
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 266–271
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

266

Conditional Generators of Words Definitions

Artyom Gadetsky
National Research University
Higher School of Economics

artygadetsky@yandex.ru

Ilya Yakubovskiy
Joom

yakubovskiy@joom.com

Dmitry Vetrov
National Research University
Higher School of Economics
Samsung-HSE Laboratory
vetrovd@yandex.ru

Abstract

We explore recently introduced defini-
tion modeling technique that provided the
tool for evaluation of different distributed
vector representations of words through
modeling dictionary definitions of words.
In this work, we study the problem of
word ambiguities in definition modeling
and propose a possible solution by em-
ploying latent variable modeling and soft
attention mechanisms. Our quantitative
and qualitative evaluation and analysis of
the model shows that taking into account
words ambiguity and polysemy leads to
performance improvement.

1 Introduction

Continuous representations of words are used in
many natural language processing (NLP) applica-
tions. Using pre-trained high-quality word em-
beddings are most effective if not millions of
training examples are available, which is true for
most tasks in NLP (Kumar et al., 2016; Karpa-
thy and Fei-Fei, 2015). Recently, several unsu-
pervised methods were introduced to learn word
vectors from large corpora of texts (Mikolov et al.,
2013; Pennington et al., 2014; Joulin et al., 2016).
Learned vector representations have been shown
to have useful and interesting properties. For ex-
ample, Mikolov et al. (2013) showed that vec-
tor operations such as subtraction or addition re-
flect semantic relations between words. Despite
all these properties it is hard to precisely evalu-
ate embeddings because analogy relation or word
similarity tasks measure learned information indi-
rectly.

Quite recently Noraset et al. (2017) introduced
a more direct way for word embeddings evalu-
ation. Authors suggested considering definition

modeling as the evaluation task. In definition
modeling vector representations of words are used
for conditional generation of corresponding word
definitions. The primary motivation is that high-
quality word embedding should contain all useful
information to reconstruct the definition. The im-
portant drawback of Noraset et al. (2017) defini-
tion models is that they cannot take into account
words with several different meanings. These
problems are related to word disambiguation task,
which is a common problem in natural language
processing. Such examples of polysemantic words
as “bank“ or “spring“ whose meanings can only
be disambiguated using their contexts. In such
cases, proposed models tend to generate defini-
tions based on the most frequent meaning of the
corresponding word. Therefore, building models
that incorporate word sense disambiguation is an
important research direction in natural language
processing.

In this work, we study the problem of word
ambiguity in definition modeling task. We pro-
pose several models which can be possible so-
lutions to it. One of them is based on recently
proposed Adaptive Skip Gram model (Bartunov
et al., 2016), the generalized version of the orig-
inal SkipGram Word2Vec, which can differ word
meanings using word context. The second one
is the attention-based model that uses the context
of a word being defined to determine components
of embedding referring to relevant word meaning.
Our contributions are as follows: (1) we intro-
duce two models based on recurrent neural net-
work (RNN) language models, (2) we collect new
dataset of definitions, which is larger in number
of unique words than proposed in Noraset et al.
(2017) and also supplement it with examples of the
word usage (3) finally, in the experiment section
we show that our models outperform previously
proposed models and have the ability to generate

267

definitions depending on the meaning of words.

2 Related Work

2.1 Constructing Embeddings Using
Dictionary Definitions

Several works utilize word definitions to learn em-
beddings. For example, Hill et al. (2016) use defi-
nitions to construct sentence embeddings. Authors
propose to train recurrent neural network produc-
ing an embedding of the dictionary definition that
is close to an embedding of the corresponding
word. The model is evaluated with the reverse
dictionary task. Bahdanau et al. (2017) suggest
using definitions to compute embeddings for out-
of-vocabulary words. In comparison to Hill et al.
(2016) work, dictionary reader network is trained
end-to-end for a specific task.

2.2 Definition Modeling
Definition modeling was introduced in Noraset
et al. (2017) work. The goal of the definition
model p(D|w∗) is to predict the probability of
words in the definition D = {w1, . . . , wT } given
the word being defined w∗. The joint probability
is decomposed into separate conditional probabil-
ities, each of which is modeled using the recurrent
neural network with soft-max activation, applied
to its logits.

p(D|w∗) =
T∏
t=1

p(wt|wi<t, w
∗) (1)

Authors of definition modeling consider follow-
ing conditional models and their combinations:
Seed (S) - providing word being defined at the first
step of the RNN, Input (I) - concatenation of em-
bedding for word being defined with embedding
of word on corresponding time step of the RNN,
Gated (G), which is the modification of GRU cell.
Authors use a character-level convolutional neu-
ral network (CNN) to provide character-level in-
formation about the word being defined, this fea-
ture vector is denoted as (CH). One more type of
conditioning referred to as (HE), is hypernym re-
lations between words, extracted using Hearst-like
patterns.

3 Word Embeddings

Many natural language processing applications
treat words as atomic units and represent them
as continuous vectors for further use in machine

learning models. Therefore, learning high-quality
vector representations is the important task.

3.1 Skip-gram

One of the most popular and frequently used vec-
tor representations is Skip-gram model. The orig-
inal Skip-gram model consists of grouped word
prediction tasks. Each task is formulated as a pre-
diction of the word v given word w using their in-
put and output representations:

p(v|w, θ) = exp(inTwoutv)∑V
v′=1 exp(in

T
woutv′)

(2)

where θ and V stand for the set of input and out-
put word representations, and dictionary size re-
spectively. These individual prediction tasks are
grouped in a way to independently predict all ad-
jacent (with some sliding window) words y =
{y1, . . . yC} given the central word x:

p(y|x, θ) =
∏
j

p(yj |x, θ) (3)

The joint probability of the model is written as fol-
lows:

p(Y |X, θ) =
N∏
i=1

p(yi|xi, θ) (4)

where (X,Y) = {xi, yi}Ni=1 are training pairs of
words and corresponding contexts and θ stands for
trainable parameters.

Also, optimization of the original Skip-gram
objective can be changed to a negative sampling
procedure as described in the original paper or hi-
erarchical soft-max prediction model (Mnih and
Hinton, 2009) can be used instead of (2) to deal
with computational costs of the denominator. Af-
ter training, the input representations are treated as
word vectors.

3.2 Adaptive Skip-gram

Skip-gram model maintains only one vector repre-
sentation per word that leads to mixing of mean-
ings for polysemantic words. Bartunov et al.
(2016) propose a solution to the described prob-
lem using latent variable modeling. They extend
Skip-gram to Adaptive Skip-gram (AdaGram) in
a way to automatically learn the required num-
ber of vector representations for each word using
Bayesian nonparametric approach. In comparison

268

with Skip-gram AdaGram assumes several mean-
ings for each word and therefore keeps several
vectors representations for each word. They in-
troduce latent variable z that encodes the index of
meaning and extend (2) to p(v|z, w, θ). They use
hierarchical soft-max approach rather than nega-
tive sampling to overcome computing denomina-
tor.

p(v|z = k,w, θ) =
∏

n∈path(v)

σ(ch(n)inTwkoutn)

(5)
Here inwk stands for input representation of word
w with meaning index k and output representa-
tions are associated with nodes in a binary tree,
where leaves are all possible words in model vo-
cabulary with unique paths from the root to the
corresponding leaf. ch(n) is a function which re-
turns 1 or -1 to each node in the path(·) depending
on whether n is a left or a right child of the previ-
ous node in the path. Huffman tree is often used
for computational efficiency.

To automatically determine the number of
meanings for each word authors use the con-
structive definition of Dirichlet process via stick-
breaking representation (p(z = k|w, β)), which is
commonly used prior distribution on discrete la-
tent variables when the number of possible values
is unknown (e.g. infinite mixtures).

p(z = k|w, β) = βwk

k−1∏
r=1

(1− βwr)

p(βwk|α) = Beta(βwk|1, α)

(6)

This model assumes that an infinite number of
meanings for each word may exist. Providing that
we have a finite amount of data, it can be shown
that only several meanings for each word will have
non-zero prior probabilities.

Finally, the joint probability of all variables in
AdaGram model has the following form:

p(Y,Z, β|X,α, θ) =
V∏

w=1

∞∏
k=1

p(βwk|α)·

·
N∏
i=1

[p(zi|xi, β)
C∏

j=1

p(yij |zi, xi, θ)]

(7)

Model is trained by optimizing Evidence Lower
Bound using stochastic variational inference
(Hoffman et al., 2013) with fully factorized vari-
ational approximation of the posterior distribution
p(Z, β|X,Y, α, θ) ≈ q(Z)q(β).

One important property of the model is an abil-
ity to disambiguate words using context. More
formally, after training on data D = {xi, yi}Ni=1

we may compute the posterior probability of word
meaning given context and take the word vector
with the highest probability.:

p(z = k|x, y, θ) ∝

∝ p(y|x, z = k, θ)

∫
p(z = k|β, x)q(β)dβ

(8)

This knowledge about word meaning will be
further utilized in one of our models as
disambiguation(x|y).

4 Models

In this section, we describe our extension to orig-
inal definition model. The goal of the extended
definition model is to predict the probability of a
definition D = {w1, . . . , wT } given a word being
defined w∗ and its context C = {c1, . . . , cm} (e.g.
example of use of this word). As it was motivated
earlier, the context will provide proper information
about word meaning. The joint probability is also
decomposed in the conditional probabilities, each
of which is provided with the information about
context:

p(D|w∗, C) =
T∏
t=1

p(wt|wi<t, w
∗, C) (9)

4.1 AdaGram based
Our first model is based on original Input (I) con-
ditioned on Adaptive Skip-gram vector represen-
tations. To determine which word embedding to
provide as Input (I) we disambiguate word being
defined using its context words C. More formally
our Input (I) conditioning is turning in:

ht = g([v∗; vt], ht−1)

v∗ = disambiguation(w∗|C)
(10)

where g is the recurrent cell, [a; b] denotes vec-
tor concatenation, v∗ and vt are embedding of
word being defined w and embedding of word wt

respectively. We refer to this model as Input Adap-
tive (I-Adaptive).

4.2 Attention based
Adaptive Skip-gram model is very sensitive to
the choice of concentration parameter in Dirich-
let process. The improper setting will cause many

269

similar vectors representations with smoothed
meanings due to theoretical guarantees on a num-
ber of learned components. To overcome this
problem and to get rid of careful tuning of this
hyper-parameter we introduce following model:

ht = g([a∗; vt], ht−1)

a∗ = v∗ �mask

mask = σ(W

∑m
i=1ANN(ci)

m
+ b)

(11)

where � is an element-wise product, σ is a
logistic sigmoid function and ANN is attention
neural network, which is a feed-forward neural
network. We motivate these updates by the fact,
that after learning Skip-gram model on a large cor-
pus, vector representation for each word will ab-
sorb information about every meaning of the word.
Using soft binary mask dependent on word context
we extract components of word embedding rele-
vant to corresponding meaning. We refer to this
model as Input Attention (I-Attention).

4.3 Attention SkipGram
For attention-based model, we use different em-
beddings for context words. Because of that, we
pre-train attention block containing embeddings,
attention neural network and linear layer weights
by optimizing a negative sampling loss function in
the same manner as the original Skip-gram model:

log σ(v′TwO
vwI)

+

k∑
i=1

Ewi∼Pn(w)[log σ(−v′Twi
vwI)]

(12)

where v′wO
, vwI and v′wi

are vector representa-
tion of ”positive” example, anchor word and nega-
tive example respectively. Vector vwI is computed
using embedding of wI and attention mechanism
proposed in previous section.

5 Experiments

5.1 Data
We collected new dataset of definitions using Ox-
fordDictionaries.com (2018) API. Each entry is a
triplet, containing the word, its definition and ex-
ample of the use of this word in the given meaning.
It is important to note that in our data set words can
have one or more meanings, depending on the cor-
responding entry in the Oxford Dictionary. Table
1 shows basic statistics of the new dataset.

Split train val test
#Words 33,128 8,867 8,850
#Entries 97,855 12,232 12,232
#Tokens 1,078,828 134,486 133,987

Avg length 11.03 10.99 10.95

Table 1: Statistics of new dataset

Figure 1: Perplexities of S+I Attention model
for the case of pre-training (solid lines) and for
the case when the model is trained from scratch
(dashed lines).

5.2 Pre-training
It is well-known that good language model can of-
ten improve metrics such as BLEU for a particu-
lar NLP task (Jozefowicz et al., 2016). According
to this, we decided to pre-train our models. For
this purpose, WikiText-103 dataset (Merity et al.,
2016) was chosen. During pre-training we set v∗

(eq. 10) to zero vector to make our models purely
unconditional. Embeddings for these language
models were initialized by Google Word2Vec vec-
tors1 and were fine-tuned. Figure 1 shows that
this procedure helps to decrease perplexity and
prevents over-fitting. Attention Skip-gram vectors
were also trained on the WikiText-103.

5.3 Results
Both our models are LSTM networks (Hochre-
iter and Schmidhuber, 1997) with an embedding
layer. The attention-based model has own em-
bedding layer, mapping context words to vector
representations. Firstly, we pre-train our mod-
els using the procedure, described above. Then,
we train them on the collected dataset maximiz-
ing log-likelihood objective using Adam (Kingma
and Ba, 2014). Also, we anneal learning rate by

1https://code.google.com/archive/p/word2vec/

270

Word Context Definition
star she got star treatment a person who is very important

star bright star in the sky
a small circle of a celestial object
or planet that is seen in a circle

sentence sentence in prison an act of restraining someone or something
sentence write up the sentence a piece of text written to be printed

head the head of a man the upper part of a human body
head he will be the head of the office the chief part of an organization, institution, etc

reprint
they never reprinted the
famous treatise

a written or printed version of
a book or other publication

rape
the woman was raped on
her way home at night

the act of killing

invisible
he pushed the string through
an inconspicuous hole

not able to be seen

shake my faith has been shaken cause to be unable to think clearly

nickname
the nickname for the u.s.
constitution is ‘old ironsides ’

a name for a person or thing that is not genuine

Table 2: Examples of definitions generated by S + I-Attention model for the words and contexts from the
test set.

Model PPL BLEU
S+G+CH+HE (1) 45.62 11.62 ± 0.05
S+G+CH+HE (2) 46.12 -
S+G+CH+HE (3) 46.80 -
S + I-Adaptive (2) 46.08 11.53 ± 0.03
S + I-Adaptive (3) 46.93 -
S + I-Attention (2) 43.54 12.08 ± 0.02
S + I-Attention (3) 44.9 -

Table 3: Performance comparison between best
model proposed by Noraset et al. (2017) and our
models on the test set. Number in brackets means
number of LSTM layers. BLEU is averaged across
3 trials.

a factor of 10 if validation loss doesn’t decrease
per epochs. We use original Adaptive Skip-gram
vectors as inputs to S+I-Adaptive, which were ob-
tained from the official repository2. We compare
different models using perplexity and BLEU score
on the test set. BLEU score is computed only for
models with the lowest perplexity and only on the
test words that have multiple meanings. The re-
sults are presented in Table 3. We see that both
models that utilize knowledge about meaning of
the word have better performance than the com-
peting one. We generated definitions using S + I-
Attention model with simple temperature sampling

2https://github.com/sbos/AdaGram.jl

algorithm (τ = 0.1). Table 2 shows the examples.
The source code and dataset will be freely avail-
able 3.

6 Conclusion

In the paper, we proposed two definition models
which can work with polysemantic words. We
evaluate them using perplexity and measure the
definition generation accuracy with BLEU score.
Obtained results show that incorporating informa-
tion about word senses leads to improved met-
rics. Moreover, generated definitions show that
even implicit word context can help to differ word
meanings. In future work, we plan to explore in-
dividual components of word embedding and the
mask produced by our attention-based model to
get a deeper understanding of vectors representa-
tions of words.

Acknowledgments

This work was partly supported by Samsung Re-
search, Samsung Electronics, Sberbank AI Lab
and the Russian Science Foundation grant 17-71-
20072.

3https://github.com/agadetsky/pytorch-definitions

271

References
Dzmitry Bahdanau, Tom Bosc, Stanislaw Jastrzebski,

Edward Grefenstette, Pascal Vincent, and Yoshua
Bengio. 2017. Learning to compute word embed-
dings on the fly. arXiv preprint arXiv:1706.00286.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and ambi-
guities with adaptive skip-gram. In Artificial Intelli-
gence and Statistics, pages 130–138.

Felix Hill, KyungHyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17–30.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Matthew D. Hoffman, David M. Blei, Chong Wang,
and John Paisley. 2013. Stochastic variational in-
ference. Journal of Machine Learning Research,
14:1303–1347.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
3128–3137.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1378–1387. PMLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In Ad-
vances in Neural Information Processing Systems
21, pages 1081–1088. Curran Associates, Inc.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learn-
ing to define word embeddings in natural language.
In 31st AAAI Conference on Artificial Intelligence,
AAAI 2017, pages 3259–3266. AAAI press.

OxfordDictionaries.com. 2018. Oxford University
Press.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

http://jmlr.org/papers/v14/hoffman13a.html
http://jmlr.org/papers/v14/hoffman13a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

