
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 126–131
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

126

A dataset for identifying actionable feedback
in collaborative software development

Benjamin S. Meyers† , Nuthan Munaiah† , Emily Prud’hommeaux‡§ , Andrew Meneely† ,
Cecilia Ovesdotter Alm‡ , Josephine Wolff‡ , and Pradeep K. Murukannaiah†

†Golisano College of Computing and Information Sciences, Rochester Institute of Technology
‡College of Liberal Arts, Rochester Institute of Technology
§Morrissey College of Arts and Sciences, Boston College

bsm9339,nm6061,emilypx,axmvse,coagla,jcwgpt,pkmvse}@rit.edu

Abstract

Software developers and testers have long
struggled with how to elicit proactive re-
sponses from their coworkers when re-
viewing code for security vulnerabilities
and errors. For a code review to be suc-
cessful, it must not only identify potential
problems but also elicit an active response
from the colleague responsible for modi-
fying the code. To understand the factors
that contribute to this outcome, we analyze
a novel dataset of more than one million
code reviews for the Google Chromium
project, from which we extract linguis-
tic features of feedback that elicited re-
sponsive actions from coworkers. Using a
manually-labeled subset of reviewer com-
ments, we trained a highly accurate clas-
sifier to identify “acted-upon” comments
(AUC = 0.85). Our results demonstrate
the utility of our dataset, the feasibility of
using NLP for this new task, and the po-
tential of NLP to improve our understand-
ing of how communications between col-
leagues can be authored to elicit positive,
proactive responses.

1 Introduction

As in many other work environments, such as hos-
pitals and law firms, employees in software devel-
opment must communicate through written feed-
back and comments to develop functional and se-
cure code. Developers elicit feedback from their
collaborators on the code that they write through
the code review process, which is an integral
part of the mature software development lifecy-
cle. Most large software development organi-
zations, including Microsoft (Lipner, 2004) and
Google (Chromium, 2017), mandate the review of

all changes to the code base. Code reviews iden-
tify potential bugs or errors in software, but not
all of the comments made by reviewers are acted
upon by developers.

Some code reviews are taken seriously by de-
velopers and prompt significant fixes, while many
others are overlooked or dismissed. In some cases,
such as when code reviewers misunderstand the
purpose of a proposed change or identify an unim-
portant issue, it may be appropriate to ignore their
comments. At other times, however, the presenta-
tion and language of the reviewer’s feedback may
cause the problems it identifies to be overlooked.
Understanding which linguistic characteristics of
code reviews influence whether reviews are taken
seriously can aid developers in providing effective
feedback that is acted upon by their peers. In turn,
this can contribute to our general understanding of
how to provide meaningful written feedback in a
collaborative workplace setting.

With this in mind, we present a dataset of
over one million code review comments from the
Chromium project (Chromium, 2017), designed
with the goal of discovering the linguistic fea-
tures associated with actionable developer feed-
back. We describe the dataset, along with an ar-
ray of linguistic features capturing characteristics
of complexity, content, and style, extracted from
that dataset. Using a labeled subset of this large
dataset, we develop a highly accurate classifier for
identifying examples of actionable feedback that
performs better than the keyword and sentiment
features previously explored for similar tasks.

The contributions of this work are: (1) the intro-
duction of a new NLP task: identifying actionable
feedback in collaborative work conversations; (2)
a large structured dataset of automatically linguis-
tically annotated software developer conversations
for feature exploration1; (3) a smaller manually-
labeled subset of that dataset for hypothesis test-

127

ing1; and (4) a demonstration of the feasibility
of using NLP for this task in the form of a high-
accuracy classifier of actionable feedback.

2 Background

A typical code review is initiated by a developer
(change-author) who wishes to have a collection
(patchset) of local changes (patches) to the source
code merged into the software product. The patch-
set is reviewed by other developers (reviewers)
who provide feedback to ensure that the change
does not negatively impact the overall quality of
the product. In response to this feedback, the
change-author can submit one or more additional
patchsets for further review. The process repeats
until the owner of the source code approves the
change. The Chromium project, which underlies
Google’s Chrome browser and Chrome OS, fol-
lows this typical code review process, requiring all
changes to the source code to be reviewed before
being accepted into the repository. Rietveld (The
Chromium Project, 2017), an open-source tool, fa-
cilitates the code review process in Chromium.

The process of providing direct assessment of
an individual’s actions or performance, known as
feedback intervention, has been widely studied in
a number of domains (Judd, 1905; Kluger and
DeNisi, 1996, 1998; Xiong et al., 2010; Xiong and
Litman, 2010), but previous work applying NLP
to the specific task of evaluating code review feed-
back is somewhat limited. Rahman et al. (2017)
examined a small set of text features (e.g., reading
ease, stop word ratio) in a small set of code review
comments but found associations between those
features and comment usefulness to be mostly in-
significant. Pletea et al. (2014) examined senti-
ment as an indicator of comment usefulness, while
Bosu et al. (2015) considered both sentiment and
the presence of pre-defined keywords in feedback.
While these studies offer insights into the lan-
guage used by developers, they are limited to sen-
timent and basic lexical attributes. In contrast, we
explore more subtle linguistic features that more
accurately characterize actionable feedback.

3 Data

Our dataset consists of written natural language
conversations among developers working to find

1https://meyersbs.github.io/chromium-
conversations/

Figure 1: Example code review comment thread.

flaws in proposed changes to software. An ex-
ample is shown in Figure 1. We used Rietveld’s
RESTful API to retrieve, in JSON formatted doc-
uments, publicly-accessible code reviews in the
Chromium project spanning eight years (2008-
16). We processed the JSON documents and ex-
tracted reviews with their associated patchsets,
patches, and comments, saving them to a Post-
greSQL database. Of the 2,855,018 comments,
1,591,431 were posted by reviewers. We refer to
this set of comments, for which we provide val-
ues for the 9 linguistic features (described in Sec-
tion 4), as the full dataset.

With the goal of characterizing the linguistic at-
tributes of actionable feedback, we created a la-
beled dataset, which reflects the overall distri-
bution of actionable comments in the full dataset
by including 2,994 comments automatically iden-
tified as acted-upon and 800 comments manually
identified as not (known-to-be) acted-upon. We
automatically identified acted-upon comments us-
ing the Rietveld functionality that allows change-
authors to respond to feedback by clicking a link
labeled “Done”, which automatically posts a spe-
cial comment containing only the word ‘Done.’.
We consider comments by reviewers that elicit this
‘Done.’ response to be acted-upon. Of the 1.5
million comments posted by reviewers, 690,881
(43%) were identified as acted-upon using the
‘Done.’ metric. We independently verified a sub-
set of 700 of these comments (Cohen’s κ = 0.89)
and found that in 97% of instances when a devel-

128

oper posted a comment with ‘Done.’, there was an
associated code change implemented.

To identify comments that were not acted upon,
we manually inspected code review comments that
did not terminate in a ‘Done.’ comment. We ran-
domly sampled a set of 2,047 such comments and
inspected the line of code associated with a com-
ment across all patchsets and the source code com-
mit associated with the code review. Comments
for which the authors could not find evidence that
the developer acted upon the feedback were la-
beled as not (known-to-be) acted-upon. Within the
sample, 800 (39.08%) were manually identified as
not (known-to-be) acted-upon.

4 Feature Extraction

We extract nine linguistic features from the re-
viewer comments (examples in Table 1) that cap-
ture structure, information content, style, and tone.
Before extracting features, we automatically re-
place all sequences of source code tokens with a
single custom token. Since comments can span
multiple sentences, we aggregate sentence-level
features at the comment level as described below
for each feature.

Syntactic complexity: Previous work (Rah-
man et al., 2017) attempted to measure struc-
tural complexity using readability metrics, such as
Flesch reading ease (Flesch, 1948), which approx-
imate complexity using word and sentence length.
We instead evaluate the structure of comments
by calculating YNGVE (Yngve, 1960) and FRA-
ZIER (Frazier, 1987) scores, two complimentary
approaches derived from constituent parses (as in
Roark et al. (2011); Pakhomov et al. (2011)) that
approximate the cognitive load of sentence pro-
cessing (Baddeley, 2003; Sweller and Chandler,
1991). We take the maximum over all sentences
in a comment for each of these scores.

Information content: We calculate both con-
tent density (C-DENSITY), which measures the
content of text using the ratio of open-class to
closed-class words, and propositional density (P-
DENSITY), which is the ratio of propositions to
the number of words in a text (Roark et al., 2011).
We use an approach similar to that used by Brown
et al. (2008) to detect propositions, and we aggre-
gate both scores over the sentences in a comment.

Style and tone: We explore several features
characterizing style and tone to learn whether the
way reviewers choose to communicate their feed-

back has an influence on how their colleagues re-
spond to that feedback.

SENTIMENT: We extract the sentiment of a
code review comments using Stanford CoreNLP
(Manning et al., 2014). In contrast to previous
work (Bosu et al., 2015; Agarwal et al., 2011),
we use only three values, merging the two positive
classes and the two negative classes, and introduce
a fourth class, non-neutral, which ignores the sen-
timent polarity. The sentiment at a comment level
is the ratio of negative/neutral/positive/non-neutral
tokens to all tokens.

FORMALITY: We use the dataset provided by
Lahiri (2015) to train a logistic regression model
for estimating the formality of a sentence, with
precision and recall of 83%. We reduce the 7-
point rating scale to a binary (formal vs. infor-
mal) scale. The features used to train the model in-
cluded parts-of-speech, character n-grams, chunk-
ing tags, and other features used in predicting un-
certainty Vincze (2014). For this feature and PO-
LITENESS, we find the maximum and minimum
values over all sentences in a comment.

POLITENESS: To measure politeness, we use
a corpus of Wikipedia editor and Stack Ex-
change user conversations annotated for politeness
(Danescu-Niculescu-Mizil et al., 2013). We re-
implemented their logistic regression model with
newer programming languages and frameworks,
yielding 94% precision and 95% recall.

UNCERTAINTY: Uncertainty in natural lan-
guage has been studied by Vincze (2014) and
Farkas et al. (2010), who worked with Szarvas
et al. (2012) to compile the Szeged Uncertainty
Corpus. While Vincze (2014) trained a binary
(certain vs. uncertain) model on the corpus, we
trained a multi-label logistic regression model us-
ing the same features to predict the type of uncer-
tainty exhibited by each word in a comment.

5 Results

Using the labeled dataset described in Section 3,
we evaluated the association between each feature
and the class labels. For continuous valued fea-
tures, we used the non-parametric Mann-Whitney-
Wilcoxon to test for association and Cliff’s δ to as-
sess the strength of that association. For boolean-
valued features, we used the χ2 test to test for
independence between the feature and class la-
bel. Our results show that acted-upon code review
comments were shorter, more polite, more formal,

129

Feature Example Sentence from Chromium dataset

FRAZIER
Low: This ‘if’ can be done more elegantly with Min(x,y)
High: Please see this warning about adding things to NavigationEntry.

YNGVE
Low: The description is a little confusing.
High: The only time we call one but not the other is in the destructor, when we don’t need to call
needsNewGenID, but setting two fields needlessly might be a low price to pay to ensure we never
accidentally call one without the other.

P-DENSITY
Low: In addition to what I suggested earlier about testing for the non-existence of a third file, we could
also verify that the contents of the sync database files are not nonsense.
High: I tried patching this in locally and it doesn’t compile.

C-DENSITY
Low: Slight reordering: please put system modules first, then a blank line, then local ones
(PRESUBMIT).
High: Please check that given user id is child user, not currently active user is child.

FORMALITY
Low: But yeah, I’m just being an API astronaut*; I think that what I wrote up there is neat, but after
sleeping, don’t worry about it; it’s too much work to go and rewrite stuff.
High: Moving this elsewhere would also keep this module focused on handling the content settings /
heuristics for banners, which is what it was originally intended for.

POLITENESS
Low: You don’t actually manage the deopt table’s VirtualMemory, so you shouldn’t act like you do.
High: Thanks for writing this test, getting there, but I think you could do this in a more principled way.

SENTIMENT
Negative: That’s not good use of inheritance.
Neutral: Are we planning on making use of this other places?
Positive: It looks slightly magical.

UNCERTAINTY
Epistemic: This seems a bit fragile.
Doxastic: I assume we added this notification purely for testing purposes?
Investigative: Did you check whether it was needed?
Conditional: Another possible option, if it does not cause user confusion, would be to automatically
select those projects in the Files view when the dialog closes.

Table 1: Example code review comments for a subset of the linguistic features.

Feature Set Precision Recall F1 AUC
Tokens 0.793 0.996 0.883 0.610
Sentences 0.792 0.999 0.884 0.584
All 0.829 0.926 0.872 0.849
Significant 0.805 0.953 0.871 0.805
Relevant 0.802 0.963 0.874 0.819

Table 2: Results of 10×10−fold cross-validation.

less uncertain, and had a lower density of proposi-
tions than those that were not acted-upon.

We then trained a classifier to identify code re-
view comments that are likely to be acted upon.
In training the classifier, we considered three sets
of linguistic features: (1) all features, (2) sig-
nificant features from association analysis, and
(3) relevant features from recursive feature elim-
ination. Through recursive feature elimination,
we found MAX POLITENESS, P-DENSITY, MIN

FORMALITY, and MAX FORMALITY to be the
four most relevant features for discriminating be-
tween acted-upon and not acted-upon comments.

We trained logistic regression classifiers with
these three sets of linguistic features, evaluating

performance using 10x10-fold cross validation.
We compare these with two baseline classifiers us-
ing only token count and sentence count. Table 2
shows the average precision, recall, F1-measure,
and AUC. The classifiers trained on the linguistic
features, while performing near the baselines on
the first three measures, substantially outperform
the baselines on AUC, with all three yielding val-
ues over 0.8. Given these results and the imbal-
anced nature of the dataset, it seems that the clas-
sifiers trained on the linguistic features are able to
identify both classes of comments with high ac-
curacy, while the baseline classifiers perform only
marginally better than a majority class baseline.

6 Discussion & Future work

Overall, we find that the way in which cowork-
ers communicate feedback to each other strongly
influences whether their peers will act on their ad-
vice. Remarkably, politeness and formality, two
high-level discourse features, are among the most
effective in distinguishing acted upon feedback. It
seems that the manner in which feedback is deliv-

130

ered has more impact on the actions of developers
than might be expected given the practical and im-
personal nature of written code reviews. These re-
sults point to the critical importance of how feed-
back is phrased and delivered in workplace set-
tings, beyond just the content of the feedback it-
self.

In our future work, we plan to explore whether
these and other features can be incorporated into
a code review tool like Rietveld to automatically
flag feedback that is less likely to be acted upon
and to encourage more effective communication
strategies. We also plan to use our methods to an-
alyze the linguistic patterns of individual review-
ers to identify those with particularly effective or
weak communication styles.

Our work demonstrates the potential of apply-
ing NLP to the task of identifying actionable feed-
back in collaborative work scenarios and the util-
ity of our two datasets for this task. More broadly,
these results speak to the importance of training
code reviewers–and indeed all employees work-
ing in highly collaborative environments–not just
in how to do their jobs effectively but also how to
communicate their findings and feedback to their
coworkers in a way that will elicit proactive re-
sponses.

References
A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Pas-

sonneau. 2011. Sentiment analysis of twitter data.
In Proceedings of the Workshop on Languages in So-
cial Media, pages 30–38.

A. Baddeley. 2003. Working memory and language:
An overview. Journal of Communication Disorders,
36(3):189–208.

A Bosu, M Greiler, and C Bird. 2015. Characteristics
of Useful Code Reviews: An Empirical Study at Mi-
crosoft. In 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories, pages 146–
156.

C. Brown, T. Snodgrass, S.J. Kemper, R. Herman, and
M.A. Covington. 2008. Automatic measurement of
propositional idea density from part-of-speech tag-
ging. Behavior Research Methods, 40(2):540–545.

Chromium. 2017. Chromium OS Developer’s Guide.
https://www.chromium.org/chromium-
os/developer-guide. [Online; accessed
25-Aug-2017].

C. Danescu-Niculescu-Mizil, M. Sudhof, D. Jurafsky,
J. Leskovec, and C. Potts. 2013. A computational

approach to politeness with application to social fac-
tors. In Proceedings of the Association for Compu-
tational Linguistics (ACL), pages 250–259.

R. Farkas, V. Vincze, G. Móra, J. Csirik, and
G. Szarvas. 2010. The CoNLL-2010 shared task:
Learning to detect hedges and their scope in nat-
ural language text. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning—Shared Task, pages 1–12.

R. Flesch. 1948. A new readability yardstick. Journal
of Applied Psychology, 32(3):221.

L. Frazier. 1987. Syntactic Processing: Evidence from
Dutch. Natural Language & Linguistic Theory,
5(4):519–559.

C.H. Judd. 1905. Practice without knowledge of re-
sults. The Psychological Review: Monograph Sup-
plements.

A.N. Kluger and A. DeNisi. 1996. The effects of feed-
back interventions on performance: a historical re-
view, a meta-analysis and a preliminary feedback in-
tervention theory. Psychological Bulletin, 119:254–
284.

A.N. Kluger and A. DeNisi. 1998. Feedback interven-
tions: Toward the understanding of a double-edged
sword. Current Directions in Psychological Sci-
ence, 7(3):67–72.

S. Lahiri. 2015. SQUINKY! A Corpus of Sentence-
level Formality, Informativeness, and Implicature.
CoRR, abs/1506.02306.

S. Lipner. 2004. The Trustworthy Computing Security
Development Lifecycle. In 20th Annual Computer
Security Applications Conference, pages 2–13.

C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J.
Bethard, and D. McClosky. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit. In
Association for Computational Linguistics (ACL)
System Demonstrations, pages 55–60.

S. Pakhomov, S. Chacon, M. Wicklund, and J. Gun-
del. 2011. Computerized assessment of syntactic
complexity in Alzheimer’s disease: A case study of
Iris Murdoch’s writing. Behavior Research Meth-
ods, 43(1):136–144.

D. Pletea, B. Vasilescu, and A. Serebrenik. 2014. Se-
curity and Emotion: Sentiment Analysis of Security
Discussions on GitHub. In Proceedings of the 11th
Working Conference on Mining Software Reposito-
ries, pages 348–351.

M.M. Rahman, Chanchal K. Roy, and R.G. Kula. 2017.
Predicting Usefulness of Code Review Comments
Using Textual Features and Developer Experience.
In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 215–226.

131

B. Roark, M. Mitchell, J. Hosom, K. Hollingshead, and
J. Kaye. 2011. Spoken Language Derived Measures
for Detecting Mild Cognitive Impairment. Transac-
tions on Audio, Speech, and Language Processing,
19(7):2081–2090.

J. Sweller and P. Chandler. 1991. Evidence for
cognitive load theory. Cognition and Instruction,
8(4):351–362.

G. Szarvas, V. Vincze, R. Farkas, G. Móra, and
I. Gurevych. 2012. Cross-genre and cross-domain
detection of semantic uncertainty. Computational
Linguistics, 38(2):335–367.

The Chromium Project. 2017. Code Review
— Chromium. https://codereview.
chromium.org/. [Online; accessed 25-Aug-
2017].

V. Vincze. 2014. Uncertainty Detection in Natural
Language Texts. Ph.D. thesis, University of Szeged.

W. Xiong and D. Litman. 2010. Identifying problem
localization in peer-review feedback. In Intelligent
Tutoring Systems, pages 429–431. Springer.

W. Xiong, D.J. Litman, and C.D. Schunn. 2010. As-
sessing reviewers performance based on mining
problem localization in peer-review data. In Third
International Conference on Educational Data Min-
ing, pages 211–220.

V.H. Yngve. 1960. A model and an Hypothesis for
Language Structure. In Proceedings of the Ameri-
can Philosophical Society, volume 104, pages 444–
466.

