number of clusters (di-
mension of the vocabulary) to k = 500. After

https://www.kaggle.com/c/asap-aes/data
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Method 1 2 3 4 5 6 7 8 Overall

Human 0.721 0.814 0.769 0.851 0.753 0.776 0.721 0.629 0.754

(Phandi et al., 2015) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705
(Dong and Zhang, 2016) - - - - - - - - 0.734
(Dong et al., 2017) 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
(Tay et al., 2018) 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.764

HISK and ν-SVR 0.836 0.724 0.677 0.821 0.830 0.828 0.801 0.726 0.780
BOSWE and ν-SVR 0.788 0.689 0.667 0.809 0.824 0.824 0.766 0.679 0.756
HISK+BOSWE and ν-SVR 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785

Table 2: In-domain automatic essay scoring results of our approach versus several state-of-the-art meth-
ods (Phandi et al., 2015; Dong and Zhang, 2016; Dong et al., 2017; Tay et al., 2018). Results are reported
in terms of the quadratic weighted kappa (QWK) measure, using 5-fold cross-validation. The best QWK
score (among the machine learning systems) for each prompt is highlighted in bold.

computing the BOSWE representation, we apply
the L1-normalized intersection kernel. We com-
bine HISK and BOSWE in the dual form by sum-
ming up the two corresponding matrices. For the
learning phase, we employ the dual implementa-
tion of ν-SVR available in LibSVM (Chang and
Lin, 2011). We set its regularization parameter to
c = 103 and ν = 10−1 in all our experiments.
In-domain results. The results for the in-domain
automatic essay scoring task are presented in Ta-
ble 2. In our empirical study, we also include fea-
ture ablation results. We report the QWK mea-
sure on each prompt as well as the overall av-
erage. We first note that the histogram intersec-
tion string kernel alone reaches better overall per-
formance (0.780) than all previous works (Phandi
et al., 2015; Dong and Zhang, 2016; Dong et al.,
2017; Tay et al., 2018). Remarkably, the over-
all performance of the HISK is also higher than
the inter-human agreement (0.754). Although the
BOSWE model can be regarded as a shallow ap-
proach, its overall results are comparable to those
of deep learning approaches (Dong and Zhang,
2016; Dong et al., 2017; Tay et al., 2018). When
we combine the two models (HISK and BOSWE),
we obtain even better results. Indeed, the combi-
nation of string kernels and word embeddings at-
tains the best performance on 7 out of 8 prompts.
The average QWK score of HISK and BOSWE
(0.785) is more than 2% better the average scores
of the best-performing state-of-the-art approaches
(Dong et al., 2017; Tay et al., 2018).
Cross-domain results. The results for the cross-
domain automatic essay scoring task are presented
in Table 3. For each and every source→target pair,
we report better results than both state-of-the-art

methods (Phandi et al., 2015; Dong and Zhang,
2016). We observe that the difference between
our best QWK scores and the other approaches
are sometimes much higher in the cross-domain
setting than in the in-domain setting. We par-
ticularly notice that the difference from (Phandi
et al., 2015) when nt = 0 is always higher than
10%. Our highest improvement (more than 54%,
from 0.187 to 0.728) over (Phandi et al., 2015) is
recorded for the pair 5→6, when nt = 0. Our
score in this case (0.728) is even higher than both
scores of Phandi et al. (2015) and Dong and Zhang
(2016) when they use nt = 50. Different from
the in-domain setting, we note that the combina-
tion of string kernels and word embeddings does
not always provide better results than string ker-
nels alone, particularly when the number of target
samples (nt) added into the training set is less or
equal to 25.
Discussion. It is worth noting that in a set of pre-
liminary experiments (not included in the paper),
we actually considered another approach based on
word embeddings. We tried to obtain a document
embedding by averaging the word vectors for each
document. We computed the average as well as the
standard deviation for each component of the word
vectors, resulting in a total of 600 features, since
the word vectors are 300-dimensional. We ap-
plied this method in the in-domain setting and we
obtained a surprisingly low overall QWK score,
around 0.251. We concluded that this simple ap-
proach is not useful, and decided to use BOSWE
(Butnaru and Ionescu, 2017) instead.

It would have been interesting to present an
error analysis based on the discriminant features
weighted higher by the ν-SVR method. Unfortu-
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Source→Target Method nt = 0 nt = 10 nt = 25 nt = 50 nt = 100

1→2 (Phandi et al., 2015) 0.434 0.463 0.457 0.492 0.510
(Dong and Zhang, 2016) - 0.546 0.569 0.563 0.559

HISK and ν-SVR 0.440 0.586 0.637 0.652 0.657
BOSWE and ν-SVR 0.398 0.474 0.478 0.492 0.506
HISK+BOSWE and ν-SVR 0.542 0.584 0.632 0.657 0.661

3→4 (Phandi et al., 2015) 0.522 0.593 0.609 0.618 0.646
(Dong and Zhang, 2016) - 0.628 0.656 0.659 0.662

HISK and ν-SVR 0.703 0.716 0.724 0.742 0.751
BOSWE and ν-SVR 0.615 0.640 0.716 0.728 0.727
HISK+BOSWE and ν-SVR 0.701 0.713 0.737 0.754 0.779

5→6 (Phandi et al., 2015) 0.187 0.539 0.662 0.680 0.713
(Dong and Zhang, 2016) - 0.647 0.700 0.714 0.750

HISK and ν-SVR 0.715 0.726 0.754 0.757 0.781
BOSWE and ν-SVR 0.617 0.623 0.644 0.650 0.692
HISK+BOSWE and ν-SVR 0.728 0.734 0.764 0.771 0.788

7→8 (Phandi et al., 2015) 0.171 0.586 0.607 0.613 0.621
(Dong and Zhang, 2016) - 0.570 0.590 0.568 0.587

HISK and ν-SVR 0.486 0.604 0.617 0.626 0.639
BOSWE and ν-SVR 0.419 0.526 0.577 0.582 0.591
HISK+BOSWE and ν-SVR 0.522 0.606 0.637 0.638 0.649

Table 3: Corss-domain automatic essay scoring results of our approach versus two state-of-the-art meth-
ods (Phandi et al., 2015; Dong and Zhang, 2016). Results are reported in terms of the quadratic weighted
kappa (QWK) measure, using the same evaluation procedure as (Phandi et al., 2015; Dong and Zhang,
2016). The best QWK scores for each source→target domain pair are highlighted in bold.

nately, this is not possible because our approach
works in the dual space and we cannot transform
the dual weights into primal weights, as long as
the histogram intersection kernel does not have an
explicit embedding map associated to it. In future
work, however, we aim to replace the histogram
intersection kernel with the presence bits kernel,
which will enable us to perform an error analysis
based on the overused or underused patterns, as
described by Ionescu et al. (2016).

4 Conclusion

In this paper, we described an approach based on
combining string kernels and word embeddings
for automatic essay scoring. We compared our
approach on the Automated Student Assessment
Prize data set, in both in-domain and cross-domain
settings, with several state-of-the-art approaches
(Phandi et al., 2015; Dong and Zhang, 2016; Dong
et al., 2017; Tay et al., 2018). Overall, the in-
domain and the cross-domain comparative studies
indicate that string kernels, both alone and in com-
bination with word embeddings, attain the best

performance on the automatic essay scoring task.
Using a shallow approach, we report better re-
sults compared to recent deep learning approaches
(Dong and Zhang, 2016; Dong et al., 2017; Tay
et al., 2018).
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