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Abstract

We present a novel multi-task model-
ing approach to learning multilingual dis-
tributed representations of text. Our sys-
tem learns word and sentence embeddings
jointly by training a multilingual skip-
gram model together with a cross-lingual
sentence similarity model. Our architec-
ture can transparently use both monolin-
gual and sentence aligned bilingual cor-
pora to learn multilingual embeddings,
thus covering a vocabulary significantly
larger than the vocabulary of the bilingual
corpora alone. Our model shows com-
petitive performance in a standard cross-
lingual document classification task. We
also show the effectiveness of our method
in a limited resource scenario.

1 Introduction

Learning distributed representations of text,
whether it be at the level of words, phrases,
sentences or documents has been one of the
most widely researched subjects in natural lan-
guage processing in recent years (Mikolov et al.,
2013; Pennington et al., 2014; Gouws et al.,
2015; Socher et al., 2010; Pham et al., 2015b;
Kiros et al., 2015; Conneau et al., 2017; Le and
Mikolov, 2014; Chen, 2017; Wu et al., 2017).
Word/sentence/document embeddings, as they are
now commonly referred to, have quickly become
essential ingredients of larger and more complex
NLP systems looking to leverage the rich seman-
tic and linguistic information present in distributed
representations (Bengio et al., 2003; Maas et al.,
2011; Collobert et al., 2011; Bahdanau et al.,
2014; Chen and Manning, 2014).

Research that has been taking place in the con-
text of distributed text representations is learn-

ing multilingual text representations shared across
languages (Faruqui and Dyer, 2014; Bengio and
Corrado, 2015; Luong et al., 2015). Multilingual
embeddings open up the possibility of transferring
knowledge across languages and building complex
systems even for languages with limited amount of
supervised resources (Ammar et al., 2016; John-
son et al., 2016). By far the most popular approach
to learning multilingual embeddings is to train a
multilingual word embedding model that is then
used to derive representations for sentences and
documents by composition (Hermann and Blun-
som, 2014). These models are typically trained
solely on word or sentence aligned corpora and
the composition models are usually simple pre-
defined functions like averages over word embed-
dings (Lauly et al., 2014; Hermann and Blunsom,
2014; Mogadala and Rettinger, 2016) or paramet-
ric composition models learned along with the
word embeddings (Schwenk et al., 2017). For a
thorough survey of cross-lingual text embedding
models, please refer to (Ruder, 2017).

In this work we learn word and sentence embed-
dings jointly by training a multilingual skip-gram
model together with a cross-lingual sentence sim-
ilarity model. Our multilingual skip-gram model
is similar to (Luong et al., 2015). It transparently
consumes (word, context) pairs constructed from
monolingual as well as sentence aligned bilingual
corpora. We process word embeddings with a
bidirectional LSTM and then take an average of
the LSTM outputs, which can be viewed as con-
text dependent word embeddings, to produce sen-
tence embeddings. Since our multilingual skip-
gram and cross-lingual sentence similarity mod-
els are trained jointly, they can inform each other
through the shared word embedding layer and pro-
mote the compositionality of learned word embed-
dings at training time. Further, the gradients flow-
ing back from the sentence similarity model can
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affect the embeddings learned for words outside
the vocabulary of the parallel corpora. We hypoth-
esize these two aspects of approach lead to more
robust sentence embeddings.

The main motivation behind our approach is to
learn high quality multilingual sentence and doc-
ument embeddings in the low resource scenario
where parallel corpus sizes are limited. The main
novelty of our approach is the joint training of
multilingual skip-gram and cross-lingual sentence
similarity objectives with a shared word embed-
ding layer which allows the gradients from the
sentence similarity task to affect the embeddings
learned for words outside the vocabulary of the
parallel corpora. By jointly training these two
objectives, we can transparently use monolingual
and parallel data for learning multilingual sen-
tence embeddings. Using a BiLSTM layer to con-
textualize word embeddings prior to averaging is
orthogonal to the joint multi-task learning idea.
We observed that this additional layer is benefi-
cial in most settings and this is consistent with
the observations of recent works on learning sen-
tence and document embeddings such as (Con-
neau et al., 2017; Yang et al., 2016)

2 Model

Our model jointly optimizes multilingual skip-
gram (Luong et al., 2015) and cross-lingual sen-
tence similarity objectives using a shared word
embedding layer in an end-to-end fashion.

Multilingual Skip-gram: Multilingual skip-
gram model (Luong et al., 2015) extends the tradi-
tional skip-gram model by predicting words from
both the monolingual and the cross-lingual con-
text. The monolingual context consists of words
neighboring a given word as in the case of the tra-
ditional skip-gram model. The cross-lingual con-
text, on the other hand, consists of words neigh-
boring the target word aligned with a given source
word in a parallel sentence pair. Figure 1 shows
an example alignment, where an aligned pair of
words are attached to both their monolingual and
bilingual contexts. For a pair of languages L1
and L2, the word embeddings are learned by op-
timizing the traditional skip-gram objective with
(word, context word) pairs sampled from mono-
lingual neighbors in L1 → L1 and L2 → L2
directions as well as cross-lingual neighbors in
L1 → L2 and L2 → L1 directions. In our setup,
cross-lingual pairs are sampled from parallel cor-

Figure 1: Example context attachments for a bilin-
gual (en-de) skip-gram model.

Figure 2: Overview of the architecture that we use
for computing sentence representations RS and
RT for input word sequences S and T .

pora while monolingual pairs are sampled from
both parallel and monolingual corpora.

Cross-lingual Sentence Similarity: We pro-
cess word embeddings with a bi-directional
LSTM (Hochreiter et al., 2001; Hochreiter and
Schmidhuber, 1997) and then take an average of
the LSTM outputs (Figure 2). There are various
implementations of LSTMs available; in this work
we use an implementation based on (Zaremba
et al., 2014). The LSTM outputs (hidden states)
contextualize input word embeddings by encod-
ing the history of each word into its represen-
tation. We hypothesize that this is better than
averaging word embeddings as sentences gener-
ally have complex semantic structure and two sen-
tences with different meanings can have exactly
the same words. Let R : S → Rd denote our
sentence encoder mapping a given sequence of
words S to a continuous vector in Rd. Given a
pair of parallel sentences (S, T ), we define their
distance as d(S, T ) = ‖RS −RT ‖2. For every
parallel sentence pair, we randomly sample k neg-
ative sentences {Ni|i = 1 . . . k} and define the
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cross-lingual sentence similarity loss as follows:

l(S, T ) =
k∑

i=1

max(0,m+ d(S, T )− d(S,Ni))

Without the LSTM layer, this loss is similar to the
BiCVM loss (Hermann and Blunsom, 2014) ex-
cept that we use also the reversed sample (T, S)
to train the model, therefore showing each pair of
sentences to the model two times per epoch.

3 Experiments

3.1 Corpora

We learn the distributed representations on the Eu-
roparl corpus v71 (Koehn, 2005). For a fair com-
parison with literature, we use the first 500K paral-
lel sentences for each of the English-German (en-
de), English-Spanish (en-es) and English-French
(en-fr) language pairs. We keep the first 90% for
training and the remaining 10% for development
purposes. We also use additional 500K monolin-
gual sentences from the Europarl corpus for each
language. These sentences do not overlap with the
sentences in parallel data.

Words that occur less than 5 times are replaced
with the <unk> symbol. In the joint multi-task
setting, the words are counted in the combined
monolingual and parallel corpora. The vocabulary
sizes for German (de) and English (en) are respec-
tively 39K and 21K in the parallel corpus, 120K
and 68K in the combined corpus.

We evaluate our models on the RCV1/RCV2
cross-lingual document classification task (Kle-
mentiev et al., 2012), where for each language we
use 1K documents for training and 5K documents
for testing.

3.2 Models

In addition to the proposed joint multi-task (JMT)
model, JMT-Sent-LSTM, we also present ab-
lation experiments where we omit the LSTM
layer, the multilingual skip-gram objective or
both. JMT-Sent-Avg is like the proposed model
but does not include an LSTM layer. Sent-LSTM
and Sent-Avg are the single-task variants of these
models.

We construct document embeddings by averag-
ing sentence representations produced by a trained
sentence encoder. For a language pair L1-L2, a
document classifier (single layer average percep-
tron) is trained on documents from L1, and tested

on documents from L2. Due to lack of supervision
on the L2 side, this setup relies on documents from
different languages with similar meaning having
similar representations.

3.3 Training

The single-task models are trained with the cross-
lingual sentence similarity objective end-to-end
using parallel data only. We also tried train-
ing word embeddings beforehand on parallel and
mono data and tuning them on the cross-lingual
sentence similarity task but that did not improve
the results. Those results are omitted for brevity.
The multi-task models are trained by alternating
between the two tasks.

Multilingual Skip-gram: We use stochastic
gradient descent with a learning rate of 0.01 and
exponential decay of 0.98 after 10K steps (1 step
is 256 word pairs), negative sampling with 512
samples, skip-gram context window of size 5. Re-
ducing the learning rate of the skip-gram model
helps in the multi-task scenario by allowing skip-
gram objective to converge in parallel with the
sentence similarity objective. At every step, we
sample equal number of monolingual and cross-
lingual word pairs to make a mini-batch.

Cross-lingual Sentence Similarity: The batch
size is 50 sentence pairs. LSTM hidden state di-
mension is 128 or 512. We use dropout at the em-
bedding layer with drop probability 0.3. Hinge-
loss margin m is equal to sentence embedding
size. We sample 10 negative samples for the noise-
contrastive loss. The model is trained using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 and an exponential decay of
0.98 after 10K steps (1 step is 50 sentence pairs).

3.4 Results

Table 1 shows the results for our models and com-
pares them to some state-of-the-art approaches.
When the sentence embedding dimension is 512,
our results are close to the best results from litera-
ture. When the sentence embedding dimension is
128, our JMT-Sent-LSTM model outperforms all
of the systems compared. Models with an LSTM
layer (Sent-LSTM and JMT-Sent-LSTM) perform
better than those without one. Joint multi-task
training consistently improves the performance.
The results for the data ablation experiments (*no-
mono) suggest that the gains obtained in the JMT
setting are partly due to the addition of monolin-
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Model en→ de de→ en
500k parallel sentences, dim=128
BiCVM-add+ 86.4 74.7
BiCVM-bi+ 86.1 79.0
BiSkip-UnsupAlign 88.9 77.4
Our Models
Sent-Avg 88.2 80.0
JMT-Sent-Avg 88.5 80.5
Sent-LSTM 89.5 80.4
JMT-Sent-LSTM 90.4 82.2
JMT-Sent-Avg*no-mono 88.8 80.3
JMT-Sent-LSTM*no-mono 89.5 81.5
100k parallel sentences, dim=128
Sent-Avg 81.6 75.2
JMT-Sent-Avg 85.3 79.1
Sent-LSTM 82.1 76.0
JMT-Sent-LSTM 87.4 80.7
JMT-Sent-LSTM*no-mono 83.4 76.5

Table 1: Results for models trained on en-de
language pair. *no-mono means no monolin-
gual data was used in training. We compare our
models to: BiCVM-add+ (Hermann and Blun-
som, 2014), BiCVM-bi+ (Hermann and Blunsom,
2014), BiSkip-UnsupAlign (Luong et al., 2015)
and para doc (Pham et al., 2015a).

gual data and partly due to the multi-task objec-
tive.

Varying monolingual vs parallel data: The
main motivation behind the multi-task architecture
is to create high quality embeddings in the limited
resource scenario. The bottom section of Table 1
shows the results for 128 dimensional embeddings
when parallel data is limited to 100K sentences.
JMT-Sent-LSTM results in this scenario are com-
parable to the results from the middle section of
Table 1 which use 500K parallel sentences. These
findings suggest that JMT-Sent-LSTM model can
produce high quality embeddings even with a lim-
ited amount of parallel data by exploting addi-
tional monolingual data. Table 2 compares Sent-
LSTM vs. JMT-Sent-LSTM at different data con-
ditions. JMT-Sent-LSTM produces consistently
better embeddings as long as the amount of ad-
ditional monolingual data is neither too large nor
too small compared to the amount of parallel data
– 3-4 times parallel data size seems to be a good
heuristic for choosing monolingual data size.

Multilingual vs Bilingual models: Table 3
compares multilingual models (en, es, de) to bilin-
gual models. First four rows of Table 3 show re-
sults for multilingual systems where sentence en-

Mono
Parallel

20K 50K 100K 500K

no-mono 60.3 68.3 82.1 89.5
20K 57.4 68.7 80.2 89.5
50K 62.7 69.0 83.5 89.5
100K 61.5 71.9 85.1 89.6
200K 58.1 72.1 85.5 90.0
500K 52.6 64.8 87.4 90.4

Table 2: Sent-LSTM vs. JMT-Sent-LSTM at dif-
ferent data conditions (en-de, dim=128).

Model en-es en-de de-en es-en es-de
Sent-Avg 49.8 86.8 78.4 63.5 69.4
Sent-LSTM 53.1 89.9 77.0 67.8 65.3
JMT-Sent-Avg 51.5 87.2 75.7 60.3 72.6
JMT-Sent-LSTM 57.4 91.0 75.1 63.3 68.1
JMT-Sent-LSTM* 54.1 90.4 82.2 68.4 -

Table 3: Multilingual vs. bilingual* models
(dim=128).

coder is trained for three languages (en,es,de) us-
ing en-es and en-de parallel data and additional
monolingual data for each language. Document
representations obtained from this sentence en-
coder are then used to train a classifier for a
language pair like en-de, where the classifier is
trained on en documents and then tested on de doc-
uments. In this scenario, we can build classifiers
for language pairs like es-de even though we do
not have access to es-de parallel data since embed-
dings we learn are shared between the three lan-
guages. Bottom row in Table 3 shows results for
bilingual systems where we train the sentence en-
coder for two languages, and then use that encoder
to train a document classifier for one language and
test on the other. In this scenario, we cannot build
classifiers for language pairs like es-de for which
we do not have access to parallel data.

Multilingual models perform better than bilin-
gual ones when English is the source language but
they perform worse in the other direction. We be-
lieve this discrepancy is because Europarl docu-
ments were originally in English and later trans-
lated to other languages. The multilingual mod-
els also show promising results for es-de pair, for
which there was no parallel data.

4 Linguistic analysis

As classification experiments focused on keeping
semantic information in sentence level representa-
tions, we also checked if produced word embed-
dings still made sense. We use JMT-Sent-LSTM
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Figure 3: t-SNE projections for 3 English words
(clarification, transcribe, cunningly) which are not
in the parallel corpus and their four nearest neigh-
bors. Red words are only in the monolingual cor-
pus. Blue words exist in parallel corpus too.

model for this purpose. Figure 3 shows t-SNE
projections for some sample words. Even though
the model didn’t use any German-Spanish parallel
data it managed to map words which have sim-
ilar meaning (transkribiert and transcribi) closer.
Words that are antonyms but still have a similar
meaning are close to each other (cunnigly (en),
honestly (en) and astucia (es)). Nearest neighbors
in the multilingual representation space are gener-
ally of same form across languages. It can also be
observed that English words lie towards the mid-
dle of Spanish and German words which we be-
lieve is due to English being the pivot for the other
two languages.

5 Conclusion

Our results suggest that joint multi-task learning
of multilingual word and sentence embeddings is
a promising direction. We believe that our sen-
tence embedding model can be improved further
with straightforward modifications to the sentence
encoder architecture, for instance using stacked
LSTMs or batch/layer normalization, and addition
of sentence level auxiliary tasks such as sentiment
classification or natural language inference. We
plan to explore these directions and evaluate our
approach on additional tasks in the future.

6 Discussion and Future Work

In our exploration of architectures for the sen-
tence encoding model, we also tried using a self-
attention layer following the intuition that not all
words are equally important for the meaning of a
sentence. However, we later realized that the cross

lingual sentence similarity objective is at odds
with what we want the attention layer to learn.
When we used self attention instead of simple av-
eraging of word embeddings, the attention layer
learns to give the entire weight to a single word in
both the source and the target language since that
makes optimizing cross lingual sentence similarity
objective easier. Another approach could be to de-
rive high dimensional embeddings in a way similar
to (Conneau et al., 2017) and using max-pooling
which can allow efficient selection for each dimen-
sion to represent meaning.

Even though they are related tasks, multilin-
gual skip-gram and cross-lingual sentence similar-
ity models are always in a conflict to modify the
shared word embeddings according to their objec-
tives. This conflict, to some extent, can be eased
by careful choice of hyper-parameters. This de-
pendency on hyper-parameters suggests that better
hyper-parameters can lead to better results in the
multi-task learning scenario. We have not yet tried
a full sweep of the hyper-parameters of our current
models but we believe there may be easy gains to
be had from such a sweep especially in the multi-
task learning scenario. Other thing that remains
rather unexplored is to do other levels of multi-
tasking, like learning character representations or
multitasking at sentence level.
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