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Message from the General Chair

It is an honor to write the initial words of this proceedings as General Chair of the 56th Annual Meeting
of the Association for Computational Linguistics! This is only the second time that an ACL conference
has been held in Australia — the first time was for the joint COLING/ACL conference in June of 2006
in Sydney, and I was one of its Program Chairs. For ACL 2018 we have tried to maintain the welcoming
and intimate spirit and the relaxed and genial character of the much smaller ACL conferences of the past
in spite of the ever-growing number of researchers in the field and participants in our conferences.

It is my pleasure here to express gratitude to all those without whom this conference would not exist.
My biggest thanks go to the Program Chairs Iryna Gurevych and Yusuke Miyao, as well as to Local
Chairs Tim Baldwin, Trevor Cohn and Karin Verspoor. They have done a tremendous job to manage the
submission and review process, and the local arrangement details, respectively.

I also want to thank all of the other chairs for their very hard work: Workshops Chairs Brendan O’Connor
and Eva Maria Vecchi; Tutorials Chairs Yoav Artzi and Jacob Eisenstein; Demo Chairs Fei Liu and
Thamar Solorio; Student Research Workshop Organizers Vered Shwartz, Jeniya Tabassum and Rob
Voigt; Faculty Advisors to the Student Research Workshop Marie-Catherine de Marneffe, Wanxiang Che
and Malvina Nissim; Publications Chairs Shay Cohen, Kevin Gimpel and Wei Lu; Exhibits Coordinator
Karin Vespoor; Student Volunteer Coordinator Karin Vespoor; Conference Handbook Chairs Jey Han
Lau and Trevor Cohn; Publicity Chair Sarvnaz Karimi; Local Sponsorship Chair Cecile Paris; Webmaster
Andrew MacKinlay; and Priscilla Rasmussen, giver of advice and wisdom to all of us as ACL Business
Manager.

I also warmly thank the ACL Executive Committee for its guidance and advice on many important issues
and concerns as they arose.

I am also extremely grateful to all the sponsors for their great support to the conference.

Many thanks to the area chairs, the reviewers, the invited speakers, the authors of the various papers,
posters and presentations.

And, finally, many many thanks to all the participants who will put the final touches on making ACL
2018 an exciting, stimulating and inspiring event!

Claire Cardie
ACL 2018 General Chair
July 2018
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Message from the Program Committee Co-Chairs

Welcome to the 56th Annual Meeting of the Association for Computational Linguistics 2018 – or ACL
2018 for short.

In September 2017, Program Committee Co-Chairs (PCs) posted the call for nominations of Area Chairs
(AC), Reviewers and Invited Speakers. We received 752 responses in total. Overall, out of 388 valid
nominations for area chairs, 299 unique persons were suggested; 110 persons were self-nominations.
About 70% of the 56 selected area chairs (later expanded to 61 area chairs due to the high number of
submissions) were nominated by the community. For the reviewers, we collected 936 valid nominations.
At the PhD level, 139 persons were self-nominations and 129 were nominated by others. At the
Postdoc/Ass.Prof. level, 160 were self-nominated, 112 nominated by others. At the Prof. level, 221
persons were self-nominated, 175 nominated by others.

We received 138 unique nominations for invited speakers, from which two invited speakers of the
conference were selected:

• Carolyn Penstein Rosé, Language Technologies Institute at Carnegie Mellon University, USA

• Anton van den Hengel, Australian Centre for Visual Technologies at University of Adelaide,
Australia

Our community is steadily growing: in total, 1621 submissions were received right after the submission
deadline: 1045 long, 576 short papers. 13 erroneous submissions were deleted or withdrawn in the
preliminary checks by PCs. 25 papers were rejected without review (16 long, 9 short); the reasons are
the violation of the ACL 2018 style and dual submission guidelines. 32 papers were withdrawn before
the review period started; the main reason was that the papers have been accepted as the short papers at
NAACL HLT 2018. In total, 1551 papers went into the reviewing phase: 1021 long, 530 short papers.
1610 reviewers (1473 primary and 137 secondary reviewers) were involved in the reviewing process;
each reviewer has reviewed about 3 papers on average. 3 long and 4 short papers were withdrawn during
the reviewing period, and finally 1018 long and 526 short papers were considered during the acceptance
decision phase.

The assignment of papers to areas and reviewers has been done in multiple rounds. First round: Initial
assignments of papers to areas were determined automatically with the help of the authors’ input, while
PCs went through all submissions and moved papers to other areas, considering COI and the topical
fit. PCs assigned one AC as a meta-reviewer to each paper using Toronto Paper Matching System
(TPMS) scores. Second round: ACs looked into the papers in their area, and adjusted meta-reviewer
assignments. ACs sent a report to PCs if they found any problems. Third round: PCs made the final
decision, considering the workload balance, possible COIs and the topical fit. Fourth round: ACs decided
which reviewers would review each paper, based on AC’s knowledge about the reviewers, TPMS scores,
reviewers’ bids, and COI.

We have introduced several innovations to the reviewing process. One of them is an argument-based
review form. The reviewers were asked to provide arguments for and against the paper. This has been
tremendously helpful for ACs and PCs to analyze the reviews and come up with final recommendations.
The authors were asked to respond to the con arguments during the rebuttal. In coordination with the
NAACL HLT 2018 PCs, we plan to do some analytics on anonymized reviews and rebuttal statements,
with the consent of the reviewers and authors. Our purpose is to improve the quality of the review
process. The data will be compiled into a unique corpus for NLP, and will be made available to the
research community after appropriate anonymization checks, at the earliest in 2 years after ACL 2018.
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We hope to provide data on how to review to younger researchers, and to improve the transparency of the
reviewing process in general.

The ACL 2018 conference is super-competitive: We accepted 256 out of 1018 submitted long papers and
125 out of 526 short papers, with an overall acceptance rate of 24.7%. The details of the review process
are available at the conference homepage. Criteria of acceptance were mainly:

• strengths/weaknesses raised by reviewers and their significance;

• the result of discussions and author responses;

• contribution to CL as the science of language: whether the paper advances (or contributes to) our
understanding of language in any way;

• diversity: we do not want to fill ACL with similar papers like achieving 1% improvement on a
well-known task.

We also considered the balance of paper types, topics and contributions and re-considered the acceptance
when reviewers reported any problem in preliminary checks (Appropriateness to Handling of Human
Participants).

Continuing the tradition, ACL 2018 will feature 20 papers which were accepted for publication in the
Transactions of the Association for Computational Linguistics (TACL). The TACL papers were split into
10 oral presentations and 10 poster presentations.

There are many people to thank for who have worked diligently to make ACL 2018 possible. All names
are listed in the Program Committee section of the Front Matter.

Since the conference size continues to grow and the organizational complexity increases, we have
introduced the role of Program Committee Co-Chair Assistants. In total, 5 senior researchers have
supported the PCs during most intensive work phases to handle the communication in a timely manner,
draft various documents and effectively prepare decisions.

Thanks to our area chairs for their hard work on recruiting reviewers, managing reviews, leading
discussions, and making recommendations.

This program certainly would not be possible without the help of the 1610 reviewers. In particular, 192
reviewers from this list were recognized by the area chairs as outstanding reviewers who have turned
in exceptionally well-written and constructive reviews and who have actively engaged themselves in the
post-rebuttal discussions.

We are also deeply indebted to the best paper selection committee which consists of 22 members. They
had to additionally review 6-8 papers according to the best paper criteria on short notice. Their time and
effort in recommending the best paper awards is much appreciated.

We also would like to thank many colleagues for generously sharing their experience in organizing
prior ACL conferences and for their advice. We are grateful for the guidance and the support of the
ACL presidents Joakim Nivre and Marti Hearst, and the ACL board. We also would like to thank the
publication co-chairs Shay Cohen, Kevin Gimpel and Wei Lu (Advisory) and the handbook chair Jey Han
Lau for putting together the proceedings and the conference handbook; and Rich Gerber from Softconf
for always being responsive to our requests. We would like to thank the ACL Business Manager Priscilla
Rasmussen for helping us to sort important things out. Finally, this conference could not have happened
without the efforts of the general chair, Claire Cardie. We thank her for the leadership and advice,
especially when matters got complicated.
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We hope you will enjoy ACL 2018 and contribute to the future success of our community!

ACL 2018 Program Committee Co-Chairs
Iryna Gurevych, TU Darmstadt, Germany
Yusuke Miyao, National Institute of Informatics, Japan
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The process for selecting best papers and honourable mentions

The Program Committee Co-Chairs (PCs) have defined a multi-step process. Area Chairs (ACs) were
asked to select a number of top papers in their areas satisfying as many as possible of the following
criteria:

• high quality

• nominated for the award by at least one primary reviewer

• bringing disruptive ground-breaking innovation as compared to the current mainstream

ACs re-read their finalists and discussed among themselves the merits of the nominee’s work with the
help of the primary reviews. ACs then submitted the papers to the PCs along with their selection
decisions. PCs balanced ACs’ nominations for diversity and representativeness among areas and the
review consistency. They prepared the papers in Softconf for best-paper reviewing and selection. There
were 52 best paper candidates.

In parallel, PCs formed the best paper selection committee (BPC) from 22 experts in the field with a
mix of expertise and backgrounds and at a good seniority level. In case of COIs, the BPC member was
excluded from the further evaluation process. BPC members reviewed 6-8 papers each and provided a
short review with respect to the best paper criteria.

Based on BPC recommendations, there were about 20 papers left in the pool. PCs then re-read those
papers and discussed their particular merits. Finally, 6 long papers and 2 short papers were selected as
honourable mentions. For the best papers, 3 long papers and 2 short papers were selected for presentation
in the closing conference session.

The selected honourable mentions and best papers emphasize the diversity of the ACL in terms of
research questions, methods, and interdisciplinarity.

Best Long Papers

• Finding syntax in human encephalography with beam search. John Hale, Chris Dyer, Adhiguna
Kuncoro and Jonathan Brennan.

• Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value
of Perfect Information. Sudha Rao and Hal Daumé III.

• Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition
Triggers. Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

Best Short Papers

• Know What You Don’t Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia
and Percy Liang.

• ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions. Olivia Winn and
Smaranda Muresan.
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Invited Talk: Deep Neural Networks, and what they’re not very good at
Anton van den Hengel

Professor, School of Computer Science, University of Adelaide

Abstract: Deep Neural Networks have had an incredible impact in a variety of areas within machine
learning, including computer vision and natural language processing. Deep Neural Networks use implicit
representations that are very high-dimensional, however, and are thus particularly well suited to problems
that can be solved by associative recall of previous solutions. They are ill-suited to problems that require
human-interpretable representations, explicit manipulation of symbols, or reasoning. The dependency
of Deep Neural Networks on large volumes of training data, also means that they are typically only
applicable when the problem itself, and the nature of the test data, are predictable long in advance.

The application of Deep Neural Networks to Visual Question Answering has achieved results that would
have been thought impossible only a few years ago. It has also thrown a spotlight on the shortcomings
of current Deep Nets in solving problems that require explicit reasoning, the use of a knowledge base, or
the ability to learn on the fly. In this talk I will illustrate some of the steps being taken to address these
problems, and a new learning-to-learn approach that we hope will combine the power of Deep Learning
with the significant benefits of explicit-reasoning-based methods.

Bio: Anton van den Hengel is a Professor in the School of Computer Science at the University of
Adelaide, the Director of the Australian Institute for Machine Learning, and a Chief Investigator of the
Australian Centre for Robotic Vision. Prof. van den Hengel has been a CI on over $60m in external
research funding from sources including Google, Canon, BHP Billiton and the ARC, and has won a
number of awards, including the Pearcey Foundation Entrepreneur Award, the SA Science Excellence
Award for Research Collaboration, and the CVPR Best Paper prize in 2010. He has authored over
300 publications, had 8 patents commercialised, formed 2 start-ups, and has recently had a medical
technology achieve first-in-class FDA approval. Current research interests include Deep Learning, vison
and language problems, interactive image-based modelling, large-scale video surveillance, and learning
from large image databases.
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Invited Talk: Who is the Bridge Between the What and the How
Carolyn Penstein Rosé

Professor, School of Computer Science, Carnegie Mellon University

Abstract: This talk reports on over a decade of research where theoretical foundations motivate
computational models that produce real world impact in online spaces. Both the earliest philosophers of
language and the most recent researchers in computational approaches to social media analysis have
acknowledged the distinction between the what of language, namely its propositional content, and
the how of language, or its form, style, or framing. What bridges between these realms are social
processes that motivate the linguistic choices that result in specific realizations of propositional content
situated within social interactions, designed to achieve social goals. These insights allow researchers
to make sense of the connection between discussion processes and outcomes from those discussions.
These findings motivate on the one hand design of computational approaches to real time monitoring of
discussion processes and on the other hand the design of interventions that support interactions in online
spaces with the goal of increasing desired outcomes, including learning, health, and wellbeing.

As an example, in this talk we probe into a specific quality of discussion referred to as Transactivity.
Transactivity is the extent to which a contribution articulates the reasoning of the speaker, that of an
interlocutor, and the relation between them. In different contexts, and within very distinct theoretical
frameworks, this construct has been associated with solidarity, influence, expertise transfer, and learning.
Within the construct of Transactivity, the cognitive and social underpinnings are inextricably linked such
that modeling the who enables prediction of the connection between the what and the how.

Bio: Dr. Carolyn Rosé is a Professor of Language Technologies and Human-Computer Interaction in the
School of Computer Science at Carnegie Mellon University. Her research program is focused on better
understanding the social and pragmatic nature of conversation, and using this understanding to build
computational systems that can improve the efficacy of conversation between people, and between people
and computers. In order to pursue these goals, she invokes approaches from computational discourse
analysis and text mining, conversational agents, and computer supported collaborative learning.
Her research group’s highly interdisciplinary work, published in 200 peer reviewed publications, is
represented in the top venues in 5 fields: namely, Language Technologies, Learning Sciences, Cognitive
Science, Educational Technology, and Human-Computer Interaction, with awards in 3 of these fields.
She serves as Past President and Inaugural Fellow of the International Society of the Learning Sciences,
Chair of the International Alliance to Advance Learning in the Digital Era, and Executive Editor of the
International Journal of Computer-Supported Collaborative Learning.
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Nikola Mrkšić and Ivan Vulić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers
Sandro Pezzelle, Shane Steinert-Threlkeld, Raffaella Bernardi and Jakub Szymanik . . . . . . . . . . 114

A Named Entity Recognition Shootout for German
Martin Riedl and Sebastian Padó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A dataset for identifying actionable feedback in collaborative software development
Benjamin S Meyers, Nuthan Munaiah, Emily Prud’hommeaux, Andrew Meneely, Josephine Wolff,

Cecilia Ovesdotter Alm and Pradeep Murukannaiah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

SNAG: Spoken Narratives and Gaze Dataset
Preethi Vaidyanathan, Emily T. Prud’hommeaux, Jeff B. Pelz and Cecilia O. Alm . . . . . . . . . . . . 132

Analogical Reasoning on Chinese Morphological and Semantic Relations
Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu and Xiaoyong Du. . . . . . . . . . . . . . . . . . . . . . . .138

Construction of a Chinese Corpus for the Analysis of the Emotionality of Metaphorical Expressions
Dongyu Zhang, Hongfei Lin, Liang Yang, Shaowu Zhang and BO XU . . . . . . . . . . . . . . . . . . . . . . 144

Automatic Article Commenting: the Task and Dataset
Lianhui Qin, Lemao Liu, Wei Bi, Yan Wang, Xiaojiang Liu, Zhiting Hu, Hai Zhao and Shuming

Shi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

Improved Evaluation Framework for Complex Plagiarism Detection
Anton Belyy, Marina Dubova and Dmitry Nekrasov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Global Encoding for Abstractive Summarization
Junyang Lin, Xu SUN, Shuming Ma and Qi Su . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A Language Model based Evaluator for Sentence Compression
Yang Zhao, Zhiyuan Luo and Akiko Aizawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Identifying and Understanding User Reactions to Deceptive and Trusted Social News Sources
Maria Glenski, Tim Weninger and Svitlana Volkova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Content-based Popularity Prediction of Online Petitions Using a Deep Regression Model
Shivashankar Subramanian, Timothy Baldwin and Trevor Cohn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer
Cicero Nogueira dos Santos, Igor Melnyk and Inkit Padhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Diachronic degradation of language models: Insights from social media
Kokil Jaidka, Niyati Chhaya and Lyle Ungar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Task-oriented Dialogue System for Automatic Diagnosis
Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao Tou, Ting Chen, Xuanjing Huang, Kam-Fai

Wong and Xiangying Dai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xxvi



Transfer Learning for Context-Aware Question Matching in Information-seeking Conversations in E-
commerce

Minghui Qiu, Liu Yang, Feng Ji, Wei Zhou, Jun Huang, Haiqing Chen, Bruce Croft and Wei Lin
208

A Multi-task Approach to Learning Multilingual Representations
Karan Singla, Dogan Can and Shrikanth Narayanan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Characterizing Departures from Linearity in Word Translation
Ndapa Nakashole and Raphael Flauger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Filtering and Mining Parallel Data in a Joint Multilingual Space
Holger Schwenk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Hybrid semi-Markov CRF for Neural Sequence Labeling
Zhixiu Ye and Zhen-Hua Ling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A Study of the Importance of External Knowledge in the Named Entity Recognition Task
Dominic Seyler, Tatiana Dembelova, Luciano Del Corro, Johannes Hoffart and Gerhard Weikum

241

Improving Topic Quality by Promoting Named Entities in Topic Modeling
Katsiaryna Krasnashchok and Salim Jouili . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Obligation and Prohibition Extraction Using Hierarchical RNNs
Ilias Chalkidis, Ion Androutsopoulos and Achilleas Michos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Paper Abstract Writing through Editing Mechanism
Qingyun Wang, Zhihao Zhou, Lifu Huang, Spencer Whitehead, Boliang Zhang, Heng Ji and Kevin

Knight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Conditional Generators of Words Definitions
Artyom Gadetsky, Ilya Yakubovskiy and Dmitry Vetrov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

CNN for Text-Based Multiple Choice Question Answering
Akshay Chaturvedi, Onkar Pandit and Utpal Garain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Narrative Modeling with Memory Chains and Semantic Supervision
Fei Liu, Trevor Cohn and Timothy Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Injecting Relational Structural Representation in Neural Networks for Question Similarity
Antonio Uva, Daniele Bonadiman and Alessandro Moschitti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A Simple and Effective Approach to Coverage-Aware Neural Machine Translation
Yanyang Li, Tong Xiao, Yinqiao Li, Qiang Wang, Changming Xu and Jingbo Zhu . . . . . . . . . . . 292

Dynamic Sentence Sampling for Efficient Training of Neural Machine Translation
Rui Wang, Masao Utiyama and Eiichiro Sumita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Compositional Representation of Morphologically-Rich Input for Neural Machine Translation
Duygu Ataman and Marcello Federico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Extreme Adaptation for Personalized Neural Machine Translation
Paul Michel and Graham Neubig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

xxvii



Multi-representation ensembles and delayed SGD updates improve syntax-based NMT
Danielle Saunders, Felix Stahlberg, Adrià de Gispert and Bill Byrne . . . . . . . . . . . . . . . . . . . . . . . . 319

Learning from Chunk-based Feedback in Neural Machine Translation
Pavel Petrushkov, Shahram Khadivi and Evgeny Matusov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Bag-of-Words as Target for Neural Machine Translation
Shuming Ma, Xu SUN, Yizhong Wang and Junyang Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Improving Beam Search by Removing Monotonic Constraint for Neural Machine Translation
Raphael Shu and Hideki Nakayama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Leveraging distributed representations and lexico-syntactic fixedness for token-level prediction of the
idiomaticity of English verb-noun combinations

Milton King and Paul Cook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Using pseudo-senses for improving the extraction of synonyms from word embeddings
Olivier Ferret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora
Stephen Roller, Douwe Kiela and Maximilian Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

Jointly Predicting Predicates and Arguments in Neural Semantic Role Labeling
Luheng He, Kenton Lee, Omer Levy and Luke Zettlemoyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Sparse and Constrained Attention for Neural Machine Translation
Chaitanya Malaviya, Pedro Ferreira and André F. T. Martins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Neural Hidden Markov Model for Machine Translation
Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan Gan and Hermann Ney . . . . . . . . . . . . . . . . . . 377

Bleaching Text: Abstract Features for Cross-lingual Gender Prediction
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Abstract

We reformulate the problem of encoding
a multi-scale representation of a sequence
in a language model by casting it in a
continuous learning framework. We pro-
pose a hierarchical multi-scale language
model in which short time-scale depen-
dencies are encoded in the hidden state
of a lower-level recurrent neural network
while longer time-scale dependencies are
encoded in the dynamic of the lower-level
network by having a meta-learner update
the weights of the lower-level neural net-
work in an online meta-learning fashion.
We use elastic weights consolidation as a
higher-level to prevent catastrophic forget-
ting in our continuous learning framework.

1 Introduction

Language models are a major class of natural lan-
guage processing (NLP) models whose develop-
ment has lead to major progress in many areas like
translation, speech recognition or summarization
(Schwenk, 2012; Arisoy et al., 2012; Rush et al.,
2015; Nallapati et al., 2016). Recently, the task of
language modeling has been shown to be an ad-
equate proxy for learning unsupervised represen-
tations of high-quality in tasks like text classifica-
tion (Howard and Ruder, 2018), sentiment detec-
tion (Radford et al., 2017) or word vector learning
(Peters et al., 2018).

More generally, language modeling is an exam-
ple of online/sequential prediction task, in which
a model tries to predict the next observation given
a sequence of past observations. The development
of better models for sequential prediction is be-
lieved to be beneficial for a wide range of applica-
tions like model-based planning or reinforcement
learning as these models have to encode some

form of memory or causal model of the world to
accurately predict a future event given past events.

One of the main issues limiting the performance
of language models (LMs) is the problem of cap-
turing long-term dependencies within a sequence.

Neural network based language models
(Hochreiter and Schmidhuber, 1997; Cho et al.,
2014) learn to implicitly store dependencies in
a vector of hidden activities (Mikolov et al.,
2010). They can be extended by attention mech-
anisms, memories or caches (Bahdanau et al.,
2014; Tran et al., 2016; Graves et al., 2014) to
capture long-range connections more explicitly.
Unfortunately, the very local context is often so
highly informative that LMs typically end up
using their memories mostly to store short term
context (Daniluk et al., 2016).

In this work, we study the possibility of com-
bining short-term representations, stored in neural
activations (hidden state), with medium-term rep-
resentations encoded in a set of dynamical weights
of the language model. Our work extends a series
of recent experiments on networks with dynami-
cally evolving weights (Ba et al., 2016; Ha et al.,
2016; Krause et al., 2017; Moniz and Krueger,
2018) which show improvements in sequential
prediction tasks. We build upon these works by
formulating the task as a hierarchical online meta-
learning task as detailed below.

The motivation behind this work stems from
two observations.

On the one hand, there is evidence from a phys-
iological point of view that time-coherent pro-
cesses like working memory can involve differing
mechanisms at differing time-scales. Biological
neural activations typically have a 10 ms coher-
ence timescale, while short-term synaptic plastic-
ity can temporarily modulate the dynamic of the
neural network it-self on timescales of 100 ms
to minutes. Longer time-scales (a few minutes
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to several hours) see long-term learning kicks in
with permanent modifications to neural excitabil-
ity (Tsodyks et al., 1998; Abbott and Regehr,
2004; Barak and Tsodyks, 2007; Ba et al., 2016).
Interestingly, these psychological observations are
paralleled, on the computational side, by a se-
ries of recent works on recurrent networks with
dynamically evolving weights that show benefits
from dynamically updating the weights of a net-
work during a sequential task (Ba et al., 2016;
Ha et al., 2016; Krause et al., 2017; Moniz and
Krueger, 2018).

In parallel to that, it has also been shown that
temporal data with multiple time-scales dependen-
cies can naturally be encoded in a hierarchical rep-
resentation where higher-level features are chang-
ing slowly to store long time-scale dependencies
and lower-level features are changing faster to
encode short time-scale dependencies and local
timing (Schmidhuber, 1992; El Hihi and Bengio,
1995; Koutnk et al., 2014; Chung et al., 2016).

As a consequence, we would like our model to
encode information in a multi-scale hierarchical
representation where

1. short time-scale dependencies can be en-
coded in fast-updated neural activations (hid-
den state),

2. medium time-scale dependencies can be en-
coded in the dynamic of the network by using
dynamic weights updated more slowly, and

3. a long time-scale memory can be encoded in
a static set of parameters of the model.

In the present work, we take as dynamic weights
the full set of weights of a RNN language model
(usually word embeddings plus recurrent, input
and output weights of each recurrent layer).

2 Dynamical Language Modeling

Given a sequence of T discrete symbols S =
(w1, w2, . . . , wT ), the language modeling task
consists in assigning a probability to the sequence
P (S) = p(w1, . . . , wT ) which can be written, us-
ing the chain-rule, as

P (S | θ) =
T∏

t=1

P (wt | wt−1, . . . , w0, θ)P (w0 | θ).

(1)
where θ is a set of parameters of the language
model.

In the case of a neural-network-based lan-
guage model, the conditional probability P (wt |
wt−1, . . . , w0, θ) is typically parametrized using
an autoregressive neural network as

P (wt | wt−1, . . . , w0, θ) = fθ(wt−1, . . . , w0)
(2)

where θ are the parameters of the neural network.
In a dynamical language modeling framework,

the parameters θ of the language model are not
tied over the sequence S but are allowed to evolve.
Thus, prior to computing the probability of a fu-
ture token wt, a set of parameters θt is estimated
from the past parameters and tokens as θt =
argmax

θ
P (θ | wt−1, . . . , w0, θt−1 . . . θ0) and the

updated parameters θt are used to compute the
probability of the next token wt.

In our hierarchical neural network language
model, the updated parameters θt are estimated by
a higher level neural network g parametrized by a
set of (static) parameters φ:

θt = gφ(wt−1, . . . , w0, θt−1 . . . θ0) (3)

2.1 Online meta-learning formulation
The function computed by the higher level net-
work g, estimating θt from an history of parame-
ters θ<t and data points w<t, can be seen as an on-
line meta-learning task in which a high-level meta-
learner network is trained to update the weights of
a low-level network from the loss of the low-level
network on a previous batch of data.

Such a meta-learner can be trained
(Andrychowicz et al., 2016) to reduce the
loss of the low-level network with the idea that it
will generalize a gradient descent rule

θt = θt−1 − αt∇θt−1Lt (4)

whereαt is a learning rate at time t and∇θt−1LLMt
is the gradient of the loss LLMt of the language
model on the t-th dataset with respect to previous
parameters θt−1.

Ravi and Larochelle (2016) made the observa-
tion that such a gradient descent rule bears simi-
larities with the update rule for LSTM cell-states

ct = ft � ct−1 + it � c̃t (5)

when ct → θt, it → αt and c̃t → −∇θt−1Lt
We extend this analogy to the case of a multi-

scale hierarchical recurrent model illustrated on
figure 1 and composed of:
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Figure 1: A diagram of the Dynamical Language Model. The lower-level neural network f (short-term
memory) is a conventional word-level language model wherew0, . . . , w5 are words tokens. The medium-
level language model g is a feed-forward or recurrent neural network while the higher-level memory is
formed by a static set of consolidated pre-trained weights (see text).

1. Lower-level / short time-scale: a RNN-based
language model f encoding representations
in the activations of a hidden state,

2. Middle-level / medium time-scale: a meta-
learner g updating the set of weights of the
language model to store medium-term repre-
sentations, and

3. Higher-level / long time-scale: a static long-
term memory of the dynamic of the RNN-
based language model (see below).

The meta-learner g is trained to update the
lower-level network f by computing ft, it, zt =
gφ(θt−1,LLMt ,∇θt−1LLMt , θ0) and updating the
set of weights as

θt = ft � θt−1 + it �∇θt−1LLMt + zt � θ0 (6)

This hierarchical network could be seen as an ana-
log of the hierarchical recurrent neural networks
(Chung et al., 2016) where the gates ft, it and zt
can be seen as controlling a set of COPY, FLUSH
and UPDATE operations:

1. COPY (ft): part of the state copied from the
previous state θt−1,

2. UPDATE (it): part of the state updated by the
loss gradients on the previous batch, and

3. FLUSH (zt): part of the state reset from a
static long term memory θ0.

One difference with the work of (Chung et al.,
2016) is that the memory was confined to the hid-
den in the later while the memory of our hierar-
chical network is split between the weights of the
lower-level network and its hidden-state.

The meta-learner can be a feed-forward or a
RNN network. In our experiments, simple lin-
ear feed-forward networks lead to the lower per-
plexities, probably because it was easier to regu-
larize and optimize. The meta-learner implements
coordinate-sharing as described in (Andrychow-
icz et al., 2016; Ravi and Larochelle, 2016) and
takes as input the loss LLMt and loss-gradients
∇θt−1LLMt over a previous batch Bi (a sequence
of M tokens w0, . . . , wM as illustrated on fig-
ure 1). The size M of the batch adjusts the
trade-off between the noise of the loss/gradients
and updating frequency of the medium-term mem-
ory, smaller batches leading to faster updates with
higher noise.

2.2 Continual learning

The interaction between the meta-learner and the
language model implements a form of continual-
learning and the language model thus faces a
phenomenon known as catastrophic forgetting
(French, 1999). In our case, this correspond to the
lower-level network over-specializing to the lexi-
cal field of a particular topic after several updates
of the meta-learner (e.g. while processing a long
article on a specific topic).

To mitigate this effect we use a higher-level
static memory initialized using “elastic weight
consolidation” (EWC) introduced by Kirkpatrick
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Figure 2: Medium and long-term memory effects on a sample of Wikitext-2 test set with a sequence of
Wikipedia articles (letters A −H). (Left) Instantaneous perplexity gain: difference in batch perplexity
between models. Higher values means the first model has locally a lower perplexity than the second
model. (Top curve) Comparing a two-levels model (LM + meta-learner) with a one-level model (LM).
(Bottom curve) Comparing a three-levels model (LM + meta-learner + long-term memory) with a two-
levels model. (Right) Token loss difference on three batch samples indicated on the left curves. A
squared (resp. underlined) word means the first model has a lower (resp. higher) loss on that word than
the second model. We emphasize only words associated with a significant difference in loss by setting a
threshold at 10 percent of the maximum absolute loss of each sample.

et al. (2017) to reduce forgetting in multi-task re-
inforcement learning.

Casting our task in the EWC framework, we
define a task A which is the language modeling
task (prediction of next token) when no context is
stored in the weights of the lower-level network.
The solution of task A is a set of weights toward
which the model could advantageously come back
when the context stored in the weights become
irrelevant (for example when switching between
paragraphs on different topics). To obtain a set of
weights for task A, we train the lower-level net-
work (RNN) alone on the training dataset and ob-
tain a set of weights that would perform well on
average, i.e. when no specific context has been
provided by a context-dependent weight update
performed by the meta-learner.

We then define a task B which is a language
modeling task when a context has been stored in
the weights of the lower-level network by an up-
date of the meta-learner. The aim of EWC is to
learn task B while retaining some performance on
task A.

Empirical results suggest that many weights
configurations result in similar performances
(Sussmann, 1992) and there is thus likely a solu-

tion for task B close to a solution for task A. The
idea behind EWC is to learn task B while protect-
ing the performance in task A by constraining the
parameters to stay around the solution found for
task A.

This constraint is implemented as a quadratic
penalty, similarly to spring anchoring the param-
eters, hence the name elastic. The stiffness of
the springs should be greater for parameters that
most affect performance in task A. We can for-
mally write this constrain by using Bayes rule to
express the conditional log probability of the pa-
rameters when the training dataset D is split be-
tween the training dataset for task A (DA) and the
training dataset for task B (DB):

log p(θ | D) = log p(DB | θ)+log p(θ | DA)−log p(DB)
(7)

The true posterior probability on task A p(θ | DA)
is intractable, so we approximate the posterior as a
Gaussian distribution with mean given by the pa-
rameters and a diagonal precision given by the di-
agonal of the Fisher information matrix F which is
equivalent to the second derivative of the loss near
a minimum and can be computed from first-order
derivatives alone.
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3 Related work

Several works have been devoted to dynamically
updating the weights of neural networks during in-
ference. A few recent architectures are the Fast-
Weights of Ba et al. (2016), the Hypernetworks of
Ha et al. (2016) and the Nested LSTM of Moniz
and Krueger (2018). The weights update rules of
theses models use as inputs one or several of (i) a
previous hidden state of a RNN network or higher
level network and/or (ii) the current or previous
inputs to the network. However, these models do
not use the predictions of the network on the pre-
vious tokens (i.e. the loss and gradient of the loss
of the model) as in the present work. The archi-
tecture that is most related to the present work is
the study on dynamical evaluation of Krause et al.
(2017) in which a loss function similar to the loss
function of the present work is obtained empiri-
cally and optimized using a large hyper-parameter
search on the parameters of the SGD-like rule.

4 Experiments

4.1 Architecture and hyper-parameters

As mentioned in 2.2, a set of pre-trained weights
of the RNN language model is first obtained by
training the lower-level network f and computing
the diagonal of the Fisher matrix around the final
weights.

Then, the meta-learner g is trained in an online
meta-learning fashion on the validation dataset (al-
ternatively, a sub-set of the training dataset could
be used). A training sequence S is split in a se-
quence of mini-batchesBi, each batchBi contain-
ing M inputs tokens (wi×M , . . . , wi×M+M ) and
M associated targets (wi×M+1, . . . , wi×M+M+1).
In our experiments we varied M between 5 and
20.

The meta-learner is trained as described in
(Andrychowicz et al., 2016; Li and Malik, 2016)
by minimizing the sum over the sequence of LM
losses: Lmeta =

∑
i>0 LLMi . The meta-learner

is trained by truncated back-propagation through
time and is unrolled over at least 40 steps as the re-
ward from the medium-term memory is relatively
sparse (Li and Malik, 2016).

To be able to unroll the model over a suffi-
cient number of steps while using a state-of-the-
art language model with over than 30 millions pa-
rameters, we use a memory-efficient version of
back propagation through time based on gradi-

ent checkpointing as described by Grusly et al.
(2016).

4.2 Experiments

We performed a series of experiments on the
Wikitext-2 dataset (Merity et al., 2016) using an
AWD-LSTM language model (Merity et al., 2017)
and a feed-forward and RNN meta-learner.

The test perplexity are similar to perplexi-
ties obtained using dynamical evaluation (Krause
et al., 2017), reaching 46.9 with a linear feed-
forward meta-learner when starting from a one-
level language model with test perplexity of 64.8.

In our experiments, the perplexity could not
be improved by using a RNN meta-learner or a
deeper meta-learner. We hypothesis that this may
be caused by several reasons. First, storing a hid-
den state in the meta-learner might be less im-
portant in an online meta-learning setup than it
is in a standard meta-learning setup (Andrychow-
icz et al., 2016) as the target distribution of the
weights is non-stationary. Second, the size of
the hidden state cannot be increased significantly
without reducing the number of steps along which
the meta-learner is unrolled during meta-training
which may be detrimental.

Some quantitative experiments are shown on
Figure 2 using a linear feed-forward network to
illustrate the effect of the various layers in the hi-
erarchical model. The curves shows differences in
batch perplexity between model variants.

The top curve compares a one-level model (lan-
guage model) with a two-levels model (language
model + meta-learner). The meta-learner is able
to learn medium-term representations to progres-
sively reduce perplexity along articles (see e.g. ar-
ticles C and E). Right sample 1 (resp. 2) details
sentences at the begging (resp. middle) of arti-
cle E related to a warship called “Ironclad”. The
addition of the meta-learner reduces the loss on a
number of expression related to the warship like
“ironclad” or “steel armor”.

Bottom curve compares a three-levels model
(language model + meta-learner + long-term
memory) with the two-levels model. The local
loss is reduced at topics changes and beginning
of new topics (see e.g. articles B, D and F). The
right sample 3 can be contrasted with sample 1
to illustrate how the hierarchical model is able to
better recover a good parameter space following a
change in topic.
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Abstract

Increasing the capacity of recurrent neu-
ral networks (RNN) usually involves aug-
menting the size of the hidden layer, with
significant increase of computational cost.
Recurrent neural tensor networks (RNTN)
increase capacity using distinct hidden
layer weights for each word, but with
greater costs in memory usage. In this pa-
per, we introduce restricted recurrent neu-
ral tensor networks (r-RNTN) which re-
serve distinct hidden layer weights for fre-
quent vocabulary words while sharing a
single set of weights for infrequent words.
Perplexity evaluations show that for fixed
hidden layer sizes, r-RNTNs improve lan-
guage model performance over RNNs us-
ing only a small fraction of the parameters
of unrestricted RNTNs. These results hold
for r-RNTNs using Gated Recurrent Units
and Long Short-Term Memory.

1 Introduction

Recurrent neural networks (RNN), which com-
pute their next output conditioned on a previously
stored hidden state, are a natural solution to se-
quence modeling. Mikolov et al. (2010) applied
RNNs to word-level language modeling (we refer
to this model as s-RNN), outperforming traditional
n-gram methods. However, increasing capacity
(number of tunable parameters) by augmenting the
size H of the hidden (or recurrent) layer — to
model more complex distributions — results in a
significant increase in computational cost, which
is O(H2).

Sutskever et al. (2011) increased the perfor-
mance of a character-level language model with
a multiplicative RNN (m-RNN), the factored ap-
proximation of a recurrent neural tensor network

(RNTN), which maps each symbol to separate hid-
den layer weights (referred to as recurrence matri-
ces from hereon). Besides increasing model ca-
pacity while keeping computation constant, this
approach has another motivation: viewing the
RNN’s hidden state as being transformed by each
new symbol in the sequence, it is intuitive that dif-
ferent symbols will transform the network’s hid-
den state in different ways (Sutskever et al., 2011).
Various studies on compositionality similarly ar-
gue that some words are better modeled by matri-
ces than by vectors (Baroni and Zamparelli, 2010;
Socher et al., 2012). Unfortunately, having sepa-
rate recurrence matrices for each symbol requires
memory that is linear in the symbol vocabulary
size (|V |). This is not an issue for character-level
models, which have small vocabularies, but is pro-
hibitive for word-level models which can have vo-
cabulary size in the millions if we consider surface
forms.

In this paper, we propose the Restricted RNTN
(r-RNTN) which uses only K < |V | recurrence
matrices. Given that |V | words must be assigned
K matrices, we map the most frequent K − 1
words to the first K − 1 matrices, and share the
K-th matrix among the remaining words. This
mapping is driven by the statistical intuition that
frequent words are more likely to appear in di-
verse contexts and so require richer modeling, and
by the greater presence of predicates and function
words among the most frequent words in standard
corpora like COCA (Davies, 2009). As a result,
adding K matrices to the s-RNN both increases
model capacity and satisfies the idea that some
words are better represented by matrices. Re-
sults show that r-RNTNs improve language model
performance over s-RNNs even for small K with
no computational overhead, and even for small
K approximate the performance of RNTNs us-
ing a fraction of the parameters. We also exper-
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iment with r-RNTNs using Gated Recurrent Units
(GRU) (Cho et al., 2014) and Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997), obtaining lower perplexity for fixed hidden
layer sizes. This paper discusses related work (§2),
and presents r-RNTNs (§3) along with the evalua-
tion method (§4). We conclude with results (§5),
and suggestions for future work.

2 Related Work

We focus on related work that addresses lan-
guage modeling via RNNs, word representation,
and conditional computation.

Given a sequence of words (x1, ..., xT ), a lan-
guage model gives the probability P (xt|x1...t−1)
for t ∈ [1, T ]. Using a RNN, Mikolov et al. (2010)
created the s-RNN language model given by:

ht = σ(Whxt + Uhht−1 + bh) (1)

P (xt|x1...t−1) = xTt Softmax(Woht + bo) (2)

where ht is the hidden state represented by a vec-
tor of dimension H , σ(z) is the pointwise logistic
function, Wh is the H × V embedding matrix, Uh
is the H×H recurrence matrix, Wo is the V ×H
output matrix, and bh and bo are bias terms. Com-
putation is O(H2), so increasing model capacity
by increasing H quickly becomes intractable.

The RNTN proposed by Sutskever et al. (2011)
is nearly identical to the s-RNN, but the recurrence
matrix in eq. (1) is replaced by a tensor as follows:

ht = σ(Whxt + U
i(xt)
h ht−1 + bh) (3)

where i(z) maps a hot-one encoded vector to
its integer representation. Thus the Uh tensor
is composed of |V | recurrence matrices, and at
each step of sequence processing the matrix cor-
responding to the current input is used to trans-
form the hidden state. The authors also proposed
m-RNN, a factorization of the U i(xt)h matrix into
Ulhdiag(vxt)Urh to reduce the number of param-
eters, where vxt is a factor vector of the current
input xt, but like the RNTN, memory still grows
linearly with |V |. The RNTN has the property that
input symbols have both a vector representation
given by the embedding and a matrix representa-
tion given by the recurrence matrix, unlike the s-
RNN where symbols are limited to vector repre-
sentations.

The integration of both vector and matrix rep-
resentations has been discussed but with a focus

on representation learning and not sequence mod-
eling (Baroni and Zamparelli, 2010; Socher et al.,
2012). For instance, Baroni and Zamparelli (2010)
argue for nouns to be represented as vectors and
adjectives as matrices.

Irsoy and Cardie (2014) used m-RNNs for the
task of sentiment classification and obtained equal
or better performance than s-RNNs. Methods that
use conditional computation (Cho and Bengio,
2014; Bengio et al., 2015; Shazeer et al., 2017) are
similar to RNTNs and r-RNTNs, but rather than
use a static mapping, these methods train gating
functions which do the mapping. Although these
methods can potentially learn better policies than
our method, they are significantly more complex,
requiring the use of reinforcement learning (Cho
and Bengio, 2014; Bengio et al., 2015) or addi-
tional loss functions (Shazeer et al., 2017), and
more linguistically opaque (one must learn to in-
terpret the mapping performed by the gating func-
tions).

Whereas our work is concerned with updating
the network’s hidden state, Chen et al. (2015)
introduce a technique that better approximates
the output layer’s Softmax function by allocating
more parameters to frequent words.

3 Restricted Recurrent Neural Tensor
Networks

To balance expressiveness and computational cost,
we propose restricting the size of the recurrence
tensor in the RNTN such that memory does not
grow linearly with vocabulary size, while still
keeping dedicated matrix representations for a
subset of words in the vocabulary. We call these
Restricted Recurrent Neural Tensor Networks (r-
RNTN), which modify eq. (3) as follows:

ht = σ(Whxt + U
f(i(xt))
h ht−1 + b

f(i(xt))
h ) (4)

where Uh is a tensor of K < |V | matrices of size
H ×H , bh is a H ×K bias matrix with columns
indexed by f . The function f(w) maps each vo-
cabulary word to an integer between 1 and K.

We use the following definition for f :

f(w) = min(rank(w),K) (5)

where rank(w) is the rank of word w when the
vocabulary is sorted by decreasing order of uni-
gram frequency.

This is an intuitive choice because words which
appear more often in the corpus tend to have more
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Figure 1: PTB test PPL as K varies from 1 to
10000 (100 for gated networks). At K = 100, the
r-RNTN with f mapping already closely approxi-
mates the much bigger RNTN, with little gain for
bigger K, showing that dedicated matrices should
be reserved for frequent words as hypothesized.

variable contexts, so it makes sense to dedicate a
large part of model capacity to them. A second ar-
gument is that frequent words tend to be predicates
and function words. We can imagine that predi-
cates and function words transform the meaning
of the current hidden state of the RNN through
matrix multiplication, whereas nouns, for exam-
ple, add meaning through vector addition, follow-
ing Baroni and Zamparelli (2010).

We also perform initial experiments with r-
RNTNs using LSTM and GRUs. A GRU is de-
scribed by

rt = σ(W r
hxt + U rhht−1 + brh) (6)

zt = σ(W z
hxt + U zhht−1 + bzh) (7)

h̃t = tanh(W h
h xt + Uhh (rt � ht−1) + bhh) (8)

ht = zt � ht−1 + (1− zt)� h̃t (9)

and an LSTM by

ft = σ(W f
h xt + Ufhht−1 + bfh) (10)

it = σ(W i
hxt + U ihht−1 + bih) (11)

ot = σ(W o
hxt + Uohht−1 + boh) (12)

c̃t = tanh(W c
hxt + U chht−1 + bch) (13)

ct = it � c̃t + ft � ct−1 (14)

ht = ot � tanh(ct) (15)

We create r-RNTN GRUs (r-GRU) by making Uhh
and bhh input-specific (as done in eq. (4)). For r-
RNTN LSTMs (r-LSTM), we do the same for U ch
and bch.

4 Materials

We evaluate s-RNNs, RNTNs, and r-RNTNs by
training and measuring model perplexity (PPL) on
the Penn Treebank (PTB) corpus (Marcus et al.,
1994) using the same preprocessing as Mikolov
et al. (2011). Vocabulary size is 10000.

For an r-RNTN with H = 100, we vary the ten-
sor size K from 1, which corresponds to the s-
RNN, all the way up to 10000, which corresponds
to the unrestricted RNTN. As a simple way to eval-
uate our choice of rank-based mapping function f ,
we compare it to a pseudo-random variant:

fmod(w) = rank(w) mod K (16)

We also compare results to 1) an s-RNN with
H = 150, which has the same number of parame-
ters as an r-RNTN with H = 100 and K = 100.
2) An m-RNN with H = 100 with the size of
factor vectors set to 100 to match this same num-
ber of parameters. 3) An additional r-RNTN with
H = 150 is trained to show that performance
scales with H as well.

We split each sentence into 20 word sub-
sequences and run stochastic gradient descent via
backpropagation through time for 20 steps with-
out mini-batching, only reseting the RNN’s hid-
den state between sentences. Initial learning rate
(LR) is 0.1 and halved when the ratio of the valida-
tion perplexity between successive epochs is less
than 1.003, stopping training when validation im-
provement drops below this ratio for 5 consecu-
tive epochs. We use Dropout (Srivastava et al.,
2014) with p = .5 on the softmax input to reduce
overfitting. Weights are drawn from N (0, .001);
gradients are not clipped. To validate our pro-
posed method, we also evaluate r-RNTNs using
the much larger text81 corpus with a 90MB-5MB-
5MB train-validation-test split, mapping words
which appear less than 10 times to 〈unk〉 for a to-
tal vocabulary size of 37751.

Finally, we train GRUs, LSTMs, and their r-
RNTN variants using the PTB corpus and parame-
ters similar to those used by Zaremba et al. (2014).
All networks use embeddings of size 650 and a
single hidden layer. Targeting K = 100, we set
H = 244 for the r-GRU and compare with a
GRU with H = 650 which has the same num-
ber of parameters. The r-LSTM has H = 254
to match the number of parameters of an LSTM

1http://mattmahoney.net/dc/textdata.html
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PTB text8 PTB
Method H # Params Test PPL # Params Test PPL Method H # Params Test PPL
s-RNN 100 2M 146.7 7.6M 236.4 GRU 244 9.6M 92.2

r-RNTN f 100 3M 131.2 11.4M 190.1 GRU 650 15.5M 90.3
RNTN 100 103M 128.8 388M - r-GRU f 244 15.5M 87.5
m-RNN 100 3M 164.2 11.4M 895.0 LSTM 254 10M 88.8
s-RNN 150 3M 133.7 11.4M 207.9 LSTM 650 16.4M 84.6

r-RNTN f 150 5.3M 126.4 19.8M 171.7 r-LSTM f 254 16.4M 87.1

Table 1: Comparison of validation and test set perplexity for r-RNTNs with f mapping (K = 100 for
PTB, K = 376 for text8) versus s-RNNs and m-RNN. r-RNTNs with the same H as corresponding
s-RNNs significantly increase model capacity and performance with no computational cost. The RNTN
was not run on text8 due to the number of parameters required.

with H = 650. The training procedure is the
same as above but with mini-batches of size 20,
35 timestep sequences without state resets, initial
LR of 1, Dropout on all non-recurrent connections,
weights drawn from U(−.05, .05), and gradients
norm-clipped to 5.

5 Results

Results are shown in fig. 1 and table 1.
Comparing the r-RNTN to the baseline s-RNN

with H = 100 (fig. 1), as model capacity grows
with K, test set perplexity drops, showing that r-
RNTN is an effective way to increase model ca-
pacity with no additional computational cost. As
expected, the f mapping outperforms the baseline
fmod mapping at smaller K. As K increases, we
see a convergence of both mappings. This may be
due to matrix sharing at large K between frequent
and infrequent words because of the modulus op-
eration in eq. (16). As infrequent words are rarely
observed, frequent words dominate the matrix up-
dates and approximate having distinct matrices, as
they would have with the f mapping.

It is remarkable that even with K as small as
100, the r-RNTN approaches the performance of
the RNTN with a small fraction of the parameters.
This reinforces our hypothesis that complex trans-
formation modeling afforded by distinct matrices
is needed for frequent words, but not so much for
infrequent words which can be well represented
by a shared matrix and a distinct vector embed-
ding. As shown in table 1, with an equal number
of parameters, the r-RNTN with f mapping out-
performs the s-RNN with a bigger hidden layer.
It appears that heuristically allocating increased
model capacity as done by the f based r-RNTN
is a better way to increase performance than sim-

ply increasing hidden layer size, which also incurs
a computational penalty.

Although m-RNNs have been successfully em-
ployed in character-level language models with
small vocabularies, they are seldom used in word-
level models. The poor results shown in table 1
could explain why.2

For fixed hidden layer sizes, r-RNTNs yield
significant improvements to s-RNNs, GRUs, and
LSTMs, confirming the advantages of distinct rep-
resentations.

6 Conclusion and Future Work

In this paper, we proposed restricted recurrent
neural tensor networks, a model that restricts the
size of recurrent neural tensor networks by map-
ping frequent words to distinct matrices and infre-
quent words to shared matrices. r-RNTNs were
motivated by the need to increase RNN model
capacity without increasing computational costs,
while also satisfying the ideas that some words
are better modeled by matrices rather than vec-
tors (Baroni and Zamparelli, 2010; Socher et al.,
2012). We achieved both goals by pruning the size
of the recurrent neural tensor network described
by Sutskever et al. (2011) via sensible word-to-
matrix mapping. Results validated our hypothesis
that frequent words benefit from richer, dedicated
modeling as reflected in large perplexity improve-
ments for low values of K.

Interestingly, results for s-RNNs and r-GRUs
suggest that given the same number of parame-
ters, it is possible to obtain higher performance
by increasing K and reducing H . This is not the

2It should be noted that Sutskever et al. (2011) suggest
m-RNNs would be better optimized using second-order gra-
dient descent methods, whereas we employed only first-order
gradients in all models we trained to make a fair comparison.
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case with r-LSTMs, perhaps to due to our choice
of which of the recurrence matrices to make input-
specific. We will further investigate both of these
phenomena in future work, experimenting with
different combinations of word-specific matrices
for r-GRUs and r-LSTMs (rather than only Uhh and
U ch), and combining our method with recent im-
provements to gated networks in language model-
ing (Jozefowicz et al., 2016; Merity et al., 2018;
Melis et al., 2018) which we believe are orthogo-
nal and hopefully complementary to our own.

Finally, we plan to compare frequency-based
and additional, linguistically motivated f map-
pings (for example different inflections of a verb
sharing a single matrix) with mappings learned
via conditional computing to measure how exter-
nal linguistic knowledge contrasts with knowledge
automatically inferred from training data.
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Abstract

We present a set of experiments to demon-
strate that deep recurrent neural networks
(RNNs) learn internal representations that
capture soft hierarchical notions of syntax
from highly varied supervision. We con-
sider four syntax tasks at different depths
of the parse tree; for each word, we predict
its part of speech as well as the first (par-
ent), second (grandparent) and third level
(great-grandparent) constituent labels that
appear above it. These predictions are
made from representations produced at
different depths in networks that are pre-
trained with one of four objectives: de-
pendency parsing, semantic role labeling,
machine translation, or language model-
ing. In every case, we find a correspon-
dence between network depth and syntac-
tic depth, suggesting that a soft syntactic
hierarchy emerges. This effect is robust
across all conditions, indicating that the
models encode significant amounts of syn-
tax even in the absence of an explicit syn-
tactic training supervision.

1 Introduction

Deep recurrent neural networks (RNNs) have ef-
fectively replaced explicit syntactic features (e.g.
parts of speech, dependencies) in state-of-the-art
NLP models (He et al., 2017; Lee et al., 2017;
Klein et al., 2017). However, previous work has
shown that syntactic information (in the form of
either input features or supervision) is useful for
a wide variety of NLP tasks (Punyakanok et al.,
2005; Chiang et al., 2009), even in the neural set-
ting (Aharoni and Goldberg, 2017; Chen et al.,
2017). In this paper, we show that the internal rep-
resentations of RNNs trained on a variety of NLP
tasks encode these syntactic features without ex-
plicit supervision.

We consider a set of feature prediction tasks
drawn from different depths of syntactic parse
trees; given a word-level representation, we at-
tempt to predict the POS tag and the parent, grand-
parent, and great-grandparent constituent labels of
that word. We evaluate how well a simple feed-
forward classifier can detect these syntax features
from the word representations produced by the
RNN layers from deep NLP models trained on the
tasks of dependency parsing, semantic role label-
ing, machine translation, and language modeling.
We also evaluate whether a similar classifier can
predict if a dependency arc exists between two
words in a sentence, given their representations.

We find that, across all four types of supervi-
sion, the representations learned by these mod-
els encode syntax beyond the explicit information
they encounter during training; this is seen in both
the word-level tasks and the dependency arc pre-
diction task. Furthermore, we also observe that
features associated with different levels of syntax
tree correlate with word representations produced
by RNNs at different depths. Largely speaking,
we see that deeper layers in each model capture
notions of syntax that are higher-level and more
abstract, in the sense that higher-level constituents
cover a larger span of the underlying sentence.

These findings suggest that models trained on
NLP tasks are able to induce syntax even when di-
rect syntactic supervision is unavailable. Further-
more, the models are able to differentiate this in-
duced syntax into a soft hierarchy across different
layers of the model, perhaps shedding some light
on why deep RNNs are so useful for NLP.

2 Methodology

Given a model that uses multi-layered RNNs, we
collect the vector representation xli of each word i
at each hidden layer l. To determine what syntac-
tic information is stored in each word vector, we
try to predict a series of constituency-based prop-
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Training Signal Dataset RNN Layers Input Hidden
Dims Dims

Dependency Parsing English Universal 4 parallel bidirectional 200 400Dependencies LSTMs

Semantic Role Labeling CoNLL-2012 8 alternating-direction 100 300LSTMs with highways

Machine Translation WMT-2014 4 parallel bidirectional 500 500English-German LSTMs

Language Modeling CoNLL-2012 2 sets of 4 unidirectional 1000 1000LSTMs with highways

Table 1: The training data, recurrent architecture, and hyperparameters of each model.
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Figure 1: Constituency tree with labels for the
word “Monday” for the POS (green), parent con-
stituent (blue), grandparent constituent (orange),
and great-grandparent constituent (red) tasks.

erties from the vector alone. Specifically, we pre-
dict the word’s part of speech (POS), as well as
the first (parent), second (grand-parent), and third
level (great-grandparent) constituent labels of the
given word. Figure 1 shows how these labels cor-
respond to an example constituency tree.

Our methodology follows Shi et al. (2016), who
run syntactic feature prediction experiments over
a number of different shallow machine translation
models, and Belinkov et al. 2017a; 2017b, who
use a similar process to study the morphological,
part-of-speech, and semantic features learned by
deeper machine translation encoders. We extend
upon prior work by considering training signals
for models other than machine translation, and
by applying more stratified word-level syntactic
tasks.

2.1 Experiment Setup

We predict each syntactic property with a sim-
ple feed-forward network with a single 300-

dimensional hidden layer activated by a ReLU:

yli = SoftMax(W2ReLU(W1x
l
i)) (1)

where i is the word index and l is the layer index
within a model. To ensure that the classifiers are
not trained on the same data as the RNNs, we train
the classifier for each layer l separately using the
development set of CoNLL-2012 and evaluate on
the test set (Pradhan et al., 2013).

In addition, we compare performance with
word-level baselines. We report the per-word ma-
jority class baseline; at the POS level, for example,
“cat” will be classified as a noun and “walks” as
a verb. This baseline outperforms the pre-trained
GloVe (Pennington et al., 2014) embeddings on
every task. We also consider a contextual base-
line, in which we concatenate each word’s embed-
ding with the average of its context’s embeddings;
however, this baseline also performed worse that
the reported one.

2.2 Analyzed Models
We consider four different forms of supervision.
Table 1 summarizes the differences in data, archi-
tecture, and hyperparameters.1

Dependency Parsing We train a four-layer ver-
sion of the Stanford dependency parser (Dozat and
Manning, 2017) on the Universal Dependencies
English Web Treebank (Silveira et al., 2014). We
ran the parser with 4 bidirectional LSTM layers
(the default is 3), yielding a UAS of 91.5 and a
weighted LAS of 82.18, consistent with the state
of the art on CoNLL 2017. Since the parser re-
ceives syntactic features as input (POS) and is
trained on an explicit syntactic signal, we expect

1While we control for some variables, we mainly rely on
existing architectures and hyperparameters that were tuned
for the original tasks, limiting the cross-model comparability
of absolute performance levels on our syntactic evaluations.
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Figure 2: Results of syntax experiments. The best performing layer for each experiment is annotated
with a star, and the per-word majority baseline for each task is shown with a dashed line.

its intermediate representations to contain a high
amount of syntactic information.

Semantic Role Labeling We use the pre-trained
DeepSRL model from (He et al., 2017), which
was trained on the training data from the CoNLL-
2012 dataset. This model is an alternating bidirec-
tional LSTM, where the model consists of eight
total layers that alternate between a forward layer
and backward layer. We concatenate the represen-
tations from each pair of directional layers in the
model for consistency with other models.

Machine Translation We train a machine trans-
lation model using OpenNMT (Klein et al., 2017)
on the WMT-14 English-German dataset. The en-
coder (which we examine in our experiments) is a
4-layer bidirectional LSTM; we use the defaults
for every other setting. The model achieves a
BLEU score of 21.37, which is in the ballpark of
other vanilla encoder-decoder attention models on
this benchmark (Bahdanau et al., 2015).

Language Modeling We train two separate lan-
guage models on CoNLL-2012’s training set, one
going forward and another backward. Each model
is a 4-layer LSTM with highway connections,
variational dropout, and tied input-output embed-
dings. After training, we concatenate the forward
and backward representations for each layer.2

3 Constituency Label Prediction

Figure 2 shows our results (see supplementary ma-
terial for numerical results). We make several ob-
servations:

RNNs can induce syntax. Overall, each model
outperforms the baseline and its respective input
embeddings on every syntax task, indicating that
their internal representations encode some notions

2The model achieved perplexities of 50.56 (forward) and
51.24 (backward) on CoNLL-2012’s test set. Since we
are not familiar with other perplexity results on this data,
we note that retraining the architecture on Penn TreeBank
achieved 64.39 perplexity, which is comparable to other high-
performing language models.
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of syntax. The only exception to this observation
is POS prediction with dependency parsing rep-
resentations; in this case the parser is provided
gold POS tags as input, and cannot improve upon
them. This result confirms the findings of Shi
et al. (2016) and Belinkov et al. (2017b), who
demonstrate that neural machine translation en-
coders learn syntax, and shows that RNNs trained
on other NLP tasks also induce syntax.

Deeper layers reflect higher-level syntax. In
11 out of 16 cases, performance improves up to
a certain layer and then declines, suggesting that
the deeper layers encode less syntactic informa-
tion that earlier ones in these cases. Strikingly, the
higher-level a syntactic task is, the deeper in the
network the peak performance occurs; for exam-
ple, in SRL we see that the parent constituent task
peaks one layer after POS, and the grand-parent
and great-grandparent tasks peak on the layer af-
ter that. One possible explanation is that each
layer leverages the shallower syntactic informa-
tion learned in the previous layer in order to con-
struct a more abstract syntactic representation. In
SRL and language modeling, it seems as though
the syntactic information is then replaced by task-
specific information (semantic roles, word proba-
bilities), perhaps making it redundant.

This observation may also explain a modeling
decision in ELMo (Peters et al., 2018), where
injecting the contextualized word representations
from a pre-trained language model was shown to
boost performance on a wide variety of NLP tasks.
ELMo represents each word using a task-specific
weighted sum of the language model’s hidden lay-
ers, i.e. rather than use only the top layer, it selects
which of the language model’s internal layers con-
tain the most relevant information for the task at
hand. Our results confirm that, in general, differ-
ent types of information manifest at different lay-
ers, suggesting that post-hoc layer selection can be
beneficial.

Language models learn some syntax. We com-
pare the performance of language model represen-
tations to those learned with dependency parsing
supervision, in order to gauge the amount of syn-
tax induced. While this comparison is not ideal
(the models were trained with slightly different
architectures and hyperparameters), it does pro-
vide evidence that the language model’s repre-
sentations encode some amount of syntax implic-

Figure 3: Comparison between the LM and de-
pendency parser on the parent (blue), grandparent
(yellow), and great-grandparent (red) constituent
prediction tasks.

itly. Specifically, we observe in Figure 3 that the
language model and dependency parser perform
nearly identically on the three constituent predic-
tion tasks in the second layer of their respective
networks. In deeper layers the parser continues to
improve, while the language model peaks at layer
2 and drops off afterwards.

These results may be surprising given the find-
ings of Linzen et al. (2016), which found that
RNNs trained on language modeling perform be-
low baseline levels on the task of subject-verb
agreement. However, the more recent investiga-
tion by Gulordava et al. (2018) are in line with our
results. They find that language models trained
on a number of different languages assign higher
probabilities to valid long-distance dependencies
than to incorrect ones. Therefore, LMs seem able
to induce syntactic information despite being pro-
vided with no linguistic annotation.

4 Dependency Arc Prediction

We run an additional experiment that seeks to clar-
ify if the representations learned by deep NLP
models capture information about syntactic struc-
ture. Using the internal representations from a
deep RNN, we train a classifier to predict whether
two words share an dependency arc (have a parent-
child relationship) in the in the dependency parse
tree over a sentence. We find that, similarly to the
previous set of tasks, deep RNNs trained on var-
ious linguistic signals encode notions of the syn-
tactic relationships between words in a sentence.
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Source Model GloVe L0 L1 L2 L3 L4

DP 0.50 0.68 0.77 0.81 0.88 0.95
SRL 0.50 0.58 0.69 0.76 0.79 0.74
MT 0.50 0.61 0.73 0.63 0.63 0.63
LM 0.50 0.62 0.74 0.78 0.80 0.73

Table 2: Results of the dependency arc prediction task. L0–L4 denote the different layers of the model.
DP refers to the RNN trained with dependency parsing supervision.

Setup We use the same pretrained deep RNNs
and feed-forward prediction network paradigm.
However, we change the input from the previous
experiments, as this task is not at the word-level,
but rather concerns the relationship between two
words; therefore, given a word pair wc, wp for
which we have a dependency arc label, we input
[wc;wp;wc ◦ wp] into the classifier.

We use the Universal Dependencies dataset for
this task, such that we train each classifier on the
development set of this dataset and evaluate on the
test set. We set up the task by generating two pairs
of examples for each word in the UD dataset: a
positive pair that consists of the word and its par-
ent in the dependency tree, and a negative pair that
matches the word with another randomly chosen
word from the sentence.

Results The results for this prediction task are
given in Table 2. We see the best performance
from the dependency parser, finding that the per-
formance for the dependency parser’s representa-
tions continue to improve in the deepest layers,
with a maximum performance of approximately
95% on the last layer. This result is unsurpris-
ing, as this closely related to the task on which
the model was explicitly trained. In the three other
models, we find peaks that occur 12 to 20 accuracy
points above the input layer’s performance. These
results support the findings from the constituency
label prediction task and show that these findings
hold up across syntactic formalisms.

Similarly to the word-level tasks, we see the
best performance from deeper layers in the mod-
els, with both SRL and LM performance peaking
on the third layer. For the LM, we find that the best
performing layer outperforms the initial layer by
18%. This is consistent with our finding in the pre-
vious set of experiments, that RNNs encode sig-
nificant amounts of syntax information even when
trained on linguistic tasks without any explicit an-
notations.

5 Conclusions

In this paper, we run a series of prediction tasks
on the internal representations of deep NLP mod-
els, and find these RNNs are able to induce syn-
tax without explicit linguistic supervision. We also
observe that the representations taken from deeper
layers of the RNNs perform better on higher-level
syntax tasks than those from shallower layers, sug-
gesting that these recurrent models induce a soft
hierarchy over the encoded syntax. These results
provide some insight as to why deep RNNs are
able to model NLP tasks without annotated lin-
guistic features. Further characterizing the exact
aspects of syntax which these models can capture
(and perhaps more importantly, those they cannot)
is an interesting area for future work.
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Abstract

Measuring the performance of automatic
speech recognition (ASR) systems re-
quires manually transcribed data in order
to compute the word error rate (WER),
which is often time-consuming and expen-
sive. In this paper, we propose a novel
approach to estimate WER, or e-WER,
which does not require a gold-standard
transcription of the test set. Our e-WER
framework uses a comprehensive set of
features: ASR recognised text, character
recognition results to complement recog-
nition output, and internal decoder fea-
tures. We report results for the two fea-
tures; black-box and glass-box using un-
seen 24 Arabic broadcast programs. Our
system achieves 16.9% WER root mean
squared error (RMSE) across 1,400 sen-
tences. The estimated overall WER e-
WER was 25.3% for the three hours test
set, while the actual WER was 28.5%.

1 Introduction

Automatic Speech Recognition (ASR) has made
rapid progress in recent years, primarily due to
advances in deep learning and powerful comput-
ing platforms. As a result, the quality of ASR has
improved dramatically, leading to various appli-
cations, such as speech-to-speech translation, per-
sonal assistants, and broadcast media monitoring.
Despite this progress, ASR performance is still
closely tied to how well the acoustic model (AM)
and language model (LM) training data matches
the test conditions. Thus, it is important to be able
to estimate the accuracy of an ASR system in a
particular target environment.

Word Error Rate (WER) is the standard ap-
proach to evaluate the performance of a large vo-

cabulary continuous speech recognition (LVCSR)
system. The word sequence hypothesised by the
ASR system is aligned with a reference transcrip-
tion, and the number of errors is computed as the
sum of substitutions (S), insertions (I), and dele-
tions (D). If there are N total words in the refer-
ence transcription, then the word error rate WER
is computed as follows:

WER =
I +D + S

N
× 100. (1)

To obtain a reliable estimate of the WER, at
least two hours of test data are required for a
typical LVCSR system. In order to perform the
alignment, the test data needs to be manually tran-
scribed at the word level – a time-consuming and
expensive process. It is, thus, of interest to de-
velop techniques which can estimate the quality
of an automatically generated transcription with-
out requiring a gold-standard reference.

Such quality estimation techniques have been
extensively investigated for machine translation
(Specia et al., 2013), with extensions to spoken
language translation (Ng et al., 2015, 2016). Al-
though there is a long history of exploring word-
level confidence measures for speech recognition
(Evermann and Woodland, 2000; Cox and Das-
mahapatra, 2002; Jiang, 2005; Seigel et al., 2011;
Huang et al., 2013), there has been less work on
the direct estimation of speech recognition errors.

Seigel and Woodland (2014) studied the detec-
tion of deletions in ASR output using a condi-
tional random field (CRF) sequence model to de-
tect one or more deleted word regions in ASR
output. Ghannay et al. (2015) used word embed-
dings to build a confidence classifier which labeled
each word in the recognised word sequence with
an error or a correct label. Tam et al. (2014) in-
vestigated the use of a recurrent neural network
(RNN) language model (LM) with complementary
deep neural network (DNN) and Gaussian Mix-
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ture Model (GMM) acoustic models in order to
identify ASR errors, based on the assumption that
when two ASR systems disagree on an utterance
region, then it is most likely an error.

Ogawa and Hori (2015) investigated using
deep bidirectional recurrent neural networks
(DBRNNs) to detect errors in ASR results. They
explored four tasks for ASR error detection and
recognition rate estimation: confidence estima-
tion, out-of-vocabulary (OOV) word detection, er-
ror type classification, and recognition rate esti-
mation. In an extension to this work, Ogawa et al.
(2016); Ogawa and Hori (2017) investigated the
estimation of speech recognition accuracy based
on the classification of error types, in which se-
quence classification was performed by a CRF.
Each word in a hypothesised word sequence was
classified into one of three categories: correct,
substitution error, or insertion error. Their study
did not estimate the presence of deletions, and
consequently cannot estimate the WER.

Jalalvand et al. (2016) developed a tool for ASR
quality estimation, TranscRater, which is capable
of predicting WER per utterance. This approach
is based on a large set of extracted features (which
do not require internal access to the ASR sys-
tem) used to train a regression model (e.g., ex-
tremely randomised trees), and can also rank dif-
ferent transcriptions from multiple sources (Negri
et al., 2014; de Souza et al., 2015; Jalalvand and
Falavigna, 2015; Jalalvand et al., 2015a,b). Tran-
scRater provides a WER per utterance, reporting
the results as the MAE with respect to a refer-
ence transcription. This work did not report WER
estimates for complete recordings or test sets, al-
though it is possible that this could be done using
utterance length estimates.

In this paper, we build on these contributions to
develop a system to directly estimate the WER of
an ASR output hypothesis. Our contributions are:
(i) a novel approach to estimate WER per sentence
and to aggregate them to provide WER estimation
per recording or for a whole test set; (ii) an eval-
uation of our approach which compares the use of
“black-box” features (without ASR decoder infor-
mation) and “glass-box” features which use inter-
nal information from the decoder; and (iii) a re-
lease of the code and the data used for this paper
for further research1.

1https://github.com/qcri/e-wer

2 e-WER Framework

Estimating the probability of error of each word
in a recognised word sequence has been success-
fully used to detect insertions, substitutions, and
interword deletions (Ogawa et al., 2016; Ogawa
and Hori, 2015; Ghannay et al., 2015; Jalalvand
and Falavigna, 2015; Seigel and Woodland, 2014).
However, these local estimates do not provide an
estimate of the overall pattern of error, such as the
total number of deletions in an utterance.

In our framework, we use two speech recogni-
tion systems; a word-based LVCSR system and
a grapheme-sequence based system. Following
Tam et al. (2014), we assume that when two cor-
responding ASR systems disagree on a sentence
or part of a sentence, there is a pattern of error
to be learned. Our architecture also benefits from
utterance-based LVCSR decoder features includ-
ing the total number of frames, the average log
likelihood and the duration. Intuitively, we corre-
late short sentences with less context and assume
that LM scoring will not be able to capture long
context. Therefore, e-WER is defined as follows:

e-WER =
ERR

N̂
× 100% (2)

Our model is required to predict two values for
each utterance: ERR and N̂ . Given that each is
integer-valued, we decided to frame their estima-
tion as a classification task rather than a regression
problem as shown in equations 3 and 4. Each class
represents a specific word count. We limit the to-
tal number of classes to a maximum of C in ERR,
with range from 0 to C. However, the total num-
ber of classes for N̂ is C −K to avoid estimating
an utterance length of zero, with a range from K
to C. If an utterance has more than C words or
less than K words, it will thus be penalised by the
loss function,

ERR = argmax
cj∈C

P (cj |x1, x2, ..., xn) (3)

N̂ = argmax
kj∈C−K

P (kj |x1, x2, ..., xn) (4)

Table 1 shows that fewer than 5% of the sentences
have more than 20 words, and it is very unlikely
to have an utterance with fewer than 2 words. We
trained our system withC = 20 andK = 2. Since
our approach predicts ERR and N̂ for each sen-
tence, it is possible to aggregate each of the two
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values across the entire test set in order to estimate
the overall WER, as shown in section 3.

2.1 e-WER features

To estimate e-WER, we combine features from the
word-based LVCSR system with features from the
grapheme-based system. By running both word-
based and character-based ASR systems, we are
able to align their outputs against each other.
We split the studied features into four groups
• L: lexical features – the word sequence ex-

tracted from the LVCSR.
• G: grapheme features – character sequence

extracted from the grapheme recognition.
• N: numerical features – basic features about

the speech signal, as well as grapheme align-
ment error details.
• D: decoder features – total frame count, aver-

age log-likelihood, total acoustic model like-
lihood and total language model likelihood.

Similar to previous research in ASR quality esti-
mation, we refer to {L,G,N} as the black-box fea-
tures, and {L,G,N,D} as the glass-box features,
which are used to estimate the total number of
words N̂ , and the total number of errors ERR in
a given sentence.

2.2 Classification Back-end

We deployed a feed-forward neural network as a
backend classifier for e-WER. The deployed net-
work in this work has two fully-connected hidden
layers (ReLU activation function), with 128 neu-
rons in the first layer and 64 neurons in the second
layer followed by a softmax layer. A minibatch
size of 32 was used, and the number of epochs was
up to 50 with an early stopping criterion.

2.3 Data

The e-WER training and development data sets are
the same as the Arabic MGB-2 development and
evaluation sets (Ali et al., 2016; Khurana and Ali,
2016), which is comprised of audio extracted from
Al-Jazeera Arabic TV programs recorded in the
last months of 2015. To test whether our approach
generalises to test sets from a different source, and
not tuned to the MGB-2 data set, we validated our
results on three hours test set collected by BBC
Monitoring during November 2016, as part of the
SUMMA project2.

2http://summa-project.eu

Train Dev Test
Number of programs in corpus 17 17 24
Utterances 58K 56K 1.4K
Duration (in hours) 9.9 10.2 3.2
2-20 words sentences 96% 95% 96%
Word count (N ) 75K 69K 20K
ASR word count (hyp) 58K 60K 18K
WER 42.6% 33.1% 28.5%
Total INS 1.9K 1.8K 130
Total DEL 19.1K 10.2K 2.6K
Total SUB 11.1K 10.8K 2.9K
ERR count (ERR) 32.1K 22.8K 5.7K

Table 1: Analysis of the train, dev and test data.

MAE/Dev MAE/Test
ERR N̂ e-WER ERR N̂ e-WER

glass-box 1.6 1.8 13.8 1.7 1.7 12.3
black-box 1.8 2.2 28.4 1.9 2.3 24.7

Table 2: MAE per sentence reported for the glass-
box and black-box features.

3 Experiments and discussions

We trained two DNN systems to estimate N̂ and
ERR separately. We explored training both a
black-box based DNN system (without the de-
coder features) and a glass-box system using the
decoder features. Overall, four systems were
trained: two glass-box systems and two black-
box systems. We used the same hyper-parameters
across the four systems. Tables 2 and 3 present the
e-WER performance in terms of the mean absolute
error (MAE) and root mean squared error (RMSE)
per sentence for ERR, N̂ and the estimated WER
for the dev and test sets with reference to the errors
computed using a gold-standard reference. As ex-
pected, the glass-box features help to reduce MAE
and RMSE for both ERR and N̂ . Although the dif-
ference between the black-box estimation and the
glass-box results is not big for ERR andN , we can
see that the impact becomes substantial on the esti-
mated WER per sentence, which is almost double
the error in both MAE and RMSE per sentence.

Table 4 reports the overall performance on the
dev and on the test set. Across the 17 programs in
the MGB-2 dev data, the actual WER is 33.1%,
and the glass-box e-WER is 29.3%, while the
black-box e-WER is 30.9%. Evaluating the same
models on the 24 programs in the test data set re-
sults in an actual WER of 28.5%, while the glass-
box e-WER is 25.3%, and the black-box e-WER
is 30.3%.

Tables 2 and 3 show the glass-box features
outperformed the black-box features in predicting
both ERR and N̂ . Furthermore, the performance
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RMSE/Dev RMSE/Test
ERR N̂ e-WER ERR N̂ e-WER

glass-box 2.2 2.1 18.3 2.3 2.2 16.9
black-box 2.4 2.7 36.1 2.6 2.9 35.0

Table 3: RMSE per sentence reported for the
glass-box and the black-box features.

Actual/estimated WER
Data Reference glass-box black-box
Dev 33.1% 29.3% 30.9%
Test 28.5% 25.3% 30.3%

Table 4: Overall WER across the dev and the test
data set.

of the estimated WER per sentence in the glass-
box is substantially better than the black-box for
both development and test sets. Table 4 indicates
that the glass-box estimate is systematically lower
than the black-box estimate. To further visualise
these results, figure 1 plots the cumulative WER
and e-WER across the three hours test set. This
plot indicates that the glass-box estimate is con-
tinually lower than the black-box estimate. The
large difference during the first 30 minutes arises
owing the glass-box system is capable of better es-
timation with less data compared to the black-box
system.

We estimate N̂ and ERR separately. There-
fore, our system is capable of estimating the WER
at different levels of granularity. We visualise
the prediction per program. In scenarios such as
media-monitoring, where the main objective is to
have a robust monitoring system for specific pro-
grams, we plot the WER across the 24 programs
in the test set, and we can see in figure 2 that
both the glass-box and black-box estimation are
following the gold-standard WER per program.
However, unlike predicting word count N̂ or error
count ERR, we can see that the black-box, in gen-
eral, over-estimates the WER, while the glass-box
system under-estimates WER similar to figure 1.
One can argue from figure 2 that the decoder fea-
tures are not helping in programs with high WER.
We found both systems to be useful for reporting
WER per program.

4 Conclusions

This paper presents our efforts in predicting
speech recognition word error rate without requir-
ing a gold-standard reference transcription. We
presented a DNN based classifier to predict the
total number of errors per utterance and the to-
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Figure 1: Test set cumulative WER over all sen-
tences (X-axis is duration in hours and Y-axis is
WER in %).
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Figure 2: WER estimated over 24 programs on the
test data.

tal word count separately. Our approach benefits
from combining word-based and grapheme-based
ASR results for the same sentence, along with ex-
tracted decoder features. We evaluated our ap-
proach per sentences and per program. Our ex-
periments have shown that this approach is highly
promising to estimate WER per sentence and we
have aggregated the estimated results to predict
WER for complete recordings, programs or test
sets without the need for a reference transcription.
For our future work, we shall continue our investi-
gation into approaches that can estimate the word
error rate using convolutional neural networks. In
particular, we would like to explore combining the
DNN numerical features with the CNN word em-
bedding features.
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Abstract

Written text often provides sufficient clues
to identify the author, their gender, age,
and other important attributes. Conse-
quently, the authorship of training and
evaluation corpora can have unforeseen
impacts, including differing model perfor-
mance for different user groups, as well
as privacy implications. In this paper, we
propose an approach to explicitly obscure
important author characteristics at train-
ing time, such that representations learned
are invariant to these attributes. Evaluat-
ing on two tasks, we show that this leads
to increased privacy in the learned repre-
sentations, as well as more robust models
to varying evaluation conditions, includ-
ing out-of-domain corpora.

1 Introduction

Language is highly diverse, and differs accord-
ing to author, their background, and personal at-
tributes such as gender, age, education and na-
tionality. This variation can have a substantial
effect on NLP models learned from text (Hovy
et al., 2015), leading to significant variation in in-
ferences across different types of corpora, such
as the author’s native language, gender and age.
Training corpora are never truly representative,
and therefore models fit to these datasets are bi-
ased in the sense that they are much more effec-
tive for texts from certain groups of user, e.g.,
middle-aged white men, and considerably poorer
for other parts of the population (Hovy, 2015).
Moreover, models fit to language corpora often
fixate on author attributes which correlate with the
target variable, e.g., gender correlating with class
skews (Zhao et al., 2017), or translation choices
(Rabinovich et al., 2017). This signal, however,

is rarely fundamental to the task of modelling lan-
guage, and is better considered as a confounding
influence. These auxiliary learning signals can
mean the models do not adequately capture the
core linguistic problem. In such situations, remov-
ing these confounds should give better generali-
sation, especially for out-of-domain evaluation, a
similar motivation to research in domain adapta-
tion based on selection biases over text domains
(Blitzer et al., 2007; Daumé III, 2007).

Another related problem is privacy: texts con-
vey information about their author, often inadver-
tently, and many individuals may wish to keep
this information private. Consider the case of the
AOL search data leak, in which AOL released de-
tailed search logs of many of their users in Au-
gust 2006 (Pass et al., 2006). Although they de-
identified users in the data, the log itself contained
sufficient personally identifiable information that
allowed many of these individuals to be identi-
fed (Jones et al., 2007). Other sources of user
text, such as emails, SMS messages and social me-
dia posts, would likely pose similar privacy issues.
This raises the question of how the corpora, or
models built thereupon, can be distributed without
exposing this sensitive data. This is the problem
of differential privacy, which is more typically ap-
plied to structured data, and often involves data
masking, addition or noise, or other forms of cor-
ruption, such that formal bounds can be stated in
terms of the likelihood of reconstructing the pro-
tected components of the dataset (Dwork, 2008).
This often comes at the cost of an accuracy re-
duction for models trained on the corrupted data
(Shokri and Shmatikov, 2015; Abadi et al., 2016).

Another related setting is where latent repre-
sentations of the data are shared, rather than the
text itself, which might occur when sending data
from a phone to the cloud for processing, or trust-
ing a third party with sensitive emails for NLP
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processing, such as grammar correction or trans-
lation. The transfered representations may still
contain sensitive information, however, especially
if an adversary has preliminary knowledge of the
training model, in which case they can readily re-
verse engineer the input, for example, by a GAN
attack algorithm (Hitaj et al., 2017). This is true
even when differential privacy mechanisms have
been applied.

Inspired by the above works, and recent suc-
cesses of adversarial learning (Goodfellow et al.,
2014; Ganin et al., 2016), we propose a novel ap-
proach for privacy-preserving learning of unbiased
representations.1 Specially, we employ Ganin
et al.’s approach to training deep models with ad-
versarial learning, to explicitly obscure individu-
als’ private information. Thereby the learned (hid-
den) representations of the data can be transferred
without compromising the authors’ privacy, while
still supporting high-quality NLP inference. We
evaluate on the tasks of POS-tagging and senti-
ment analysis, protecting several demographic at-
tributes — gender, age, and location — and show
empirically that doing so does not hurt accuracy,
but instead can lead to substantial gains, most no-
tably in out-of-domain evaluation. Compared to
differential privacy, we report gains rather than
loss in performance, but note that we provide only
empirical improvements in privacy, without any
formal guarantees.

2 Methodology

We consider a standard supervised learning situ-
ation, in which inputs x are used to compute a
representation h, which then forms the parameter-
isation of a generalised linear model, used to pre-
dict the target y. Training proceeds by minimising
a differentiable loss, e.g., cross entropy, between
predictions and the ground truth, in order to learn
an estimate of the model parameters, denoted θM .

Overfitting is a common problem, particular in
deep learning models with large numbers of pa-
rameters, whereby h learns to capture specifics
of the training instances which do not generalise
to unseen data. Some types of overfitting are in-
sidious, and cannot be adequately addressed with
standard techniques like dropout or regularisation.
Consider, for example, the authorship of each sen-

1Implementation available at https://github.
com/lrank/Robust_and_Privacy_preserving_
Text_Representations.

xi
Model(θ)

h yi
θc

Di(θ
d
i ) bi

Dj(θ
d
j ) bj

Figure 1: Proposed model architectures, showing
a single training instance (xi, yi) with two pro-
tected attributes, bi and bj . D indicates a discrim-
inator, and the red dashed and blue lines denote
adversarial and standard loss, respectively.

tence in the training set in a sentiment prediction
task. Knowing the author, and their general dispo-
sition, will likely provide strong clues about their
sentiment wrt any sentence. Moreover, given the
ease of authorship attribution, a powerful learning
model might learn to detect the author from their
text, and use this to predict the sentiment, rather
than basing the decision on the semantics of each
sentence. This might be the most efficient use of
model capacity if there are many sentences by this
individual in the training dataset, yet will lead to
poor generalisation to test data authored by unseen
individuals.

Moreover, this raises privacy issues when h
is known by an attacker or malicious adversary.
Traditional privacy-preserving methods, such as
added noise or masking, applied to the representa-
tion will often incur a cost in terms of a reduction
in task performance. Differential privacy methods
are unable to protect the user privacy of h under
adversarial attacks, as described in Section 1.

Therefore, we consider how to learn an un-
biased representations of the data with respect to
specific attributes which we expect to behave as
confounds in a generalisation setting. To do so, we
take inspiration from adversarial learning (Good-
fellow et al., 2014; Ganin et al., 2016). The archi-
tecture is illustrated in Figure 1.

2.1 Adversarial Learning

A key idea of adversarial learning, following
Ganin et al. (2016), is to learn a discriminator
model D jointly with learning the standard super-
vised model. Using gender as an example, a dis-
criminator will attempt to predict the gender, b, of
each instance from h, such that training involves
joint learning of both the model parameters, θM ,
and the discriminator parameters θD. However,
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the aim of learning for these components are in
opposition – we seek a h which leads to a good
predictor of the target y, while being a poor rep-
resentation for prediction of gender. This leads to
the objective (illustrated for a single training in-
stance),

θ̂ = min
θM

max
θD
X (ŷ(x; θM ),y)

− λ · X (b̂(x; θD), b) ,
(1)

where X denotes the cross entropy function. The
negative sign of the second term, referred to as the
adversarial loss, can be implemented by a gradi-
ent reversal layer during backpropagation (Ganin
et al., 2016). To elaborate, training is based on
standard gradient backpropagation for learning the
main task, but for the auxiliary task, we start with
standard loss backpropagation, however gradients
are reversed in sign when they reach h. Conse-
quently the linear output components are trained
to be good predictors, but h is trained to be maxi-
mally good for the main task and maximally poor
for the auxiliary task.

Furthermore, Equation 1 can be expanded to
scenarios with several (N ) protected attributes,

θ̂ = min
θM

max
{θDi}Ni=1

X (ŷ(x; θM ),y) (2)

−
N∑

i=1

(
λi · X (b̂(x; θDi), bi)

)
.

3 Experiments

In this section, we report experimental results
for our methods with two very different language
tasks.

3.1 POS-tagging

This first task is part-of-speech (POS) tagging,
framed as a sequence tagging problem. Recent
demographic studies have found that the author’s
gender, age and race can influence tagger perfor-
mance (Hovy and Søgaard, 2015; Jørgensen et al.,
2016). Therefore, we use the POS tagging to
demonstrate that our model is capable of elimi-
nating this type of bias, thereby leading to more
robust models of the problem.

Model Our model is a bi-directional LSTM for
POS tag prediction (Hochreiter and Schmidhuber,

1997), formulated as:

hi = LSTM(xi,hi−1; θh)

h′i = LSTM(xi,h
′
i+1; θ

′
h)

yi ∼ Categorical(φ(
[
hi;h

′
i

]
); θo) ,

for input sequence xi|ni=1 with terminal hidden
states h0 and h′n+1 set to zero, where φ is a linear
transformation, and [·; ·] denotes vector concatena-
tion.

For the adversarial learning, we use the train-
ing objective from Equation 2 to protect gender
and age, both of which are treated as binary val-
ues. The adversarial component is parameterised
by 1-hidden feedforward nets, applied to the final
hidden representation [hn;h′0]. For hyperparame-
ters, we fix the size of the word embeddings and
h to 300, and set all λ values to 10−3. A dropout
rate of 0.5 is applied to all hidden layers during
training.

Data We use the TrustPilot English POS tagged
dataset (Hovy and Søgaard, 2015), which consists
of 600 sentences, each labelled with both the sex
and age of the author, and manually POS tagged
based on the Google Universal POS tagset (Petrov
et al., 2012). For the purposes of this paper, we
follow Hovy and Søgaard’s setup, categorising
SEX into female (F) and male (M), and AGE into
over-45 (O45) and under-35 (U35). We train the
taggers both with and without the adversarial loss,
denoted ADV and BASELINE, respectively.

For evaluation, we perform a 10-fold cross val-
idation, with a train:dev:test split using ratios of
8:1:1. We also follow the evaluation method in
Hovy and Søgaard (2015), by reporting the tag-
ging accuracy for sentences over different slices of
the data based on SEX and AGE, and the absolute
difference between the two settings.

Considering the tiny quantity of text in the
TrustPilot corpus, we use the Web English Tree-
bank (WebEng: Bies et al. (2012)), as a means
of pre-training the tagging model. WebEng was
chosen to be as similar as possible in domain to
the TrustPilot data, in that the corpus includes
unedited user generated internet content.

As a second evaluation set, we use a corpus
of African-American Vernacular English (AAVE)
from Jørgensen et al. (2016), which is used purely
for held-out evaluation. AAVE consists of three
very heterogeneous domains: LYRICS, SUBTI-
TLES and TWEETS. Considering the substantial
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SEX AGE

F M ∆ O45 U35 ∆

BASELINE 90.9 91.1 0.2 91.4 89.9 1.5
ADV 92.2 92.1 0.1 92.3 92.0 0.3

Table 1: POS prediction accuracy [%] using the
Trustpilot test set, stratified by SEX and AGE

(higher is better), and the absolute difference (∆)
within each bias group (smaller is better). The best
result is indicated in bold.

difference between this corpus and WebEng or
TrustPilot, and the lack of any domain adaptation,
we expect a substantial drop in performance when
transferring models, but also expect a larger im-
pact from bias removal using ADV training.

Results and analysis Table 1 shows the results
for the TrustPilot dataset. Observe that the dispar-
ity for the BASELINE tagger accuracy (the ∆ col-
umn), for AGE is larger than for SEX, consistent
with the results of Hovy and Søgaard (2015). Our
ADV method leads to a sizeable reduction in the
difference in accuracy across both SEX and AGE,
showing our model is capturing the bias signal less
and more robust to the tagging task. Moreover, our
method leads to a substantial improvement in ac-
curacy across all the test cases. We speculate that
this is a consequence of the regularising effect of
the adversarial loss, leading to a better characteri-
sation of the tagging problem.

Table 2 shows the results for the AAVE held-
out domain. Note that we do not have annotations
for SEX or AGE, and thus we only report the over-
all accuracy on this dataset. Note that ADV also
significantly outperforms the BASELINE across the
three heldout domains.

Combined, these results demonstrate that our
model can learn relatively gender and age de-
biased representations, while simultaneously im-
proving the predictive performance, both for in-
domain and out-of-domain evaluation scenarios.

3.2 Sentiment Analysis

The second task we use is sentiment analysis,
which also has broad applications to the online
community, as well as privacy implications for the
authors whose text is used to train our models.
Many user attributes have been shown to be eas-
ily detectable from online review data, as used ex-
tensively in sentiment analysis results (Hovy et al.,
2015; Potthast et al., 2017). In this paper, we fo-

LYRICS SUBTITLES TWEETS Average

BASELINE 73.7 81.4 59.9 71.7
ADV 80.5 85.8 65.4 77.0

Table 2: POS predictive accuracy [%] over the
AAVE dataset, stratified over the three domains,
alongside the macro-average accuracy. The best
result is indicated in bold.

cus on three demographic variables of gender, age,
and location.

Model Sentiment is framed as a 5-class text
classification problem, which we model using
Kim (2014)’s convolutional neural net (CNN) ar-
chitecture, in which the hidden representation is
generated by a series of convolutional filters fol-
lowed a maxpooling step, simply denote as h =
CNN(x; θM ). We follow the hyper-parameter set-
tings of Kim (2014), and initialise the model with
word2vec embeddings (Mikolov et al., 2013). We
set the λ values to 10−3 and apply a dropout rate
of 0.5 to h.

As the discriminator, we also use a feed-forward
model with one hidden layer, to predict the pri-
vate attribute(s). We compare models trained with
zero, one, or all three private attributes, denoted
BASELINE, ADV-*, and ADV-all, respectively.

Data We again use the TrustPilot dataset de-
rived from Hovy et al. (2015), however now we
consider the RATING score as the target variable,
not POS-tag. Each review is associated with three
further attributes: gender (SEX), age (AGE), and
location (LOC). To ensure that LOC cannot be triv-
ially predicted based on the script, we discard all
non-English reviews based on LANGID.PY (Lui
and Baldwin, 2012), by retaining only reviews
classified as English with a confidence greater than
0.9. We then subsample 10k reviews for each lo-
cation to balance the five location classes (US,
UK, Germany, Denmark, and France), which were
highly skewed in the original dataset. We use the
same binary representation of SEX and AGE as
the POS task, following the setup in Hovy et al.
(2015).

To evaluate the different models, we perform
10-fold cross validation and report test perfor-
mance in terms of the F1 score for the RATING

task, and the accuracy of each discriminator. Note
that the discriminator can be applied to test data,
where it plays the role of an adversarial attacker,
by trying to determine the private attributes of
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F1 Discrim. [%]

dev test AGE SEX LOC

Majority class 57.8 62.3 20.0

BASELINE 41.9 40.1 65.3 66.9 53.4

ADV-AGE 42.7 40.1 61.1 65.6 41.0
ADV-SEX 42.4 39.9 61.8 62.9 42.7
ADV-LOC 42.0 40.2 62.2 66.8 22.1
ADV-all 42.0 40.2 61.8 62.5 28.1

Table 3: Sentiment F1-score [%] over the RAT-
ING task, and accuracy [%] of all the discriminator
across three private attributes. The best score is in-
dicated in bold. The majority class with respect to
each private attribute is also reported.

users based on their hidden representation. That
is, lower discriminator performance indicates that
the representation conveys better privacy for indi-
viduals, and vice versa.

Results Table 3 shows the results of the differ-
ent models. Note that all the privacy attributes can
be easily detected in BASELINE, with results that
are substantially higher than the majority class, al-
though AGE and SEX are less well captured than
LOC. The ADV trained models all maintain the
task performance of the BASELINE method, how-
ever they clearly have a substantial effect on the
discrimination accuracy. The privacy of SEX and
LOC is substantially improved, leading to dis-
criminators with performance close to that of the
majority class (conveys little information). AGE

proves harder, although our technique leads to pri-
vacy improvements. Note that AGE appears to be
related to the other private attributes, in that pri-
vacy is improved when optimising an adversarial
loss for the other attributes (SEX and LOC).

Overall, these results show that our approach
learns hidden representations that hide much of
the personal information of users, without affect-
ing the sentiment task performance. This is a sur-
prising finding, which augurs well for the use of
deep learning as a privacy preserving mechanism
when handling text corpora.

4 Conclusion

We proposed a novel method for removing model
biases by explicitly protecting private author at-
tributes as part of model training, which we formu-
late as deep learning with adversarial learning. We
evaluate our methods with POS tagging and senti-

ment classification, demonstrating our method re-
sults in increased privacy, while also maintaining,
or even improving, task performance, through in-
creased model robustness.
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Abstract

We propose an efficient method to gen-
erate white-box adversarial examples to
trick a character-level neural classifier. We
find that only a few manipulations are
needed to greatly decrease the accuracy.
Our method relies on an atomic flip op-
eration, which swaps one token for an-
other, based on the gradients of the one-
hot input vectors. Due to efficiency of our
method, we can perform adversarial train-
ing which makes the model more robust
to attacks at test time. With the use of a
few semantics-preserving constraints, we
demonstrate that HotFlip can be adapted
to attack a word-level classifier as well.

1 Introduction

Adversarial examples are inputs to a predictive
machine learning model that are maliciously de-
signed to cause poor performance (Goodfellow
et al., 2015). Adversarial examples expose re-
gions of the input space where the model performs
poorly, which can aid in understanding and im-
proving the model. By using these examples as
training data, adversarial training learns models
that are more robust, and may even perform bet-
ter on non-adversarial examples. Interest in under-
standing vulnerabilities of NLP systems is grow-
ing (Jia and Liang, 2017; Zhao et al., 2018; Be-
linkov and Bisk, 2018; Iyyer et al., 2018). Previous
work has focused on heuristics for creating adver-
sarial examples in the black-box setting, without
any explicit knowledge of the model parameters.
In the white-box setting, we use complete knowl-
edge of the model to develop worst-case attacks,
which can reveal much larger vulnerabilities.

We propose a white-box adversary against dif-
ferentiable text classifiers. We find that only a few

South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mood of optimism.
57% World
South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mooP of optimism.
95% Sci/Tech
Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the opposition Conservatives.
75% World
Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the oBposition Conservatives.
94% Business

Table 1: Adversarial examples with a single character change,
which will be misclassified by a neural classifier.

manipulations are needed to greatly increase the
misclassification error. Furthermore, fast genera-
tion of adversarial examples allows feasible ad-
versarial training, which helps the model defend
against adversarial examples and improve accu-
racy on clean examples. At the core of our method
lies an atomic flip operation, which changes one
token to another by using the directional deriva-
tives of the model with respect to the one-hot vec-
tor input.

Our contributions are as follows:

1. We propose an efficient gradient-based opti-
mization method to manipulate discrete text
structure at its one-hot representation.

2. We investigate the robustness of a classifier
trained with adversarial examples, by study-
ing its resilience to attacks and its accuracy
on clean test data.

2 Related Work

Adversarial examples are powerful tools to in-
vestigate the vulnerabilities of a deep learning
model (Szegedy et al., 2014). While this line of
research has recently received a lot of attention in
the deep learning community, it has a long history
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in machine learning, going back to adversarial at-
tacks on linear spam classifiers (Dalvi et al., 2004;
Lowd and Meek, 2005). Hosseini et al. (2017)
show that simple modifications, such as adding
spaces or dots between characters, can drasti-
cally change the toxicity score from Google’s
perspective API 1. Belinkov and Bisk (2018)
show that character-level machine translation sys-
tems are overly sensitive to random character ma-
nipulations, such as keyboard typos. They manipu-
late every word in a sentence with synthetic or nat-
ural noise. However, throughout our experiments,
we care about the degree of distortion in a sen-
tence, and look for stronger adversaries which can
increase the loss within a limited budget. Instead
of randomly perturbing text, we propose an effi-
cient method, which can generate adversarial text
using the gradients of the model with respect to
the input.

Adversarial training interleaves training with
generation of adversarial examples (Goodfellow
et al., 2015). Concretely, after every iteration of
training, adversarial examples are created and
added to the mini-batches. A projected gradient-
based approach to create adversarial examples by
Madry et al. (2018) has proved to be one of the
most effective defense mechanisms against adver-
sarial attacks for image classification. Miyato et
al. (2017) create adversarial examples by adding
noise to word embeddings, without creating real-
world textual adversarial examples. Our work is
the first to propose an efficient method to generate
real-world adversarial examples which can also be
used for effective adversarial training.

3 HotFlip

HotFlip is a method for generating adversarial ex-
amples with character substitutions (“flips”). Hot-
Flip also supports insertion and deletion opera-
tions by representing them as sequences of charac-
ter substitutions. It uses the gradient with respect
to a one-hot input representation to efficiently es-
timate which individual change has the highest es-
timated loss, and it uses a beam search to find a set
of manipulations that work well together to con-
fuse a classifier.

3.1 Definitions

We use J(x,y) to refer to the loss of the model
on input x with true output y. For example,

1https://www.perspectiveapi.com

for classification, the loss would be the log-loss
over the output of the softmax unit. Let V be
the alphabet, x be a text of length L charac-
ters, and xij ∈ {0, 1}|V | denote a one-hot vector
representing the j-th character of the i-th word.
The character sequence can be represented by

x = [(x11,.. x1n);..(xm1,.. xmn)]
wherein a semicolon denotes explicit segmenta-
tion between words. The number of words is de-
noted by m, and n is the number of maximum
characters allowed for a word.

3.2 Derivatives of Operations

We represent text operations as vectors in the
input space and estimate the change in loss by
directional derivatives with respect to these op-
erations. Based on these derivatives, the adver-
sary can choose the best loss-increasing direction.
Our algorithm requires just one function evalua-
tion (forward pass) and one gradient computation
(backward pass) to estimate the best possible flip.

A flip of the j-th character of the i-th word
(a→ b) can be represented by this vector:

~vijb = (~0 ,..;(~0 ,..(0,..-1,0,..,1,0)j ,..~0 )i; ~0 ,..)

where -1 and 1 are in the corresponding po-
sitions for the a-th and b-th characters of the
alphabet, respectively, and x(a)ij = 1. A first-order
approximation of change in loss can be obtained
from a directional derivative along this vector:

∇~vijbJ(x,y) = ∇xJ(x,y)
T · ~vijb

We choose the vector with biggest increase
in loss:

max∇xJ(x,y)T · ~vijb = max
ijb

∂J

∂xij

(b)

− ∂J

∂xij

(a)

(1)

Using the derivatives as a surrogate loss, we sim-
ply need to find the best change by calling the
function mentioned in eq. 1, to estimate the best
character change (a → b). This is in contrast to
a naive loss-based approach, which has to query
the classifier for every possible change to compute
the exact loss induced by those changes. In other
words, apart from the overhead of calling the func-
tion in eq. 1, one backward pass saves the adver-
sary a large number of forward passes.
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Character insertion2 at the j-th position of the
i-th word can also be treated as a character flip,
followed by more flips as characters are shifted to
the right until the end of the word.

max∇xJ(x,y)T ·~vijb = max
ijb

∂J

∂xij

(b)

− ∂J

∂xij

(a)

+
n∑

j′=j+1

(
∂J

∂xij′

(b
′
)

− ∂J

∂xij′

(a
′
))

where x(a
′
)

ij′
= 1 and x(b

′
)

ij′−1 = 1. Similarly, char-
acter deletion can be written as a number of char-
acter flips as characters are shifted to the left.
Since the magnitudes of direction vectors (oper-
ations) are different, we normalize by the L2 norm
of the vector i.e., ~v√

2N
, where N is the number of

total flips.

3.3 Multiple Changes
We explained how to estimate the best single
change in text to get the maximum increase in loss.
A greedy or beam search of r steps will give us an
adversarial example with a maximum of r flips, or
more concretely an adversarial example within an
L0 distance of r from the original example. Our
beam search requires only O(br) forward passes
and an equal number of backward passes, with r
being the budget and b, the beam width. We elab-
orate on this with an example: Consider the loss
function J(.), input x0, and an individual change
cj . We estimate the score for the change as ∂J(x0)

∂cj
.

For a sequence of 3 changes [c1,c2,c3], we evalu-
ate the “score” as follows.

score([c1, c2, c3]) =
∂J(x0)

∂c1
+
∂J(x1)

∂c2
+
∂J(x2)

∂c3

where x1 and x2 are the modified input after ap-
plying [c1] and [c1, c2] respectively. We need b
forward and backward passes to compute deriva-
tives at each step of the path, leading to O(br)
queries. In contrast, a naive loss-based approach
requires computing the exact loss for every possi-
ble change at every stage of the beam search, lead-
ing to O(brL|V |) queries.

4 Experiments

In principle, HotFlip could be applied to any dif-
ferentiable character-based classifier. Here, we fo-
cus on the CharCNN-LSTM architecture (Kim

2For ease in exposition, we assume that the word size is at
most n-1, leaving at least one position of padding at the end.

et al., 2016), which can be adapted for classifica-
tion via a single dense layer after the last recur-
rent hidden unit. We use the AG’s news dataset3,
which consists of 120,000 training and 7,600 test
instances from four equal-sized classes: World,
Sports, Business, and Science/Technology. The ar-
chitecture consists of a 2-layer stacked LSTM with
500 hidden units, a character embedding size of
25, and 1000 kernels of width 6 for temporal
convolutions. This classifier was able to outper-
form (Conneau et al., 2017), which has achieved
the state-of-the-art result on some benchmarks, on
AG’s news. The model is trained with SGD and
gradient clipping, and the batch size was set to 64.
We used 10% of the training data as the develop-
ment set, and trained for a maximum of 25 epochs.
We only allow character changes if the new word
does not exist in the vocabulary, to avoid changes
that are more likely to change the meaning of text.
The adversary uses a beam size of 10, and has a
budget of maximum of 10% of characters in the
document. In Figure 1, we plot the success rate
of the adversary against an acceptable confidence
score for the misclassification. That is, we con-
sider the adversary successful only if the classifier
misclassifies the instance with a given confidence
score. For this experiment, we create adversarial
examples for 10% of the test set.

We compare with a (greedy) black-box adver-
sary, which does not have access to model param-
eters, and simply queries the classifier with ran-
dom character changes. Belinkov and Bisk (2018)
define an attack, Key, in which a character is re-
placed with an adjacent character in the keyboard.
We allow a stronger black-box attacker to change a
character to any character in the alphabet, and we
call it Key∗. As expected a white-box adversary
is much more damaging, and has a higher success
rate. As can be seen, the beam-search strategy is
very effective in fooling the classifier even with
an 0.9 confidence constraint, tricking the classi-
fier for more than 90% of the instances. A greedy
search is less effective especially in producing
high-confidence scores. We use a maximum of
10% of characters in the document as the budget
for the adversary, but our adversary changes an av-
erage of 4.18% of the characters to trick the clas-
sifier at confidence 0.5. The adversary picks the
flip operation around 80% of the times, and favors
delete over insert by two to one.

3https://www.di.unipi.it/˜gulli/
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Figure 1: Adversary’s success as a function of confidence.

4.1 Robustness

For our adversarial training, we use only use the
flip operation, and evaluate models’ robustness
to this operation only. This is because insert and
delete manipulations are n times slower to gener-
ate, where n is the number of maximum charac-
ters allowed for a word. For these experiments, we
have no constraint on confidence score. We flip r
characters for each training sample, which was set
to 20% of the characters in text after tuning, based
on the accuracy on the development set. In addi-
tion, for faster generation of adversarial examples,
we directly apply the top r flips after the first back-
ward pass, simultaneously4.

We use the full test set for this experiment, and
we compare HotFlip adversarial training with the
white-box (supervised) adversarial training (Miy-
ato et al., 2017) that perturbs word embeddings,
which we adapt to work with character embed-
dings. Specifically, the adversarial noise per char-
acter is constrained by the Frobenius norm of the
embedding matrix composed of the sequence of
characters in the word. We also create another
baseline where instead of white-box adversarial
examples, we add black-box adversarial examples
(Key∗) to the mini-batches. As shown in Table
2, our approach decreases misclassification error
and dramatically decreases the adversary’s success
rate. In particular, adversarial training on real ad-
versarial examples generated by HotFlip, is more
effective than training on pseudo-adversarial ex-
amples created by adding noise to the embeddings.

The current error of our adversarially trained
model is still beyond an acceptable rate; this is
mainly because the adversary that we use at test
time, which uses beam search, is strictly stronger
than our model’s internal adversary. This has been
observed in computer vision where strongest ad-

4The adversary at test time would still use beam search.

Method Misc. error Success rate
Baseline 8.27% 98.16%

Adv-tr (Miyato et al., 2017) 8.03% 87.43%
Adv-tr (black-box) 8.60% 95.63%
Adv-tr (white-box) 7.65% 69.32%

Table 2: Comparison based on misclassification error on
clean data and adversary’s success rate.

versaries are not efficient enough for adversarial
training, but can break models trained with weaker
adversaries (Carlini and Wagner, 2017).

4.2 Human Perception
Our human evaluation experiment shows that our
character-based adversarial examples rarely alter
the meaning of a sentence. We conduct an experi-
ment of annotating 600 randomly-picked instances
annotated by at least three crowd workers in Ama-
zon Mechanical Turk. This set contains 150 ex-
amples of each class of AG’s-news dataset, all of
which are correctly classified by the classifier. We
manipulate half of this set by our algorithm, which
can successfully trick the classifier to misclassify
these 300 adversarial examples. The median accu-
racy of our participants decreased by 1.78% from
87.49% on clean examples to 85.71% on adversar-
ial examples. Similar small drops in human perfor-
mance have been reported for image classification
(Papernot et al., 2016) and text comprehension (Jia
and Liang, 2017).

5 HotFlip at Word-Level

HotFlip can naturally be adapted to generate ad-
versarial examples for word-level models, by com-
puting derivatives with respect to one-hot word
vectors. After a few character changes, the mean-
ing of the text is very likely to be preserved or
inferred by the reader (Rawlinson, 1976), which
was also confirmed by our human subjects study.
By contrast, word-level adversarial manipulations
are much more likely to change the meaning of
text, which makes the use of semantics-preserving
constraints necessary. For example, changing the
word good to bad changes the sentiment of the
sentence “this was a good movie”. In fact, we ex-
pect the model to predict a different label after
such a change.

To showcase the applicability of HotFlip to a
word-level classifier, we use Kim’s CNN (2014)
trained for binary sentiment classification on the
SST dataset (Socher et al., 2013). In order to create
adversarial examples, we add constraints so that
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one hour photo is an intriguing (interesting) snapshot of one man and his delusions it’s just too bad it doesn’t have
more flashes of insight.
‘enigma’ is a good (terrific) name for a movie this deliberately obtuse and unapproachable.
an intermittently pleasing (satisfying) but mostly routine effort.
an atonal estrogen opera that demonizes feminism while gifting the most sympathetic male of the piece with a nice
(wonderful) vomit bath at his wedding.
culkin exudes (infuses) none of the charm or charisma that might keep a more general audience even vaguely inter-
ested in his bratty character.

Table 3: Adversarial examples for sentiment classification. The bold words replace the words before them.

past→ pas!t Alps→ llps talk→ taln local→ loral you→ yoTu ships→ hips actor→ actr lowered→ owered
pasturing lips tall moral Tutu dips act powered
pasture laps tale Moral Hutu hops acting empowered
pastor legs tales coral Turku lips actress owed
Task slips talent morals Futurum hits acts overpowered

Table 4: Nearest neighbor words (based on cosine similarity) of word representations from CharCNN-LSTM, picked at the
output of the highway layers. A single adversarial change in the word often results in a big change in the embedding, which
would make the word more similar to other words, rather than to the original word.

the resulting sentence is likely to preserve the orig-
inal meaning; we only flip a word wi to wj only if
these constraints are satisfied:

1. The cosine similarity between the embedding
of words is bigger than a threshold (0.8).

2. The two words have the same part-of-speech.

3. We disallow replacing of stop-words, as for
many of the stop-words, it is difficult to find
cases where replacing them will still render
the sentence grammatically correct. We also
disallow changing a word to another word
with the same lexeme for the same purpose.

Table 3 shows a few adversarial examples with
only one word flip. In the second and the fourth
examples, the adversary flips a positive word (i.e.,
good, nice) with highly positive words (i.e., ter-
rific, wonderful) in an overall very negative re-
view. These examples, albeit interesting and intu-
itive, are not abundant, and thus pose less threat
to an NLP word-level model. Specifically, given
the strict set of constraints, we were able to create
only 41 examples (2% of the correctly-classified
instances of the SST test set) with one or two flips.

For a qualitative analysis of relative brittleness
of character-level models, we study the change in
word embedding as an adversarial flip, insert, or
delete operation occurs in Table 4. We use the out-
put of the highway layer as the word representa-
tion, and report the embedding for a few adver-
sarial words, for which the original word is not
among their top 5 nearest neighbors.

In a character-level model, the lookup opera-
tion to pick a word from the vocabulary is re-
placed by a character-sequence feature extractor

which gives an embedding for any input, includ-
ing OOV words which would be mapped to an
UNK token in a word-level model. This makes the
embedding space induced in character-level rep-
resentation more dense, which makes character-
level models more likely to misbehave under small
adversarial perturbations.

6 Conclusion and Future Work

White-box attacks are among the most serious
forms of attacks an adversary can inflict on a ma-
chine learning model. We create white-box adver-
sarial examples by computing derivatives with re-
spect to a few character-edit operations (i.e., flip,
insert, delete), which can be used in a beam-search
optimization. While character-edit operations have
little impact on human understanding, we found
that character-level models are highly sensitive to
adversarial perturbations. Employing these adver-
sarial examples in adversarial training renders the
models more robust to such attacks, as well as
more robust to unseen clean data.

Contrasting and evaluating robustness of differ-
ent character-level models for different tasks is an
important future direction for adversarial NLP. In
addition, the discrete nature of text makes it a more
challenging task to understand the landscape of
adversarial examples. Research in this direction
can shed light on vulnerabilities of NLP models.
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Abstract

Generic word embeddings are trained on
large-scale generic corpora; Domain Spe-
cific (DS) word embeddings are trained
only on data from a domain of inter-
est. This paper proposes a method to
combine the breadth of generic embed-
dings with the specificity of domain spe-
cific embeddings. The resulting embed-
dings, called Domain Adapted (DA) word
embeddings, are formed by aligning cor-
responding word vectors using Canonical
Correlation Analysis (CCA) or the related
nonlinear Kernel CCA. Evaluation results
on sentiment classification tasks show that
the DA embeddings substantially outper-
form both generic and DS embeddings
when used as input features to standard
or state-of-the-art sentence encoding algo-
rithms for classification.

1 Introduction

Generic word embeddings such as Glove and
word2vec (Pennington et al., 2014; Mikolov et al.,
2013) which are pre-trained on large sets of raw
text, have demonstrated remarkable success when
used as features to a supervised learner in various
applications such as the sentiment classification of
text documents. There are, however, many appli-
cations with domain specific vocabularies and rel-
atively small amounts of data. The performance
of generic word embedding in such applications
is limited, since word embeddings pre-trained on
generic corpora do not capture domain specific se-
mantics/knowledge, while embeddings learned on
small data sets are of low quality.

A concrete example of a small-sized domain
specific corpus is the Substances User Disorders
(SUDs) data set (Quanbeck et al., 2014; Litvin
et al., 2013), which contains messages on discus-
sion forums for people with substance addictions.

These forums are part of a mobile health inter-
vention treatment that encourages participants to
engage in sobriety-related discussions. The goal
of such treatments is to analyze content of partici-
pant’s digital media content and provide human in-
tervention via machine learning algorithms. This
data is both domain specific and limited in size.
Other examples include customer support tickets
reporting issues with taxi-cab services, product re-
views, reviews of restaurants and movies, discus-
sions by special interest groups and political sur-
veys. In general they are common in domains
where words have different sentiment from what
they would have elsewhere.

Such data sets present significant challenges for
word embedding learning algorithms. First, words
in data on specific topics have a different distribu-
tion than words from generic corpora. Hence us-
ing generic word embeddings obtained from algo-
rithms trained on a corpus such as Wikipedia, may
introduce considerable errors in performance met-
rics on specific downstream tasks such as senti-
ment classification. For example, in SUDs, discus-
sions are focused on topics related to recovery and
addiction; the sentiment behind the word ‘party’
may be very different in a dating context than in
a substance abuse context. Thus domain specific
vocabularies and word semantics may be a prob-
lem for pre-trained sentiment classification mod-
els (Blitzer et al., 2007). Second, there is insuffi-
cient data to completely retrain a new set of word
embeddings. The SUD data set consists of a few
hundred people and only a fraction of these are
active (Firth et al., 2017), (Naslund et al., 2015).
This results in a small data set of text messages
available for analysis. Furthermore, content is
generated spontaneously on a day to day basis, and
language use is informal and unstructured. Fine-
tuning the generic word embedding also leads to
noisy outputs due to the highly non-convex train-
ing objective and the small amount of data. Since

37



such data sets are common, a simple and effec-
tive method to adapt word embedding approaches
is highly valuable. While existing work (Yin and
Schütze, 2016), (?), (?), (?), (?) combines word
embeddings from different algorithms to improve
upon intrinsic tasks such as similarities, analo-
gies etc, there does not exist a concrete method to
combine multiple embeddings to perform domain
adaptation or improve on extrinsic tasks.

This paper proposes a method for obtain-
ing high quality word embeddings that capture
domain specific semantics and are suitable for
tasks on the specific domain. The new Domain
Adapted (DA) embeddings are obtained by com-
bining generic embeddings and Domain Specific
(DS) embeddings via CCA/KCCA. Generic em-
beddings are trained on large corpora and do not
capture domain specific semantics, while DS em-
beddings are obtained from the domain specific
data set via algorithms such as Latent Semantic
Analysis (LSA) or other embedding methods. The
two sets of embeddings are combined using a lin-
ear CCA (Hotelling, 1936) or a nonlinear kernel
CCA (KCCA) (Hardoon et al., 2004). They are
projected along the directions of maximum corre-
lation, and a new (DA) embedding is formed by
averaging the projections of the generic embed-
dings and DS embeddings. The DA embeddings
are then evaluated in a sentiment classification set-
ting. Empirically, it is shown that the CCA/KCCA
combined DA embeddings improve substantially
over the generic embeddings, DS embeddings and
a concatenation-SVD (concSVD) based baseline.

The remainder of this paper is organized as fol-
lows. Section 2 briefly introduces the CCA/KCCA
and details the procedure used to obtain the
DA embeddings. Section 3 describes the experi-
mental set up. Section 4 discusses the results from
sentiment classification tasks on benchmark data
sets using standard classification as well as using
a sophisticated neural network based sentence en-
coding algorithm. Section 5 concludes this work.

2 Domain Adapted Word Embeddings

Training word embeddings directly on small data
sets leads to noisy outputs while embeddings from
generic corpora fail to capture specific local mean-
ings within the domain. Here we combine DS and
generic embeddings using CCA KCCA, which
projects corresponding word vectors along the di-
rections of maximum correlation.

Let WDS ∈ R|VDS |×d1 be the matrix whose
columns are the domain specific word embeddings
(obtained by, e.g., running the LSA algorithm on
the domain specific data set), where VDS is its
vocabulary and d1 is the dimension of the em-
beddings. Similarly, let WG ∈ R|VG|×d2 be the
matrix of generic word embeddings (obtained by,
e.g., running the GloVe algorithm on the Com-
mon Crawl data), where VG is the vocabulary
and d2 is the dimension of the embeddings. Let
V∩ = VDS∩VG. Let wi,DS be the domain specific
embedding of the word i ∈ V∩, and wi,G be its
generic embedding. For one dimensional CCA, let
φDS and φG be the projection directions of wi,DS

and wi,G respectively. Then the projected values
are,

w̄i,DS = wi,DS φDS

w̄i,G = wi,G φG. (1)

CCA maximizes the correlation between w̄i,DS
and w̄i,G to obtain φDS and φG such that

ρ(φDS , φG) = max
φDS ,φG

E[〈w̄i,DS , w̄i,G〉]√
E[w̄2

i,DS ]E[w̄2
i,G]

(2)

where ρ is the correlation between the projected
word embeddings and E is the expectation over all
words i ∈ V∩.

The d-dimensional CCA with d > 1 can be de-
fined recursively. Suppose the first d − 1 pairs
of canonical variables are defined. Then the dth

pair is defined by seeking vectors maximizing the
same correlation function subject to the constraint
that they be uncorrelated with the first d − 1
pairs. Equivalently, matrices of projection vec-
tors ΦDS ∈ Rd1×d and ΦG ∈ Rd2×d are ob-
tained for all vectors in WDS and WG where d ≤
min {d1, d2}. Embeddings obtained by w̄i,DS =
wi,DS ΦDS and w̄i,G = wi,G ΦG are projections
along the directions of maximum correlation.

The final domain adapted embedding for word i
is given by ŵi,DA = αw̄i,DS + βw̄i,G, where the
parameters α and β can be obtained by solving the
following optimization,

min
α,β
‖w̄i,DS − (αw̄i,DS + βw̄i,G)‖22+

‖w̄i,G − (αw̄i,DS + βw̄i,G)‖22. (3)

Solving (3) gives a weighted combination with
α = β = 1

2 , i.e., the new vector is equal to the
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average of the two projections:

ŵi,DA =
1

2
w̄i,DS +

1

2
w̄i,G. (4)

Because of its linear structure, the CCA in (2)
may not always capture the best relationships be-
tween the two matrices. To account for nonlinear-
ities, a kernel function, which implicitly maps the
data into a high dimensional feature space, can be
applied. For example, given a vector w ∈ Rd, a
kernel function K is written in the form of a fea-
ture map ϕ defined by ϕ : w = (w1, . . . ,wd) 7→
ϕ(w) = (ϕ1(w), . . . , ϕm(w))(d < m) such that
given wa and wb

K(wa,wb) = 〈ϕ(wa), ϕ(wb)〉.

In kernel CCA, data is first projected onto a
high dimensional feature space before performing
CCA. In this work the kernel function used is a
Gaussian kernel, i.e.,

K(wa,wb) = exp
(
− ||wa−wb ||2

2σ2

)
.

The implementation of kernel CCA follows the
standard algorithm described in several texts such
as (Hardoon et al., 2004); see reference for details.

3 Experimental Evaluation

This section evaluates DA embeddings in binary
sentiment classification tasks on four standard data
sets. Document embeddings are obtained via (i) a
standard framework, i.e document embeddings are
a weighted combination of their constituent word
embeddings and (ii) by initializing a state of the
art sentence encoding algorithm InferSent (Con-
neau et al., 2017) with word embeddings to obtain
sentence embeddings. Encoded sentences are then
classified using a Logistic Regressor.

3.1 Datasets

The following balanced and imbalanced data sets
are used for experimentation,

• Yelp: This is a balanced data set consisting of
1000 restaurant reviews obtained from Yelp.
Each review is labeled as either ‘Positive’ or
‘Negative’. There are a total of 2049 distinct
word tokens in this data set.

Data Set Embedding Avg Precision Avg F-score Avg AUC

Yelp

WDA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

85.36± 2.8
83.69± 4.7
87.45± 1.2
84.52± 2.3
88.11± 3.0
83.69± 3.5
78.09± 1.7
86.22± 3.5
80.14± 2.6
85.11± 2.3
84.20± 3.7
77.13± 4.2
82.10± 3.5
82.80± 3.5
75.36± 5.4
73.08± 2.2

81.89±2.8
79.48±2.4
83.36±1.2
80.02±2.6
85.35±2.7
78.99±4.2
76.04±1.7
84.35±2.4
78.50±3.0
83.51±2.2
80.39±3.7
72.32±7.9
76.74±3.4
78.28±3.5
71.17±4.3
70.97±2.4

82.57±1.3
80.33±2.9
84.10±0.9
81.04±2.1
85.80±2.4
80.03±3.7
76.66±1.5
84.65±2.2
78.92±2.7
83.80±2.0
80.83±3.9
74.17±5.0
78.17±2.7
79.35±3.1
72.57±4.3
71.76±2.1

Amazon

WDA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

86.30±1.9
84.68±2.4
87.09±1.8
84.80±1.5
89.73±2.4
85.67±2.3
85.68±3.2
83.50±3.4
82.36±2.0
87.28±2.9
84.93±1.6
81.58±2.5
79.91±2.7
84.55±1.9
82.65±4.4
74.20±5.8

83.00±2.9
82.27±2.2
82.63±2.6
81.42±1.9
85.47±2.4
83.83±2.3
81.23±3.2
81.31±4.0
81.30±3.5
86.17±2.5
77.81±2.3
77.62±2.7
81.63±2.8
80.52±2.5
73.92±3.8
72.49±5.0

83.39±3.2
82.78±1.7
83.50±2.0
82.12±1.3
85.56±2.6
84.21±2.1
82.20±2.9
81.86±3.7
81.51±2.5
86.42±2.0
79.52±1.7
78.72±2.7
81.46±2.6
81.45±2.0
76.40±3.2
73.11±4.8

IMDB

DA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

73.84±1.3
73.35±2.0
82.36±4.4
80.66±4.5
54.50±2.5
54.08±2.0
60.65±3.5
58.47±2.7
73.25±3.7
53.87±2.2
78.28±3.2
64.44±2.6
50.53±1.8
78.92±3.7
67.92±1.7
56.87±3.6

73.07±3.6
73.00±3.2
78.95±2.7
75.95±4.5
54.42±2.9
53.03±3.5
58.95±3.2
57.62±3.0
74.55±3.2
51.77±5.8
77.67±3.7
65.18±3.5
62.39±3.5
74.88±3.1
69.79±5.3
56.04±3.1

73.17±2.4
73.06±2.0
79.66±2.6
77.23±3.8
53.91±2.0
54.90±2.1
58.95±3.7
58.03±3.9
73.02±4.7
53.54±1.9
74.55±2.9
64.62±2.6
49.96±2.3
75.60±2.4
69.71±3.8
59.53±8.9

A-CHESS

DA

WG

WDS

KCCA(Glv, LSA)
CCA(Glv, LSA)

KCCA(w2v, LSA)
CCA(w2v, LSA)

KCCA(GlvCC, LSA)
CCA(GlvCC, LSA)

KCCA(w2v, DSw2v)
CCA(w2v, DSw2v)
concSVD(Glv, LSA)
concSVD(w2v, LSA)

concSVD(GlvCC, LSA)
GloVe

GloVe-CC
word2vec

LSA
word2vec

32.07±1.3
32.70±1.5
33.45±1.3
33.06±3.2
36.38±1.2
32.11±2.9
25.59±1.2
24.88±1.4
27.27±2.9
29.84±2.3
28.09±1.9
30.82±2.0
38.13±0.8
32.67±2.9
27.42±1.6
24.48±0.8

39.32±2.5
35.48±4.2
39.81±1.0
34.02±1.1
34.71±4.8
36.85±4.4
28.27±3.1
29.17±3.1
34.45±3.0
36.32±3.3
35.06±1.4
33.67±3.4
27.45±3.1
31.72±1.6
34.38±2.3
27.97±3.7

65.96±1.3
62.15±2.9
65.92±0.6
60.91±0.9
61.36±2.6
62.99±3.1
57.25±1.7
57.76±2.0
61.59±2.3
62.94±1.1
62.13±2.6
60.80±2.3
57.49±1.2
59.64±0.5
61.56±1.9
57.08±2.5

Table 1: This table shows results from the classi-
fication task using sentence embeddings obtained
from weighted averaging of word embeddings.
Metrics reported are average Precision, F-score
and AUC and the corresponding standard devia-
tions (STD). Best results are attained by KCCA
(GlvCC, LSA) and are highlighted in boldface.

• Amazon: In this balanced data set there are
1000 product reviews obtained from Ama-
zon. Each product review is labeled either
‘Positive’ or ‘Negative’. There are a total of
1865 distinct word tokens in this data set.

• IMDB: This is a balanced data set consisting
of 1000 reviews for movies on IMDB. Each
movie review is labeled either ‘Positive’ or
‘Negative’. There are a total of 3075 distinct
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Data Set Embedding Avg Precision Avg F-score Avg AUC

Yelp

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC,LSA)

RNTN

86.47±1.9
91.06±0.8
86.26±1.4
85.53±2.1
83.11±1.1

83.51±2.6
88.66±2.4
82.61±1.1
84.90±1.7

-

83.83±2.2
88.76±2.4
83.99±0.8
84.96±1.5

-

Amazon

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC, LSA)

RNTN

87.93±2.7
90.56±2.1
87.12±2.6
85.73±1.9
82.84±0.6

82.41±3.3
86.52±2.0
83.18±2.2
85.19±2.4

-

83.24±2.8
86.74±1.9
83.78±2.1
85.17±2.6

-

IMDB

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC, LSA)

RNTN

54.02±3.2
59.76±7.3
53.62±1.6
52.75±2.3
80.88±0.7

53.03±5.2
53.26±6.1
50.62±5.1
53.05±6.0

-

53.01±2.0
56.46±3.4
58.75±3.7
53.54±2.5

-

A-CHESS

GlvCC
KCCA(GlvCC, LSA)

CCA(GlvCC, LSA)
concSVD(GlvCC, LSA)

RNTN

52.21±5.1
55.37±5.5
54.34±3.6
40.41±4.2

-

55.26±5.6
50.67±5.0
48.76±2.9
44.75±5.2

-

74.28±3.6
69.89±3.1
68.78±2.4
68.13±3.8

-

Table 2: This table shows results obtained by us-
ing sentence embeddings from the InferSent en-
coder in the sentiment classification task. Met-
rics reported are average Precision, F-score and
AUC along with the corresponding standard devi-
ations (STD). Best results are obtained by KCCA
(GlvCC, LSA) and are highlighted in boldface.

word tokens in this data set.

• A-CHESS: This is a proprietary data set1 ob-
tained from a study involving users with al-
cohol addiction. Text data is obtained from
a discussion forum in the A-CHESS mobile
app (Quanbeck et al., 2014). There are a total
of 2500 text messages, with 8% of the mes-
sages indicative of relapse risk. Since this
data set is part of a clinical trial, an exact
text message cannot be provided as an exam-
ple. However, the following messages illus-
trate typical messages in this data set, “I’ve
been clean for about 7 months but even now
I still feel like maybe I won’t make it.” Such
a message is marked as ‘threat’ by a human
moderator. On the other hand there are other
benign messages that are marked ‘not threat’
such as “30 days sober and counting, I feel
like I am getting my life back.” The aim is
to eventually automate this process since hu-
man moderation involves considerable effort
and time. This is an unbalanced data set ( 8%
of the messages are marked ‘threat’) with a
total of 3400 distinct work tokens.

The first three data sets are obtained from (Kotzias
et al., 2015).

1Center for Health Enhancement System Services at UW-
Madison

3.2 Word embeddings and baselines:

This section briefly describes the various generic
and DS embeddings used. We also compare
against a basic DA embedding baseline in both the
standard framework and while initializing the neu-
ral network baseline.

• Generic word embeddings: Generic word
embeddings used are GloVe2 from both
Wikipedia and common crawl and the
word2vec (Skip-gram) embeddings3. These
generic embeddings will be denoted as Glv,
GlvCC and w2v.

• DS word embeddings: DS embeddings are
obtained via Latent Semantic Analysis (LSA)
and via retraining word2vec on the test data
sets using the implementation in gensim4.
DS embeddings via LSA are denoted by LSA
and DS embeddings via word2vec are de-
noted by DSw2v.

• concatenation-SVD baseline: Generic and
DS embeddings are concatenated to form a
single embeddings matrix. SVD is performed
on this matrix and the resulting singular vec-
tors are projected onto the d largest singular
values to form resultant word embeddings.
These meta-embeddings proposed by (Yin
and Schütze, 2016) have demonstrated con-
siderable success in intrinsic tasks such as
similarities, analogies etc.

Details about dimensions of the word embeddings
and kernel hyperparameter tuning are found in the
supplemental material.

The following neural network baselines are
used in this work,

• InferSent:This is a bidrectional LSTM based
sentence encoder (Conneau et al., 2017) that
learns sentence encodings in a supervised
fashion on a natural language inference (NLI)
data set. The aim is to use the sentence en-
coder trained on the NLI data set to learn
generic sentence encodings for use in trans-
fer learning applications.

2https://nlp.stanford.edu/projects/
glove/

3https://code.google.com/archive/p/
word2vec/

4https://radimrehurek.com/gensim/
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• RNTN: The Recursive Neural Tensor Net-
work (?) baseline is a neural network based
dependency parser that performs sentiment
analysis. Since the data sets considered in our
experiments have binary sentiments we com-
pare against this baseline as well.

Note that InferSent is fine-tuned with a combi-
nation of GloVe common crawl embeddings and
DA embeddings, and concSVD. The choice of
GloVe common crawl embeddings is in keeping
with the experimental conditions of the authors of
InferSent. Since the data sets at hand do not con-
tain all the tokens required to retrain InferSent, we
replace word tokens that are common across our
test data sets and InferSent training data with the
DA embeddings and concSVD.

Since we have a combination of balanced and
unbalanced test data sets, test metrics reported are
Precision, F-score and AUC. We perform 10-fold
cross validation to determine hyperparameters and
so we report averages of the performance metrics
along with the standard deviation.

4 Results and Discussion

From Tables 1 and 2 we see that DA embed-
dings perform better than concSVD as well as
the generic and DS word embeddings, when used
in a standard classification task as well as when
used to initialize a sentence encoding algorithm.
As expected, LSA DS embeddings provide bet-
ter results than word2vec DS embeddings. Note
that on the imbalanced A-CHESS data set, on the
standard classification task, KCCA embeddings
perform better than the other baselines across all
three performance metrics. However from Table 2,
GlvCC embeddings achieve a higher average F-
score and AUC over KCCA embeddings that ob-
tain the highest precision.

While one can argue that when evaluating a
classifier, the F-score and AUC are better indi-
cators of performance, it is to be noted that A-
CHESS is highly imbalanced and precision is cal-
culated on the minor (positive) class that is of most
interest. Also note that, InferSent is retrained on
the balanced NLI data set that is much larger in
size than the A-CHESS test set. Certainly such
a training set has more instances of positive sam-
ples. Thus when using generic word embeddings
to initialize the sentence encoder, which uses the
outputs in the classification task, the overall F-
score and AUC are better.

From our hypothesis, KCCA embeddings are
expected to perform better than the others be-
cause CCA/KCCA provides an intuitively bet-
ter technique to preserve information from both
the generic and DS embeddings. On the other
hand the concSVD based embeddings do not ex-
ploit information in both the generic and DS em-
beddings. Furthermore, in their work (Yin and
Schütze, 2016) propose to learn an ‘ensemble’ of
meta-embeddings by learning weights to combine
different generic word embeddings via a simple
neural network. We determine the proper weight
for combination of DS and generic embeddings in
the CCA/KCCA space using the simple optimiza-
tion problem given in Equation (3).

Thus, task specific DA embeddings formed by
a proper weighted combination of DS and generic
word embeddings are expected to do better than
the concSVD embeddings and individual generic
and/or DS embeddings and this is verified empiri-
cally. Also note that the LSA DS embeddings do
better than the word2vec DS embeddings. This is
expected due to the size of the test sets and the na-
ture of the word2vec algorithm. We expect similar
observations when using GloVe DS embeddings
owing to the similarities between word2vec and
GloVe.

5 Conclusion

This paper presents a simple yet effective method
to learn Domain Adapted word embeddings that
generally outperform generic and Domain Spe-
cific word embeddings in sentiment classification
experiments on a variety of standard data sets.
CCA/KCCA based DA embeddings generally out-
perform even a concatenation based methods.
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Abstract

Semantic parsing requires training data
that is expensive and slow to collect.
We apply active learning to both tradi-
tional and “overnight” data collection ap-
proaches. We show that it is possible
to obtain good training hyperparameters
from seed data which is only a small
fraction of the full dataset. We show
that uncertainty sampling based on least
confidence score is competitive in tradi-
tional data collection but not applicable
for overnight collection. We evaluate sev-
eral active learning strategies for overnight
data collection and show that different ex-
ample selection strategies per domain per-
form best.

1 Introduction

Semantic parsing maps a natural language query
to a logical form (LF) (Zettlemoyer and Collins,
2005, 2007; Haas and Riezler, 2016; Kwiatkowksi
et al., 2010). Producing training data for seman-
tic parsing is slow and costly. Active learning is
effective in reducing costly data requirements for
many NLP tasks. In this work, we apply active
learning to deep semantic parsing and show that
we can substantially reduce the data required to
achieve state-of-the-art results.

There are two main methods for generating se-
mantic parsing training data. The traditional ap-
proach first generates the input natural language
utterances and then labels them with output LFs.
We show that active learning based on uncertainty
sampling works well for this approach.

The “overnight” annotation approach (Wang
et al., 2015) generates output LFs from a grammar,
and uses crowd workers to paraphrase these LFs
into input natural language queries. This approach

is faster and cheaper than traditional annotation.
However, the difficulty and cost of data genera-
tion and validation are still substantial if we need a
large amount of data for the system to achieve high
accuracy; if the logical forms can express complex
combinations of semantic primitives that must be
covered; or if the target language is one with rela-
tively few crowd workers.

Applying active learning to the overnight ap-
proach is even more compelling, since the unla-
belled LFs can be generated essentially for free by
a grammar. However, conventional active learning
strategies are not compatible with the overnight
approach, since the crowd annotators produce in-
puts (utterances) rather than labels (LFs).

In order to apply active learning to deep se-
mantic parsing, we need a way of selecting hy-
perparameters without requiring the full training
dataset. For optimal performance, we should re-
run hyperparameter tuning for each active learning
round, but this is prohibitively expensive compu-
tationally. We show that hyperparameters selected
using a random subset of the data (about 20%) per-
form almost as well as those from the full set.

Our contributions are (1) a simple hyperparam-
eter selection technique for active learning ap-
plied to semantic parsing, and (2) straightforward
active learning strategies for both traditional and
overnight data collection that significantly reduce
data annotation requirements. To the best of our
knowledge we are the first to investigate active
learning for overnight data collection.

2 Related work

Sequence-to-sequence models are currently the
state-of-the-art for semantic parsing (Jia and
Liang, 2016; Dong and Lapata, 2016; Duong et al.,
2017). In this paper, we also exploit a sequence-
to-sequence model to minimise the amount of la-
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belled training data required to achieve state-of-
the-art semantic parsing results.

Active learning has been applied to a variety
of machine learning and NLP tasks (Thompson
et al., 1999; Tang et al., 2002; Chenguang Wang,
2017) employing various algorithms such as least
confidence score (Culotta and McCallum, 2005),
large margin (Settles and Craven, 2008), entropy
based sampling, density weighting method (Set-
tles, 2012), and reinforcement learning (Fang
et al., 2017). Nevertheless, there has been limited
work applying active learning for deep semantic
parsing with the exception of Iyer et al. (2017).
Different from conventional active learning, they
used crowd workers to select what data to annotate
for traditional semantic parsing data collection.

In this paper, we apply active learning for both
traditional and overnight data collection with the
focus on overnight approach. In addition, a limi-
tation of prior active learning work is that the hy-
perparameters are usually predefined in some way,
mostly from different work on the same or simi-
lar dataset, or from the authors experience (Wang
et al., 2017; Fang et al., 2017). In this paper, we
investigate how to efficiently set the hyperparam-
eters for the active learning process.

3 Base S2S Model

We base our approach on the attentional sequence-
to-sequence model (S2S) of Bahdanau et al.
(2014). This attentional model uses a bidirec-
tional recurrent neural network (RNN) to encode
a source as a sequence of vectors, which are used
by another RNN to generates output. Given the
source utterance x = [x1, x2, ...xn] and target LF
y = [y1, y2, ...ym], we train the model to minimize
the loss under model parameters ✓.

loss = �
mX

i=1

log P(yi|y1, ..yi�1, x; ✓) (1)

Additionally, we apply the UNK replacement tech-
nique in Duong et al. (2017), keeping the original
sentence in the data.1

4 Active learning models

There is a diversity of strategies for active learn-
ing. A simple and effective active learning strat-
egy is based on least confidence score (Culotta

1We call S2S model applied to traditional data collection
and overnight data collection as forward S2S and backward
S2S respectively. The forward S2S model estimates P(y|x),
the backward S2S model estimates P(x|y).

and McCallum, 2005). This strategy selects ut-
terance x0 to label from the unlabelled data Ux as
follows:

x0 = argmin
x2Ux

⇥
max

y⇤ P(y⇤|x; ✓)
⇤

where y⇤ is the most likely output. We found
that this least confidence score works well across
datasets, even better than more complicated strate-
gies in traditional data collection (described be-
low).

4.1 Traditional data collection

In the traditional (forward) approach, we start with
the list of unlabelled utterances and an initial seed
of utterances paired with LFs. We gradually select
utterances to annotate with the aim of maximizing
the test score as early as possible. We use forward
S2S sentence loss as defined in Equation (1) as the
least confidence score measurement (i.e. select the
instance with higher loss).

The drawback of a least confidence score strat-
egy (and strategies based on other measurements
such as large margin), is that they only leverage
a single measurement to select utterances (Settles
and Craven, 2008). To combine multiple measure-
ments, we build a classifier to predict if the model
will wrongly generate the LF given the utterance,
and select those utterances for annotation. The
classifier is trained on the data generated by run-
ning 5-fold cross validation on annotated data.2

We exploit various features, including sentence
log loss, the margin between the best and second
best solutions, source sentence frequency, source
encoder last hidden state and target decoder last
hidden state (see supplementary material §A.1 for
more detail) and various classifier architectures in-
cluding logistic regression, feedforward networks
and multilayer convolutional neural networks. On
the development corpus, we observed that the least
confidence score works as well as the classifier
strategy.

4.2 Overnight data collection

In the overnight (backward) approach, we start
with the set of all unlabelled LFs (Uy), and an ini-
tial randomly-selected seed of LFs paired with ut-
terances (i.e. labelled LFs Ly). The aim is to select

2This classifier is complementary to the approach pro-
posed in Iyer et al. (2017) where we use this classifier instead
of user feedback.

44



LFs for which we should obtain utterances, max-
imizing the test score as early as possible. In the
overnight approach, we can’t use the least confi-
dence score (i.e. the forward S2S sentence loss)
directly since we can’t estimate P(y|x) because
we don’t know the utterance x. We have to some-
how approximate this probability with regard to
the performance on test.

A simple strategy is just to apply the backward
S2S model and estimate P(x|y), e.g. we select LF
y0 to label from the unlabelled data Uy as follows:

y0 = argmin
y2Uy

⇥
max

x⇤ P(x⇤|y; ✓)
⇤

Essentially, we train the S2S model to predict the
utterance given the LF. The motivation is that if
we can reconstruct the utterance from the LF then
we could possibly generate LFs from utterances.
However, this strategy ignores one important as-
pect of semantic parsing, which is that LFs are an
abstraction of utterances. One utterance is mapped
to only one LF, but one LF corresponds to many
utterances.

Since the forward S2S loss performs so well,
another strategy is to approximate the selections
made by this score. We train a linear binary clas-
sifier3 to predict selections, using features which
can be computed from LFs only. We extract two
set of features from the LF model and the back-
ward S2S model. The LF model is an RNN lan-
guage model but trained on LFs (Zaremba et al.,
2014).4 We extract the LF sentence log proba-
bility i.e. log P(y), feature from this model. The
backward S2S model, as mentioned above, is the
model trained to predict an utterance given a LF.
We extracted the same set of features as mentioned
in §4.1 including LF sentence log loss, margin be-
tween best and second best solutions, and LF fre-
quencies.

On the development corpus, we first run one ac-
tive learning round using forward S2S model sen-
tence loss (i.e. modelling P(y|x)) on the initial an-
notated data Ly. The set of selected LFs based
on forward S2S loss will be the positive exam-
ples, and all other LFs that are not selected will
be the negative examples for training the binary
classifier. Our experiments show that the classi-
fier which uses the combination of two features
(source LF frequencies and the margin of best and

3Instead of binary classifier, it would also be possible to
train a logistic model. However, we leave this for future work.

4We use the configuration from Zaremba et al. (2014).

second best solution) are the best predictor of what
is selected by forward S2S model log loss (i.e.
modelling P(y|x)). It is interesting to see that ab-
solute score of backward S2S model loss is not a
good indicator as it is not selected. This may be
due to the fact that utterance-LF mapping is one-
to-many and the model probability is distributed
to all valid output utterances. Hence, low proba-
bility is not necessary an indicator of bad predic-
tion. We use the linear combination of the two
features mentioned above with the weights from
the binary classifier as a means of selecting the LF
for overnight active learning on different corpora
without retraining the classifier.

5 Experiment

5.1 Datasets
We experiment with the NLMaps corpus (Haas
and Riezler, 2016) which was collected using
the traditional approach. We tokenize follow-
ing Kočiský et al. (2016). We also experiment with
the Social Network corpus from the Overnight
dataset (Wang et al., 2015) (which was collected
using the overnight approach). Social Network
was chosen as being the largest dataset available.
Since neither corpora have a separate development
set, we use 10% of the training set as development
data for early stopping. We select ATIS (Zettle-
moyer and Collins, 2007) as our development cor-
pus for all feature selection and experiments with
classifiers in §4.1 and §4.2.

For evaluation, we use full LF exact match ac-
curacy for all experiments (Kočiský et al., 2016).
Note that this is a much stricter evaluation com-
pared with running through database evaluator as
in Wang et al. (2015).

5.2 Hyperparameter tuning
Hyperparameter tuning is important for good per-
formance. We tune the base S2S model (§3)
on the development data by generating 100 con-
figurations using Adam optimizer (Kingma and
Ba, 2014) and a permutation of different source
and target RNN sizes, RNN cell types, initializer,
dropout rates and mini-batch sizes.

As mentioned, hyperparameter tuning is often
overlooked in active learning. The common ap-
proach is just to use the configuration from a sim-
ilar problem, from prior work on the same dataset,

5The exact match accuracy for Social Network is ex-
tracted from logs from (Jia and Liang, 2016).
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Figure 1: Active learning for various selection criteria. Random baseline randomly select the training
data at each round. Fw S2S is used for traditional data collection using forward S2S loss score. Bw S2S
is used for overnight data collection using backward S2S loss score. Bw classifier is used also for the
overnight approach but linearly combines several scores together as mentioned in §4.2. The scores in
parentheses measure the area under the curve. The dashed lines are the SOTA from Table 1.

NLMap Social ATIS

From ATIS 76.0 65.8 86.0
Small subset 84.2 68.9 85.7
Full data 84.2 69.1 86.0

SOTA 84.1 68.8 86.1

Table 1: The LF exact match accuracy on NLMap,
Social Network and ATIS with configurations
from ATIS, from hyperparameter tuning on small
subset of data (10% + dev) or on the full train-
ing data. The supervised SOTA for NLMap and
ATIS (Duong et al., 2017) and Social Network (Jia
and Liang, 2016) are provided for reference.5

or based on the authors own experience. How-
ever, in practice we don’t have any prior work to
copy the configuration from. Table 1 shows the
experiments with the NLMap and Social Network
corpora with configurations: 1) copied from an-
other dataset (ATIS), 2) tuned on a small subset
(10% of train data plus development data) and 3)
tuned on the full dataset. We can see that copy-
ing from a different dataset results in a subopti-
mal solution, which is expected since the different
datasets are significantly different. It is surprising
that tuning on small subset of the data performs
as well as tuning on all the data and, more impor-
tantly, it achieves similar results as the state of the
art (SOTA).

5.3 Active Learning Results
Figure 1 shows the active learning curve for
NLMap, ATIS and Overnight (Social Network)
datasets. 10% of data is randomly selected as
initial seed data for active learning and hyperpa-
rameter tuning. We run active learning for 10
rounds, selecting 10% of the data at each round.
Round 0 reports the result trained on the initial
seed data and round 9 is the result on the whole
training data. For reference, we also report Fw S2S
for Social Network, treating that corpus as if they
were collected using the traditional approach, and
Bw S2S/classifier for NLMap and ATIS treating
those corpora as if they were collected using the
overnight approach.

For traditional data collection (forward direc-
tion), S2S loss consistently outperforms the ran-
dom baselines on both datasets. The differences
are as high as 9% for NLMap (at round 4). Apply-
ing this strategy for ATIS, we reach SOTA results
at round 4, using only 50% of data. We also exper-
imented with the large margin baseline and classi-
fier strategies as mentioned in §4.1. The least con-
fidence strategy using S2S loss outperforms large
margin and achieves similar performance with the
more complicated classifier strategy, thus we omit
those results for brevity.

On the overnight data collection active learn-
ing (backward direction), the results are split. The
backward S2S loss performs particularly well on
the NLMap corpus, approximating the forward
S2S performance. However, it performs similar
to the random baseline in the other corpora. On
the other hand, the classifier strategy performs
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well on both ATIS and Social Network but poorly
on NLMap. Using this strategy, we approximate
the SOTA for both ATIS and Social Network at
round 5 and 6 respectively (saving 40% and 30%
of data). We suspect that backward S2S loss per-
forms so well on NLMap since there is a one-to-
one mapping between utterance and LF. The num-
ber of unique LFs in the training data for NLMap,
ATIS and Overnight are 95.4%, 28.4% and 19.5%
respectively. All in all, our proposed strategies for
“overnight” active learning are nearly as good as
traditional active learning, showing in similar area
under the curve value in Figure 1.

6 Conclusion

We have discussed practical active learning for
deep semantic parsing. We have empirically
shown that it is possible to get good hyperpa-
rameters from only a small subset of annotated
data. We applied active learning for both tradi-
tional and overnight semantic parsing data collec-
tion. For traditional data collection, we show that
least confidence score based on S2S log loss per-
forms well across datasets. Applying active learn-
ing for overnight data collection is challenging,
and the best performing strategy depends on the
domain. We recommend that applications explore
both the backward S2S and classifier strategies.
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Abstract

In this paper we suggest to leverage the
partition of articles into sections, in or-
der to learn thematic similarity metric be-
tween sentences. We assume that a sen-
tence is thematically closer to sentences
within its section than to sentences from
other sections. Based on this assumption,
we use Wikipedia articles to automatically
create a large dataset of weakly labeled
sentence triplets, composed of a pivot sen-
tence, one sentence from the same sec-
tion and one from another section. We
train a triplet network to embed sentences
from the same section closer. To test the
performance of the learned embeddings,
we create and release a sentence cluster-
ing benchmark. We show that the triplet
network learns useful thematic metrics,
that significantly outperform state-of-the-
art semantic similarity methods and multi-
purpose embeddings on the task of the-
matic clustering of sentences. We also
show that the learned embeddings perform
well on the task of sentence semantic sim-
ilarity prediction.

1 Introduction

Text clustering is a widely studied NLP problem,
with numerous applications including collabora-
tive filtering, document organization and index-
ing (Aggarwal and Zhai, 2012). Clustering can
be applied to texts at different levels, from sin-
gle words to full documents, and can vary with
respect to the clustering goal. In this paper, we fo-
cus on the problem of clustering sentences based
on thematic similarity, aiming to group together
sentences that discuss the same theme, as opposed

∗* These authors contributed equally to this work.

to the related task of clustering sentences that rep-
resent paraphrases of the same core statement.

Thematic clustering is important for various use
cases. For example, in multi-document summa-
rization, one often extracts sentences from mul-
tiple documents that have to be organized into
meaningful sections and paragraphs. Similarly,
within the emerging field of computational argu-
mentation (Lippi and Torroni, 2016), arguments
may be found in a widespread set of articles (Levy
et al., 2017), which further require thematic orga-
nization to generate a compelling argumentative
narrative.

We approach the problem of thematic cluster-
ing by developing a dedicated sentence similar-
ity measure, targeted at a comparative task – The-
matic Distance Comparison (TDC): given a pivot
sentence, and two other sentences, the task is to
determine which of the two sentences is themati-
cally closer to the pivot. By training a deep neural
network (DNN) to perform TDC, we are able to
learn a thematic similarity measure.

Obtaining annotated data for training the DNN
is quite demanding. Hence, we exploit the natural
structure of text articles to obtain weakly-labeled
data. Specifically, our underlying assumption is
that sentences belonging to the same section are
typically more thematically related than sentences
appearing in different sections. Armed with this
observation, we use the partition of Wikipedia ar-
ticles into sections to automatically generate sen-
tence triplets, where two of the sentences are from
the same section, and one is from a different sec-
tion. This results in a sizable training set of weakly
labeled triplets, used to train a triplet neural net-
work (Hoffer and Ailon, 2015), aiming to predict
which sentence is from the same section as the
pivot in each triplet. Table 1 shows an example
of a triplet.

To test the performance of our network on the-
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matic clustering of sentences, we create a new
clustering benchmark based on Wikipedia sec-
tions. We show that our methods, combined
with existing clustering algorithms, outperform
state-of-the-art general-purpose sentence embed-
ding models in the task of reconstructing the orig-
inal section structure. Moreover, the embeddings
obtained from the triplet DNN perform well also
on standard semantic relatedness tasks. The main
contribution of this work is therefore in proposing
a new approach for learning thematic relatedness
between sentences, formulating the related TDC
task and creating a thematic clustering benchmark.
To further enhance research in these directions, we
publish the clustering benchmark on the IBM De-
bater Datasets webpage 1.

2 Related Work

Deep learning via triplet networks was first in-
troduced in (Hoffer and Ailon, 2015), and has
since become a popular technique in metric learn-
ing(Zieba and Wang, 2017; Yao et al., 2016;
Zhuang et al., 2016). However, previous usages
of triplet networks were based on supervised data
and were applied mainly to computer vision ap-
plications such as face verification. Here, for the
first time, this architecture is used with weakly-
supervised data for solving an NLP related task.
In (Mueller and Thyagarajan, 2016), a supervised
approach was used to learn semantic sentence sim-
ilarity by a Siamese network, that operates on
pairs of sentences. In contrast, here the triplet
network is trained with weak supervision, aim-
ing to learn thematic relations. By learning from
triplets, rather than pairs, we provide the DNN
with a context, that is crucial for the notion of
similarity. (Hoffer and Ailon, 2015) show that
triplet networks perform better in metric learning
than Siamese networks, probably due to this valu-
able context. Finally, (Palangi et al., 2016) used
click-through data to learn sentence similarity on
top of web search engine results. Here we propose
a different type of weak supervision, targeted at
learning thematic relatedness between sentences.

3 Data Construction

We present two weakly-supervised triplet datasets.
The first is based on sentences appearing in same
vs. different sections, and the second is based on

1http://www.research.ibm.com/haifa/
dept/vst/debating_data.shtml

section titles. The datasets are extracted from the
Wikipedia version of May 2017.

3.1 Sentence Triplets
For generating the sentence triplet dataset, we ex-
ploit the Wikipedia partitioning into sections and
paragraphs, using OpenNLP2 for sentence extrac-
tion. We then apply the following rules and fil-
ters, in order to reduce noise and to create a high-
quality dataset, ‘triplets-sen’: i) The maximal dis-
tance between the intra-section sentences is lim-
ited to three paragraphs. ii) Sentences with less
than 5, or more than 50 tokens are filtered out.
iii) The first and the ”Background” sections are re-
moved due to their general nature. iv) The follow-
ing sections are removed: ”External links”, ”Fur-
ther reading”, ”References”, ”See also”, ”Notes”,
”Citations” and ”Authored books”. These sections
usually list a set of items rather than discuss a spe-
cific subtopic of the article’s title. v) Only arti-
cles with at least five remaining sections are con-
sidered, to ensure focusing on articles with rich
enough content. An example of a triplet is shown
in Table 1.

1. McDonnell resigned from Martin in 1938
and founded McDonnell Aircraft Corporation in 1939

2. In 1967, McDonnell Aircraft merged with the
Douglas Aircraft Company to create McDonnell Douglas

3. Born in Denver, Colorado, McDonnell was raised in
Little Rock, Arkansas, and graduated from Little Rock
High School in 1917

Table 1: Example of a section-sen triplet from the
article ‘James Smith McDonnell’. The first two
sentences are from the section ’Career’ and the
third is from ‘Early life’

In use-cases such as multi-document summa-
rization(Goldstein et al., 2000), one often needs
to organize sentences originating from different
documents. Such sentences tend to be stand-
alone sentences, that do not contain the syntactic
cues that often exist between adjacent sentences
(e.g. co-references, discourse markers etc.). Cor-
respondingly, to focus our weakly labeled data on
sentences that are typically stand-alone in nature,
we consider only paragraph opening sentences.

An essential part of learning using triplets, is the
mining of difficult examples, that prevent quick
stagnation of the network (Hermans et al., 2017).
Since sentences in the same article essentially dis-
cuss the same topic, a deep understanding of se-

2https://opennlp.apache.org/
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mantic nuances is necessary for the network to
correctly classify the triplets. In an attempt to ob-
tain even more challenging triplets, the third sen-
tence is selected from an adjacent section. Thus,
for a pair of intra-section sentences, we create a
maximum of two triplets, where the third sentence
is randomly selected from the previous/next sec-
tion (if exists). The selection of the third sentence
from both previous and next sections is intended
to ensure the network will not pick up a signal re-
lated to the order of the sentences. In Section 5
we compare our third-sentence-selection method
to two alternatives, and examine the effect of the
selection method on the model performance.

Out of the 5.37M Wikipedia articles, 809K
yield at least one triplet. We divide these arti-
cles into three sets, training (80%), validation and
test (10% each). In terms of number of triplets,
the training set is composed of 1.78M triplets,
whereas the validation and test are composed of
220K and 223K triplets respectively.

3.2 Triplets with Section Titles

Incorporating the section titles into the training
data can potentially enhance the network per-
formance. Correspondingly, we created another
triplets data, ’triplets-titles’, where in each triplet
the first sentence in the section (the ’pivot’) is
paired with the section title3, as well as with the
title of the previous/next sections (if exists), where
the former pair is assumed to have greater the-
matic similarity. After applying the filters de-
scribed above we end up with 1.38M , 172K and
173K triplets for the training, validation and test
set respectively. An example of a triplet is shown
in Table 2.

Note, that for this variation of the triplets data,
the network is expected to find a sentence embed-
ding which is closer to the embedding of the true
section title, than to the embedding of the title of
the previous/next section. The learned representa-
tion is expected to encode information about the
themes of the different sections to which the sen-
tence can potentially belong. Thus, thematically
related sentences are expected to have similar rep-
resentations.

3We define the section title to be the article title concate-
nated to the section title. For example, the title of the sec-
tion ”Pricing” in the article ”Black Market” is ”Black Market
Pricing”.

1. Bishop was appointed Minister for Ageing in 2003.
2. Julie Bishop Political career
3. Julie Bishop Early life and career

Table 2: Example of a triplet from the triplet-titles
dataset, generated from the article ’Julie Bishop’.

𝑁𝑒𝑡 𝑁𝑒𝑡 𝑁𝑒𝑡

𝑥% 𝑥 𝑥&

dist(𝑁𝑒𝑡 𝑥 , 𝑁𝑒𝑡 𝑥% )

𝑙𝑜𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

dist(𝑁𝑒𝑡 𝑥 , 𝑁𝑒𝑡 𝑥& )

Figure 1: Triplet Network

3.3 Sentence Clustering Benchmark (SCB)
Our main goal is to successfully partition sen-
tences into subtopics. Unfortunately, there is still
no standard evaluation method for sentence clus-
tering, which is considered a very difficult task
for humans (Geiss, 2009). Correspondingly, we
leverage again the partition of Wikipedia articles
into sections. We assume that this partition, as
performed by the Wikipedia editors, can serve as
ground truth for the clustering of the article sen-
tences. Based on this assumption we create a
sentence clustering benchmark (SCB). SCB in-
cludes 692 articles that were not used in the train-
ing and validation sets of ’triplet-sen’ and ’triplet-
titles’. The number of sections (and correspond-
ingly clusters) per article ranges from 5 to 12. The
number of clustered sentences ranges from 17 to
1614, with an average of 67 sentences per article.

4 Model Architecture

We adopt the triplet network architecture (Hoffer
and Ailon, 2015) (Figure 1) for obtaining sentence
embeddings via metric learning as follows.

Assume a training data of sentences, arranged
into triplets (x,x+,x−), where the pair (x,x+) is
presumably more similar than the pair (x,x−). To
train the model, each of the three sentences of
each triplet, is fed into the same network (Net),
as a sequence of word embeddings. The layer out-
puts their representations Net(x), Net(x+) and
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Net(x−) respectively. Our objective is to make
the representations of x and x+ closer than the rep-
resentations of x and x−. Thus the next layer uses
a distance function, denoted by ’dist’, to compute
two distances

d+ = dist(Net(x), Net(x+))
d− = dist(Net(x), Net(x−))

The final layer applies softmax on (d+,d−) that re-
sults in p(d+) and p(d−). Finally, the loss function
is given by:

loss = |p(d+)| + |1 - (p(d−)|
Net is composed of a Bi-directional LSTM with
hidden size 300 and 0.8 dropout followed by an
attention (Yang et al., 2016) layer of size 200. The
input to Net are the pre-trained glove word em-
beddings of 300d trained on 840B tokens (Pen-
nington et al., 2014). For dist and the loss func-
tion we use the L1 distance, which we found to
yield better results than L2 and cosine-similarity.
The selected loss function outperformed the pop-
ular triplet loss suggested in (Schroff et al., 2015).
Finally, we use Adam optimizer with initial learn-
ing rate of 0.001. Given a sentence s, Net(s) pro-
vides a sentence embedding of dimension 600.

5 Experiments

5.1 Reconstructing Article Sections
As mentioned, our main objective task is cluster-
ing sentences into subtopics. As a preliminary
step, we first evaluate our method on the triplet-
sen test set. We compare the model trained on
triplet-sen to two well known methods. The first,
mean-vectors, is simply the mean of the GloVe
embeddings of the sentence words (Tai et al.,
2015), which is considered a strong unsupervised
baseline. The second, skip-thoughts (Ryan Kiros,
2015), is among the state-of-the-art unsupervised
models for semantic similarity, and the most pop-
ular multi-purpose embedding method. We ad-
dress two versions of skip-thoughts: one is based
on the original 4800-dimensional vectors (skip-
thoughts-cs), and the other, skip-thoughts-SICK,
is based on the similarity function learned from
the SICK semantic similarity dataset, as described
in (Ryan Kiros, 2015). The aim of assessing skip-
thoughts-SICK is to examine how well a state-of-
the-art semantic similarity function performs on
the thematic clustering task. In the case of mean-
vectors and skip-thoughts-CS, the similarity be-
tween the sentences is computed using the cosine

similarity (CS) between the embedding vectors.
Table 3 indicates that our method, denoted by

triplet-sen, clearly outperforms the other tested
methods. Surprizingly, skip-thoughts-SICK is in-

Method accuracy
mean-vectors 0.65
skip-thoughts-CS 0.615
skip-thoughts-SICK 0.547
triplets-sen 0.74

Table 3: Results on the triplets data

ferior to skip-thoughts-CS. Note that an additional
interesting comparison is to a skip-thought ver-
sion obtained by learning a linear transformation
of the original vectors using the triplet datasets.
However, no off-the-shelf algorithm is available
for learning such transformation, and we leave this
experiment for future work.

Next we report results on the clustering bench-
mark, SCB (Section 3.3). We evaluate three
triplet-based models. Triplets-sen and triplets-
titles are the models trained on triplets-sen and
triplets-titles datasets respectively. Triplets-sen-
titles is a concatenation of the representations of
our two models. In addition we compare to mean-
vectors and skip-thoughts-CS.

The evaluation procedure is performed as fol-
lows: for each method, we first compute for the
sentences of each article, a similarity matrix, by
calculating the CS between the embedding vectors
of all pairs of sentences. We then use Iclust (Yom-
Tov and Slonim, 2009; Slonim et al., 2005) and
k-means to cluster the sentences, where the num-
ber of clusters is set to the number of sections
in SCB4. Since the clustering algorithms them-
selves are not the focus of this study, we choose
the classical, simple k-means, and one more ad-
vanced algorithm, Iclust. For the same reason,
we also set the number of clusters to the correct
number. Finally, we use standard agreement mea-
sures, MI, Adjusted MI (AMI) (Vinh et al., 2009),
Rand Index (RI) and Adjusted Rand Index (ARI)
(Rand, 1971), to quantify the agreement between
the ground truth and the clustering results.

As exhibited in Table 4, our models signifi-
cantly outperform the two other methods for both
clustering algorithms, where the best performance
is achieved by the concatenated representations
(triplets-sen-titles), suggesting the two models,

4For k-means, using L1 as the distance metric gave similar
results
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triplets-sen and triplets-titles, learned complemen-
tary features. The performance of skip-thoughts-
SICK on this task (not shown) was again inferior
to skip-thoughts-CS.

As mentioned in Section 3.1, the third sentence
in triplet-sen was selected from the sections adja-
cent to the pivot section, aiming to obtain more
difficult triplets. We use the clustering task to ex-
amine the effect of the selection method on the
model performance. We compare to two alterna-
tive methods: one that chooses the third sentence
from a random section within the same article, and
another (triplets-sen-rand-art), that chooses it ran-
domly from a random different article. Results
show that the first method leads to the same perfor-
mance as our method, whereas triplets-sen-rand-
art yields inferior results (see Table 4). A possi-
ble explanation is that the within-article triplets are
difficult enough to prevent stagnation of the learn-
ing process without the need for further hardening
of the task. However, the cross-article triplets are
too easy to classify, and do not provide the net-
work with the challenge and difficulty required for
obtaining high quality representations.

iclust
Method MI AMI RI ARI
mean-vectors 0.811 0.222 0.774 0.154
skip-thoughts-CS 0.656 0.125 0.747 0.087
triplets-sen-rand-art 0.885 0.266 0.787 0.192
triplets-sen 0.935 0.296 0.801 0.224
triplets-titles 0.904 0.273 0.799 0.206
triplets-sen-titles 0.945 0.303 0.803 0.230

kmeans
mean-vectors 0.706 0.153 0.7760 0.103
skip-thoughts-CS 0.624 0.099 0.745 0.067
triplets-sen-rand-art 0.793 0.205 0.775 0.145
triplets-sen 0.873 0.257 0.791 0.195
triplets-titles 0.836 0.231 0.786 0.172
triplets-sen-titles 0.873 0.258 0.791 0.194

Table 4: Results on the clustering task

5.2 Semantic Relatedness

As evident from the clustering results, our mod-
els learned well to capture thematic similarity be-
tween sentences. Here we investigate the perfor-
mance of our model in the more classical task of
semantic relatedness of sentences. Specifically,
we examine the SemEval 2014 Task 1: seman-
tic relatedness SICK dataset (Marelli et al., 2014).
We adopt the experimental setup of (Ryan Kiros,
2015) and learn logistic regression classifiers on
top of the absolute difference and the component-
wise product for all sentence pairs in the train-

ing data. The evaluation measures are Pearson r,
Spearman ρ, and mean square error (MSE). Ta-
ble 5 shows that like in the clustering task, best re-
sults are achieved by the concatenated embedding
triplets-sen-titles, which performs in the range be-
tween mean-vector and skip-thoughts-SICK.

Method r ρ MSE
mean-vectors 0.757 0.673 0.4557
skip-thoughts-SICK 0.858 0.791 0.287
triplets-sen 0.797 0.704 0.372
triplets-titles 0.786 0.685 0.393
triplets-sen-titles 0.818 0.724 0.339

Table 5: Results on the SICK semantic relatedness
subtask.

Table 6 presents some examples of predictions
of triplets-sen-titles compared to the ground truth
and to skip-thoughts-SICK predictions. The first
pair is semantically equivalent as both methods de-
tect. In the second pair, the first sentence is a nega-
tion of the second, but from the thematic point of
view they are rather similar, thus assigned a rela-
tively high score by our model.

sentences GT Tr Sk
1. A sea turtle is hunting for fish 4.5 4.2 4.5
2. A sea turtle is hunting for food
1. A sea turtle is not hunting for fish 3.4 4.1 3.8
2. A sea turtle is hunting for fish

Table 6: Example predictions on the SICK
data. GT = groundtruth, Tr=triplets-sen, Sk=skip-
thoughts-SICK

6 Summary

In this paper we suggest a new approach for learn-
ing thematic similarity between sentences. We
exploit the Wikipedia section structure to gener-
ate a large dataset of weakly labeled triplets of
sentences with no human involvement. Using a
triplet network, we learn a high quality sentence
embeddings, tailored to reveal thematic relations
between sentences. Furthermore, we take a first
step towards exploring the versatility of these em-
beddings, by showing their good performance on
the semantic similarity task. An interesting direc-
tion for future work is further exploring this ver-
satility, by examining the performance of the em-
beddings on a variety of other NLP tasks.
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Abstract

We use dependency triples automatically
extracted from a Web-scale corpus to per-
form unsupervised semantic frame induc-
tion. We cast the frame induction problem
as a triclustering problem that is a gen-
eralization of clustering for triadic data.
Our replicable benchmarks demonstrate
that the proposed graph-based approach,
Triframes, shows state-of-the art results on
this task on a FrameNet-derived dataset
and performing on par with competitive
methods on a verb class clustering task.

1 Introduction

Recent years have seen much work on Frame Se-
mantics (Fillmore, 1982), enabled by the availabil-
ity of a large set of frame definitions, as well as
a manually annotated text corpus provided by the
FrameNet project (Baker et al., 1998). FrameNet
data enabled the development of wide-coverage
frame parsers using supervised learning (Gildea
and Jurafsky, 2002; Erk and Padó, 2006; Das et al.,
2014, inter alia), as well as its application to a
wide range of tasks, ranging from answer extrac-
tion in Question Answering (Shen and Lapata,
2007) and Textual Entailment (Burchardt et al.,
2009; Ben Aharon et al., 2010).

However, frame-semantic resources are ar-
guably expensive and time-consuming to build due
to difficulties in defining the frames, their gran-
ularity and domain, as well as the complexity of
the construction and annotation tasks requiring
expertise in the underlying knowledge. Conse-
quently, such resources exist only for a few lan-
guages (Boas, 2009) and even English is lack-
ing domain-specific frame-based resources. Pos-
sible inroads are cross-lingual semantic annota-
tion transfer (Padó and Lapata, 2009; Hartmann

FrameNet Role Lexical Units (LU)
Perpetrator Subject kidnapper, alien, militant
FEE Verb snatch, kidnap, abduct
Victim Object son, people, soldier, child

Table 1: Example of a LU tricluster corresponding
to the “Kidnapping” frame from FrameNet.

et al., 2016) or linking FrameNet to other lexical-
semantic or ontological resources (Narayanan
et al., 2003; Tonelli and Pighin, 2009; Laparra and
Rigau, 2010; Gurevych et al., 2012, inter alia).
But while the arguably simpler task of PropBank-
based Semantic Role Labeling has been success-
fully addressed by unsupervised approaches (Lang
and Lapata, 2010; Titov and Klementiev, 2011),
fully unsupervised frame-based semantic annota-
tion exhibits far more challenges, starting with the
preliminary step of automatically inducing a set of
semantic frame definitions that would drive a sub-
sequent text annotation. In this work, we aim at
overcoming these issues by automatizing the pro-
cess of FrameNet construction through unsuper-
vised frame induction techniques.

Triclustering. In this work, we cast the frame
induction problem as a triclustering task (Zhao
and Zaki, 2005; Ignatov et al., 2015), namely
a generalization of standard clustering and bi-
clustering (Cheng and Church, 2000), aiming at
simultaneously clustering objects along three di-
mensions (cf. Table 1). First, using tricluster-
ing allows to avoid sequential nature of frame in-
duction approaches, e.g. (Kawahara et al., 2014),
where two independent clusterings are needed.
Second, benchmarking frame induction as triclus-
tering against other methods on dependency triples
allows to abstract away the evaluation of the frame
induction algorithm from other factors, e.g., the in-
put corpus or pre-processing steps, thus allowing
a fair comparison of different induction models.
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The contributions of this paper are three-fold:
(1) we are the first to apply triclustering algo-
rithms for unsupervised frame induction, (2) we
propose a new approach to triclustering, achiev-
ing state-of-the-art performance on the frame in-
duction task, (3) we propose a new method for the
evaluation of frame induction enabling straight-
forward comparison of approaches. In this paper,
we focus on the simplest setup with subject-verb-
object (SVO) triples and two roles, but our evalu-
ation framework can be extended to more roles.

In contrast to the recent approaches like the one
by Jauhar and Hovy (2017), our approach induces
semantic frames without any supervision, yet cap-
turing only two core roles: the subject and the
object of a frame triggered by verbal predicates.
Note that it is not generally correct to expect that
the SVO triples obtained by a dependency parser
are necessarily the core arguments of a predicate.
Such roles can be implicit, i.e., unexpressed in a
given context (Schenk and Chiarcos, 2016). Keep-
ing this limitation in mind, we assume that the
triples obtained from a Web-scale corpus cover
most core arguments sufficiently.

Related Work. LDA-Frames (Materna, 2012,
2013) is an approach to inducing semantic frames
using LDA (Blei et al., 2003) for generat-
ing semantic frames and their respective frame-
specific semantic roles at the same time. The
authors evaluated their approach against the
CPA corpus (Hanks and Pustejovsky, 2005).
ProFinder (Cheung et al., 2013) is another gen-
erative approach that also models both frames
and roles as latent topics. The evaluation was
performed on the in-domain information extrac-
tion task MUC-4 (Sundheim, 1992) and on the
text summarization task TAC-2010.1 Modi et al.
(2012) build on top of an unsupervised semantic
role labeling model (Titov and Klementiev, 2012).
The raw text of sentences from the FrameNet data
is used for training. The FrameNet gold annota-
tions are then used to evaluate the labeling of the
obtained frames and roles, effectively clustering
instances known during induction. Kawahara et al.
(2014) harvest a huge collection of verbal predi-
cates along with their argument instances and then
apply the Chinese Restaurant Process clustering
algorithm to group predicates with similar argu-
ments. The approach was evaluated on the verb

1https://tac.nist.gov/2010/
Summarization

cluster dataset of Korhonen et al. (2003).
A major issue with unsupervised frame induc-

tion task is that these and some other related ap-
proaches, e.g., (O’Connor, 2013), were all evalu-
ated in completely different incomparable settings,
and used different input corpora. In this paper, we
propose a methodology to resolve this issue.

2 The Triframes Algorithm

Our approach to frame induction relies on graph
clustering. We focused on a simple setup us-
ing two roles and the SVO triples, arguing that
it still can be useful, as frame roles are primarily
expressed by subjects and objects, giving rise to
semantic structures extracted in an unsupervised
way with high coverage.

Input Data. As the input data, we use SVO
triples extracted by a dependency parser. Ac-
cording to our statistics on the dependency-parsed
FrameNet corpus of over 150 thousand sen-
tences (Bauer et al., 2012), the SUBJ and OBJ
relationships are the two most common shortest
paths between frame evoking elements (FEEs) and
their roles, accounting for 13.5 % of instances of
a heavy-tail distribution of over 11 thousand dif-
ferent paths that occur three times or more in the
FrameNet data. While this might seem a simpli-
fication that does not cover prepositional phrases
and frames filling the roles of other frames in a
nested fashion, we argue that the overall frame
inventory can be induced on the basis of this re-
stricted set of constructions, leaving other paths
and more complex instances for further work.

The Method. Our method constructs embed-
dings for SVO triples to reduce the frame induc-
tion problem to a simpler graph clustering prob-
lem. Given the vocabulary V , a d-dimensional
word embedding model v ∈ V → ~v ∈ Rd, and
a set of SVO triples T ⊆ V 3 extracted from a syn-
tactically analyzed corpus, we construct the triple
similarity graph G. Clustering of G yields sets of
triples corresponding to the instances of the se-
mantic frames, thereby clustering frame-evoking
predicates and roles simultaneously.

We obtain dense representations of the triples T
by concatenating the word vectors corresponding
to the elements of each triple by transforming a
triple t = (s, p, o) ∈ T into the (3d)-dimensional
vector ~t = ~s ⊕ ~p ⊕ ~o. Subsequently, we use the
triple embeddings to generate the undirected graph
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Algorithm 1 Triframes frame induction
Input: an embedding model v ∈ V → ~v ∈ Rd,

a set of SVO triples T ⊆ V 3,
the number of nearest neighbors k ∈ N,
a graph clustering algorithm CLUSTER.

Output: a set of triframes F .
1: S ← {t→ ~t ∈ R3d : t ∈ T}
2: E ← {(t, t′) ∈ T 2 : t′ ∈ NNSk (~t), t 6= t′}
3: F ← ∅
4: for all C ∈ CLUSTER(T,E) do
5: fs ← {s ∈ V : (s, v, o) ∈ C}
6: fv ← {v ∈ V : (s, v, o) ∈ C}
7: fo ← {o ∈ V : (s, v, o) ∈ C}
8: F ← F ∪ {(fs, fv, fo)}
9: return F

G = (T,E) by constructing the edge set E ⊆ T 2.
For that, we compute k ∈ N nearest neighbors
of each triple vector ~t ∈ R3d and establish co-
sine similarity-weighted edges between the corre-
sponding triples.

Then, we assume that the triples representing
similar contexts appear in similar roles, which
is explicitly encoded by the concatenation of the
corresponding vectors of the words constituting
the triple. We use graph clustering of G to
retrieve communities of similar triples forming
frame clusters; a clustering algorithm is a function
CLUSTER : (T,E) → C such that T =

⋃
C∈CC.

Finally, for each cluster C ∈ C, we aggregate
the subjects, the verbs, and the objects of the con-
tained triples into separate sets. As the result, each
cluster is transformed into a triframe, which is a
triple that is composed of the subjects fs ⊆ V , the
verbs fv ⊆ V , and the objects fo ⊆ V .

Our frame induction approach outputs a set of
triframes F as presented in Algorithm 1. The
hyper-parameters of the algorithm are the number
of nearest neighbors for establishing edges (k) and
the graph clustering algorithm CLUSTER. During
the concatenation of the vectors for words forming
triples, the (|T | × 3d)-dimensional vector space S
is created. Thus, given the triple t ∈ T , we denote
the k nearest neighbors extraction procedure of its
concatenated embedding from S as NNSk (~t) ⊆ T .
We used k = 10 nearest neighbors per triple.

To cluster the nearest neighbor graph of SVO
triples G, we use the WATSET fuzzy graph cluster-
ing algorithm (Ustalov et al., 2017). It treats the
vertices T of the input graph G as the SVO triples,
induces their senses, and constructs an intermedi-

ate sense-aware representation that is clustered us-
ing the Chinese Whispers (CW) hard clustering al-
gorithm (Biemann, 2006). We chose WATSET due
to its performance on the related synset induction
task, its fuzzy nature, and the ability to find the
number of frames automatically.

3 Evaluation

Input Corpus. In our evaluation, we use triple
frequencies from the DepCC dataset (Panchenko
et al., 2018) , which is a dependency-parsed ver-
sion of the Common Crawl corpus, and the stan-
dard 300-dimensional word embeddings model
trained on the Google News corpus (Mikolov
et al., 2013). All evaluated algorithms are exe-
cuted on the same set of triples, eliminating varia-
tions due to different corpora or pre-processing.

Datasets. We cast the complex multi-stage
frame induction task as a straightforward triple
clustering task. We constructed a gold stan-
dard set of triclusters, each corresponding to
a FrameNet frame, similarly to the one illus-
trated in Table 1. To construct the evaluation
dataset, we extracted frame annotations from the
over 150 thousand sentences from the FrameNet
1.7 (Baker et al., 1998). Each sentence contains
data about the frame, FEE, and its arguments,
which were used to generate triples in the form
(wordi : role1,wordj : FEE,wordk : role2), where
wordi/j/k correspond to the roles and FEE in the
sentence. We omitted roles expressed by multi-
ple words as we use dependency parses, where one
node represents a single word only.

For the sentences where more than two roles
are present, all possible triples were generated.
Sentences with less than two roles were omit-
ted. Finally, for each frame, we selected only two
roles, which are most frequently co-occurring in
the FrameNet annotated texts. This has left us with
about 100 thousand instances for the evaluation.
For the evaluation purposes, we operate on the in-
tersection of triples from DepCC and FrameNet.
Experimenting on the full set of DepCC triples is
only possible for several methods that scale well
(WATSET, CW, k-means), but is prohibitively ex-
pensive for other methods (LDA-Frames, NOAC).

In addition to the frame induction evaluation,
where subjects, objects, and verbs are evaluated
together, we also used a dataset of polysemous
verb classes introduced in (Korhonen et al., 2003)
and employed by Kawahara et al. (2014). Statis-
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Dataset # instances # unique # clusters
FrameNet Triples 99,744 94,170 383
Poly. Verb Classes 246 110 62

Table 2: Statistics of the evaluation datasets.

tics of both datasets are summarized in Table 2.
Note that the polysemous verb dataset is rather
small, whereas the FrameNet triples set is fairly
large, enabling reliable comparisons.

Evaluation Measures. Following the approach
for verb class evaluation by Kawahara et al.
(2014), we employ normalized modified purity
(nmPU) and normalized inverse purity (niPU)
as the clustering quality measures. Given the
set of the obtained clusters K and the set of
the gold clusters G, normalized modified purity
quantifies the clustering precision as the average
of the weighted overlap δKi(Ki ∩ Gj) between
each cluster Ki ∈ K and the gold cluster
Gj ∈ G that maximizes the overlap with Ki:
nmPU = 1

N

∑|K|
i s.t. |Ki|>1

max1≤j≤|G| δKi(Ki ∩Gj),
where the weighted overlap is the sum of
the weights civ for each word v in i-th clus-
ter: δKi(Ki ∩Gj) =

∑
v∈Ki∩Gj

civ. Note that
nmPU counts all the singleton clusters as
wrong. Similarly, normalized inverse purity
(collocation) quantifies the clustering recall:
niPU = 1

N

∑|G|
j=1 max1≤i≤|K| δGj (Ki ∩Gj). nmPU

and niPU are combined together as the harmonic
mean to yield the overall clustering F-score (F1),
which we use to rank the approaches.

Our framework can be extended to evaluation
of more than two roles by generating more roles
per frame. Currently, given a set of gold triples
generated from the FrameNet, each triple ele-
ment has a role, e.g., “Victim”, “Predator”, and
“FEE”. We use fuzzy clustering evaluation mea-
sure which operates not on triples, but instead
on a set of tuples. Consider for instance a gold
triple (Freddy : Predator, kidnap : FEE, kid : Victim). It
will be converted to three pairs (Freddy,Predator),
(kidnap,FEE), (kid,Victim). Each cluster in both K
andG is transformed into a union of all constituent
typed pairs. The quality measures are finally cal-
culated between these two sets of tuples, K, and
G. Note that one can easily pull in more than two
core roles by adding to this gold standard set of tu-
ples other roles of the frame, e.g., (forest, Location).
In our experiments, we focused on two main roles
as our contribution is related to the application of
triclustering methods. However, if more advanced

methods of clustering are used, yielding clusters of
arbitrary modality (n-clustering), one could also
use our evaluation schema.

Baselines. We compare our method to several
available state-of-the-art baselines applicable to
our dataset of triples.

LDA-Frames by Materna (2012, 2013) is a
frame induction method based on topic model-
ing. We ran 500 iterations of the model with
the default parameters. Higher-Order Skip-Gram
(HOSG) by Cotterell et al. (2017) generalizes the
Skip-Gram model (Mikolov et al., 2013) by ex-
tending it from word-context co-occurrence ma-
trices to tensors factorized with a polyadic decom-
position. In our case, this tensor consisted of SVO
triple counts. We trained three vector arrays (for
subjects, verbs and objects) on the 108,073 SVO
triples from the FrameNet corpus, using the im-
plementation by the authors. Training was per-
formed with 5 negative samples, 300-dimensional
vectors, and 10 epochs. We constructed an em-
bedding of a triple by concatenating embeddings
for subjects, verbs, and objects, and clustered them
using k-means with the number of clusters set to
10,000 (this value provided the best performance).
NOAC (Egurnov et al., 2017) is an extension of
the Object Attribute Condition (OAC) tricluster-
ing algorithm (Ignatov et al., 2015) to numeri-
cally weighted triples. This incremental algorithm
searches for dense regions in triadic data. A mini-
mum density of 0.25 led to the best results. In the
Triadic baselines, independent word embeddings
of subject, object, and verb are concatenated and
then clustered using a hard clustering algorithm:
k-means, spectral clustering, or CW.

We tested various hyper-parameters of each of
these algorithms and report the best results overall
per clustering algorithm. Two trivial baselines are
Singletons that creates a single cluster per instance
and Whole that creates one cluster for all elements.

4 Results

We perform two experiments to evaluate our ap-
proach: (1) a frame induction experiment on the
FrameNet annotated corpus by Bauer et al. (2012);
(2) the polysemous verb clustering experiment on
the dataset by Korhonen et al. (2003). The first
is based on the newly introduced frame induction
evaluation schema (cf. Section 3). The second
one evaluates the quality of verb clusters only on
a standard dataset from prior work.
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Verb Subject Object Frame
Method nmPU niPU F1 nmPU niPU F1 nmPU niPU F1 nmPU niPU F1
Triframes WATSET 42.84 88.35 57.70 54.22 81.40 65.09 53.04 83.25 64.80 55.19 60.81 57.87
HOSG (Cotterell et al., 2017) 44.41 68.43 53.86 52.84 74.53 61.83 54.73 74.05 62.94 55.74 50.45 52.96
NOAC (Egurnov et al., 2017) 20.73 88.38 33.58 57.00 80.11 66.61 57.32 81.13 67.18 44.01 63.21 51.89
Triadic Spectral 49.62 24.90 33.15 50.07 41.07 45.13 50.50 41.82 45.75 52.05 28.60 36.91
Triadic k-Means 63.87 23.16 33.99 63.15 38.20 47.60 63.98 37.43 47.23 63.64 24.11 34.97
LDA-Frames (Materna, 2013) 26.11 66.92 37.56 17.28 83.26 28.62 20.80 90.33 33.81 18.80 71.17 29.75
Triframes CW 7.75 6.48 7.06 3.70 14.07 5.86 51.91 76.92 61.99 21.67 26.50 23.84
Singletons 0.00 25.23 0.00 0.00 25.68 0.00 0.00 20.80 0.00 32.34 22.15 26.29
Whole 3.62 100.0 6.98 2.41 98.41 4.70 2.38 100.0 4.64 2.63 99.55 5.12

Table 3: Frame evaluation results on the triples from the FrameNet 1.7 corpus (Baker et al., 1998). The
results are sorted by the descending order of the Frame F1-score. Best results are boldfaced.
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Figure 1: F1-scores for verbs, subjects,
objects, frames corresponding to Table 3.

Frame Induction Experiment. In Table 3 and
Figure 1, the results of the experiment are pre-
sented. Triframes based on WATSET clustering
outperformed the other methods on both Verb F1
and overall Frame F1. The HOSG-based cluster-
ing proved to be the most competitive baseline,
yielding decent scores according to all four mea-
sures. The NOAC approach captured the frame
grouping of slot fillers well but failed to establish
good verb clusters. Note that NOAC and HOSG
use only the graph of syntactic triples and do not
rely on pre-trained word embeddings. This sug-
gests a high complementarity of signals based on
distributional similarity and global structure of the
triple graph. Finally, the simpler Triadic baselines
relying on hard clustering algorithms showed low
performance, similar to that of LDA-Frames, jus-
tifying the more elaborate WATSET method.

While triples are intuitively less ambiguous than
words, still some frequent and generic triples like
(she,make, it) can act as hubs in the graph, mak-
ing it difficult to split it into semantically plausible
clusters. The poor results of the Chinese Whispers
hard clustering algorithm illustrate this. Since the
hubs are ambiguous, i.e., can belong to multiple
clusters, the use of the WATSET fuzzy clustering
algorithm that splits the hubs by disambiguating
them leads to the best results (see Table 3).

Method nmPU niPU F1

LDA-Frames 52.60 45.84 48.98
Triframes WATSET 40.05 62.09 48.69
NOAC 37.19 64.09 47.07
HOSG 38.22 43.76 40.80
Triadic Spectral 35.76 38.96 36.86
Triadic k-Means 52.22 27.43 35.96
Triframes CW 18.05 12.72 14.92
Whole 24.14 79.09 36.99
Singletons 0.00 27.21 0.00

Table 4: Evaluation results on the dataset of poly-
semous verb classes by Korhonen et al. (2003).

Verb Clustering Experiment. Table 4 presents
results on the second dataset for the best models
identified on the first dataset. The LDA-Frames
yielded the best results with our approach per-
forming comparably in terms of the F1-score. We
attribute the low performance of the Triframes
method based on CW clustering to its hard parti-
tioning output, whereas the evaluation dataset con-
tains fuzzy clusters. Different rankings also sug-
gest that frame induction cannot simply be treated
as a verb clustering and requires a separate task.

5 Conclusion

In this paper, we presented the first application
of triclustering for unsupervised frame induction.
We designed a dataset based on the FrameNet
and SVO triples to enable fair corpus-independent
evaluations of frame induction algorithms. We
tested several triclustering methods as the base-
lines and proposed a new graph-based tricluster-
ing algorithm that yields state-of-the-art results. A
promising direction for future work is using the in-
duced frames in applications, such as Information
Extraction and Question Answering.

Additional illustrations and examples of ex-
tracted frames are available in the supplementary
materials. The source code and the data are avail-
able online under a permissive license.2

2https://github.com/uhh-lt/triframes

59



Acknowledgments

We acknowledge the support of DFG under the
“JOIN-T” and “ACQuA” projects and thank three
anonymous reviewers for their helpful comments.
Furthermore, we thank Dmitry Egurnov, Dmitry
Ignatov, and Dmitry Gnatyshak for help in operat-
ing the NOAC method using the multimodal clus-
tering toolbox. Besides, we are grateful to Ryan
Cotterell and Adam Poliak for a discussion and an
implementation of the HOSG method. Finally, we
thank Bonaventura Coppolla for discussions and
preliminary work on graph-based frame induction.

References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FrameNet Project. In Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics
- Volume 1, ACL ’98, pages 86–90, Montreal, QC,
Canada. Association for Computational Linguistics.

Daniel Bauer, Hagen Fürstenau, and Owen Ram-
bow. 2012. The Dependency-Parsed FrameNet
Corpus. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation, LREC 2012, pages 3861–3867, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Roni Ben Aharon, Idan Szpektor, and Ido Dagan. 2010.
Generating Entailment Rules from FrameNet. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, pages 241–246, Uppsala, Sweden. Association
for Computational Linguistics.

Chris Biemann. 2006. Chinese Whispers: An Ef-
ficient Graph Clustering Algorithm and Its Appli-
cation to Natural Language Processing Problems.
In Proceedings of the First Workshop on Graph
Based Methods for Natural Language Processing,
TextGraphs-1, pages 73–80, New York, NY, USA.
Association for Computational Linguistics.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Hans C. Boas. 2009. Multilingual FrameNets in Com-
putational Lexicography: Methods and Applica-
tions. Trends in Linguistics. Studies and Mono-
graphs. Mouton de Gruyter.

Aljoscha Burchardt, Marco Pennacchiotti, Stefan
Thater, and Manfred Pinkal. 2009. Assessing the
impact of frame semantics on textual entailment.
Natural Language Engineering, 15(4):527–550.

Yizong Cheng and George M. Church. 2000. Biclus-
tering of Expression Data. In Proceedings of the

Eighth International Conference on Intelligent Sys-
tems for Molecular Biology, pages 93–103. AAAI
Press.

Jackie C. K. Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic Frame Induction. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 837–846, Atlanta, GA, USA. Association for
Computational Linguistics.

Ryan Cotterell, Adam Poliak, Benjamin Van Durme,
and Jason Eisner. 2017. Explaining and Generaliz-
ing Skip-Gram through Exponential Family Princi-
pal Component Analysis. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 175–181, Valencia, Spain. Associa-
tion for Computational Linguistics.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-Semantic Parsing. Computational Linguis-
tics, 40(1):9–56.

Dmitry Egurnov, Dmitry Ignatov, and Engelbert M.
Nguifo. 2017. Mining Triclusters of Similar Val-
ues in Triadic Real-Valued Contexts. In 14th Inter-
national Conference on Formal Concept Analysis -
Supplementary Proceedings, pages 31–47, Rennes,
France.

Katrin Erk and Sebastian Padó. 2006. SHALMANESER
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Abstract

Identification of distinct and independent
participants (entities of interest) in a nar-
rative is an important task for many NLP
applications. This task becomes chal-
lenging because these participants are of-
ten referred to using multiple aliases. In
this paper, we propose an approach based
on linguistic knowledge for identification
of aliases mentioned using proper nouns,
pronouns or noun phrases with common
noun headword. We use Markov Logic
Network (MLN) to encode the linguis-
tic knowledge for identification of aliases.
We evaluate on four diverse history nar-
ratives of varying complexity as well as
newswire subset of ACE 2005 dataset.
Our approach performs better than the
state-of-the-art.

1 Introduction

Identifying aliases of participants in a narrative is
crucial for many NLP applications like timeline
creation, question-answering, summarization, and
information extraction. For instance, to answer
a question (in the context of Table 1) When did
Napoleon defeat the royalist rebels?, we need to
identify Napoleon and the young lieutenant as
aliases of Napoleon Bonaparte. Similarly, time-
line for Napoleon Bonaparte will be inconsis-
tent with the text, if the young lieutenant is
not identified as an alias Napoleon Bonaparte.
This will further affect any analysis of the time-
line (Bedi et al., 2017).

In the context of narrative analysis, we define –
• A participant as an entity of type PERSON
(PER), LOCATION (LOC), or ORGANIZATION
(ORG). A participant has a canonical mention,

∗These authors contributed equally.

[Napoleon Bonaparte]P1 was quite [a short man]A1

just five feet three inches tall. When [he]A1

was nine years old, [his parents]P2 sent [him]A1

to [a military school in France]P3. In 1785,

[he]A1 became [a lieutenant]A1. When the

Revolution broke out, [Napoleon]A1 joined [the

army of the new government]P4. When [royalist

rebels]P5 marched on [the National Convention]P6,

[a government official]P7 told [the young

lieutenant]A1 to defend [the delegates]P8.

Table 1: Example narrative excerpt with only in-
dependent participant mentions marked. For the
i-th participant, canonical mention is marked with
Pi and all its aliases are marked with Ai.

which is a standardized reference to that partici-
pant (e.g., Napoleon Bonaparte). Further, it may
have several aliases, which are different mentions
referring to the same participant.
•A basic participant mention can be a sequence of
proper nouns (e.g., Napoleon or N. Bonaparte), a
pronoun (e.g., he) or a generic NP1 (e.g., a short

man or the young lieutenant).
• Independent basic mentions of a participant play
primary role in the narrative. Dependent basic
mentions play supporting role by qualifying or
elaborating independent basic mentions. For each
independent mention, we merge all its dependent
mentions to create its composite mention.

Note that our notion of dependency is syntac-
tic. A basic mention can be either dependent or
independent. A basic mention is said to be de-
pendent if its governor in the dependency parse
tree is itself a participant mention; otherwise it is
called as independent mention. An independent
mention can be a basic (if it does not have any de-
pendent mentions) or a composite mention. An in-

1NP with a common noun headword
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dependent composite mention is created by recur-
sively merging all its dependent mentions. For in-
stance, for the phrases his parents and parents

of Napoleon, following are the basic participant
mentions - his, Napoleon, and parents. In the
dependency parse trees, parents is the governor
in both cases. Hence, his and Napoleon would
be basic dependent mentions. Final independent
composite mentions his parents or parents of

Napoleon are created by merging the dependent
mentions with the independent mention parents.

In this paper, we focus on identification of in-
dependent mentions (basic as well as composite)
for any participant in a narrative. The problem
of identifying aliases of participants is challeng-
ing because even though the standard NLP toolk-
its work well to resolve the coreferences among
pronouns and named entities, we observed that
they perform poorly for generic NPs. For in-
stance, Stanford CoreNLP does not identify the

young lieutenant and Napoleon Bonaparte as
the same participant (Table 1); a task we aim to
do. This task can be considered as a sub-problem
of the standard coreference resolution (Ng, 2017).
We build upon output from any standard corefer-
ence resolution algorithm, and improve it signifi-
cantly to detect the missing aliases.

Our goal is to identify the canonical mentions of
all independent participants and their aliases. In
this paper, we propose a linguistically grounded
algorithm for alias detection. Our algorithm uti-
lizes WordNet hypernym structure for identifying
participant mentions. It encodes linguistic knowl-
edge in the form of first order logic rules and
performs inference in Markov Logic Networks
(MLN) (Richardson and Domingos, 2006) for es-
tablishing alias links among these mentions.

2 Related Work

Traditionally, alias detection restricts the focus on
aliases of named entities which occur as proper
nouns (Sapena et al., 2007; Hsiung et al., 2005)
using lexical, semantic, and social network anal-
ysis. This ignores the aliases which occur as
generic NPs. Even in the coreference resolution,
recently (Peng et al., 2015a,b) the focus has come
back to generic NP aliases by detecting mention
heads. Peng et al. (2015b) propose a notion of
Predicate Schemas to capture interaction between
entities at predicate level and instantiate them us-
ing knowledge sources like Wikipedia. These in-

Figure 1: Input ULDG initialized with NER +
Coreference. (Note: alias edges(Ea) are shown
using dotted lines; participant edges (Ep) are
shown using thick arrows; dependency edges (Ed)
are shown using thin labelled arrows.)

Figure 2: Output ULDG after applying Algo-
rithm 1 on input ULDG in Figure 1. New Ea
edges: 〈man, Bonaparte〉, 〈man, him〉, & 〈man,
His〉 are added. Newly added Ep edges are high-
lighted with thick, filled arrows. Participant types
of man & school are changed to PER & ORG re-
spectively; type of France is changed to OTH.

stances of Predicate Schemas are then compiled
into constraints in an Integer Linear Programming
(ILP) based formulation to resolve coreferences.
In addition to pronouns, our approach focuses on
identification of common noun based aliases of a
participant using MLN.

MLN has been used to solve the problem
of coreference resolution (Poon and Domingos,
2008; Song et al., 2012). Our work differs from
them as we build upon output of off-the-shelf
coreference resolution system, rather than iden-
tifying aliases/coreferences from scratch. This
helps in exploiting the strengths (such as linking
pronoun mentions to their antecedents) of the ex-
isting systems and overcome the weaknesses (such
as resolving generic NP mentions) by incorporat-
ing additional linguistic knowledge.

A more general and challenging problem in-
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volves resolution of bridging descriptions which
study relationships between a definite description
and its antecedent. As noted in (Vieira and Teufel,
1997; Poesio et al., 1997), bridging descriptions
consider many different types of relationships be-
tween a definite description (definite generic NP)
and its antecedent; e.g., synonymy, hyponymy,
meronymy, events, compound nouns, etc. How-
ever, in this paper we focus on identity type of re-
lationships only. Further, Vieira and Teufel (1997)
use WordNet to identify these relationship types
between definite descriptions. As described in
Phase-I of algorithm 1 (Section 3), we use Word-
Net for a completely different purpose of identi-
fying participant type.2 Gardent and Kow (2003)
presented a corpus study of bridging definite de-
scriptions and their typologies. They have iden-
tified several types of bridging relations like set-
subset, event-argument etc.

3 Our Approach

Our approach has three broad phases: (I) Identifi-
cation of participants, (II) MLN based formulation
to identify aliases, and (III) Composite mention
creation. We use a Unified Linguistic Denotation
Graph (ULDG) representation of NLP-processed
sentences in the input narrative. The ULDG uni-
fies output from various stages of NLP pipeline
such as dependency parsing, NER and coreference
resolution, e.g., Figure 1 shows a sample ULDG.
Definition: A ULDG G(V,Ed, Ep, Ea), corre-
sponding to a set S of n sentences, is a vertex-
labeled and edge-labeled graph. A node u ∈ V
corresponds to a token in S and its label is defined
as: Lu = (s, t, token, POS, p, a); where s : sen-
tence index, t : token index, token, POS : part-
of-speech tag of token, p denotes participant type
(p ∈ {PER,ORG,LOC,OTHER (OTH)}) if
u is a headword of a participant mention and a
denotes canonical participant mention of corre-
sponding group of aliases. There are three types
of edges –
• Ed = {〈u, v, dep〉 : directed dependency edge
labelled with dep (dependency relation), which
connects a governor (parent) token u to its depen-
dent token v}; e.g., 〈sent, parent, nsubj〉
• Ep = {〈u, v〉 : directed edge, which connects
headword u of a participant phrase to its each con-
stituent word v}; e.g., 〈Bonaparte, Napoleon〉

2Further details are available in Figure A.1 and Table A.2
in the supplementary material.

• Ea = {〈u, v〉 : undirected edge, which connects
nodes u and v which are headwords of aliases of
the same participant }; e.g., 〈him, Bonaparte〉

Our approach has been summarized in Algo-
rithm 1. Its input is an ULDG G(V,Ed, Ep, Ea)
for a set S of given sentences. We initialize V ,Ed,
Ep and Ea using any standard dependency parser,
NER and coreference resolution techniques3.

input : G = ULDG for set of sentences S
output: G with updated participant and alias edges
// Phase-I: Basic participant mention

identification

foreach n ∈ G.nodes do
if n.POS is noun ∧ n.p = OTH ∧
is generic NP head(G,n) then

n.p :=
checkWordNetHypernyms(n.token)

if n.p = OTH then continue
foreach 〈n, x, dep〉 ∈ Ed do

if dep ∈ {amod,compound,det}
then Ep := Ep ∪ {〈n, x〉}

foreach n ∈ G.nodes do
if n.POS is pronoun ∧ (∃x : 〈n, x〉 ∈ Ea such

that x.p 6= OTH) then n.p := x.p

G := resolveParticipantTypeConflict(G)
// Phase-II: MLN-based alias detection

Ea := Ea ∪ {〈u, v〉 : where u and v are detected as
aliases by MLN encoded Linguistic Constraints()}
// Phase-III: Composite mention creation by

merging dependent participant mentions

G′(V ′, E′) := Subgraph of G, such that
V ′ := {n ∈ G : n.p 6= OTH} and
E′ = {〈u, v, dep〉 ∈ Ed : dep ∈ {appos,nmod}}

foreach n ∈ G.nodes do
if n.p = OTH then continue
indParticipant := True
foreach 〈x, n, dep〉 ∈ Ed do

if dep ∈ {appos,nmod} ∧ x.p 6= OTH
then indParticipant := False

if ¬indParticipant then continue
depParticipants := DFS(G′, n)
foreach y ∈ depParticipants do

Ep := Ep ∪ {〈n, y〉}
foreach 〈y, x〉 ∈ Ep do

Ep := Ep ∪ {〈n, x〉}
y.p := OTH
Drop from Ep all outgoing edges from y

foreach clique c in subgraph (V,Ea) ⊂ G do
foreach n ∈ c.nodes do

n.a := earliest participant mention in c.nodes

Algorithm 1: identify participants & aliases

Our algorithm modifies the input ULDG in-
place by updating node labels, Ep and Ea. Fig-
ure 1 shows an example of initialized input ULDG,
which gets transformed by our algorithm to the
output ULDG shown in Figure 2.
Phase-I: In this phase, we update participant type

3We use Stanford CoreNLP Toolkit (Manning et al., 2014)
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Predicates Description
NEType(x, y) y is entity type of participant x
CopulaConnect(x, y) Participants x and y are connected through a copula verb or a “copula-like” verb in Ed (e.g.,

become)
Conj(x, y) Participants x and y are connected by a conjunction in Ed

DiffV erbConnect(x, y) Participants x and y are connected through a “differentiating” verb or a copula-like verb in
Ed (e.g. tell)

LexSim(x, y) Participants x and y are lexically similar, i.e. having low edit distance
Alias(x, y) Participants x and y are aliases of each other (used as a query predicate)
Hard rules Description
Alias(x, x) ;Alias(x, y)⇒ Alias(y, x) Reflexivity and symmetry of aliases
Alias(x, y) ∧Alias(y, z)⇒ Alias(x, z) Transitivity of aliases
Alias(x, y) ∧ ¬Alias(y, z)⇒ ¬Alias(x, z)
Alias(x, y)⇒ (NEType(x, z)⇔ NEType(y, z)) If x and y are aliases, their entity types should be same
Conj(x, y)⇒ ¬Alias(x, y) If x and y are conjuncts, then they are less likely to be aliases
Soft rules Description
CopulaConnect(x, y)⇒ Alias(x, y) If x and y are connected though a copula or copula-like verb in

Ed , then they are aliases of each other
LexSim(x, y)⇒ Alias(x, y) If x and y are lexically similar, then they are likely to be aliases
DiffV erbConnect(x, y)⇒ ¬Alias(x, y) If x and y are subjects / objects of a “differentiating” verb, then

they are not likely to be aliases of each other

Table 2: MLN Predicates and Rules

of headword h of a generic NP if its Word-
Net hypernyms contain PER/ORG/LOC indicat-
ing synsets. We also add new Ep edges from h
to dependent nodes of h using dependency rela-
tions compound, amod or det (de Marneffe et al.,
2014) to get corresponding mention boundaries.
The function resolveParticipantTypeConflict() en-
sures that participant types of all nodes in a single
clique in Ea are same by giving higher priority to
NER-induced type than WordNet-induced type.
Phase-II: In this phase, we encode linguistic rules
in MLN to add new Ea edges. As elaborated by
Mojica and Ng (2016), MLN gives the benefits of
(i) ability to employ soft constraints, (ii) compact
representation, and (iii) ease of specification of do-
main knowledge.

The predicates and key first-order logic rules are
described in Table 2. Here, Alias(x, y) is the only
query predicate. Others are evidence predicates,
whose observed groundings are specified using G.
As we use a combination of hard rules (i.e., rules
with infinite weight) and soft rules (i.e., rules with
finite weights), probabilistic inference in MLN is
necessary to get find most likely groundings of the
predicate-Alias(x, y). As the goal is to minimize
supervision and to avoid dependence on annotated
data, we rely on domain knowledge in the current
version to set the MLN rule weights.
Phase-III: In this phase, we extract an auxiliary
subgraph G′(V ′, E′) ⊂ G; where V ′ contains
only those nodes which correspond to headwords
of basic participant mentions and E′ contains only
those edges incident on nodes in V ′ and labeled

with appos or nmod. We identify each independent
participant mention in G′ and merge its dependent
mentions using depth first search (DFS) on G′.

Finally, each clique in Ea represents aliases of
an unique participant. We use the earliest non-
pronoun mention in text order as the canonical
mention for that clique.

4 Experimental Analysis

Datasets: We evaluate our approach on history
narratives as they are replete with challenging
cases of alias detection. We choose public nar-
ratives of varying linguistic complexity to cover
a spectrum of history: (i) famous personalities:
Napoleon (Nap) (Littel, 2008), and Mao Zedong
(Mao) (Wikipedia, 2018), (ii) a key event: Battle
of Haldighati (BoH) (Chandra, 2007), and (iii) a
major phenomenon: Fascism (Fas) (Littel, 2008).
We manually annotated these datasets for the in-
dependent participant mentions and their aliases.
For each alias group of participant mentions we
use earliest non-pronoun mention as its canonical
mention4.

We also evaluate it on the newswire subset
(ACEnw) of standard ACE 2005 dataset (Walker
et al., 2006). Entity mention annotations were
transformed5 such that only independent entity
mentions and their aliases are used. We relied
on Nap dataset to develop intuition for designing

4The annotated datasets are released with this draft.
5Transformation scripts are released as supplementary

material.
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the algorithm and tuning of MLN rules. All other
datasets (ACE, BoH, Fas, and Mao) are unseen,
independent test datasets.
Baselines: B1 is a standard approach to this prob-
lem where output of NER and coreference compo-
nents of Stanford CoreNLP toolkit are combined
to detect aliases. B2 is the state-of-the-art coref-
erence resolution system based on (Peng et al.,
2015a,b). M is our proposed alias detection ap-
proach (Algorithm 1).
Evaluation: The performance of all the ap-
proaches is evaluated at two levels: all indepen-
dent participant mentions (i.e., participant detec-
tion) and their links with canonical mentions (i.e.,
participant linking). We use the standard F1 met-
ric to measure performance of participant detec-
tion. For participant linking, we evaluate (Prad-
han et al., 2014) the combined performance of par-
ticipant mention identification and alias detection
using the standard evaluation metrics, MUC (Vi-
lain et al., 1995), BCUB (Bagga and Baldwin,
1998), Entity-based CEAF (CEAFe) (Luo, 2005)
and their average.
Results: Results of the quantitative evaluation
are summarized in Table 3. We observe that the
proposed approach outperforms other baselines on
all datasets.

Dataset & Participant Canonical mentions & aliases
Approach mentions BCUB MUC CEAFe

ACEnw

B1 53.1 38.3 49.4 30.3
B2 62.9 45.0 50.2 42.5
M 70.2 52.0 56.7 50.5

Nap
B1 60.5 49.4 69.4 32.3
B2 73.9 56.4 70.2 50.1
M 86.4 74.1 79.0 63.6

BoH
B1 61.7 39.9 56.2 36.2
B2 65.6 45.0 56.9 40.8
M 73.5 50.9 66.9 46.3

Fas
B1 56.8 40.1 59.3 31.8
B2 61.6 41.0 54.6 40.3
M 70.3 55.3 64.6 51.5

Mao
B1 60.1 47.4 62.4 38.1
B2 49.1 29.0 41.9 29.8
M 78.9 64.1 73.9 60.2

Table 3: Experimental results (F1 metric in %).
B1 is combined output of NER and Coreference
modules of (Manning et al., 2014). B2 is (Peng
et al., 2015a). M is proposed method.

Correct identification of generic NPs as par-
ticipant mentions, and accurate addition of alias
edges due to MLN formulation lead to improved
performance of Algorithm 1; e.g., in Table 1,
the baselines fail to detect a lieutenant as
an alias for Napoleon Bonaparte, but the pro-

posed approach succeeds as it exploits MLN rule
CopulaConnect(x, y) ⇒ Alias(x, y). As an il-
lustration of the proposed approach, Table 4 shows
the participant mentions and their corresponding
canonical mentions for the example text in Table 1.

Sent. Participant Canonical
no. Mention Mention
1 Napoleon Bonaparte Napoleon Bonaparte
1 a short man Napoleon Bonaparte
2 he Napoleon Bonaparte
2 his parents his parents
2 him Napoleon Bonaparte
2 a military school in

France
a military school in
France

3 he Napoleon Bonaparte
3 a lieutenant Napoleon Bonaparte
4 Napoleon Napoleon Bonaparte
4 the army of the new

government
the army of the new
government

5 royalist rebels royalist rebels
5 the National Conven-

tion
the National Conven-
tion

5 a government official a government official
5 the young lieutenant Napoleon Bonaparte
5 the delegates the delegates

Table 4: Output of Algorithm 1 for sentences in
Table 1

5 Conclusions

Alias detection is an important and challeng-
ing NLP problem. We proposed a linguistically
grounded approach to identify aliases of partici-
pants in a narrative. We observed that WordNet
hypernym tree helps in identification of partici-
pant aliases mentioned using generic NPs. MLN
proved to be an effective framework to encode lin-
guistic knowledge and achieve better alias detec-
tion performance. Our approach was evaluated on
history narratives which pose challenging alias de-
tection cases and demonstrated better performance
than the state-of-the-art approach. Our goal in cur-
rent paper was to improve the output by exploiting
the strengths (such as linking pronoun mentions to
their antecedents) of off-the-shelf coreference al-
gorithms and to overcome their weaknesses (such
as resolving generic noun phrase mentions). As
part of future work, we are planning to enhance
existing MLN frameworks for coreference resolu-
tion by integrating the proposed MLN predicates
and rules.
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Abstract

We present a new architecture for named
entity recognition. Our model employs
multiple independent bidirectional LSTM
units across the same input and pro-
motes diversity among them by employ-
ing an inter-model regularization term. By
distributing computation across multiple
smaller LSTMs we find a reduction in
the total number of parameters. We find
our architecture achieves state-of-the-art
performance on the CoNLL 2003 NER
dataset.

1 Introduction

The ability to reason about entities in text is an
important element of natural language understand-
ing. Named entity recognition (NER) concerns it-
self with the identification of such entities. Given
a sequence of words, the task of NER is to label
each word with its appropriate corresponding en-
tity type. Examples of entity types include Person,
Organization, and Location. A special Other en-
tity type is often added to the set of all types and
is used to label words which do not belong to any
of the other entity types.

Recently, neural network based approaches
which use no language-specific resources, apart
from unlabeled corpora for training word embed-
dings, have emerged. There has been a shift of fo-
cus from handcrafting better features to designing
better neural architectures for solving NER.

In this paper, we propose a new parallel re-
current neural network model for entity recogni-
tion. We show that rather than using a single
LSTM component, as many other recent archi-
tecture have, we instead resort to using multiple

† Now at Google DeepMind, 6 Pancras Square, London
N1C 4AG.

smaller LSTM units. This has the benefit of reduc-
ing the total number of parameters in our model.
We present results on the CoNNL 2003 English
dataset and achieve the new state of the art results
for models without help from an outside lexicons.

1.1 Related Work

Various approaches have been proposed to
NER. Many of these approaches rely on hand-
crafted feature engineering or language-specific
or domain-specific resources (Zhou and Su, 2002;
Chieu and Ng, 2002; Florian et al., 2003; Settles,
2004; Nadeau and Sekine, 2007). While such ap-
proaches can achieve high accuracy, they may fail
to generalize to new languages, new corpora or
new types of entities to be identified. Thus, ap-
plying such techniques in new domains requires
making a heavy engineering investment.

Over time neural methods such as (Chiu and
Nichols, 2015; Ma and Hovy, 2016; Luo et al.,
2015; Lample et al., 2016) emerged. More re-
cently (Peters et al., 2017; Reimers and Gurevych,
2017; Sato et al., 2017) have set the top bench-
marks in the field.

Architecturally, our model is similar to those of
(Zhu et al., 2017; Hidasi et al., 2016) with the most
pronounced difference being that we (1) apply our
parallel RNN units across the same input (2) ex-
plore a new regularization term for promoting di-
versity across what features our parallel RNNs ex-
tract and (3) explicitly motivate the architecture
with a discussion about parameter complexity.

The need for a wider discussion on parameter
complexity in the deep learning community is be-
ing pushed by the need to make complex neural
models runnable in constrained environment such
as field-programmable gate arrays (FPGAs) - for
a great discussion relating to running LSTMs on
FPGAs see (Guan et al., 2017). Additionally, com-
plex models have proven difficult to use in certain
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domains such as embedded systems or finance due
to their slowness. Our architecture lends itself to
parallelization and attempts to tackle this problem.

2 Named Entity Recognition

Named Entity Recognition can be posited as a
standard sequence classification problem where
the dataset D = {(Xi,yi)}ki=1 consists of exam-
ple label pairs where both the examples and the
labels are themselves sequences of word vectors
and entity types, respectively.

Specifically, an input example Xi =
(xi,1, . . . ,xi,|Xi|) is a variable-length sequence
of word vectors xi,j ∈ Rd; the example’s
corresponding label yi = (yi,1, ..., yi,|Xi|) is
a equal-length sequence of entity-type labels
yi,j ∈ Y where Y is the set of all entity type
labels and includes a special other ‘O’-label with
which all words that are not entities are labeled.

The goal is then to learn a parametrized map-
ping fθ : X → y from input words to output en-
tity labels. One of the most commonly used class
of models that handle this mapping are recurrent
neural networks.

2.1 LSTM complexity

Long short term memory (LSTM) models belong
to the family of recurrent neural network (RNN)
models. They are often used as a component of
much larger models, particularly in many NLP
tasks including NER.

Classically, an LSTM cell is defined as follows
(biases excluded for brevity):

it = σ(W iht−1 + U ixt)
ft = σ(Wfht−1 + U fxt)
ot = σ(W oht−1 + U oxt)
c̃t = tanh(W cht−1 + U cxt)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

One way of measuring the complexity of a
model is through its total number of parameters.
Looking at the above, we note there are two pa-
rameter matrices, W and U, for each of the three
input gates and during cell update. If we let W ∈
Rn×n and U ∈ Rn×m then the total number of pa-
rameters in the model (excluding the bias terms) is
4(nm+n2) which grows quadratically as n grows.
Thus, increases in LSTM size can substantially in-
crease the number of parameters.

3 Parallel RNNs

To reduce the total number of parameters we split
a single LSTM into multiple equally-sized smaller
ones:

hk,t = LSTMk(hk,t−1,x)

where k ∈ {1, ...,K}. This has the effect of
dividing the total number of parameters by a con-
stant factor. The final hidden state ht is then a
concatenation of the hidden states of the smaller
LSTMS:

ht = [h1,t;h2,t; ...;hK,t]

3.1 Promoting Diversity

To promote diversity amongst the constituent
smaller LSTMs we add a orthogonality penalty
across the smaller LSTMs. Recent research has
used similar methods but applied to single LSTMs
(Vorontsov et al., 2017).

We take the cell update recurrence parameters
Wi across LSTMs (we omit the c in the subscript
for brevity; the index i runs across the smaller
LSTMs) and for any pair we wish the following
to be true:

〈vec(W (i)
c ), vec(W (j)

c )〉 ≈ 0

.
To achieve this we pack the vectorized parame-

ters into a matrix:

Φ =




vec(W
(1)
c )

vec(W
(2)
c )

...
vec(W

(N)
c )




and apply the following regularization term to
our final loss:

λ
∑

i

‖ΦΦ> − I‖2F (1)

3.2 Output and Loss

The concatenated output ht is passed through
a fully connected layer with bias before being
passed through a final softmax layer:

ot = softmax(Woutĥt + bout)
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To extract a predicted entity type ŷt at time t,
we select the entity type corresponding to the most
probable output:

ŷt = argmax(ot)

The loss is defined as the sum of the softmax
cross-entropy losses along the words in the input
sequence. More precisely, we denote by yjt ∈
0, 1 a binary indicator variable indicating whether
word xt truly is an entity of type j. The loss at
time t is then defined to be Lt = −∑

j y
j
t log(ojt ).

Thus the overall loss is:

L = −
∑

t

∑

j

yjt log(ojt )

3.3 Implementation Details
We use bidirectional LSTMs as our base recur-
rent unit and use pretrained word embeddings of
size 100. These are the same embeddings used in
(Lample et al., 2016). We concatenate to our word
embeddings character-level embeddings similar to
(Lample et al., 2016) but with a max pooling layer
instead. Unlike with the parallel LSTMs, we only
use a single character embedding LSTM.

Parameters are initialized using the method de-
scribed by Glorot and Bengio (Glorot and Ben-
gio, 2010). This approach scales the variance of
a uniform distribution with regard to the root of
the number of parameters in a layer. This approach
has been found to speed up convergence compared
to using a unit normal distribution for initializa-
tion.

Our model uses variational dropout (Gal and
Ghahramani, 2016) between the hidden states of
the parallel LSTMs. Recent work has shown this
to be very effective at training LSTMs for lan-
guage models (Merity et al., 2017). In our experi-
ments, we use p = 0.1 as our dropping probability.

We experiment with different values of the regu-
larization term parameter but settled on λ = 0.01.

Although vanilla stochastic gradient descent has
been effective at training RNNs on language prob-
lems (Merity et al., 2017), we found that using the
ADAM optimizer (Kingma and Ba, 2014) to be
more effective at training our model. We experi-
mented with different values for the learning rate
α, increasing α from 10−3 to as high as 5× 10−3

and still obtained good results.
Similarly, we kept a constant size for the

character-level embeddings, using a unit bidirec-
tional LSTM output size of dim(echar) = 50.

As previously discussed, we trained the net-
work parameters using stochastic gradient de-
scent (Werbos, 1990), augmented with the Adam
optimizer (Kingma and Ba, 2014).

3.4 Relation to Ensemble Methods

Our model bears some resemblance to ensemble
methods (Freund et al., 1996; Dietterich et al.,
2000), which combine multiple “weak learners”
into a single “strong learner”; One may view each
of the parallel recurrent units of our model as a
single “weak” neural network, and may consider
our architecture as a way of combining these into
a single “strong” network.

Despite the similarities, our model is very dif-
ferent from ensemble methods. First, as opposed
to many boosting algorithms (Freund et al., 1996;
Schapire and Singer, 1999; Dietterich et al., 2000)
we do not “reweigh” training instances based on
the loss incurred on them by a previous iteration.
Second, unlike ensemble methods, our model is
trained end-to-end, as a single large neural net-
work. All the subcomponents are co-trained, so
different subparts of the network may focus on
different aspects of the input. This avoids re-
dundant repeated computations across the units
(and indeed, we encourage diversity between the
units using our inter-module regularization). Fi-
nally, we note that our architecture does not sim-
ply combine the prediction of multiple classifiers;
rather, we take the final hidden layer of each of
the LSTM units (which contains more informa-
tion than merely the entity class prediction), and
combine this information using a feedforward net-
work. This allows our architecture to examine
inter-dependencies between pieces of information
computed by the various components.

4 Experiments

We achieve state-of-the-art results on the CoNNL
2003 English NER dataset (see Table 1). Although
we do not employ additional external resources
(language specific dictionaries or gazetteers), our
model is competitive even with some of the mod-
els that do.

To gain a better understanding of the perfor-
mance of our model including how its various
components affect performance we prepared four
additional tables of runs.

Table 2 shows performance as a function of the
number of RNN units with a fixed unit size. The
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Model F1
(Chieu and Ng, 2002) 88.31
(Florian et al., 2003) 88.76
(Ando and Zhang, 2005) 89.31
(Collobert et al., 2011)‡ 89.59
(Huang et al., 2015)‡ 90.10
(Chiu and Nichols, 2015)‡ 90.77
(Ratinov and Roth, 2009) 90.80
(Lin and Wu, 2009) 90.90
(Passos et al., 2014)‡∗ 90.90
(Lample et al., 2016)‡ 90.94
(Luo et al., 2015)‡ 91.20
(Ma and Hovy, 2016)‡ 91.21
(Sato et al., 2017) 91.28
(Chiu and Nichols, 2015)‡∗ 91.62
(Peters et al., 2017)‡∗ 91.93
This paper‡ 91.48 ±0.22

Table 1: English NER F1 score of our model on
the test set of CoNLL-2003 (English). During
training we optimize for the development set and
report test set results for our best performing de-
velopment set model. The bounded F1 results we
report (±0.22) are taken after 10 runs. For the pur-
pose of comparison, we also list F1 scores of pre-
vious top-performance systems. ‡ marks the neu-
ral models. ∗ marks model which use external re-
sources.

number of units is clearly a hyperparameter which
must be optimized for. We find good performance
across the board (there is no catastrophic collapse
in results) however when using 16 units we do
outperform other models substantially. Even with
very small unit sizes of 8 (Table 3) our models per-
forms relatively well without a significant degra-
dation in results. Table 4 shows and 5 show addi-
tional results for unit size and component impact
on our best performing model.

5 Conclusion

We achieve state-of-the-art results on the CoNLL
2003 English dataset and introduce a new model
motivated primarily by its ability to be easily dis-
tributable and reduce the total number of param-
eters. Further work should be done on evaluat-
ing it across different classification and sequence
classification tasks to study its performance. Ad-
ditionally, a run-time analysis show be conducted
to compare speedups if the model is parallelized
across CPU cores.

# RNN units F1

1 90.53 ±0.31

2 90.79 ±0.18

4 90.64 ±0.24

8 91.09 ±0.28

16 91.48 ±0.22

32 90.68 ±0.18

Table 2: Performance as a function of the number
of RNN units with a fixed unit size of 64; aver-
aged across 5 runs apart from the 16 unit (average
across 10 runs).

# RNN units Unit size F1

1 1024 87.54
2 512 91.25
4 256 91.29
8 128 91.31
16 64 91.48 ±0.22

32 32 90.60
64 16 90.79
128 8 90.41

Table 3: Performance of our model with various
unit sizes resulting in a fixed final output size ht.
Single runs apart from 16 unit.

Unit size F1

8 89.78
16 89.77
32 90.26
64 91.48 ±0.22

128 89.28

Table 4: Performance as a function of the unit size
for our best performing model (16 biLSTM units).
Single runs apart from with size 64.

Component F1

No character embeddings 90.39
No orthogonal regularization 90.79

No Xavier initialization 91.09
No variational dropout 91.03

Mean pool instead of concat 90.49

Table 5: Impact of various architectural decisions
on our best performing model (16 biLSTM units,
64 unit size). Single runs.
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Abstract

State-of-the-art knowledge base comple-
tion (KBC) models predict a score for ev-
ery known or unknown fact via a latent
factorization over entity and relation em-
beddings. We observe that when they
fail, they often make entity predictions
that are incompatible with the type re-
quired by the relation. In response, we
enhance each base factorization with two
type-compatibility terms between entity-
relation pairs, and combine the signals in
a novel manner. Without explicit super-
vision from a type catalog, our proposed
modification obtains up to 7% MRR gains
over base models, and new state-of-the-art
results on several datasets. Further analy-
sis reveals that our models better represent
the latent types of entities and their embed-
dings also predict supervised types better
than the embeddings learned by baseline
models.

1 Introduction

Knowledge bases (KBs) store facts in the form of
relations (r) between subject entity (s) and object
entity (o), e.g., 〈Obama, born-in,Hawaii〉. Since
KBs are typically incomplete (Bollacker et al.,
2008), the task of KB Completion (KBC) attempts
to infer new tuples from a given KB. Neural ap-
proaches to KBC, e.g., Complex (Trouillon et al.,
2016) and DistMult (Yang et al., 2015), calculate
the score f(s, r, o) of a tuple (s, r, o) via a latent
factorization over entity and relation embeddings,
and use these scores to predict the validity of an
unseen tuple.

A model is evaluated over queries of the form
〈s∗, r∗, ?〉. It ranks all entities o in the descend-

*Equal contribution.

ing order of tuple scores f(s∗, r∗, o), and credit is
assigned based on the rank of gold entity o∗. Our
preliminary analysis of DistMult (DM) and Com-
plex (CX) reveals that they make frequent errors
by ranking entities that are not compatible with
types expected as arguments of r∗ high. In 19.5%
of predictions made by DM on FB15K, the top
prediction has a type different from what is ex-
pected (see Table 1 for illustrative examples).

In response, we propose a modification to
base models (DM, Complex) by explicitly mod-
eling type compatibility. Our modified func-
tion f ′(s, r, o) is the product of three terms:
the original tuple score f(s, r, o), subject type-
compatibility between r and s, and object type-
compatibility between r and o. Our type-sensitive
models, TypeDM and TypeComplex, do not ex-
pect any additional type-specific supervision —
they induce all embeddings using only the origi-
nal KB.

Experiments over three datasets show that all
typed models outperform base models by signif-
icant margins, obtaining new state-of-the-art re-
sults in several cases. We perform additional anal-
yses to assess if the learned embeddings indeed
capture the type information well. We find that
embeddings from typed models can predict known
symbolic types better than base models.

Finally, we note that an older model called E
(Riedel et al., 2013) can be seen as modeling
type compatibilities. Moreover, previous work
has explored additive combinations of DM and E
(Garcia-Duran et al., 2015b; Toutanova and Chen,
2015). We directly compare against these mod-
els and find that, our proposal outperforms both E,
DM and their linear combinations.

We contribute open-source implementations1 of
all models and experiments discussed in this paper

1https://github.com/dair-iitd/KBI
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for further research.

2 Background and Related Work

We are given an incomplete KB with entities E
and relations R. The KB also contains T =
{〈s, r, o〉}, a set of known valid tuples, each with
subject and object entities s, o ∈ E , and relation
r ∈ R. Our goal is to predict the validity of any
tuple not present in T . Popular top performing
models for this task are Complex and DM.

In Complex, each entity e (resp., relation r)
is represented as a complex vector aaae ∈ CD
(resp., bbbr ∈ CD). Tuple score fCX(s, r, o) =

<
(∑D

d=1 asdbrda
?
od

)
, where <(z) is real part of

z, and z? is complex conjugate of z. Holographic
embeddings (Nickel et al., 2016) are algebraically
equivalent to Complex. In DM, each entity e
is represented as a vector aaae ∈ RD, each rela-
tion r as a vector bbbr ∈ RD, and the tuple score
fDM(s, r, o) = 〈aaas, bbbr, aaao〉 =

∑D
d=1 asdbrdaod.

Earlier, Riedel et al. (2013) proposed a differ-
ent model called E: relation r is represented by
two vectors vvvr,wwwr ∈ RD, and the tuple score
fE(s, r, o) = aaas · vvvr + aaao ·wwwr. E may be regarded
as a relation prediction model that depends purely
on type compatibility checking.

Observe that, in 〈aaas, bbbr, aaao〉, bbbr mediates a di-
rect compatibility between s and o for relation r,
whereas, inaaas·vvvr+aaao·wwwr, we are scoring how well
s can serve as subject and o as object of the rela-
tion r. Thus, in the second case, aaae is expected to
encode the type(s) of entity e, where, by ‘type’, we
loosely mean “information that helps decide if e
can participate in a relation r, as subject or object.”
Heuristic filtering of the entities that do not match
the desired type at test time has been known to im-
prove accuracy (Toutanova et al., 2015; Krompaß
et al., 2015). Our typed models formalize this
within the embeddings and allow for discovery
of latent types without additional data. Krompaß
et al. (2015) also use heuristic typing of entities
for generating negative samples while training the
model. Our experiment finds that this approach is
not very competitive against our typed models.

3 TypeDM and TypeComplex

Representation: We start with DM as the base
model; the Complex case is identical. The first
key modification (see Figure 1) is that each entity
e is now represented by two vectors: uuue ∈ RK to
encode type information, and aaae ∈ RD′

to encode

information. Typically, K � D′. The second,
concomitant modification is that each relation r is
now associated with three vectors: bbbr ∈ RD′

as
before, and also vvvr,wwwr ∈ RK . vvvr and wwwr encode
the expected types for subject and object entities.

An ideal way to train type embeddings would
be to provide canonical type signatures for each
relation and entity. Unfortunately, these aspects
of realistic KBs are themselves incomplete (Nee-
lakantan and Chang, 2015; Murty et al., 2018).
Our models train all embeddings using T only and
don’t rely on any explicit type supervision.

DM uses (E + R)D model weights for a KB
with R relations and E entities, whereas TypeDM
usesE(D′+K)+R(D′+2K). To make compar-
isons fair, we setD′ andK so that the total number
of model weights (real or complex) are about the
same for base and typed models.

vvvr

bbbr

wwwr

uuus aaas

uuuo aaao

Cvvv

Cwww

f f ′

Figure 1: TypeDM and TypeComplex.

Prediction: DM’s base prediction score for tu-
ple (s, r, o) is 〈aaas, bbbr, aaao〉. We apply a (sigmoid)
nonlinearity:

f(s, r, o) = σ(〈aaas, bbbr, aaao〉), (1)
and then combine with two additional terms that
measure type compatibility between the subject
and the relation, and the object and the relation:
f ′(s, r, o) = f(s, r, o)Cvvv(s, r)Cwww(o, r), (2)

where Cxxx(e, r) is a function that measures the
compatibility between the type embedding of e for
a given argument slot of r:

Cxxx(e, r) = σ(xxxr · uuue) (3)
If each of the three terms in Equation 2 is inter-
preted as a probability, f ′(s, r, o) corresponds to a
simple logical AND of the three conditions.

We want f ′(s, r, o) to be almost 1 for positive
instances (tuples known to be in the KG) and close
to 0 for negative instances (tuples not in the KG).
For a negative instance, one or more of the three
terms may be near zero. There is no guidance to
the learner on which term to drive down.
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Subject s Relation r Gold Object o Prediction 1 Prediction 2
Howard Leslie Shore follows-religion Jewism (religion) Walk Hard (film) 21 Jump Street (film)
Spyglass Entertainment headquarter-located-in El lay (location) The Real World (tv) Contraband (film)
Les Fradkin born-in-location New York (location) Federico Fellini (person) Louie De palma (person)
Eugene Alden Hackman studied Rural Journalism (education) Loudon Snowden Wainwright III (person) The Bourne Legacy (film)
Chief Phillips (film) released-in-region Yankee land (location) Akira Isida (person) Presidential Medal of Freedom (award)

Table 1: Samples of top two DM predictions (having inconsistent types) on FB15K. TypeDM predicts
entities of the correct type in top positions in the corresponding examples.

Contrastive Sampling: Training data consist of
positive gold tuples (s, r, o) and negative tuples,
which are obtained by perturbing each positive tu-
ple by replacing either s or o with a randomly
sampled s′ or o′. This offers the learning algo-
rithm positive and negative instances. The models
are trained such that observed tuples have higher
scores than unobserved ones.
Loss Functions: We implement two common
loss objectives. The log-likelihood loss first com-
putes the probability of predicting a response o for
a query (s, r, ?) as follows:

Pr(o|s, r) = exp(βf ′(s, r, o))∑
o′ exp(βf

′(s, r, o′))
(4)

Because f ′ ∈ [0, 1] for typed models, we scale
it with a hyper-parameter β > 0 (a form of in-
verse temperature) to allow Pr(o|s, r) to take val-
ues over the full range [0, 1] in loss minimization.

The sum over o′ in the denominator is sampled
based on contrastive sampling, so the left hand
side is not a formal probability (exactly as in DM).
A similar term is added for Pr(s|r, o). The log-
likelihood loss minimizes:

−
∑

〈s,r,o〉∈P

(
logPr(o|s, r; θ)

+ logPr(s|o, r; θ)
)

(5)

The summation is over P which is the set of all
positive facts. Following Trouillon et al. (2016),
we also implement the logistic loss

∑

〈s,r,o〉∈T
log
[
1 + e−Ysrof

′(s,r,o)
]

(6)

Here Ysro is 1 if the fact (s, r, o) is true and
−1 otherwise. Also, T is the set of all positive
facts along with the negative samples. With logis-
tic loss, model weights θ are L2-regularized and
gradient norm is clipped at 1.

4 Experiments

Datasets: We evaluate on three standard data
sets, FB15K, FB15K-237, and YAGO3-10 (Bor-

des et al., 2013; Toutanova et al., 2015; Dettmers
et al., 2017). We retain the exact train, dev and
test folds used in previous works. TypeDM and
TypeComplex are competitive on the WN18 data
set (Bordes et al., 2013), but we omit those results,
as WN18 has 18 very generic relations (e.g., hy-
ponym, hypernym, antonym, meronym), which do
not give enough evidence for inducing types.

Model Embedding Number of
dimensions parameters

E 200 3,528,200
DM+E 100+100 3,393,700

DM 200 3,259,200
TypeDM 180+19 3,268,459
Complex 200 6,518,400

TypeComplex 180+19 6,201,739

Table 2: Sizes were approximately balanced be-
tween base and typed models (FB15K).

Metrics: As is common, we regard test instances
(s, r, ?) as a task of ranking o, with gold o∗ known.
We report MRR (Mean Reciprocal Rank) and the
fraction of queries where o∗ is recalled within
rank 1 and rank 10 (HITS). The filtered evaluation
(Garcia-Duran et al., 2015a) removes valid train
or test tuples ranking above (s, r, o∗) for scoring
purposes.
Hyperparameters: We run AdaGrad for up to
1000 epochs for all losses, with early stopping on
the dev fold to prevent overfitting. All the mod-
els generally converge after 300-400 epochs, ex-
cept TypeDM that exhausts 1000 epochs. E, DM,
DM+E and Complex use 200 dimensional vectors.
All except E perform best with logistic loss and
20 negative samples (obtained by randomly cor-
rupting s and r) per positive fact. This is deter-
mined by doing a hyperparameter search on a set
{10, 20, 50, 100, 200, 400}.

For typed models we first perform hyperparam-
eter search for size of type embeddings (K) such
that total entity embedding size remains 200. We
get the best results at K = 20, from among val-
ues in {10, 20, 30, 50, 80, 100, 120}. This hyper-
parameter search is done for the TypeDM model
(which is faster to train than TypeComplex) on
FB15k dataset, and the selected split is used for
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FB15K FB15K237 YAGO3-10
Model MRR HITS@1 HITS@10 MRR HITS@1 HITS@10 MRR HITS@1 HITS@10

E 23.40 17.39 35.29 21.30 14.51 36.38 7.87 6.22 10.00
DM+E 60.84 49.53 79.70 38.15 28.06 58.02 52.48 38.72 77.40

DM 67.47 56.52 84.86 37.21 27.43 56.12 55.31 46.80 70.76
TypeDM 75.01 66.07 87.92 38.70 29.30 57.36 58.16 51.36 70.08
Complex 70.50 61.00 86.09 37.58 26.97 55.98 54.86 46.90 69.08

TypeComplex 75.44 66.32 88.51 38.93 29.57 57.50 58.65 51.62 70.42

Table 3: KBC performance for base, typed, and related formulations. Typed models outperform their
base models across all datasets.

all the typed models. To balance total model sizes
(Table 2), we choose K = 19 dimensions for
uuue, vvvr,wwwr and 180 dimensions for aaae, bbbr2.

Typed models and E perform best with 400 neg-
ative samples per positive tuple while using log-
likelihood loss (robust to a larger number of neg-
ative facts as opposed to logistic loss, which falls
for class imbalance). FB15K and YAGO3-10 use
L2 regularization coefficient of 2.0, and it is 5.0
for FB15K-237. Note that the L2 regularization
penalty is applied to only those entities and rela-
tions that are a part of that batch update, as pro-
posed by Trouillon et al. (2016). β is set to 20.0 for
the typed models, and 1.0 for other models if they
use the log-likelihood loss. Entity embeddings are
unit normalized at the end of every epoch, for the
type models. Also, we find that in TypeDM scal-
ing the embeddings of the base model to unit norm
performs better than using L2 regularization.

Results: Table 3 shows that TypeDM and Type-
Complex dominate across all data sets. E by it-
self is understandably weak, and DM+E does not
lift it much. Each typed model improves upon the
corresponding base model on all measures, under-
scoring the value of type compatibility scores.3 To
the best of our knowledge, the results of our typed
models are competitive with various reported re-
sults for models of similar sizes that do not use any
additional information, e.g., soft rules (Guo et al.,
2018), or textual corpora (Toutanova et al., 2015).

We also compare against the heuristic genera-

2Notice that a typed model has a slightly higher number
of parameters for relation embeddings, because it needs to
maintain two type embeddings of size K, over and above bbbr .
Using K = 19 reduced and brought the total number of pa-
rameters closer to that of the base model, for a fair direct
comparison. The model performance did not differ by much
when using either of the options (i.e., K = 19 or 20).

3For direct comparisons with published work, we choose
200 and 400 parameters per entity for DM and Complex re-
spectively (Complex model has two 200 dimensional embed-
dings per entity). DM and TypeDM, on increasing the di-
mensionality to 400, yield MRR scores of 69.79 and 78.91,
respectively, for FB15K.

tion of type-sensitive negative samples (Krompaß
et al., 2015). For this experiment, we train a Com-
plex model using this heuristically generated nega-
tive set, and use standard evaluation, as in all other
models. We find that all the models reported in Ta-
ble 3 outperform this approach.

(a) (b)

(c) (d)

Figure 2: Projection of vectors represent-
ing entities belonging to frequent KB types-
{people, location, organisation, film,
sports}: a: TypeDM,uuue; b: TypeDM,aaae;
c: TypeComplex,uuue; d: DM,aaae.

5 Analysis of Typed Embeddings

We perform two further analyses to assess whether
the embeddings produced by typed models indeed
capture type information better. For these exper-
iments, we try to correlate (and predict) known
symbolic types of an entity using the unsupervised
embeddings produced by the models. We take a
fine catalog of most frequent 90 freebase types
over the 14,951 entities in the FB15k dataset (Xie
et al., 2016). We exclude /common/topic as
it occurs with most entities. On an average each
entity has 12 associated types.

1. Clustering Entity/Type Embeddings: For
this experiment we subselect entities in FB15k that
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Method Embed Size H C Type
-ding F1

TypeDM uuue 19 66.72 66.29 81.77
TypeDM aaae 180 57.89 59.67 75.96
TypeDM Both 199 66.75 66.29 82.57
DM aaae 200 51.40 48.12 81.34
TypeComplex uuue 19 65.90 62.97 82.70
TypeComplex aaae 180x2 50.76 48.57 74.75
TypeComplex Both 379 66.03 63.09 84.14
Complex aaae 200x2 51.56 47.20 81.58
DM+E uuue 19 0.48 2.05 74.66
DM+E aaae 180 49.62 47.24 82.72
DM+E Both 199 49.66 47.26 82.68
E aaae 200 39.83 37.62 74.23

Table 4: Interpretation of embeddings wrt super-
vised types: cluster homogeneity H, completeness
C, and type prediction F1 score.

belong to one of the 5 types (people, location,
organization, film, and sports) from the freebase
dataset. These cover 84.88% of FB15K entities.
We plot the FB15K entities e using the PCA pro-
jection of uuue and aaae in Figure 2, color-coding their
types. We observe that uuue separates the type clus-
ters better than aaae, suggesting that uuue vectors in-
deed collect type information. We also perform
k-means clustering of uuue and aaae embeddings of
these entities, as available from different models.
We report cluster homogeneity and completeness
scores (Rosenberg and Hirschberg, 2007) in Ta-
ble 4. Typed models yield superior clusters.
2. Prediction of Symbolic Types: We train a
single-layer network that inputs embeddings from
various models and predicts a set of symbolic
types from the KB. This tells us the extent to
which the embeddings capture KB type informa-
tion (that was not provided explicitly during train-
ing). Table 4 reports average macro F1 score (5-
fold cross validation). Embeddings from TypeDM
and TypeComplex are generally better predictors
than embeddings learned by Complex, DM and E.
uuue ∈ R19 is often better than aaae ∈ R180 or more,
for typed models. DM+E with 199 model weights
narrowly beats TypeDM with 19 weights, but re-
call that it has poorer KBC scores.

6 Conclusion and Future Work

We propose an unsupervised typing gadget, which
enhances top-of-the-line base models for KBC
(DistMult, Complex) with two type-compatibility
functions, one between r and s and another be-
tween r and o. Without explicit supervision from
any type catalog, our typed variants (with simi-
lar number of parameters as base models) substan-

tially outperform base models, obtaining up to 7%
MRR improvements and over 10% improvements
in the correctness of the top result. To confirm that
our models capture type information better, we
correlate the embeddings learned without type su-
pervision with existing type catalogs. We find that
our embeddings indeed separate and predict types
better. In future work, combining type-sensitive
embeddings with a focus on less frequent relations
(Xie et al., 2017), more frequent entities (Dettmers
et al., 2017), or side information such as inference
rules (Guo et al., 2018; Jain and Mausam, 2016) or
textual corpora (Toutanova et al., 2015) may fur-
ther increase KBC accuracy. It may also be of in-
terest to integrate the typing approach here with
the combinations of tensor and matrix factoriza-
tion models for KBC (Jain et al., 2018).

Acknowledgements

This work is supported by Google language un-
derstanding and knowledge discovery focused re-
search grants, a Bloomberg award, an IBM SUR
award, and a Visvesvaraya faculty award by Govt.
of India to the third author. It is also supported
by a TCS Fellowship to the first author. We thank
Microsoft Azure sponsorships, IIT Delhi HPC fa-
cility and the support of nVidia Corporation for
computational resources.

References
Kurt Bollacker, Colin Evans, Praveen Pari-

tosh, Tim Sturge, and Jamie Taylor. 2008.
Freebase: a collaboratively created graph
database for structuring human knowledge.
In SIGMOD Conference. pages 1247–1250.
http://ids.snu.ac.kr/w/images/9/98/sc17.pdf.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS Conference. pages 2787–
2795. http://papers.nips.cc/paper/5071-translating-
embeddings-for-modeling-multi-relational-data.pdf.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2017. Convolutional
2d knowledge graph embeddings. arXiv preprint
arXiv:1707.01476 .

Alberto Garcia-Duran, Antoine Bordes, and Nico-
las Usunier. 2015a. Composing relationships with
translations. In EMNLP Conference. pages 286–
290. http://www.aclweb.org/anthology/D15-1034.

Alberto Garcia-Duran, Antoine Bordes, Nicolas
Usunier, and Yves Grandvalet. 2015b. Combin-

79



ing two and three-way embeddings models for link
prediction in knowledge bases. arXiv preprint
arXiv:1506.00999 https://arxiv.org/pdf/1506.00999.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2018. Knowledge graph embedding with
iterative guidance from soft rules. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence.

Prachi Jain and Mausam. 2016. Knowledge-guided lin-
guistic rewrites for inference rule verification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 86–92.

Prachi Jain, Shikhar Murty, Mausam, and Soumen
Chakrabarti. 2018. Mitigating the effect of out-of-
vocabulary entity pairs in matrix factorization for kb
inference. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-18.

Denis Krompaß, Stephan Baier, and Volker Tresp.
2015. Type-constrained representation learning in
knowledge graphs. In International Semantic Web
Conference. Springer, pages 640–655.

Shikhar Murty, Patrik Verga, Luke Vilnis, Irena
Radovanovic, and Andrew McCallum. 2018. Hier-
archical losses and new resources for fine-grained
entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Arvind Neelakantan and Ming-Wei Chang. 2015. In-
ferring missing entity type instances for knowledge
base completion: New dataset and methods. In
NAACL .

Maximilian Nickel, Lorenzo Rosasco, Tomaso A Pog-
gio, et al. 2016. Holographic embeddings of knowl-
edge graphs. In AAAI Conference. pages 1955–
1961. https://arxiv.org/abs/1510.04935.

Sebastian Riedel, Limin Yao, Andrew McCallum,
and Benjamin M Marlin. 2013. Relation ex-
traction with matrix factorization and universal
schemas. In NAACL Conference. pages 74–
84. http://www.anthology.aclweb.org/N/N13/N13-
1008.pdf.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In EMNLP Conference.
http://aclweb.org/anthology/D/D07/D07-1043.pdf.

Kristina Toutanova and Danqi Chen. 2015. Ob-
served versus latent features for knowledge base
and text inference. In Proceedings of the
3rd Workshop on Continuous Vector Space Mod-
els and their Compositionality. pages 57–66.
http://www.aclweb.org/anthology/W15-4007.

Kristina Toutanova, Danqi Chen, Patrick Pan-
tel, Hoifung Poon, Pallavi Choudhury, and
Michael Gamon. 2015. Representing text for
joint embedding of text and knowledge bases.
In EMNLP Conference. pages 1499–1509.
https://www.aclweb.org/anthology/D/D15/D15-
1174.pdf.
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Abstract
We present a novel graph-based neural
network model for relation extraction. Our
model treats multiple pairs in a sentence
simultaneously and considers interactions
among them. All the entities in a sentence
are placed as nodes in a fully-connected
graph structure. The edges are represented
with position-aware contexts around the
entity pairs. In order to consider differ-
ent relation paths between two entities,
we construct up to l-length walks between
each pair. The resulting walks are merged
and iteratively used to update the edge rep-
resentations into longer walks representa-
tions. We show that the model achieves
performance comparable to the state-of-
the-art systems on the ACE 2005 dataset
without using any external tools.

1 Introduction

Relation extraction (RE) is a task of identifying
typed relations between known entity mentions
in a sentence. Most existing RE models treat
each relation in a sentence individually (Miwa
and Bansal, 2016; Nguyen and Grishman, 2015).
However, a sentence typically contains multiple
relations between entity mentions. RE models
need to consider these pairs simultaneously to
model the dependencies among them. The relation
between a pair of interest (namely “target” pair)
can be influenced by other pairs in the same sen-
tence. The example illustrated in Figure 1 explains
this phenomenon. The relation between the pair of
interest Toefting and capital, can be extracted di-
rectly from the target entities or indirectly by in-
corporating information from other related pairs
in the sentence. The person entity (PER) Toeft-
ing is directly related with teammates through the

Toefting was convicted of assaulting a pair of workers during
PER

 a night out with national squad teammates in the capital  ...
PER GPE

PER-SOC
PHYS

PHYS

Figure 1: Relation examples from ACE (Auto-
matic Content Extraction) 2005 dataset (Dodding-
ton et al., 2004).

preposition with. Similarly, teammates is directly
related with the geopolitical entity (GPE) capital
through the preposition in. Toefting and capital
can be directly related through in or indirectly re-
lated through teammates. Substantially, the path
from Toefting to teammates to capital can addi-
tionally support the relation between Toefting and
capital.

Multiple relations in a sentence between entity
mentions can be represented as a graph. Neural
graph-based models have shown significant im-
provement in modelling graphs over traditional
feature-based approaches in several tasks. They
are most commonly applied on knowledge graphs
(KG) for knowledge graph completion (Jiang
et al., 2017) and the creation of knowledge graph
embeddings (Wang et al., 2017; Shi and Weninger,
2017). These models rely on paths between ex-
isting relations in order to infer new associations
between entities in KGs. However, for relation
extraction from a sentence, related pairs are not
predefined and consequently all entity pairs need
to be considered to extract relations. In addition,
state-of-the-art RE models sometimes depend on
external syntactic tools to build the shortest depen-
dency path (SDP) between two entities in a sen-
tence (Xu et al., 2015; Miwa and Bansal, 2016).
This dependence on external tools leads to domain
dependent models.
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In this study, we propose a neural relation ex-
traction model based on an entity graph, where
entity mentions constitute the nodes and directed
edges correspond to ordered pairs of entity men-
tions. The overview of the model is shown in
Figure 2. We initialize the representation of an
edge (an ordered pair of entity mentions) from the
representations of the entity mentions and their
context. The context representation is achieved
by employing an attention mechanism on context
words. We then use an iterative process to aggre-
gate up-to l-length walk representations between
two entities into a single representation, which
corresponds to the final representation of the edge.

The contributions of our model can be summa-
rized as follows:
• We propose a graph walk based neural model

that considers multiple entity pairs in relation
extraction from a sentence.
• We propose an iterative algorithm to form a

single representation for up-to l-length walks
between the entities of a pair.
• We show that our model performs compara-

bly to the state-of-the-art without the use of
external syntactic tools.

2 Proposed Walk-based Model

The goal of the RE task is given a sentence, en-
tity mentions and their semantic types, to extract
and classify all related entity pairs (target pairs) in
the sentence. The proposed model consists of five
stacked layers: embedding layer, BLSTM Layer,
edge representation layer, walk aggregation layer
and finally a classification layer.

As shown in Figure 2, the model receives word
representations and produces simultaneously a
representation for each pair in the sentence. These
representations combine the target pair, its context
words, their relative positions to the pair entities
and walks between them. During classification
they are used to predict the relation type of each
pair.

2.1 Embedding Layer

The embedding layer involves the creation of nw,
nt, np-dimensional vectors which are assigned to
words, semantic entity types and relative positions
to the target pairs. We map all words and seman-
tic types into real-valued vectors w and t respec-
tively. Relative positions to target entities are cre-
ated based on the position of words in the sen-

Attention

...

e2w3 w5 e3 e1

context target

Attention

Linear

BLSTM

w6w2 w3 w4 w5w1
FACPER

Linear

e3

e1 e3e2
e1

e3 e2

Embed 
Layer

Edge 
Layer

PER
e3e2e1

...

Interpolation

...

e1
e2

blstm

pos1
pos2

type

Softmax

[ e1, e2 ] 

Walk 
Layer

e3w3 e2 w5 e1
context target

[ e1, e3 ]

Bilinear

Figure 2: Overview of the walk-based model.

tence. In the example of Figure 1, the relative po-
sition of teammates to capital is −3 and the rela-
tive position of teammates to Toefting is +16. We
embed real-valued vectors p to these positions.

2.2 Bidirectional LSTM Layer

The word representations of each sentence are
fed into a Bidirectional Long-short Term Memory
(BLSTM) layer, which encodes the context rep-
resentation for every word. The BLSTM outputs
new word-level representations h (Hochreiter and
Schmidhuber, 1997) that consider the sequence of
words.

We avoid encoding target pair-dependent infor-
mation in this BLSTM layer. This has two advan-
tages: (i) the computational cost is reduced as this
computation is repeated based on the number of
sentences instead of the number of pairs, (ii) we
can share the sequence layer among the pairs of a
sentence. The second advantage is particularly im-
portant as it enables the model to indirectly learn
hidden dependencies between the related pairs in
the same sentence.

For each word t in the sentence, we con-
catenate the two representations from left-to-right
and right-to-left pass of the LSTM into a ne-
dimensional vector, et = [

−→
ht;
←−
ht].
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2.3 Edge Representation Layer
The output word representations of the BLSTM
are further divided into two parts: (i) target pair
representations and (ii) target pair-specific context
representations. The context of a target pair can be
expressed as all words in the sentence that are not
part of the entity mentions. We represent a related
pair as described below.

A target pair contains two entities ei and
ej . If an entity consists of N words, we cre-
ate its BLSTM representation as the average of
the BLSTM representations of the corresponding
words, e = 1

|I|
∑

i∈I ei, where I is a set with the
word indices inside entity e.

We first create a representation for each pair en-
tity and then we construct the representation for
the context of the pair. The representation of an
entity ei is the concatenation of its BLSTM repre-
sentation ei, the representation of its entity type
ti and the representation of its relative position
to entity ej , pij . Similarly, for entity ej we use
its relative position to entity ei, pji. Finally, the
representations of the pair entities are as follows:
vi = [ei; ti;pij ] and vj = [ej ; tj ;pji].

The next step involves the construction of the
representation of the context for this pair. For
each context word wz of the target pair ei, ej ,
we concatenate its BLSTM representation ez , its
semantic type representation tz and two relative
position representations: to target entity ei, pzi
and to target entity ej , pzj . The final represen-
tation for a context word wz of a target pair is,
vijz = [ez; tz;pzi;pzj ]. For a sentence, the con-
text representations for all entity pairs can be ex-
pressed as a three-dimensional matrix C, where
rows and columns correspond to entities and the
depth corresponds to the context words.

The context words representations of each tar-
get pair are then compiled into a single represen-
tation with an attention mechanism. Following the
method proposed in Zhou et al. (2016), we calcu-
late weights for the context words of the target-
pair and compute their weighted average,

u = q> tanh(Cij),

α = softmax(u),

cij = Cij α
>,

(1)

where q ∈ Rnd , nd = ne + nt + 2np de-
notes a trainable attention vector, α is the attended
weights vector and cij ∈ Rnd is the context rep-
resentation of the pair as resulted by the weighted

average. This attention mechanism is independent
of the relation type. We leave relation-dependent
attention as future work.

Finally, we concatenate the representations of
the target entities and their context (∈ Rnm). We
use a fully connected linear layer, Ws ∈ Rnm×ns

with ns < nm to reduce the dimensionality of the
resulting vector. This corresponds to the represen-
tation of an edge or a one-length walk between
nodes i and j: v(1)

ij = Ws [vi;vj ; cij ] ∈ Rns .

2.4 Walk Aggregation Layer

Our main aim is to support the relation between
an entity pair by using chains of intermediate re-
lations between the pair entities. Thus, the goal of
this layer is to generate a single representation for
a finite number of different lengths walks between
two target entities. To achieve this, we represent
a sentence as a directed graph, where the entities
constitute the graph nodes and edges correspond to
the representation of the relation between the two
nodes. The representation of one-length walk be-
tween a target pair v(1)

ij , serves as a building block
in order to create and aggregate representations for
one-to-l-length walks between the pair. The walk-
based algorithm can be seen as a two-step process:
walk construction and walk aggregation. During
the first step, two consecutive edges in the graph
are combined using a modified bilinear transfor-
mation,

f(v
(λ)
ik ,v

(λ)
kj ) = σ

(
v
(λ)
ik � (Wb v

(λ)
kj )
)
, (2)

where v
(λ)
ij ∈ Rnb corresponds to walks repre-

sentation of lengths one-to-λ between entities ei
and ej , � represents element-wise multiplication,
σ is the sigmoid non-linear function and Wb ∈
Rnb×nb is a trainable weight matrix. This equa-
tion results in walks of lengths two-to-2λ.

In the walk aggregation step, we linearly com-
bine the initial walks (length one-to-λ) and the ex-
tended walks (length two-to-2λ),

v
(2λ)
ij = βv

(λ)
ij + (1− β)

∑

k 6=i,j
f(v

(λ)
ik ,v

(λ)
kj ), (3)

where β is a weight that indicates the importance
of the shorter walks. Overall, we create a represen-
tation for walks of length one-to-two using Equa-
tion (3) and λ = 1. We then create a representation
for walks of length one-to-four by re-applying the
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equation with λ = 2. We repeat this process un-
til the desired maximum walk length is reached,
which is equivalent to 2λ = l.

2.5 Classification Layer
For the final layer of the network, we pass the re-
sulted pair representation into a fully connected
layer with a softmax function,

y = softmax(Wrv
(l)
ij + br), (4)

where Wr ∈ Rnb×nr is the weight matrix, nr is
the total number of relation types and br is the bias
vector.

We use in total 2r+1 classes in order to consider
both directions for every pair, i.e., left-to-right and
right-to-left. The first argument appears first in a
sentence in a left-to-right relation while the second
argument appears first in a right-to-left relation.
The additional class corresponds to non-related
pairs, namely “no relation” class. We choose the
most confident prediction for each direction and
choose the positive and most confident prediction
when the predictions contradict each other.

3 Experiments

3.1 Dataset
We evaluate the performance of our model on
ACE 20051 for the task of relation extraction.
ACE 2005 includes 7 entity types and 6 relation
types between named entities. We follow the pre-
processing described in Miwa and Bansal (2016).

3.2 Experimental Settings
We implemented our model using the Chainer li-
brary (Tokui et al., 2015).2 The model was trained
with Adam optimizer (Kingma and Ba, 2015).
We initialized the word representations with ex-
isting pre-trained embeddings with dimensionality
of 200.3 Our model did not use any external tools
except these embeddings.

The forget bias of the LSTM layer was initial-
ized with a value equal to one following the work
of Jozefowicz et al. (2015). We use a batchsize of
10 sentences and fix the pair representation dimen-
sionality to 100. We use gradient clipping, dropout
on the embedding and output layers and L2 regu-
larization without regularizing the biases, to avoid

1https://catalog.ldc.upenn.edu/
ldc2006t06

2https://chainer.org/
3https://github.com/tticoin/LSTM-ER

Model P R F1 (%)

SPTree 70.1 61.2 65.3
Baseline 72.5 53.3 61.4∗

No walks l = 1 71.9 55.6 62.7
+ Walks l = 2 69.9 58.4 63.6�

+ Walks l = 4 69.7 59.5 64.2�

+ Walks l = 8 71.5 55.3 62.4

Table 1: Relation extraction performance on ACE
2005 test dataset. * denotes significance at p <
0.05 compared to SPTree, � denotes significance
at p < 0.05 compared to the Baseline.

overfitting. We also incorporate early stopping
with patience equal to five, to chose the number
of training epochs and parameter averaging. We
tune the model hyper-parameters on the respective
development set using the RoBO Toolkit (Klein
et al., 2017). Please refer to the supplementary
material for the values.

We extract all possible pairs in a sentence based
on the number of entities it contains. If a pair is
not found in the corpus, it is assigned the “no re-
lation” class. We report the micro precision, recall
and F1 score following Miwa and Bansal (2016)
and Nguyen and Grishman (2015).

4 Results

Table 1 illustrates the performance of our pro-
posed model in comparison with SPTree sys-
tem Miwa and Bansal (2016) on ACE 2005. We
use the same data split with SPTree to compare
with their model. We retrained their model with
gold entities in order to compare the performances
on the relation extraction task. The Baseline corre-
sponds to a model that classifies relations by using
only the representations of entities in a target pair.

As it can be observed from the table, the Base-
line model achieves the lowest F1 score between
the proposed models. By incorporating attention
we can further improve the performance by 1.3
percent point (pp). The addition of 2-length walks
further improves performance (0.9 pp). The best
results among the proposed models are achieved
for maximum 4-length walks. By using up-to
8-length walks the performance drops almost by
2 pp. We also compared our performance with
Nguyen and Grishman (2015) (CNN) using their
data split.4 For the comparison, we applied our

4The authors kindly provided us with the data split.
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# Entities l = 1 l = 2 l = 4 l = 8

2 71.2 69.8 72.9 71.0
3 70.1 67.5 67.8 63.5∗

[4, 6) 56.5 59.7 59.3 59.9
[6, 12) 59.2 64.2∗ 62.2 60.4
[12, 23) 54.7 59.3 62.3∗ 55.0

Table 2: Relation extraction performance (F1 %)
on ACE 2005 development set for different num-
ber of entities. * denotes significance at p < 0.05
compared to l = 1.

best performing model (l = 4).5 The obtained per-
formance is 65.8 / 58.4 / 61.9 in terms of P / R /
F1 (%) respectively. In comparison with the per-
formance of the CNN model, 71.5 / 53.9 / 61.3,
we observe a large improvement in recall which
results in 0.6 pp F1 increase.

We performed the Approximate Randomization
test (Noreen, 1989) on the results. The best walks
model has no statistically significant difference
with the state-of-the-art SPTree model as in Ta-
ble 1. This indicates that the proposed model can
achieve comparable performance without any ex-
ternal syntactic tools.

Finally, we show the performance of the pro-
posed model as a function of the number of enti-
ties in a sentence. Results in Table 2 reveal that
for multi-pair sentences the model performs sig-
nificantly better compared to the no-walks mod-
els, proving the effectiveness of the method. Ad-
ditionally, it is observed that for more entity pairs,
longer walks seem to be required. However, very
long walks result to reduced performance (l = 8).

5 Related Work

Traditionally, relation extraction approaches have
incorporated a large variety of hand-crafted fea-
tures to represent related entity pairs (Hermann
and Blunsom, 2013; Miwa and Sasaki, 2014;
Nguyen and Grishman, 2014; Gormley et al.,
2015). Recent models instead employ neural net-
work architectures and achieve state-of-the-art re-
sults without heavy feature engineering. Neu-
ral network techniques can be categorized into
recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs). The former is

5We kept the same parameters when we apply our model
to the this data split. We did not remove any negative exam-
ples unlike the CNN model.

able to encode linguistic and syntactic properties
of long word sequences, making them preferable
for sequence-related tasks, e.g. natural language
generation (Goyal et al., 2016), machine transla-
tion (Sutskever et al., 2014).

State-of-the-art systems have proved to achieve
good performance on relation extraction using
RNNs (Cai et al., 2016; Miwa and Bansal, 2016;
Xu et al., 2016; Liu et al., 2015). Nevertheless,
most approaches do not take into consideration the
dependencies between relations in a single sen-
tence (dos Santos et al., 2015; Nguyen and Grish-
man, 2015) and treat each pair separately. Cur-
rent graph-based models are applied on knowl-
edge graphs for distantly supervised relation ex-
traction (Zeng et al., 2017). Graphs are defined
on semantic types in their method, whereas we
built entity-based graphs in sentences. Other ap-
proaches also treat multiple relations in a sen-
tence (Gupta et al., 2016; Miwa and Sasaki, 2014;
Li and Ji, 2014), but they fail to model long walks
between entity mentions.

6 Conclusions

We proposed a novel neural network model for
simultaneous sentence-level extraction of related
pairs. Our model exploits target and context
pair-specific representations and creates pair rep-
resentations that encode up-to l-length walks be-
tween the entities of the pair. We compared our
model with the state-of-the-art models and ob-
served comparable performance on the ACE2005
dataset without any external syntactic tools. The
characteristics of the proposed approach are sum-
marized in three factors: the encoding of depen-
dencies between relations, the ability to represent
multiple walks in the form of vectors and the in-
dependence from external tools. Future work will
aim at the construction of an end-to-end relation
extraction system as well as application to differ-
ent types of datasets.
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A Hyper-parameter Settings

We tuned our proposed model using the RoBO
toolkit (https://github.com/automl/
RoBO). Table 3 provides the selected options we
used for tuning the model.

Optimization Options

Optimization method Bohamiann
Maximizer scipy
Acquisition function log ei
Number of iterations 50

Initial points 3

Table 3: Hyper-parameters optimization options.

The parameters that gave the best performance
for the different models can be found in Tables 4a-
4e.

Parameter Baseline
Position dimension np 25
Type dimension nt 15
LSTM dimension ne 100
Input layer dropout 0.3
Output layer dropout 0.03
Learning rate 0.0018
Regularization 3.2 · 10−5
Gradient clipping 25.63

(a)

Parameter l = 1
Position dimension np 25
Type dimension nt 25
LSTM dimension ne 100
Input layer dropout 0.13
Output layer dropout 0.38
Learning rate 0.0017
Regularization 6.1 · 10−5
Gradient clipping 30

(b)

Parameter l = 2
Position dimension np 25
Type dimension nt 20
LSTM dimension ne 100
β 0.72
Input layer dropout 0.25
Output layer dropout 0.37
Learning rate 0.003
Regularization 0.0001
Gradient clipping 8.6

(c)

Parameter l = 4
Position dimension np 25
Type dimension nt 20
LSTM dimension ne 100
β 0.77
Input layer dropout 0.11
Output layer dropout 0.32
Learning rate 0.002
Regularization 5.7 · 10−5
Gradient clipping 24.4

(d)
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Parameter l = 8
Position dimension np 25
Type dimension nt 20
LSTM dimension ne 100
β 0.88
Input layer dropout 0.49
Output layer dropout 0.36
Learning rate 0.001
Regularization 1.88 · 10−5
Gradient clipping 10.5

(e)

Table 4: Best hyper-parameters settings for pro-
posed models.
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Abstract

This paper addresses the tasks of auto-
matic seed selection for bootstrapping re-
lation extraction, and noise reduction for
distantly supervised relation extraction.
We first point out that these tasks are re-
lated. Then, inspired by ranking relation
instances and patterns computed by the
HITS algorithm, and selecting cluster cen-
troids using the K-means, LSA, or NMF
method, we propose methods for selecting
the initial seeds from an existing resource,
or reducing the level of noise in the dis-
tantly labeled data. Experiments show that
our proposed methods achieve a better per-
formance than the baseline systems in both
tasks.

1 Introduction

Bootstrapping for relation extraction (RE) (Brin,
1998; Riloff et al., 1999; Agichtein and Gravano,
2000) is a class of minimally supervised meth-
ods frequently used in machine learning: initial-
ized by a small set of example instances called
seeds, to represent a particular semantic relation,
the bootstrapping system operates iteratively to ac-
quire new instances of a target relation. Selecting
“good” seeds is one of the most important steps
to reduce semantic drift, which is a typical phe-
nomenon of the bootstrapping process.

Another approach, called “distant supervision”
(DS) (Mintz et al., 2009), does not require any la-
bels on the text. The assumption of DS is that if
two entities participate in a known Freebase rela-
tion, any sentence that contains those two entities
might express that relation. However, this tech-
nique often introduces noise to the generated train-
ing data. As a result, DS is still limited by the

quality of training data, and noise existing in pos-
itively labeled data may affect the performance of
supervised learning.

In this study, we propose methods that can
be applied for both automatic seed selection and
noise reduction by formulating these tasks as rank-
ing problems according to different ranking crite-
ria. Our methods are inspired by ranking instances
and patterns computed by the HITS algorithm, and
selecting cluster centroids using K-means, latent
semantic analysis, or the non-negative matrix fac-
torization method. The main contributions of this
paper are (a) an annotated dataset of 5,727 part-
whole relations1, which contains 8 subtypes for
the bootstrapping RE system; (b) methods for au-
tomatic seed selection for bootstrapping RE and
noise reduction for distant supervised RE; and (c)
experimental results showing that the proposed
models outperform baselines on two datasets.

2 Related Work

2.1 Automatic Seed Selection for
Bootstrapping RE

As manually selecting the seeds requires tremen-
dous effort, some research proposed methods to
select the seed automatically. Eisner and Karakos
(2005) used a “strapping” approach to evaluate
many candidate seeds automatically for a word
sense disambiguation task. Kozareva and Hovy
(2010) proposed a method for measuring seed
quality using a regression model and applied it to
the extraction of unary semantic relations, such
as“people” and “city”. Kiso et al. (2011) sug-
gested a HITS-based approach to ranking the
seeds, based on Komachi et al. (2008)’s analysis of
the Espresso algorithm (Pantel and Pennacchiotti,

1We release our annotated dataset at
https://github.com/pvthuy/part-whole-relations.
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2006). Movshovitz-Attias and Cohen (2012) gen-
erated a ranking based on pointwise mutual infor-
mation (PMI) to pick up the seeds from existing
resources in the biomedical domain. Given the
seed set of a target relation, the goal of the boot-
strapping method is to find instances similar to
initial seeds by harvesting instances and patterns
iteratively over large corpora, e.g., Wikipedia or
ClueWeb.

2.2 Noise Reduction for Distantly Supervised
RE

The DS assumption is too strong and leads to
wrongly labeled data that affects performance.
Many studies focused on methods of noise re-
duction in DS. Intxaurrondo et al. (2013) filtered
out noisy mentions from the distantly supervised
dataset using their frequencies, PMI, or the sim-
ilarity between the centroids of all relation men-
tions and each individual mention. Xiang et al.
(2016) introduced ranking-based methods accord-
ing to different strategies to select effective train-
ing groups. Li et al. (2017) proposed three novel
heuristics that use lexical and syntactic informa-
tion to remove noise in the biomedical domain.
The data generated by the noise reduction process
can be used by supervised learning algorithms to
train models.

3 Problem Formulation

Let R∗ be the set of target relations. The goal is
to find instances, or pairs of entities, upon which
the relation holds. For each target relation r ∈
R∗, we assume there is a set Dr of triples rep-
resenting the relation r. The triples in Dr have
the form (e1, p, e2), where e1 and e2 denote en-
tities, and p denotes the pattern that connects the
two entities. A pair of entities (e1, e2) is called
an instance. This terminology is similar to the
one used in open information extraction systems,
such as Reverb (Fader et al., 2011). For example,
in triple (Barack Obama,was born in,Honolulu),
(Barack Obama,Honolulu) is the instance, and
“was born in” is the pattern.

The two tasks we address are defined as follows:

Seed Selection for Bootstrapping RE: In au-
tomatic seed selection, a set R∗ of target rela-
tions and sets of instance-pattern triples Dr =
{(e1, p, e2)} representing each target relation r ∈
R∗ are given as input. These triples are extracted
from existing corpus or database, e.g., WordNet.

With these inputs, the task is to choose good seeds
from the instances appearing in Dr for each r ∈
R∗, such that they work effectively in bootstrap-
ping RE.

Noise Reduction for Distantly Supervised RE:
In noise reduction for distantly supervised RE, the
input is the target relations R∗ and the sets Dr of
triples2 generated automatically by DS for each
relation r ∈ R∗. Because the data is generated
automatically by DS, Dr may contain noise, i.e.,
triples (e1, p, e2) for which relation r does not ac-
tually hold between e1 and e2. The goal of noise
reduction is to filter out these noisy triples, so that
they do not deteriorate the quality of the triple
classifier trained subsequently.

Formulation as Ranking Tasks: As we can see
from the task definitions above, both seed selec-
tion and noise reduction are the task of selecting
triples from a given collection. Indeed, the two
tasks essentially have a similar goal in terms of
the ranking-based perspective. We thus formulate
them as the task of ranking instances (in seed se-
lection) or triples (in noise reduction), given a set
of (possibly noisy) triples. In the seed selection
task, we use the k highest ranked instances as the
seeds for bootstrapping RE. Likewise, in noise re-
duction for DS, we only use the k highest ranked
triples from the DS-generated data to train a clas-
sifier. Note that the value of k in noise reduction
may be much larger than in seed selection.

4 Approaches to Automatic Seed
Selection and Noise Reduction

In this section, we propose several methods that
can be applied for both automatic seed selec-
tion and noise reduction tasks, inspired by rank-
ing relation instances and patterns computed by
the HITS algorithm, and picking cluster cen-
troids using the K-means, latent semantic anal-
ysis (LSA), or non-negative matrix factorization
(NMF) method.

4.1 K-means-based Approach

The first method we describe is a K-means-based
approach. It is described as follows: (1) De-

2 To be precise, in each triple (e1, s, e2) generated by DS,
s is not a pattern but a sentence that contains entities e1 and
e2. However, we can easily convert each instance-sentence
triple (e1, s, e2) to an instance-pattern triple (e1, p, e2) by
looking for a pattern p that connects two entities in sentence
s.
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Figure 1: Graph representations of instances and
patterns using the HITS algorithm.

termine the number k of instances/triples that
should be selected3. (2) Run the K-means clus-
tering algorithm to partition all instances in the in-
put triples (see Section 3) into k clusters. Each
data point is represented by the embedding vec-
tor difference between its entities; e.g., the in-
stance I = (Barack Obama,Honolulu) corre-
sponds to: vec(I) = vec(“Barack Obama”) −
vec(“Honolulu”). We use pre-trained vectors
published by Mikolov et al. (2013). (3) The in-
stance closest to the centroid is selected in each
cluster. Given that the number of clusters is k, the
same number of instances/triples will be chosen.

4.2 HITS-based Approach
Hypertext-induced topic search (HITS) (Klein-
berg, 1999), also known as the hubs-and-
authorities algorithm, is a link analysis method
for ranking web pages. In HITS, a good hub is a
page that points to many good authorities and vice
versa; a good authority is a page that is pointed to
by many good hubs. These hubs and authorities
form a bipartite graph, where we can compute the
hubness score of each node.

In our task, let A be the instance-pattern co-
occurrence matrix. We can compute the hubness
score for each instance on the bipartite graph of
instances and patterns induced by the matrix A.
Inspired by the way HITS ranks hubs and authori-
ties, our HITS-based seed selection strategy can be
explained as follows: (1) Determine the number k
of triples that should be selected.(2) Build the bi-
partite graph of instances and patterns based on the
instance-pattern co-occurrence matrix A. Figure 1
presents three possible ways of building a bipar-
tite graph. For the first type of graph, we consider

3 Depending on the task, instances or triples will be se-
lected: instances for the automatic seed selection task, and
triples for the noise reduction task. As instances are pairs
of entities which are included in triples, we can simply con-
vert between the instance and the triple, and apply a proposed
method to both tasks.

each instance/pattern as a node in the graph. This
representation is similar to that used by Kiso et al.
(2011). In the second graph representation, pat-
terns and instances are treated as nodes and edges,
respectively. Similarly, instances and patterns are
treated as nodes and edges, respectively in the last
representation. (3) For the first and third types,
we simply retain the top-k instances with the high-
est hubness scores as the outputs (we sort the in-
stances in descending order based on their hub-
ness scores). For the second type, k instances as-
sociated with the highest scoring patterns are cho-
sen (we first sort the patterns in descending order
based on their hubness scores).

4.3 HITS- and K-means-based Approach
In the combined method of HITS and K-means
algorithms, we first rank the instances and pat-
terns based on their bipartite graph and then run
K-means to cluster instances in our annotated
dataset. However, instead of choosing the instance
nearest to the centroid, we retain the one that has
the highest HITS hubness score in each cluster.

4.4 LSA-based Approach
Latent semantic analysis (LSA) (Deerwester et al.,
1990) is also a widely used method for the au-
tomatic clustering of data along multiple dimen-
sions. Singular value decomposition (SVD) is
used to construct a low-rank approximation of
the instance-pattern co-occurrence matrix A. The
SVD projection is performed by decomposing the
matrix A ∈ RM×N into the product of three
matrices, namely an SVD instance matrix I ∈
RM×K , a diagonal matrix of singular values S ∈
RK×K , and an SVD pattern matrix P ∈ RK×N :

A ≈ ISPT

Our LSA-based seed selection strategy is as
follows: (1) Specify the desired number k of
triples. (2) Use the LSA algorithm to decompose
the instance-pattern co-occurrence matrix A into
three matrices I, S, and P. We set the number of
LSA dimensions to K = k. (3) We can consider
LSA as a form of soft clustering, with each column
of the SVD instance matrix I corresponding to a
cluster. Then, we select the k instances that have
the highest absolute values from each column of I.

4.5 NMF-based Approach
Non-negative matrix factorization (NMF) (Paatero
and Tapper, 1994; Lee and Seung, 1999) is an-
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Subtype Freq
Component-Of 643 (11.23%)

Member-Of 1,272 (22.21%)
Portion-Of 555 ( 9.69%)
Stuff-Of 1,082 (18.89%)

Located-In 534 ( 9.32%)
Contained-In 272 ( 4.75%)

Phase-Of 497 ( 8.68%)
Participates-In 872 (15.23%)

TOTAL 5,727 triples

Table 1: Statistics of our part-whole dataset.

other method for approximate non-negative ma-
trix factorization. The non-negative data matrix
A ∈ RM×N is represented by two non-negative
factors W ∈ RM×K and H ∈ RK×N , which,
when multiplied, approximately reconstruct A:

A ≈WH

The non-negativity constraint is the main differ-
ence between NMF and LSA. Similarly to the
LSA-based method, we set the NMF parameter K
to k, the desired number of instances to select. We
then select the k instances that have the highest
values from each column of W.

5 Experiments

5.1 Datasets and Settings

We provide an annotated dataset of part-whole re-
lations as a reliable resource for selecting seeds.
Our dataset was collected from Wikipedia and
ClueWeb, and annotated by two annotators. One
of its special characteristics is that the part-whole
relation is a collection of relations, not a single re-
lation (Iris, 1989; Winston et al., 1987).

Table 1 gives the frequencies of each sub-
type of part-whole relations. There are 5,727 in-
stances of 8 subtypes that were annotated with
the same labels by both annotators. We use
Espresso+Word2vec (Phi and Matsumoto, 2016),
which is an improved version for the origi-
nal Espresso algorithm (Pantel and Pennacchiotti,
2006). Espresso+Word2vec outperformed the
Espresso system for harvesting part-whole rela-
tions by utilizing the Similarity Ranker, which
uses the embedded vector difference between in-
stance pairs of relations. The performance is mea-
sured with Precision@N (Manning et al., 2008),
N = 50. In total, 5,000 instances are checked by

Method Average P@50
K-means 0.96

HITS Graph1 0.90
HITS Graph2 0.85
HITS Graph3 0.90

HITS+K-means Graph1 0.92
HITS+K-means Graph2 0.85
HITS+K-means Graph3 0.94

LSA 0.90
NMF 0.89

Random 0.75

Table 2: Performance of seed selection methods.

annotators to ascertain whether they express part-
whole relations. We vary the number k of seeds
between 5 and 50 with a step of 5 to report the
average P@50 of each seed selection method.

For the noise reduction task, we use the training
and testing set developed by (Riedel et al., 2010),
which contains 53 relation classes. This dataset
was generated by aligning Freebase relations with
the New York Times corpus. After removing noisy
triples from the dataset using the proposed meth-
ods, we use the filtered data to train two kinds of
convolutional neural networks (CNN) (the CNN
model in (Zeng et al., 2014) and the PCNN model
in (Zeng et al., 2015)) with at-least-one multi-
instance learning (ONE) used in (Zeng et al.,
2015), and the sentence-level attention (ATT) used
in (Lin et al., 2016). Finally, we report the area
under the precision-recall (AUCPR) of each noise
reduction method.

5.2 Performance on Automatic Seed
Selection Task

The performances of the seed selection methods
are presented in Table 2. For the HITS-based
and HITS+K-means-based methods, we display
the P@50 with three types of graph representation
as shown in Section 4.2. We use random seed se-
lection as the baseline for comparison. As Table 2
shows, the random method achieved a precision
of 0.75. The relation extraction system that uses
the random method has the worst average P@50
among all seed selection strategies. The HITS-
based method’s P@50s when using Graph1 and
Graph3 are confirmed to be better than when us-
ing Graph2. This indicates that relying on reli-
able instances is better than reasoning over pat-
terns (recall that for the Graph2, we first choose
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System Original +HITS +LSA +NMF +Ensemble
CNN+ONE 0.180 0.183 0.173 0.178 0.181
CNN+ATT 0.234 0.235 0.235 0.233 0.236

PCNN+ONE 0.231 0.234 0.233 0.234 0.235
PCNN+ATT 0.248 0.253 0.250 0.252 0.255

Table 3: Performance (AUCPR) of each noise reduction method; in bold are the best scores.

the patterns, then select the instances associated
with those patterns), as there is a possibility that a
pattern can be ambiguous, and therefore, instances
linked to that pattern can be incorrect. The K-
means-based seed selection method provides the
best average P@50 with a performance of 0.96.
The HITS+K-means-based method performs bet-
ter than using only the HITS strategy, while the
LSA-based and NMF-based methods have a com-
parable performance.

5.3 Performance on Noise Reduction Task

Table 3 presents the performance of noise re-
duction methods. Recall that the K-means-based
method achieves a high P@50 for the seed
selection method. Our assumption is that each
cluster may represent a set in which elements
have similar semantic properties. However,
we observed that as the number of relations
is relatively high and there is no distinct def-
inition between some relations in the distantly
labeled data (e.g., the following three relations
are quite similar: /location/country/capital,
/location/province/capital, and
/location/us state/capital, we decided not to
perform the K-means-based method for our
noise reduction task. The performances of the
HITS-based, LSA-based, and NMF-based noise
reduction methods are presented in Table 3. We
experimentally set the portion of retained data
from the distantly labeled data to 90%, given
that the performance can be affected if too many
sentences are removed from the original data.
We also perform experiments with an ensem-
ble method that combines the HITS-based and
LSA-based strategies to merge rankings from
their outputs, with half of the triples coming from
the LSA-based method and the other half from
the HITS-based method. Table 3 indicates that
our proposed methods improved the performance
of all CNN and PCNN models. Our ensemble
method achieved the best improvements for three
out of four systems, except that the HITS-based

method obtained the best score for CNN+ONE.

6 Conclusion

We formulated the seed selection and noise re-
duction tasks as ranking problems. In addition,
we proposed several methods, inspired by rank-
ing instances and patterns computed by the HITS
algorithm, and selecting clusters centroids using
the K-means, LSA, or NMF method. Experi-
ments demonstrated that our proposed methods
improved the baselines in both tasks.
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Abstract

LOCATEDNEAR relation is a kind of com-
monsense knowledge describing two phys-
ical objects that are typically found near
each other in real life. In this paper, we
study how to automatically extract such re-
lationship through a sentence-level relation
classifier and aggregating the scores of en-
tity pairs from a large corpus. Also, we
release two benchmark datasets for evalua-
tion and future research.

1 Introduction

Artificial intelligence systems can benefit from
incorporating commonsense knowledge as back-
ground, such as ice is cold (HASPROPERTY), chew-
ing is a sub-event of eating (HASSUBEVENT),
chair and table are typically found near each other
(LOCATEDNEAR), etc. These kinds of common-
sense facts have been used in many downstream
tasks, such as textual entailment (Dagan et al.,
2009; Bowman et al., 2015) and visual recogni-
tion tasks (Zhu et al., 2014). The commonsense
knowledge is often represented as relation triples in
commonsense knowledge bases, such as Concept-
Net (Speer and Havasi, 2012), one of the largest
commonsense knowledge graphs available today.
However, most commonsense knowledge bases are
manually curated or crowd-sourced by community
efforts and thus do not scale well.

This paper aims to automatically extract the com-
monsense LOCATEDNEAR relation between physi-
cal objects from textual corpora. LOCATEDNEAR

is defined as the relationship between two objects
typically found near each other in real life. We fo-
cus on LOCATEDNEAR relation for these reasons:

1. LOCATEDNEAR facts provide helpful prior
knowledge to object detection tasks in com-

∗Both authors contributed equally.

Figure 1: LOCATEDNEAR facts assist the detection
of vague objects: if a set of knife, fork and plate
is on the table, one may believe there is a glass
beside based on the commonsense, even though
these objects are hardly visible due to low light.

plex image scenes (Yatskar et al., 2016).
See Figure 1 for an example.

2. This commonsense knowledge can benefit rea-
soning related to spatial facts and physical
scenes in reading comprehension, question
answering, etc. (Li et al., 2016)

3. Existing knowledge bases have very few facts
for this relation (ConceptNet 5.5 has only 49
triples of LOCATEDNEAR relation).

We propose two novel tasks in extracting LO-
CATEDNEAR relation from textual corpora. One
is a sentence-level relation classification problem
which judges whether or not a sentence describes
two objects (mentioned in the sentence) being phys-
ically close by. The other task is to produce a
ranked list of LOCATEDNEAR facts with the given
classified results of large number of sentences. We
believe both two tasks can be used to automati-
cally populate and complete existing commonsense
knowledge bases.

Additionally, we create two benchmark datasets
for evaluating LOCATEDNEAR relation extraction
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systems on the two tasks: one is 5,000 sentences
each describing a scene of two physical objects
and with a label indicating if the two objects are
co-located in the scene; the other consists of 500
pairs of objects with human-annotated scores indi-
cating confidences that a certain pair of objects are
commonly located near in real life.1

We propose several methods to solve the tasks
including feature-based models and LSTM-based
neural architectures. The proposed neural architec-
ture compares favorably with the current state-of-
the-art method for general-purpose relation clas-
sification problem. From our relatively smaller
proposed datasets, we extract in total 2,067 new
LOCATEDNEAR triples that are not in ConceptNet.

2 Sentence-level LOCATEDNEAR
Relation Classification

Problem Statement Given a sentence s mention-
ing a pair of physical objects <ei, ej>, we call
<s, ei, ej> an instance. For each instance, the
problem is to determine whether ei and ej are
located near each other in the physical scene de-
scribed in the sentence s. For example, suppose
ei is “dog”, ej is “cat”, and s = “The King puts
his dog and cat on the table.”. As it is true that
the two objects are located near in this sentence, a
successful classification model is expected to label
this instance as True. However, if s2 = “My dog is
older than her cat.”, then the label of the instance
<s2, ei, ej> is False, because s2 just talks about a
comparison in age. In the following subsections,
we present two different kinds of baseline methods
for this binary classification task: feature-based
methods and LSTM-based neural architectures.

2.1 Feature-based Methods

Our first baseline method is an SVM classifier
based on following features commonly used in
many relation extraction models (Xu et al., 2015):

1. Bag of Words (BW): the set of words that ever
appeared in the sentence.

2. Bag of Path Words (BPW): the set of words
that appeared on the shortest dependency path
between objects ei and ej in the dependency
tree of the sentence s, plus the words in the
two subtrees rooted at ei and ej in the tree.

3. Bag of Adverbs and Prepositions (BAP): the
existence of adverbs and prepositions in the

1https://github.com/adapt-sjtu/
commonsense-locatednear

sentence as binary features.
4. Global Features (GF): the length of the sen-

tence, the number of nouns, verbs, adverbs, ad-
jectives, determiners, prepositions and punc-
tuations in the whole sentence.

5. Shortest Dependency Path features (SDP): the
same features as with GF but in dependency
parse trees of the sentence and the shortest
path between ei and ej , respectively.

6. Semantic Similarity features (SS): the cosine
similarities between the pre-trained GloVe
word embeddings (Pennington et al., 2014)
of the two object words.

We evaluate linear and RBF kernels with different
parameter settings, and find the RBF kernel with
{C = 100, γ = 10−3} performs the best overall.

2.2 LSTM-based Neural Architectures

We observe that the existence of LOCATED-
NEAR relation in an instance <s,e1,e2> depends
on two major information sources: one is from the
semantic and syntactical features of sentence s and
the other is from the object pair <e1,e2>. By this
intuition, we design our LSTM-based model with
two parts, shown in lower part of Figure 2. The left
part is for encoding the syntactical and semantic
information of the sentence s, while the right part
is encoding the semantic similarity between the
pre-trained word embeddings of e1 and e2.

Solely relying on the original word sequence
of a sentence s has two problems: (i) the irrel-
evant words in the sentence can introduce noise
into the model; (ii) the large vocabulary of origi-
nal sentences induce too many parameters, which
may cause over-fitting. For example, given two
sentences “The king led the dog into his nice gar-
den.” and “A criminal led the dog into a poor gar-
den.”. The object pair is <dog, garden> in both
sentences. The two words “lead” and “into” are
essential for determining whether the object pair is
located near, but they are not attached with due im-
portance. Also, the semantic differences between
irrelevant words, such as “king” and “criminal”,
“beautiful” and “poor”, are not useful to the co-
location relation between the “dog” and “garden”,
and thus tend to act as noise.

To address the above issues, we propose a nor-
malized sentence representation method merging
the three most important and relevant kinds of in-
formation about each instance: lemmatized forms,
POS (Part-of-Speech) tags and dependency roles.
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Figure 2: Framework with a LSTM-based classifier

Level Examples
Objects E1, E2

Lemma open, lead, into, ...
Dependency Role open#s, open#o, into#o, ...
POS Tag DT, PR, CC, JJ, ...

Table 1: Examples of four types of tokens during
sentence normalization. (#s stands for subjects and
#o for objects)

We first replace the two nouns in the object pair as
“E1” and “E2”, and keep the lemmatized form of
the original words for all the verbs, adverbs and
prepositions, which are highly relevant to describ-
ing physical scenes. Then, we replace the subjects
and direct objects of the verbs and prepositions
(nsubj, dobj for verbs and case for preposi-
tions in dependency parse trees) with special tokens
indicating their dependency roles. For the remain-
ing words, we simply use their POS tags to replace
the originals. The four kinds of tokens are illus-
trated in Table 1. Figure 2 shows a real example
of our normalized sentence representation, where
the object pair of interest is <dog, garden>.

Apart from the normalized tokens of the original
sequence, to capture more structural information,
we also encode the distances from each token to
E1 and E2 respectively. Such position embeddings
(position/distance features) are proposed by (Zeng
et al., 2014) with the intuition that information

needed to determine the relation between two target
nouns normally comes from the words which are
close to the target nouns.

Then, we leverage LSTM to encode the whole
sequence of the tokens of normalized representa-
tion plus position embedding. In the meantime,
two pretrained GloVe word embeddings (Penning-
ton et al., 2014) of the original two physical object
words are fed into a hidden dense layer.

Finally, we concatenate both outputs and then
use sigmoid activation function to obtain the fi-
nal prediction. We choose to use the popular binary
cross-entropy as our loss function, and RMSProp
as the optimizer. We apply a dropout rate (Zaremba
et al., 2014) of 0.5 in the LSTM and embedding
layer to prevent overfitting.

3 LOCATEDNEAR Relation Extraction

The upper part of Figure 2 shows the overall work-
flow of our automatic framework to mine Located-
Near relations from raw text. We first construct a
vocabulary of physical objects and generate all can-
didate instances. For each sentence in the corpus, if
a pair of physical objects ei and ej appear as nouns
in a sentence s, then we apply our sentence-level
relation classifier on this instance. The relation clas-
sifier yields a probabilistic score s indicating the
confidence of the instance in the existence of LO-
CATEDNEAR relation. Finally, all scores of the
instances from the corpus are grouped by the ob-
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ject pairs and aggregated, where each object pair is
associated with a final score. These mined physi-
cal pairs with scores can easily be integrated into
existing commonsense knowledge base.

More specifically, for each object pair <ei, ej>,
we find all the m sentences in our corpus mention-
ing both objects. We classify the m instances with
the sentence-level relation classifier and obtain con-
fidence scores for each instance, then feed them
into a heuristic scoring function f to obtain the
final aggregated score for the given object pair. We
propose the following 5 choices of f considering
accumulation and threshold:

f0 = m (1)

f1 =
m∑

k=1

conf(sk, ei, ej) (2)

f2 =
1

m

m∑

k=1

conf(sk, ei, ej) (3)

f3 =

m∑

k=1

1{conf(sk,ei,ej)>0.5} (4)

f4 =
1

m

m∑

k=1

1{conf(sk,ei,ej)>0.5} (5)

4 Datasets

Our proposed vocabulary of single-word physical
objects is constructed by the intersection of all
ConceptNet concepts and all entities that belong
to “physical object” class in Wikidata (Vrandečić
and Krötzsch, 2014). We manually filter out some
words that have the meaning of an abstract concept,
which results in 1,169 physical objects in total.

Afterwards, we utilize a cleaned subset of the
Project Gutenberg corpus (Lahiri, 2014), which
contains 3,036 English books written by 142 au-
thors. An assumption here is that sentences in
fictions are more likely to describe real life scenes.
We sample and investigate the density of LOCAT-
EDNEAR relations in Gutenberg with other widely
used corpora, namely Wikipedia, used by Mintz
et al. (2009) and New York Times corpus (Riedel
et al., 2010). In the English Wikipedia dump, out of
all sentences which mentions at least two physical
objects, 32.4% turn out to be positive. In the New
York Times corpus, the percentage of positive sen-
tences is only 25.1%. In contrast, that percentage in
the Gutenberg corpus is 55.1%, much higher than
the other two corpora, making it a good choice for
LOCATEDNEAR relation extraction.

From this corpus, we identify 15,193 pairs that
co-occur in more than 10 sentences. Among these
pairs, we randomly select 500 object pairs and 10
sentences with respect to each pair for annotators
to label their commonsense LOCATEDNEAR. Each
instance is labeled by at least three annotators who
are college students and proficient with English.
The final truth labels are decided by majority vot-
ing. The Cohen’s Kappa among the three anno-
tators is 0.711 which suggests substantial agree-
ment (Landis and Koch, 1977). This dataset has
almost double the size of those most popular rela-
tions in the SemEval task (Hendrickx et al., 2010),
and the sentences in our data set tend to be longer.
We randomly choose 4,000 instances as the train-
ing set and 1,000 as the test set for evaluating the
sentence-level relation classification task. For the
second task, we further ask the annotators to label
whether each pair of objects are likely to locate
near each other in the real world. Majority votes
determine the final truth labels. The inter-annotator
agreement here is 0.703 (substantial agreement).

5 Evaluation

In this section, we first present our evaluation of
our proposed methods and the state-of-the-art gen-
eral relation classification model on the first task.
Then, we evaluate the quality of the new LOCAT-
EDNEAR triples we extracted.

5.1 Sentence-level LOCATEDNEAR Relation
Classification

We evaluate the proposed methods against the state-
of-the-art general domain relation classification
model (DRNN) (Xu et al., 2016). The results
are shown in Table 2. For feature-based SVM,
we do feature ablation on each of the 6 feature
types. For LSTM-based model, we experiment
on variants of input sequence of original sentence:
“LSTM+Word” uses the original words as the input
tokens; “LSTM+POS” uses only POS tags as the
input tokens; “LSTM+Norm” uses the tokens of
sequence after sentence normalization. Besides,
we add two naive baselines: “Random” baseline
method classifies the instances into two classes
with equal probability. “Majority” baseline method
considers all the instances to be positive.

From the results, we find that the SVM model
without the Global Features performs best, which
indicates that bag-of-word features benefit more in
shortest dependency paths than on the whole sen-
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Random Majority SVM SVM(-BW) SVM(-BPW) SVM(-BAP) SVM(-GF)
Acc. 0.500 0.551 0.584 0.577 0.556 0.563 0.605

P 0.551 0.551 0.606 0.579 0.567 0.573 0.616
R 0.500 1.000 0.702 0.675 0.681 0.811 0.751
F1 0.524 0.710 0.650 0.623 0.619 0.672 0.677

SVM(-SDP) SVM(-SS) DRNN LSTM+Word LSTM+POS LSTM+Norm
Acc. 0.579 0.584 0.635 0.637 0.641 0.653

P 0.597 0.605 0.658 0.635 0.650 0.654
R 0.728 0.708 0.702 0.800 0.751 0.784
F1 0.656 0.652 0.679 0.708 0.697 0.713

Table 2: Performance of baselines on co-location classification task with ablation. (Acc.=Accuracy,
P=Precision, R=Recall, “-” means without certain feature)

f MAP P@50 P@100 P@200 P@300
f0 0.42 0.40 0.44 0.42 0.38
f1 0.58 0.70 0.60 0.53 0.44
f2 0.48 0.56 0.52 0.49 0.42
f3 0.59 0.68 0.63 0.55 0.44
f4 0.56 0.40 0.48 0.50 0.42

Table 3: Ranking results of scoring functions.

tence. Also, we notice that DRNN performs best
(0.658) on precision but not significantly higher
than LSTM+Norm (0.654). The experiment shows
that LSTM+Word enjoys the highest recall score,
while LSTM+Norm is the best one in terms of the
overall performance. One reason is that the normal-
ization representation reduces the vocabulary of in-
put sequences, while also preserving important syn-
tactical and semantic information. Another reason
is that the LOCATEDNEAR relation are described
in sentences decorated with prepositions/adverbs.
These words are usually descendants of the object
word in the dependency tree, outside of the shortest
dependency paths. Thus, DRNN cannot capture
the information from the words belonging to the
descendants of the two object words in the tree, but
this information is well captured by LSTM+Norm.

5.2 LOCATEDNEAR Relation Extraction

Once we have obtained the probability score for
each instance using LSTM+Norm, we can extract
LOCATEDNEAR relation using the scoring func-
tion f . We compare the performance of 5 differ-
ent heuristic choices of f , by quantitative results.
We rank 500 commonsense LOCATEDNEAR ob-
ject pairs described in Section 3. Table 3 shows
the ranking results using Mean Average Precision
(MAP) and Precision at K as the metrics. Accumu-
lative scores (f1 and f3) generally do better. Thus,
we choose f = f3 with a MAP score of 0.59 as the
scoring function.

(door, room) (boy, girl) (cup, tea)
(ship, sea) (house, garden) (arm, leg)

(fire, wood) (house, fire) (horse, saddle)
(fire, smoke) (door, hall) (door, street)
(book, table) (fruit, tree) (table, chair)

Table 4: Top object pairs returned by best perform-
ing scoring function f3

Qualitatively, we show 15 object pairs with some
of the highest f3 scores in Table 4. Setting a thresh-
old of 40.0 for f3, which is the minimum non-zero
f3 score for all true object pairs in the LOCATED-
NEAR object pairs data set (500 pairs), we obtain
a total of 2,067 LOCATEDNEAR relations, with a
precision of 68% by human inspection.

6 Conclusion

In this paper, we present a novel study on enrich-
ing LOCATEDNEAR relationship from textual cor-
pora. Based on our two newly-collected benchmark
datasets, we propose several methods to solve the
sentence-level relation classification problem. We
show that existing methods do not work as well on
this task and discovered that LSTM-based model
does not have significant edge over simpler feature-
based model. Whereas, our multi-level sentence
normalization turns out to be useful.

Future directions include: 1) better leveraging
distant supervision to reduce human efforts, 2)
incorporating knowledge graph embedding tech-
niques, 3) applying the LOCATEDNEAR knowledge
into downstream applications in computer vision
and natural language processing.
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Abstract

Coreference resolution aims to identify in
a text all mentions that refer to the same
real-world entity. The state-of-the-art end-
to-end neural coreference model consid-
ers all text spans in a document as po-
tential mentions and learns to link an an-
tecedent for each possible mention. In this
paper, we propose to improve the end-to-
end coreference resolution system by (1)
using a biaffine attention model to get an-
tecedent scores for each possible mention,
and (2) jointly optimizing the mention de-
tection accuracy and the mention cluster-
ing log-likelihood given the mention clus-
ter labels. Our model achieves the state-
of-the-art performance on the CoNLL-
2012 Shared Task English test set.

1 Introduction

End-to-end coreference resolution is the task of
identifying and grouping mentions in a text such
that all mentions in a cluster refer to the same en-
tity. An example is given below (Björkelund and
Kuhn, 2014) where mentions for two entities are
labeled in two clusters:

[Drug Emporium Inc.]a1 said [Gary
Wilber]b1 was named CEO of [this drug-
store chain]a2. [He]b2 succeeds his fa-
ther, Philip T. Wilber, who founded
[the company]a3 and remains chairman.
Robert E. Lyons III, who headed the
[company]a4’s Philadelphia region, was
appointed president and chief operating
officer, succeeding [Gary Wilber]b3.

Many traditional coreference systems, either rule-
based (Haghighi and Klein, 2009; Lee et al., 2011)

∗Work done during the internship at IBM Watson.

or learning-based (Bengtson and Roth, 2008; Fer-
nandes et al., 2012; Durrett and Klein, 2013;
Björkelund and Kuhn, 2014), usually solve the
problem in two separate stages: (1) a mention de-
tector to propose entity mentions from the text,
and (2) a coreference resolver to cluster proposed
mentions. At both stages, they rely heavily on
complicated, fine-grained, conjoined features via
heuristics. This pipeline approach can cause cas-
cading errors, and in addition, since both stages
rely on a syntactic parser and complicated hand-
craft features, it is difficult to generalize to new
data sets and languages.

Very recently, Lee et al. (2017) proposed the
first state-of-the-art end-to-end neural coreference
resolution system. They consider all text spans
as potential mentions and therefore eliminate the
need of carefully hand-engineered mention detec-
tion systems. In addition, thanks to the represen-
tation power of pre-trained word embeddings and
deep neural networks, the model only uses a min-
imal set of hand-engineered features (speaker ID,
document genre, span distance, span width).

The core of the end-to-end neural coreference
resolver is the scoring function to compute the
mention scores for all possible spans and the an-
tecedent scores for a pair of spans. Furthermore,
one major challenge of coreference resolution is
that most mentions in the document are singleton
or non-anaphoric, i.e., not coreferent with any pre-
vious mention (Wiseman et al., 2015). Since the
data set only have annotations for mention clus-
ters, the end-to-end coreference resolution system
needs to detect mentions, detect anaphoricity, and
perform coreference linking. Therefore, research
questions still remain on good designs of the scor-
ing architecture and the learning strategy for both
mention detection and antecedent scoring given
only the gold cluster labels.

To this end, we propose to use a biaffine atten-
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Figure 1: Model architecture. We consider all text spans up to 10-word length as possible mentions. For
brevity, we only show three candidate antecedent spans (“Drug Emporium Inc.”, “Gary Wilber”, “was
named CEO”) for the current span “this drugstore chain”.

tion model instead of pure feed forward networks
to compute antecedent scores. Furthermore, in-
stead of training only to maximize the marginal
likelihood of gold antecedent spans, we jointly
optimize the mention detection accuracy and the
mention clustering log-likelihood given the men-
tion cluster labels. We optimize mention detection
loss explicitly to extract mentions and also per-
form anaphoricity detection.

We evaluate our model on the CoNLL-2012 En-
glish data set and achieve new state-of-the-art per-
formances of 67.8% F1 score using a single model
and 69.2% F1 score using a 5-model ensemble.

2 Task Formulation

In end-to-end coreference resolution, the input is
a document D with T words, and the output is a
set of mention clusters each of which refers to the
same entity. A possible span is an N-gram within
a single sentence. We consider all possible spans
up to a predefined maximum width. To impose
an ordering, spans are sorted by the start position
START(i) and then by the end position END(i).
For each span i the system needs to assign an an-
tecedent ai from all preceding spans or a dummy
antecedent ε: ai ∈ {ε, 1, . . . , i−1}. If a span j is a
true antecedent of the span i, then we have ai = j
and 1 ≤ j ≤ i−1. The dummy antecedent ε repre-
sents two possibilities: (1) the span i is not an en-
tity mention, or (2) the span i is an entity mention
but not coreferent with any previous span. Finally,
the system groups mentions according to corefer-
ence links to form the mention clusters.

3 Model

Figure 1 illustrates our model. We adopt the
same span representation approach as in Lee et al.
(2017) using bidirectional LSTMs and a head-
finding attention. Thereafter, a feed forward net-
work produces scores for spans being entity men-
tions. For antecedent scoring, we propose a bi-
affine attention model (Dozat and Manning, 2017)
to produce distributions of possible antecedents.
Our training data only provides gold mention clus-
ter labels. To make best use of this information,
we propose to jointly optimize the mention scor-
ing and antecedent scoring in our loss function.
Span Representation Suppose the current sen-
tence of lengthL is [w1, w2, . . . , wL], we use wt to
denote the concatenation of fixed pretrained word
embeddings and CNN character embeddings (dos
Santos and Zadrozny, 2014) for word wt. Bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997) recurrently encode each wt:

−→
h t = LSTMforward(

−→
h t−1,wt)

←−
h t = LSTMbackward(

←−
h t+1,wt)

ht = [
−→
h t,
←−
h t]

(1)

Then, the head-finding attention computes a score
distribution over different words in a span si:

αt = vᵀ
αFFNNα(ht)

si,t =
exp(αt)

END(i)∑
k=START(i)

exp(αk)

whead-att
i =

END(i)∑

t=START(i)

si,twt

(2)
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where FFNN is a feed forward network outputting
a vector.

Effective span representations encode both con-
textual information and internal structure of spans.
Therefore, we concatenate different vectors, in-
cluding a feature vector φ(i) for the span size, to
produce the span representation si for si:

si = [hSTART(i),hEND(i),w
head-att
i , φ(i)] (3)

Mention Scoring The span representation is input
to a feed forward network which measures if it is
an entity mention using a score m(i):

m(i) = vᵀ
mFFNNm(si) (4)

Since we consider all possible spans, the num-
ber of spans is O(T 2) and the number of span
pairs is O(T 4). Due to computation efficiency, we
prune candidate spans during both inference and
training. We keep λT spans with highest mention
scores.
Biaffine Attention Antecedent Scoring Consider
the current span si and its previous spans sj (1 ≤
j ≤ i − 1), we propose to use a biaffine attention
model to produce scores c(i, j):

ŝi = FFNNanaphora(si)

ŝj = FFNNantecedent(sj), 1 ≤ j ≤ i− 1

c(i, j) = ŝᵀj Ubiŝi + vᵀ
biŝi

(5)

FFNNanaphora and FFNNantecedent reduce span rep-
resentation dimensions and only keep informa-
tion relevant to coreference decisions. Compared
with the traditional FFNN approach in Lee et al.
(2017), biaffine attention directly models both the
compatibility of si and sj by ŝᵀj Ubiŝi and the prior
likelihood of si having an antecedent by vᵀ

biŝi.
Inference The final coreference score s(i, j) for
span si and span sj consists of three terms: (1)
if si is a mention, (2) if sj is a mention, (3) if sj
is an antecedent for si. Furthermore, for dummy
antecedent ε, we fix the final score to be 0:

s(i, j) =

{
m(i) +m(j) + c(i, j), j 6= ε

0, j = ε
(6)

During inference, the model only creates a link if
the highest antecedent score is positive.
Joint Mention Detection and Mention Cluster
During training, only mention cluster labels are
available rather than antecedent links. Therefore,
Lee et al. (2017) train the model end-to-end by

maximizing the following marginal log-likelihood
where GOLD(i) are gold antecedents for si:

Lcluster(i) = log

∑
j′∈GOLD(i) exp(s(i, j

′))
∑

j=ε,0,...,i−1 exp(s(i, j))
(7)

However, the initial pruning is completely ran-
dom and the mention scoring model only receives
distant supervision if we only optimize the above
mention cluster performance. This makes learning
slow and ineffective especially for mention detec-
tion. Based on this observation, we propose to di-
rectly optimize mention detection:

Ldetect(i) = yi log ŷi + (1− yi) log(1− ŷi) (8)

where ŷi = sigmoid(m(i)), yi = 1 if and only if
si is in one of the gold mention clusters. Our final
loss combines mention detection and clustering:

Lloss = −λdetect

N∑

i=1

Ldetect(i)−
N ′∑

i′=1

Lcluster(i
′)

where N is the number of all possible spans, N ′ is
the number of unpruned spans, and λdetection con-
trols weights of two terms.

4 Experiments

Data Set and Evaluation We evaluate our model
on the CoNLL-2012 Shared Task English data
(Pradhan et al., 2012) which is based on the
OntoNotes corpus (Hovy et al., 2006). It con-
tains 2,802/343/348 train/development/test docu-
ments in different genres.

We use three standard metrics: MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFφ4 (Luo, 2005). We report Precision, Recall,
F1 for each metric and the average F1 as the final
CoNLL score.
Implementation Details For fair comparisons, we
follow the same hyperparameters as in Lee et al.
(2017). We consider all spans up to 10 words
and up to 250 antecedents. λ = 0.4 is used
for span pruning. We use fixed concatenations
of 300-dimension GloVe (Pennington et al., 2014)
embeddings and 50-dimension embeddings from
Turian et al. (2010). Character CNNs use 8-
dimension learned embeddings and 50 kernels for
each window size in {3,4,5}. LSTMs have hidden
size 200, and each FFNN has two hidden layers
with 150 units and ReLU (Nair and Hinton, 2010)
activations. We include (speaker ID, document

104



MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1
Our work (5-model ensemble) 82.1 73.6 77.6 73.1 62.0 67.1 67.5 59.0 62.9 69.2

Lee et al. (2017) (5-model ensemble) 81.2 73.6 77.2 72.3 61.7 66.6 65.2 60.2 62.6 68.8
Our work (single model) 79.4 73.8 76.5 69.0 62.3 65.5 64.9 58.3 61.4 67.8

Lee et al. (2017) (single model) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Wiseman et al. (2015) 76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4
Fernandes et al. (2014) 75.9 65.8 70.5 77.7 65.8 71.2 43.2 55.0 48.4 63.4

Clark and Manning (2015) 76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0
Martschat and Strube (2015) 76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5

Durrett and Klein (2014) 72.6 69.9 71.2 61.2 56.4 58.7 56.2 54.2 55.2 61.7
Björkelund and Kuhn (2014) 74.3 67.5 70.7 62.7 55.0 58.6 59.4 52.3 55.6 61.6

Durrett and Klein (2013) 72.9 65.9 69.2 63.6 52.5 57.5 54.3 54.4 54.3 60.3

Table 1: Experimental results on the CoNLL-2012 Englisth test set. The F1 improvements are statistical
significant with p < 0.05 under the paired bootstrap resample test (Koehn, 2004) compared with Lee
et al. (2017).

Avg. F1
Our model (single) 67.8
without mention detection loss 67.5
without biaffine attention 67.4
Lee et al. (2017) 67.3

Table 2: Ablation study on the development set.

genre, span distance, span width) features as 20-
dimensional learned embeddings. Word and char-
acter embeddings use 0.5 dropout. All hidden lay-
ers and feature embeddings use 0.2 dropout. The
batch size is 1 document. Based on the results
on the development set, λdetection = 0.1 works
best from {0.05, 0.1, 0.5, 1.0}. Model is trained
with ADAM optimizer (Kingma and Ba, 2015)
and converges in around 200K updates, which is
faster than that of Lee et al. (2017).
Overall Performance In Table 1, we compare our
model with previous state-of-the-art systems. We
obtain the best results in all F1 metrics. Our single
model achieves 67.8% F1 and our 5-model ensem-
ble achieves 69.2% F1. In particular, compared
with Lee et al. (2017), our improvement mainly
results from the precision scores. This indicates
that the mention detection loss does produce bet-
ter mention scores and the biaffine attention more
effectively determines if two spans are coreferent.
Ablation Study To understand the effect of dif-
ferent proposed components, we perform ablation
study on the development set. As shown in Table
2, removing the mention detection loss term or the
biaffine attention decreases 0.3/0.4 final F1 score,
but still higher than the baseline. This shows

Figure 2: Mention detection subtask on develop-
ment set. We plot accuracy and frequency break-
down by span widths.

that both components have contributions and when
they work together the total gain is even higher.
Mention Detection Subtask To further under-
stand our model, we perform a mention detection
subtask where spans with mention scores higher
than 0 are considered as mentions. We show the
mention detection accuracy breakdown by span
widths in Figure 2. Our model indeed performs
better thanks to the mention detection loss. The
advantage is even clearer for longer spans which
consist of 5 or more words.

In addition, it is important to note that our
model can detect mentions that do not exist in
the training data. While Moosavi and Strube
(2017) observe that there is a large overlap be-
tween the gold mentions of the training and dev
(test) sets, we find that our model can correctly de-
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tect 1048 mentions which are not detected by Lee
et al. (2017), consisting of 386 mentions existing
in training data and 662 mentions not existing in
training data. From those 662 mentions, some ex-
amples are (1) a suicide murder (2) Hong Kong Is-
land (3) a US Airforce jet carrying robotic under-
sea vehicles (4) the investigation into who was be-
hind the apparent suicide attack. This shows that
our mention loss helps detection by generalizing
to new mentions in test data rather than memoriz-
ing the existing mentions in training data.

5 Related Work

As summarized by Ng (2010), learning-based
coreference models can be categorized into three
types: (1) Mention-pair models train binary clas-
sifiers to determine if a pair of mentions are coref-
erent (Soon et al., 2001; Ng and Cardie, 2002;
Bengtson and Roth, 2008). (2) Mention-ranking
models explicitly rank all previous candidate men-
tions for the current mention and select a sin-
gle highest scoring antecedent for each anaphoric
mention (Denis and Baldridge, 2007b; Wiseman
et al., 2015; Clark and Manning, 2016a; Lee et al.,
2017). (3) Entity-mention models learn classifiers
to determine whether the current mention is coref-
erent with a preceding, partially-formed mention
cluster (Clark and Manning, 2015; Wiseman et al.,
2016; Clark and Manning, 2016b).

In addition, we also note latent-antecedent mod-
els (Fernandes et al., 2012; Björkelund and Kuhn,
2014; Martschat and Strube, 2015). Fernandes
et al. (2012) introduce coreference trees to repre-
sent mention clusters and learn to extract the max-
imum scoring tree in the graph of mentions.

Recently, several neural coreference resolution
systems have achieved impressive gains (Wiseman
et al., 2015, 2016; Clark and Manning, 2016b,a).
They utilize distributed representations of mention
pairs or mention clusters to dramatically reduce
the number of hand-crafted features. For exam-
ple, Wiseman et al. (2015) propose the first neural
coreference resolution system by training a deep
feed-forward neural network for mention ranking.
However, these models still employ the two-stage
pipeline and require a syntactic parser or a sepa-
rate designed hand-engineered mention detector.

Finally, we also note the relevant work on
joint mention detection and coreference resolu-
tion. Daumé III and Marcu (2005) propose to
model both mention detection and coreference of

the Entity Detection and Tracking task simultane-
ously. Denis and Baldridge (2007a) propose to use
integer linear programming framework to model
anaphoricity and coreference as a joint task.

6 Conclusion

In this paper, we propose to use a biaffine attention
model to jointly optimize mention detection and
mention clustering in the end-to-end neural coref-
erence resolver. Our model achieves the state-of-
the-art performance on the CoNLL-2012 Shared
Task in English.
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Abstract

This paper proposes an improvement to the
existing data-driven Neural Belief Track-
ing (NBT) framework for Dialogue State
Tracking (DST). The existing NBT model
uses a hand-crafted belief state update
mechanism which involves an expensive
manual retuning step whenever the model
is deployed to a new dialogue domain. We
show that this update mechanism can be
learned jointly with the semantic decoding
and context modelling parts of the NBT
model, eliminating the last rule-based mod-
ule from this DST framework. We propose
two different statistical update mechanisms
and show that dialogue dynamics can be
modelled with a very small number of ad-
ditional model parameters. In our DST
evaluation over three languages, we show
that this model achieves competitive per-
formance and provides a robust framework
for building resource-light DST models.

1 Introduction

The problem of language understanding perme-
ates the deployment of statistical dialogue sys-
tems. These systems rely on dialogue state tracking
(DST) modules to model the user’s intent at any
point of an ongoing conversation (Young, 2010). In
turn, DST models rely on domain-specific Spoken
Language Understanding (SLU) modules to extract
turn-level user goals, which are then incorporated
into the belief state, the system’s internal probabil-
ity distribution over possible dialogue states.

The dialogue states are defined by the domain-
specific ontology: it enumerates the constraints
the users can express using a collection of slots
(e.g. price range) and their slot values (e.g. cheap,
expensive for the aforementioned slots). The be-

lief state is used by the downstream dialogue man-
agement component to choose the next system re-
sponse (Su et al., 2016, 2017).

A large number of DST models (Wang and
Lemon, 2013; Sun et al., 2016; Liu and Perez, 2017;
Vodolán et al., 2017, inter alia) treat SLU as a sep-
arate problem: the detached SLU modules are a
dependency for such systems as they require large
amounts of annotated training data. Moreover, re-
cent research has demonstrated that systems which
treat SLU and DST as a single problem have proven
superior to those which decouple them (Williams
et al., 2016). Delexicalisation-based models, such
as the one proposed by (Henderson et al., 2014a,b)
offer unparalleled generalisation capability.

These models use exact matching to replace oc-
currences of slot names and values with generic
tags, allowing them to share parameters across all
slot values. This allows them to deal with slot val-
ues not seen during training. However, their down-
side is shifting the problem of dealing with linguis-
tic variation back to the system designers, who have
to craft semantic lexicons to specify rephrasings for
ontology values. Examples of such rephrasings are
[cheaper, affordable, cheaply] for slot-value pair
FOOD=CHEAP, or [with internet, has internet] for
HAS INTERNET=TRUE. The use of such lexicons
has a profound effect on DST performance (Mrkšić
et al., 2016). Moreover, such lexicons introduce a
design barrier for deploying these models to large
real-world dialogue domains and other languages.

The Neural Belief Tracker (NBT) framework
(Mrkšić et al., 2017a) is a recent attempt to over-
come these obstacles by using dense word em-
beddings in place of traditional n-gram features.
By making use of semantic relations embedded
in the vector spaces, the NBT achieves DST per-
formance competitive to lexicon-supplemented
delexicalisation-based models without relying on
any hand-crafted resources. Moreover, the NBT
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Figure 1: The architecture of the fully statistical neural belief tracker. Belief state updates are not
rule-based but learned jointly with the semantic decoding and context modelling parts of the NBT model.

framework enables deployment and bootstrapping
of DST models for languages other than English
(Mrkšić et al., 2017b). As shown by Vulić et al.
(2017), phenomena such as morphology make DST
a substantially harder problem in linguistically
richer languages such as Italian and German.

The NBT models decompose the (per-slot) multi-
class value prediction problem into many binary
ones: they iterate through all slot values defined by
the ontology and decide which ones have just been
expressed by the user. To differentiate between
slots, they take as input the word vector of the
slot value that it is making a decision about. In
doing that, the previous belief state is discarded.
However, the previous state may contain pertinent
information for making the turn-level decision.

Contribution In this work, we show that cross-
turn dependencies can be learned automatically:
this eliminates the rule-based NBT component and
effectively yields a fully statistical dialogue state
tracker. Our competitive results on the benchmark-
ing WOZ dataset for three languages indicate that
the proposed fully statistical model: 1) is robust
with respect to the input vector space, and 2) is eas-
ily portable and applicable to different languages.

Finally, we make the code of the novel
NBT framework publicly available at:
https://github.com/nmrksic/neural-belief-tracker,
in hope of helping researchers to overcome
the initial high-cost barrier to using DST as a
real-world language understanding task.

2 Methodology

Neural Belief Tracker: Overview The NBT
models are implemented as multi-layer neural net-
works. Their input consists of three components:
1) the list of vectors for words in the last user ut-
terance; 2) the word vectors of the slot name and
value (e.g. FOOD=INDIAN) that the model is cur-
rently making a decision about; and 3) the word
vectors which represent arguments of the preceding
system acts.1 To perform belief state tracking, the
NBT model iterates over all candidate slot-value
pairs as defined by the ontology, and decides which
ones have just been expressed by the user.

The first layer of the NBT (see Figure 1) learns to
map these inputs into intermediate distributed rep-
resentations of: 1) the current utterance represen-
tation r; 2) the current candidate slot-value pair c;
and 3) the preceding system act m. These represen-
tations then interact through the context modelling
and semantic decoding downstream components,
and are finally coalesced into the decision about the
current slot value pair by the final binary decision
making module. For full details of this setup, see
the original NBT paper (Mrkšić et al., 2017a).

2.1 Statistical Belief State Updates

The NBT framework effectively recasts the per-slot
multi-class value prediction problem as multiple

1Following Mrkšić et al. (2017a), we also consider only
system requests and system confirmations, which ask the user
to specify the value of a given slot (e.g. ‘What kind of venue
are you looking for?’), or to confirm whether a certain intent is
part of their belief state (‘Are you looking for Chinese food?’).
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binary ones: this enables the model to deal with
slot values unseen in the training data. It iterates
through all slot values and decides which ones have
just been expressed by the user.

In the original NBT framework (Mrkšić et al.,
2017a), the model for turn-level prediction is
trained using SGD, maximising the accuracy of
turn-level slot-value predictions. These predictions
take preceding system acts into account, but not the
previous belief state. Note that these predictions
are done separately for each slot value.

Problem Definition For any given slot s ∈ Vs,
let bt−1

s be the true belief state at time t− 1 (this
is a vector of length |Vs| + 2, accounting for all
slot values and two special values, dontcare and
NONE). At turn t, let the intermediate representa-
tions representing the preceding system acts and the
current user utterance be mt and rt. If the model is
currently deciding about slot value v ∈ Vs, let the
intermediate candidate slot-value representation be
ctv. The NBT binary-decision making module pro-
duces an estimate yts,v = P (s, v|rt,mt). We aim
to combine this estimate with the previous belief
state estimate for the entire slot s, bst−1, so that:

bts = φ(yts,b
t−1
s ) (1)

where yts is the vector of probabilities for each of
the slot values v ∈ Vs.

Previously: Rule-Based The original NBT
framework employs a convoluted programmatic
rule-based update which is hand-crafted and can-
not be optimised or learned with gradient descent
methods. For each slot value pair (s, v), its new
probability bts,v is computed as follows:

bts,v = λyts,v + (1− λ)bt−1
s,v (2)

λ is a tunable coefficient which determines the
relative weight of the turn-level and previous turns’
belief state estimates, and is maximised according
to DST performance on a validation set. For slot s,
the set of its detected values at turn t is then given
as follows:

V t
s = {v ∈ Vs|bts,v ≥ 0.5} (3)

For informables (i.e., goal-tracking slots), which
unlike requestable slots require belief tracking
across turns, if V t

s 6= ∅ the value in V t
s with the

highest probability is selected as the current goal.

This effectively means that the value with the
highest probabilities bts,v at turn t is then chosen as
the new goal value, but only if its new probability
bts,v is greater than 0.5. If no value has probability
greater than 0.5, the predicted goal value stays the
same as the one predicted in the previous turn -
even if its probability bts,v is now less than 0.5.

In the rule-based method, tuning the hyper-
parameter λ adjusts how likely any predicted value
is to override previously predicted values. However,
the “belief state” produced in this manner is not a
valid probability distribution. It just predicts the
top value using an ad-hoc rule that was empirically
verified by Mrkšić et al. (2017a).2

This rule-based approach comes at a cost: the
NBT framework with such updates is little more
than an SLU decoder capable of modelling the pre-
ceding system acts. Its parameters do not learn to
handle the previous belief state, which is essential
for probabilistic modelling in POMDP-based dia-
logue systems (Young et al., 2010; Thomson and
Young, 2010). We now show two update mecha-
nisms that extend the NBT framework to (learn to)
perform statistical belief state updates.

1. One-Step Markovian Update To stay in line
with the NBT paradigm, the criteria for the belief
state update mechanism φ from Eq. (1) are: 1) it
is a differentiable function that can be backprop-
agated during NBT training; and 2) it produces a
valid probability distribution bts as output. Figure 1
shows our fully statistical NBT architecture.

The first learned statistical update mechanism,
termed One-Step Markovian Update, combines the
previous belief state bt−1

s and the current turn-level
estimate yts using a one-step belief state update:

bts = softmax
(
Wcurry

t
s +Wpastb

t−1
s

)
(4)

Wcurr and Wpast are matrices which learn to com-
bine the two signals into a new belief state. This
variant violates the NBT design paradigm: each
row of the two matrices learns to operate over spe-
cific slot values.3 Even though turn-level NBT

2We have also experimented with a simple model conduct-
ing statistical updates which tunes the parameter λ jointly
during training and produces a valid probability distribution
for the belief state at each turn t. The belief state update is
performed as follows: bt

s = λyt
s+(1−λ)bt−1

s . We note that
this simplistic statistical update mechanism performs poorly in
practice, with joint goal accuracy on the English DST task in
the 0.22-0.25 interval (compare it to the results from Table 1).

3This means the model will not learn to predict or maintain
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output yts may contain the right prediction, the pa-
rameters of the corresponding row in Wcurr will
not be trained to update the belief state, since its
parameters (for the given value) will not have been
updated during training. Similarly, the same row
in Wpast will not learn to maintain the given slot
value as part of the belief state.

To overcome the data sparsity and preserve the
NBT model’s ability to deal with unseen values,
one can use the fact that there are fundamentally
only two different actions that a belief tracker needs
to perform: 1) maintain the same prediction as in
the previous turn; or 2) update the prediction given
strong indication that a new slot value has been ex-
pressed. To facilitate transfer learning, the second
update variant introduces additional constraints for
the one-step belief state update.

2. Constrained Markovian Update This vari-
ant constrains the two matrices so that each of them
contains only two different scalar values. The first
one populates the diagonal elements, and the other
one is replicated for all off-diagonal elements:

Wcurr,i,j =

{
acurr, if i = j

bcurr, otherwise
(5)

Wpast,i,j =

{
apast, if i = j

bpast, otherwise
(6)

where the four scalar values are learned jointly with
other NBT parameters. The diagonal values learn
the relative importance of propagating the previ-
ous value (apast), or of accepting a newly detected
value (acurr). The off-diagonal elements learn how
turn-level signals (bcurr) or past probabilities for
other values (bpast) impact the predictions for the
current belief state. The parameters acting over all
slot values are in this way tied, ensuring that the
model can deal with slot values unseen in training.

3 Experimental Setup

Evaluation: Data and Metrics As in prior work
the DST evaluation is based on the Wizard-of-Oz
(WOZ) v2.0 dataset (Wen et al., 2017; Mrkšić et al.,
2017a), comprising 1,200 dialogues split into train-
ing (600 dialogues), validation (200), and test data
(400). The English data were translated to German
and Italian by professional translators (Mrkšić et al.,

slot values as part of the belief state if it has not encountered
these values during training.

English WOZ 2.0
Model Variant GLOVE (DIST) PARAGRAM-SL999

Rule-Based 80.1 84.2

1. One-Step 80.8 82.1
2. Constrained 81.8 84.8

Table 1: The English DST performance (joint goal
accuracy) with standard input word vectors (§3).

2017b). In all experiments, we report the standard
DST performance measure: joint goal accuracy,
which is defined as the proportion of dialogue turns
where all the user’s search goal constraints were
correctly identified. Finally, all reported scores are
averages over 5 NBT training runs.

Training Setup We compare three belief state
update mechanisms (rule-based vs. two statis-
tical ones) fixing all other NBT components as
suggested by Mrkšić et al. (2017a): the better-
performing NBT-CNN variant is used, trained by
Adam (Kingma and Ba, 2015) with dropout (Sri-
vastava et al., 2014) of 0.5, gradient clipping, batch
size of 256, and 400 epochs. All model hyperpa-
rameters were tuned on the validation sets.

Word Vectors To test the model’s robustness, we
use a variety of standard word vectors from prior
work. For English, following Mrkšić et al. (2017a)
we use 1) distributional GLOVE vectors (Penning-
ton et al., 2014), and 2) specialised PARAGRAM-
SL999 vectors (Wieting et al., 2015), obtained by
injecting similarity constraints from the Paraphrase
Database (Pavlick et al., 2015) into GLOVE.

For Italian and German, we compare to the work
of Vulić et al. (2017), who report state-of-the-art
DST scores on the Italian and German WOZ 2.0
datasets. In this experiment, we train the models us-
ing distributional skip-gram vectors with a large vo-
cabulary (labelled DIST in Table 2). Subsequently,
we compare them to models trained using word
vectors specialised using similarity constraints de-
rived from language-specific morphological rules
(labelled SPEC in Table 2).

4 Results and Discussion

Table 1 compares the two variants of the statistical
update. The Constrained Markovian Update is the
better of the two learned updates, despite using
only four parameters to model dialogue dynamics
(rather than O(V 2), V being the slot value count).
This shows that the ability to generalise to unseen
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Italian German
DIST spec DIST SPEC

Rule-Based Update 74.2 76.0 60.6 66.3
Learned Update 73.7 76.1 61.5 68.1

Table 2: DST performance on Italian and German.
Only results with the better scoring learned Con-
strained Markovian Update are reported.

slot values matters more than the ability to model
value-specific behaviour. In fact, combining the
two updates led to no performance gains over the
stand-alone Constrained Markovian update.

Table 2 investigates the portability of this model
to other languages. The statistical update shows
comparable performance to the rule-based one, out-
performing it in three out of four experiments. In
fact, our model trained using the specialised word
vectors sets the new state-of-the-art performance
for English, Italian and German WOZ 2.0 datasets.
This supports our claim that eliminating the hand-
tuned rule-based update makes the NBT model
more stable and better suited to deployment across
different dialogue domains and languages.

DST as Downstream Evaluation All of the ex-
periments show that the use of semantically spe-
cialised vectors benefits DST performance. The
scale of these gains is robust across all experiments,
regardless of language or the employed belief state
update mechanism. So far, it has been hard to use
the DST task as a proxy for measuring the correla-
tion between word vectors’ intrinsic performance
(in tasks like SimLex-999 (Hill et al., 2015)) and
their usefulness for downstream language under-
standing tasks. Having eliminated the rule-based
update from the NBT model, we make our evalua-
tion framework publicly available in hope that DST
performance can serve as a useful tool for measur-
ing the correlation between intrinsic and extrinsic
performance of word vector collections.

5 Conclusion

This paper proposed an extension to the Neural
Belief Tracking (NBT) model for Dialogue State
Tracking (DST) (Mrkšić et al., 2017a). In the previ-
ous NBT model, system designers have to tune the
belief state update mechanism manually whenever
the model is deployed to new dialogue domains.
On the other hand, the proposed model learns to
update the belief state automatically, relying on no
domain-specific validation sets to optimise DST

performance. Our model outperforms the exist-
ing NBT model, setting the new state-of-the-art-
performance for the Multilingual WOZ 2.0 dataset
across all three languages. We make the proposed
framework publicly available in hope of providing
a robust tool for exploring the DST task for the
wider NLP community.
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ica Gašić, and Steve Young. 2017. Sample-efficient
actor-critic reinforcement learning with supervised
data for dialogue management. pages 147–157.
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Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid Ó
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Abstract

We study the role of linguistic context in
predicting quantifiers (‘few’, ‘all’). We
collect crowdsourced data from human
participants and test various models in a
local (single-sentence) and a global con-
text (multi-sentence) condition. Models
significantly out-perform humans in the
former setting and are only slightly bet-
ter in the latter. While human perfor-
mance improves with more linguistic con-
text (especially on proportional quanti-
fiers), model performance suffers. Mod-
els are very effective in exploiting lex-
ical and morpho-syntactic patterns; hu-
mans are better at genuinely understand-
ing the meaning of the (global) context.

1 Introduction

A typical exercise used to evaluate a language
learner is the cloze deletion test (Oller, 1973). In
it, a word is removed and the learner must replace
it. This requires the ability to understand the con-
text and the vocabulary in order to identify the
correct word. Therefore, the larger the linguistic
context, the easier the test becomes. It has been
recently shown that higher-ability test takers rely
more on global information, with lower-ability test
takers focusing more on the local context, i.e. in-
formation contained in the words immediately sur-
rounding the gap (McCray and Brunfaut, 2018).

In this study, we explore the role of linguis-
tic context in predicting generalized quantifiers
(‘few’, ‘some’, ‘most’) in a cloze-test task (see
Figure 1). Both human and model performance
is evaluated in a local (single-sentence) and a
global context (multi-sentence) condition to study
the role of context and assess the cognitive plau-
sibility of the models. The reasons we are inter-

Figure 1: Given a target sentence st, or st with the
preceding and following sentence, the task is to
predict the target quantifier replaced by <qnt>.

ested in quantifiers are myriad. First, quantifiers
are of central importance in linguistic semantics
and its interface with cognitive science (Barwise
and Cooper, 1981; Peters and Westerståhl, 2006;
Szymanik, 2016). Second, the choice of quanti-
fier depends both on local context (e.g., positive
and negative quantifiers license different patterns
of anaphoric reference) and global context (the de-
gree of positivity/negativity is modulated by dis-
course specificity) (Paterson et al., 2009). Third
and more generally, the ability of predicting func-
tion words in the cloze test represents a bench-
mark test for human linguistic competence (Smith,
1971; Hill et al., 2016).

We conjecture that human performance will be
boosted by more context and that this effect will be
stronger for proportional quantifiers (e.g. ‘few’,
‘many’, ‘most’) than for logical quantifiers (e.g.
‘none’, ‘some’, ‘all’) because the former are more
dependent on discourse context (Moxey and San-
ford, 1993; Solt, 2016). In contrast, we expect
models to be very effective in exploiting the lo-
cal context (Hill et al., 2016) but to suffer with
a broader context, due to their reported inability
to handle longer sequences (Paperno et al., 2016).
Both hypotheses are confirmed. The best mod-
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els are very effective in the local context condi-
tion, where they significantly outperform humans.
Moreover, model performance declines with more
context, whereas human performance is boosted
by the higher accuracy with proportional quanti-
fiers like ‘many’ and ‘most’. Finally, we show that
best-performing models and humans make similar
errors. In particuar, they tend to confound quanti-
fiers that denote a similar ‘magnitude’ (Bass et al.,
1974; Newstead and Collis, 1987).

Our contribution is twofold. First, we present a
new task and results for training models to learn
semantically-rich function words.1 Second, we
analyze the role of linguistic context in both hu-
mans and the models, with implications for cogni-
tive plausibility and future modeling work.

2 Datasets

To test our hypotheses, we need linguistic con-
texts containing quantifiers. To ensure similarity
in the syntactic environment of the quantifiers, we
focus on partitive uses: where the quantifier is fol-
lowed by the preposition ‘of’. To avoid any effect
of intensifiers like ‘very’ and ‘so’ and adverbs like
‘only’ and ‘incredibly’, we study only sentences in
which the quantifier occurs at the beginning (see
Figure 1). We experiment with a set of 9 quan-
tifiers: ‘a few’, ‘all’, ‘almost all’, ‘few’, ‘many’,
‘more than half’, ‘most’, ‘none’, ‘some’. This
set strikes the best trade-off between number of
quantifiers and their frequency in our source cor-
pus, a large collection of written English including
around 3B tokens.2

We build two datasets. One dataset – 1-Sent –
contains datapoints that only include the sentence
with the quantifier (the target sentence, st). The
second – 3-Sent – contains datapoints that are
3-sentence long: the target sentence (st) together
with both the preceding (sp) and following one
(sf). To directly analyze the effect of the linguis-
tic context in the task, the target sentences are ex-
actly the same in both settings. Indeed, 1-Sent is
obtained by simply extracting all target sentences
<st> from 3-Sent (<sp, st, sf>).

The 3-Sent dataset is built as follows: (1) We
split our source corpus into sentences and select
those starting with a ‘quantifier of’ construction.
Around 391K sentences of this type are found. (2)

1Data and code are at: https://github.com/
sandropezzelle/fill-in-the-quant

2A concatenation of BNC, ukWaC, and a 2009-dump of
Wikipedia (Baroni et al., 2014).

We tokenize the sentences and replace the quan-
tifier at the beginning of the sentence (the target
quantifier) with the string <qnt>, to treat all tar-
get quantifiers as a single token. (3) We filter out
sentences longer than 50 tokens (less than 6% of
the total), yielding around 369K sentences. (4) We
select all cases for which both the preceding and
the following sentence are at most 50-tokens long.
We also ensure that the target quantifier does not
occur again in the target sentence. (5) We ensure
that each datapoint <sp, st, sf> is unique. The dis-
tribution of target quantifiers across the resulting
309K datapoints ranges from 1152 cases (‘more
than half’) to 93801 cases (‘some’). To keep the
dataset balanced, we randomly select 1150 points
for each quantifier, resulting in a dataset of 10350
datapoints. This was split into train (80%), valida-
tion (10%), and test (10%) sets while keeping the
balancing. Then, 1-Sent is obtained by extract-
ing the target sentences <st> from <sp, st, sf>.

3 Human Evaluation

3.1 Method
We ran two crowdsourced experiments, one per
condition. In both, native English speakers were
asked to pick the correct quantifier to replace
<qnt> after having carefully read and under-
stood the surrounding linguistic context. When
more than one quantifier sounds correct, partici-
pants were instructed to choose the one they think
best for the context. To make the results of the two
surveys directly comparable, the same randomly-
sampled 506 datapoints from the validation sets
are used. To avoid biasing responses, the 9 quan-
tifiers were presented in alphabetical order. The
surveys were carried out via CrowdFlower.3 Each
participant was allowed to judge up to 25 points.
To assess the judgments, 50 unambiguous cases
per setting were manually selected by the native-
English author and used as a benchmark. Over-
all, we collected judgments from 205 annotators
in 1-Sent (avg. 7.4 judgments/annotator) and
from 116 in 3-Sent (avg. 13.1). Accuracy is
then computed by counting cases where at least
2 out of 3 annotators agree on the correct answer
(i.e., inter-annotator agreement ≥ 0.67).

3.2 Linguistic Analysis
Overall, the task turns out to be easier in 3-Sent
(131/506 correctly-guessed cases; 0.258 accu-

3https://www.figure-eight.com/
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type text quantifier
meaning <qnt> the original station buildings survive as they were used as a source of materials. . . none of
PIs <qnt> these stories have ever been substantiated. none of
contrast Q <qnt> the population died out, but a select few with the right kind of genetic instability. . . most of
list <qnt> their major research areas are social inequality, group dynamics, social change. . . some of
quantity <qnt> those polled (56%) said that they would be willing to pay for special events. . . more t. half of
support Q <qnt> you have found this to be the case - click here for some of customer comments. many of
lexicalized <qnt> the time, the interest rate is set on the lender’s terms. . . most of
syntax <qnt> these events was serious. none of

Table 1: Cues that might help human participants to predict the correct quantifier (1-Sent).

racy) compared to 1-Sent (112/506; 0.221 acc.).
Broader linguistic context is thus generally bene-
ficial to the task. To gain a better understanding
of the results, we analyze the correctly-predicted
cases and look for linguistic cues that might be
helpful for carrying out the task. Table 1 reports
examples from 1-Sent for each of these cues.

We identify 8 main types of cues and manually
annotate the cases accordingly. (1) Meaning: the
quantifier can only be guessed by understanding
and reasoning about the context; (2) PIs: Polar-
ity Items like ‘ever’, ‘never’, ‘any’ are licensed
by specific quantifiers (Krifka, 1995); (3) Con-
trast Q: a contasting-magnitude quantifier em-
bedded in an adversative clause; (4) Support Q:
a supporting-magnitude quantifier embedded in a
coordinate or subordinate clause; (5) Quantity:
explicit quantitative information (numbers, per-
centages, fractions, etc.); (6) Lexicalized: lexi-
calized patterns like ‘most of the time’; (7) List:
the text immediately following the quantifier is a
list introduced by verbs like ‘are’ or ‘include’; (8)
Syntax: morpho-syntactic cues, e.g. agreement.

Figure 2 (left) depicts the distribution of anno-
tated cues in correctly-guessed cases of 1-Sent.
Around 44% of these cases include cues besides
meaning, suggesting that almost half of the cases
can be possibly guessed by means of lexical fac-
tors such as PIs, quantity information, etc. As seen
in Figure 2 (right), the role played by the meaning
becomes much higher in 3-Sent. Of the 74 cases
that are correctly guessed in 3-Sent, but not in
1-Sent, more than 3 out of 4 do not display cues
other than meaning. In the absence of lexical cues
at the sentence level, the surrounding context thus
plays a crucial role.

4 Models

We test several models, that we briefly describe
below. All models except FastText are im-
plemented in Keras and use ReLu as activation

function; they are trained for 50 epochs with cat-
egorical crossentropy, initialized with frozen 300-
d word2vec embeddings (Mikolov et al., 2013)
pretrained on GoogleNews.4 A thorough ablation
study is carried out for each model to find the best
configuration of parameters.5 The best configura-
tion is chosen based on the lowest validation loss.

BoW-conc A bag-of-words (BoW) architecture
which encodes a text as the concatenation of the
embeddings for each token. This representation is
reduced by a hidden layer before softmax.

BoW-sum Same as above, but the text is en-
coded as the sum of the embeddings.

FastText Simple network for text classification
that has been shown to obtain performance compa-
rable to deep learning models (Joulin et al., 2016).
FastText represents text as a hidden variable
obtained by means of a BoW representation.

CNN Simple Convolutional Neural Network
(CNN) for text classification.6 It has two con-
volutional layers (Conv1D) each followed by
MaxPooling. A dense layer precedes softmax.

LSTM Standard Long-Short Term Memory net-
work (LSTM) (Hochreiter and Schmidhuber,
1997). Variable-length sequences are padded with
zeros to be as long as the maximum sequence in
the dataset. To avoid taking into account cells
padded with zero, the ‘mask zero’ option is used.

bi-LSTM The Bidirectional LSTM (Schuster
and Paliwal, 1997) combines information from
past and future states by duplicating the first re-
current layer and then combining the two hidden
states. As above, padding and mask zero are used.

4Available here: http://bit.ly/1VxNC9t
5We experiment with all possible combinations obtained

by varying (a) optimizer: adagrad, adam, nadam; (b) hidden
layers: 64 or 128 units; (c) dropout: 0.25, 0.5, 0.75.

6Adapted from: http://bit.ly/2sFgOE1
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Figure 2: Left: Distribution of annotated cues across correcly-guessed cases in 1-Sent (112 cases).
Right: Distribution of cues across correctly-guessed cases in 3-Sent, but not in 1-Sent (74 cases).

Att-LSTM LSTM augmented with an attention
mechanism (Raffel and Ellis, 2016). A feed-
forward neural network computes an importance
weight for each hidden state of the LSTM; the
weighted sum of the hidden states according to
those weights is then fed into the final classifier.

AttCon-LSTM LSTM augmented with an at-
tention mechanism using a learned context vec-
tor (Yang et al., 2016). LSTM states are weighted
by cosine similarity to the context vector.

5 Results

Table 2 reports the accuracy of all models and hu-
mans in both conditions. We have three main re-
sults. (1) Broader context helps humans to per-
form the task, but hurts model performance. This
can be seen by comparing the 4-point increase of
human accuracy from 1-Sent (0.22) to 3-Sent
(0.26) with the generally worse performance of all
models (e.g. AttCon-LSTM, from 0.34 to 0.27

1-Sent 3-Sent
val test val test

chance 0.111 0.111 0.111 0.111
BoW-conc 0.270 0.238 0.224 0.207
BoW-sum 0.308 0.290 0.267 0.245
fastText 0.305 0.271 0.297 0.245
CNN 0.310 0.304 0.298 0.257
LSTM 0.315 0.310 0.277 0.253
bi-LSTM 0.341 0.337 0.279 0.265
Att-LSTM 0.319 0.324 0.287 0.291
AttCon-LSTM 0.343 0.319 0.274 0.288
Humans 0.221* —— 0.258* ——

Table 2: Accuracy of models and humans. Values
in bold are the highest in the column. *Note that
due to an imperfect balancing of data, chance level
for humans (computed as majority class) is 0.124.

in val). (2) All models are significantly better
than humans in performing the task at the sen-
tence level (1-Sent), whereas their performance
is only slightly better than humans’ in 3-Sent.
AttCon-LSTM, which is the best model in the
former setting, achieves a significantly higher ac-
curacy than humans’ (0.34 vs 0.22). By contrast,
in 3-Sent, the performance of the best model
is closer to that of humans (0.29 of Att-LSTM
vs 0.26). It can be seen that LSTMs are over-
all the best-performing architectures, with CNN
showing some potential in the handling of longer
sequences (3-Sent). (3) As depicted in Fig-
ure 3, quantifiers that are easy/hard for humans are
not necessarily easy/hard for the models. Com-
pare ‘few’, ‘a few’, ‘more than half’, ‘some’, and
‘most’: while the first three are generally hard
for humans but predictable by the models, the last
two show the opposite pattern. Moreover, quanti-
fiers that are guessed by humans to a larger extent
in 3-Sent compared to 1-Sent, thus profiting
from the broader linguistic context, do not expe-
rience the same boost with models. Human accu-
racy improves notably for ‘few’, ‘a few’, ‘many’,
and ‘most’, while model performance on the same
quantifiers does not.

To check whether humans and the models make
similar errors, we look into the distribution of
responses in 3-Sent (val), which is the most
comparable setting with respect to accuracy. Ta-
ble 3 reports responses by humans (top) and
AttCon-LSTM (bottom). Human errors gener-
ally involve quantifiers that display a similar mag-
nitude as the correct one. To illustrate, ‘some’ is
chosen in place of ‘a few’, and ‘most’ in place of
either ‘almost all’ or ‘more than half’. A simi-
lar pattern is observed in the model’s predictions,
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Figure 3: Human vs AttCon-LSTM accuracy (val) across quantifiers, loosely ordered by magnitude.

though we note a bias toward ‘more than half’.
One last question concerns the types of linguis-

tic cues exploited by the model (see section 3.2).
We consider those cases which are correctly
guessed by both humans and AttCon-LSTM in
each setting and analyze the distribution of anno-
tated cues. Non-semantic cues turn out to account
for 41% of cases in 3-Sent and for 50% cases in
1-Sent. This analysis suggests that, compared
to humans, the model capitalizes more on lexical,
morpho-syntactic cues rather than exploiting the
meaning of the context.

6 Discussion

This study explored the role of linguistic context
in predicting quantifiers. For humans, the task be-
comes easier when a broader context is given. For
the best-performing LSTMs, broader context hurts

none 19 1 2 0 2 0 0 0 12
few 5 9 2 6 5 0 3 0 2
a few 0 0 7 17 9 0 4 0 4
some 0 0 3 14 5 0 4 0 3
many 0 1 0 3 18 0 3 0 7
more than half 0 0 0 2 2 11 10 4 2
most 0 0 0 1 7 0 23 4 8
almost all 0 1 0 3 2 1 7 2 6
all 0 0 2 1 5 0 4 3 28
none 39 15 13 10 0 20 5 3 10
few 3 48 18 7 9 20 5 1 4
a few 7 13 31 18 5 15 12 8 6
some 5 18 16 17 16 19 9 5 10
many 2 18 18 15 20 17 10 6 9
more than half 2 7 2 3 10 82 2 1 6
most 8 14 14 12 12 26 15 5 9
almost all 5 9 15 10 8 37 15 6 10
all 7 12 10 15 21 13 7 4 26

Table 3: Responses by humans (top) and
AttCon-LSTM (bottom) in 3-Sent (val). Val-
ues in bold are the highest in the row.

performance. This pattern mirrors evidence that
predictions by these models are mainly based on
local contexts (Hill et al., 2016). Corroborating
our hypotheses, proportional quantifiers (‘few’,
‘many’, ‘most’) are predicted by humans with a
higher accuracy with a broader context, whereas
logical quantifiers (‘all’, ‘none’) do not experience
a similar boost. Interestingly, humans are almost
always able to grasp the magnitude of the miss-
ing quantifier, even when guessing the wrong one.
This finding is in line with the overlapping mean-
ing and use of these expressions (Moxey and San-
ford, 1993). It also provides indirect evidence for
an ordered mental scale of quantifiers (Holyoak
and Glass, 1978; Routh, 1994; Moxey and San-
ford, 2000). The reason why the models fail with
certain quantifiers and not others is yet not clear. It
may be that part of the disadvantage in the broader
context condition is due to engineering issues, as
suggested by an anonymous reviewer. We leave
investigating these issues to future work.
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Abstract

We ask how to practically build a model for
German named entity recognition (NER)
that performs at the state of the art for both
contemporary and historical texts, i.e., a
big-data and a small-data scenario. The two
best-performing model families are pitted
against each other (linear-chain CRFs and
BiLSTM) to observe the trade-off between
expressiveness and data requirements. BiL-
STM outperforms the CRF when large
datasets are available and performs infe-
rior for the smallest dataset. BiLSTMs
profit substantially from transfer learning,
which enables them to be trained on multi-
ple corpora, resulting in a new state-of-the-
art model for German NER on two contem-
porary German corpora (CoNLL 2003 and
GermEval 2014) and two historic corpora.

1 Introduction

Named entity recognition and classification (NER)
is a central component in many natural language
processing pipelines. High-quality NER is crucial
for applications like information extraction, ques-
tion answering, or entity linking.

Since the goal of NER is to recognize instances
of named entities in running text, it is established
practice to treat NER as a “word-by-word sequence
labeling task” (Jurafsky and Martin, 2009). There
are two families of sequence models that constitute
promising candidates. On the one hand, linear-
chain CRFs, which form the basis for many widely
used systems (e.g., Finkel et al., 2005; Benikova
et al., 2015), profit from hand-crafted features
and can easily incorporate language- and domain-
specific knowledge from dictionaries or gazetteers.
On the other hand, bidirectional LSTMSs (BiL-
STMs, e.g., Reimers and Gurevych, 2017) identify

informative features directly from the data, pre-
sented as word and/or character embeddings (e.g.,
Mikolov et al., 2013; Bojanowski et al., 2017).

When developing NER tools for new types of
text, one requirement is the availability of different
resources to inform features and/or embeddings.
Another one is the amount of training data: linear-
chain CRFs require only moderate amounts of train-
ing data compared to BiLSTM. To perform rep-
resentation learning, BiLSTMs require consider-
ably annotated data to learn proper representations
(see, e.g., the impact of training size by Dernon-
court et al., 2016). This consideration becomes
particularly pressing when moving to “small-data”
settings such as low-resource languages, specific
domains, or historical corpora. Thus, it is an open
question, whether it is generally a better idea to
choose different model families for different set-
tings, or whether one model family can be opti-
mized to perform well across settings.

This paper investigates this question empirically
on a set of German corpora including two large,
contemporary corpora and two small historical cor-
pora. We pit linear-chain CRF- and BiLSTM-based
systems against each other and compare to state-of-
the-art models, performing three experiments. Due
to these experiments, we get the following results:
(a), the BiLSTM system indeed performs best on
contemporary corpora, both within and across do-
mains; (b), the BiLSTM system performs worse
than the CRF systems for the smallest historical
corpus due to lack of data; (c), by applying transfer
learning to adduce more training data, the RNN
outperform CRFs substantially for all corpora. The
final BiLSTM models form a new state of the art
for German NER and are freely available.
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2 Model Families for NER

As mentioned above, contemporary research on
NER almost exclusively uses sequence classifica-
tion models. Our study focuses on CRFs and BiL-
STMs, the two most widely used choices.

CRF-based Systems. Linear-chain CRFs form
a family of models that are well established in se-
quence classification. They form the basis of two
widely used Named Entity recognizers.

The first one is STANFORDNER1 (Finkel et al.,
2005) which provides models for various languages.
It uses a set of language-independent features, in-
cluding word and character n-grams, word shapes,
surrounding POS and lemmas. For German, these
features are complemented by distributional clus-
ters computed on a large German web corpus
(Faruqui and Padó, 2010). The ready-to-run model
is pre-trained on the German CoNLL 2003 data
(Tjong Kim Sang and De Meulder, 2003).

Benikova et al. (2015) developed GERMANER2 ,
another CRF-based NER system. It was optimized
for the GermEval 2014 NER challenge and also
uses a set of standard features (word and charac-
ter n-grams, POS) supplemented by a number of
specific information sources (unsupervised parts of
speech (Biemann, 2009), distributional semantics
and topic cluster information, gazetteer lists).

BiLSTM-based Systems. Among the various
deep learning architectures applied for NER, the
best results have been achieved with bidirectional
LSTM methods combined with a top-level CRF
model (Ma and Hovy, 2016; Lample et al., 2016;
Reimers and Gurevych, 2017). In this work, we
use an implementation that solely uses word and
character embeddings.

We train the character embeddings while train-
ing the model but use pre-trained word embed-
dings. To alleviate issues with out-of-vocabulary
(OOV) words, we use both character- and subword-
based word embeddings computed with fastText
(Bojanowski et al., 2017). This method is able to
retrieve embeddings for unknown words by incor-
porating subword information.3

1http://stanford.io/2ohopn3
2http://github.com/tudarmstadt-lt/

GermaNER
3The source code and the best performing models are avail-

able online: http://www.ims.uni-stuttgart.de/
forschung/ressourcen/werkzeuge/german_
ner.html

3 Datasets

For the evaluation, we use two established datasets
for NER on contemporary German and two datasets
for historical German.

Contemporary German. The first large-scale
German NER dataset was published as part of
the CoNLL 2003 shared task (CoNLL, Tjong
Kim Sang and De Meulder, 2003). It consists of
about 220k tokens (for training) of annotated news-
paper documents. The tagset handles locations
(LOC), organizations (ORG), persons (PER) and
the remaining entities as miscellaneous (MISC).
The second dataset is the GermEval 2014 shared
task dataset (GermEval, Benikova et al. (2014)),
consisting of some 450k tokens (for training) of
Wikipedia articles.4 This dataset has two levels
of annotations: outer and inner span named enti-
ties. For example, the term Chicago Bulls is tagged
as organization in the outer span annotation. The
nested term Chicago is annotated as location in
the inner span annotation. However, there are only
few inner span annotations. In addition to the stan-
dard tagsets also used in the CoNLL dataset, fine
grained versions of these entities are marked with
suffixes: -deriv marks derivations of the named
entities (e.g. German actor – German is a derived
location) and -part marks compounds including
a named entity (e.g. in the word Rhineshore the
compound Rhine is location). To compare to pre-
vious state-of-the-art methods, we show results on
the official metric (a combination of the outer and
inner spans) in Section 4. As there are only few
inner span annotations, we additionally report re-
sults based on the outer spans. To be more conform
with the tagsets of the CoNLL task, we focus on
outer spans and remove the fine-grained tags in the
follow-up experiments (see Section 5 and 6).

Historical German. We further consider two
datasets based on historical texts (Neudecker,
2016)5, extracted from the Europeana collection
of historical newspapers6, a standard resource for
historical digital humanities. More specifically, our
first corpus is the collection of Tyrolean periodi-
cals and newspapers from the Dr Friedrich Temann
Library (LFT), covering around 87k tokens from

4https://sites.google.com/site/
germeval2014ner/

5https://github.com/KBNLresearch/
europeananp-ner/

6www.europeana.eu/portal/de
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Type Model Pr R F1

CRF StanfordNER 80.02 62.29 70.05
CRF GermaNER 81.31 68.00 74.06
RNN UKP 79.54 71.10 75.09

– ExB 78.07 74.75 76.38
RNN BiLSTM-WikiEmb 81.95 78.13 79.99*

RNN BiLSTM-EuroEmb 75.50 70.72 73.03

Table 1: Evaluation on GermEval data, using the
official metric (metric 1) of the GermEval 2014
task that combines inner and outer chunks.

1926. Our second corpus is a collection of Austrian
newspaper texts from the Austrian National Library
(ONB), covering some 35k tokens between 1710
and 1873. These corpora give rise to a number
of challenges: they are considerably smaller than
the contemporary corpora from above, contain a
different language variety (19th century Austrian
German), and include a high rate of OCR errors
since they were originally printed in Gothic type-
face.7 We use 80% of the data for training and each
10% for development and testing.

4 Experiment 1: Contemporary German

In our first experiment, we compare the NER per-
formances on the two contemporary, large datasets.
For BiLSTM, we experiment with two options for
word embeddings. First, we use pre-trained em-
beddings computed on Wikipedia with 300 dimen-
sions and standard parameters (WikiEmb)8, which
are presumably more appropriate for contemporary
texts. Second, we compute embeddings with the
same parameters from 1.5 billion tokens of historic
German texts from Europeana (EuroEmb). These
embeddings should be more appropriate for histori-
cal texts but may suffer from sparsity.

Table 1 shows results on GermEval using the of-
ficial metric (metric 1) for the best performing sys-
tems. This measure considers both outer and inner
span annotations. Within the challenge, the ExB
(Hänig et al., 2015) ensemble classifier achieved
the best result with an F1 score of 76.38, followed
by the RNN-based method from UKP (Reimers
et al., 2014) with 75.09. GermaNER achieves high
precision, but cannot compete in terms of recall.
Our BiLSTM with Wikipedia word embeddings,
scores highest (79.99) and outperforms the shared

7We cleaned the corpora by correcting named entity labels
and tokenization. We will make these versions available.

8https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

Type Model Pr R F1

CRF StanfordNER 80.13 65.43 72.04
CRF GermaNER 82.72 71.19 76.52
RNN UKP 79.90 74.13 76.91

– ExB 80.67 77.55 79.08
RNN BiLSTM-WikiEmb 83.07 80.62 81.83*

RNN BiLSTM-EuroEmb 76.48 73.54 74.98

Table 2: Evaluation on the test set of GermEval
2014 using the Outer Chunks evaluation schema.

Type Model Pr R F1

CRF StanfordNER 74.18 72.50 73.33
RNN Lample et al. (2016) - - 78.76
CRF GermaNER 85.88 73.78 79.37
RNN BiLSTM-WikiEmb 87.67 78.79 82.99*

RNN BiLSTM-EuroEmb 79.92 72.14 75.83

Table 3: Evaluation on the test set of the German
CoNLL 2003 dataset.

task winner ExB significantly, based on a bootstrap
resampling test (Efron and Tibshirani, 1994). Us-
ing Europeana embeddings, the performance drops
to an F1 score of 73.03 – due to the difference in
vocabulary. As the number of inner span annota-
tions is marginal and hard to detect, we additionally
present scores considering only outer span annota-
tions in Table 2. Whereas the scores are slightly
higher, we observe the same trend as from the pre-
vious results shown in Table 1.

On the CoNLL dataset (see Table 3) GermaNER
outperforms the currently best-performing RNN-
based system (Lample et al., 2016). The BiLSTM
again yields the significantly best performance,
matching its high precision while substantially im-
proving recall. Again, lower F1 scores are achieved
using the Europeana embeddings. In sum, we find
that BiLSTM models can outperform CRF models
when there is sufficient training data to profit from
distributed representations.

5 Experiment 2: Cross-Corpus
Performance

A potential downside of BiLSTMs is that learned
models may be more text type specific, due to the
high capacity of the models. Experiment 2 evalu-
ates how well the models do when trained on one
corpus and tested on another one, including histori-
cal corpora. To level the playing field, we reduce
the detailed annotation of GermEval to the standard
five-category set (PER, LOC, ORG, MISC, OTH).

Results for these experiments are presented in
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Test data

Model Train CoNLL GermEval LFT ONB
St

an
fo

rd
N

E
R

CoNLL 72.12 48.82 39.72 46.36
GermEval 65.63 72.09 45.22 52.21
LFT 35.25 35.00 67.26 52.77
ONB 34.09 33.96 42.95 72.42

G
er

m
a

N
E

R

CoNLL 79.37 60.40 46.53 53.93
GermEval 71.05 76.37 48.05 54.95
LFT 44.87 45.82 69.18 56.38
ONB 46.56 47.19 48.41 73.31

B
iL

ST
M

-
W

ik
iE

m
b CoNLL 82.99 66.51 49.28 58.79

GermEval 78.15 82.93 55.99 61.35
LFT 57.27 53.38 68.47 65.53
ONB 51.42 49.30 49.35 70.46

B
iL

ST
M

-
E

ur
oE

m
b CoNLL 75.83 55.06 45.30 54.59

GermEval 70.19 75.24 52.15 59.43
LFT 43.63 43.82 69.62 61.10
ONB 36.33 38.81 46.48 67.29

Table 4: Evaluation (F1) for two CRF-based meth-
ods and BiLSTM trained and tested on different
corpora.

Table 4. Unsurprisingly, the best results are gained
when testing on the same dataset as the training has
been performed. GermaNER consistently outper-
forms StanfordNER again, highlighting the benefits
of knowledge engineering when using CRFs.

Interestingly, these benefits also extend to the
historical datasets for which the CRF features were
presumably not optimized: overall F1-scores are
only a few points lower than for the contemporary
corpora, and the CRFs significantly outperform the
BiLSTM models on ONB and performs compa-
rable on the larger LFT dataset. The type of em-
beddings used by BiLSTM plays a minor role for
the historical corpora (for contemporary corpora,
Wikipedia is clearly better). In sum, we conclude
that BiLSTM models run into trouble when faced
with very small training datasets, while CRF-based
methods are more robust (Cotterell and Duh, 2017).

6 Experiment 3: Transfer Learning

If the problems of BiLSTM from the last section
are in fact due to lack of data, we might be able
to obtain an improvement by combining them. A
simple way of doing this is transfer learning (Lee
et al., 2017): we simply start training on one cor-
pus and at some point switch to another corpus.
In our scenario, we start by training on large con-
temporary “source” corpora until convergence and
then train additional 15 epochs on the “target” cor-
pus from the domain on which we evaluate. The

results in Table 5 show significant improvements
for the CoNLL dataset but performance drops for
GermEval. Combining contemporary sources with
historic target corpora yields to consistent benefits.
Performance on LFT increases from 69.62 to 74.33
and on ONB from 73.31 to 78.56. Cross-domain
classification scores are also improved consistently.
The GermEval corpus is more appropriate as a
source corpus, presumably because it is both larger
and drawn from encyclopaedic text, more varied
than newswire. We conclude that transfer learning
is beneficial for BiLSTMs, especially when train-
ing data for the target domain is scarce. We applied
the same procedure to the CRFs, but did not obtain
improvements for the “target” data.

7 Data Analysis

Besides OCR errors, the lower F1 scores for the
historic data are largely due to hyphens used to
divide words for line breaks. The lowest F1 scores
are achieved for the label organization. Evaluat-
ing on the ONB dataset, we obtain an F1 score for
that label of 50.22 using GermaNER, 48.63 for the
BiLSTM using Europeana embeddings and 61.48
using transfer learning. We observe a similar effect
for the LFT dataset. Often, the annotations for the
organization category are not entirely clear. For
example, the typo “sterreichischen Außenminis-
terlum” (should be “Außenministerium”, Austrian
foreign ministry) is manually annotated in the data
but not detected by any of the models. However,
“tschechoslowakischen Presse” (engl. Czechoslo-
vakian press) is detected as organization by all
classifiers but is not manually annotated.

8 Related Work

BiLSTMs that combine neural network architec-
tures with CRF-based superstructures yield the
highest results on English NER datasets in a num-
ber of studies (Ma and Hovy, 2016; Lample et al.,
2016; Reimers and Gurevych, 2017; Lin et al.,
2017). However, only few systems reported results
for German NER, and restrict themselves to the
“big-data” scenarios of the CoNLL 2003 (Lample
et al., 2016; Reimers and Gurevych, 2017) and Ger-
mEval (Reimers et al., 2014; Christian Hnig, 2014)
datasets.Sutton and McCallum (2005) showed the
capability of CRFs for transfer learning by joint
decoding two separately trained sequence models.
Lee et al. (2017) apply transfer learning using a
BiLSTM for medical NER using two similar tasks
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BiLSTM-WikiEmb BiLSTM-EuroEmb

Train Transfer CoNLL GermEval LFT ONB CoNLL GermEval LFT ONB

CoNLL GermEval 78.55 82.93 55.28 64.93 72.23 75.78 51.98 61.74
CoNLL LFT 62.80 58.89 72.90 67.96 56.30 51.25 70.04 65.65
CoNLL ONB 62.05 57.19 59.43 76.17 55.82 49.14 54.19 73.68
GermEval CoNLL 84.73† 72.11 54.21 65.95 78.41 63.42 52.02 59.28
GermEval LFT 67.77 69.09 74.33† 70.57 55.83 57.71 72.03 70.36
GermEval ONB 72.15 73.18 62.52 76.06 64.05 64.20 57.12 78.56†

Table 5: Results for different test sets when using transfer learning. †marks results statistically significantly
better than the ones reported in Table 4.

with different labels and show that only 60% of
the data of the target domain is required to achieve
good results. Crichton et al. (2017) yield improve-
ments up to 0.8% for NER in the medical domain.
Most related to our paper is the work by Ghad-
dar and Langlais (2017) which demonstrates the
impact of transfer learning of the English CoNLL
2003 dataset with Wikipedia annotations.

9 Conclusion

Our study fills an empirical gap by considering
historical datasets and performing careful compar-
isons of multiple models under exactly the same
conditions. We have investigated the relative perfor-
mance of an BiLSTM method and traditional CRFs
on German NER in big- and small-data situations,
asking whether it makes sense to consider differ-
ent model types for different setups. We found
that combining BiLSTM with a CRF as top layer,
outperform CRFs with hand-coded features consis-
tently when enough data is available. Even though
RNNs struggle with small datasets, transfer learn-
ing is a simple and effective remedy to achieve
state-of-the-art performance even for such datasets.
In sum, modern RNNs consistently yield the best
performance.In future work, we will extend the
BiLSTM to other languages using cross-lingual
embeddings (Ruder et al., 2017).
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Abstract

Software developers and testers have long
struggled with how to elicit proactive re-
sponses from their coworkers when re-
viewing code for security vulnerabilities
and errors. For a code review to be suc-
cessful, it must not only identify potential
problems but also elicit an active response
from the colleague responsible for modi-
fying the code. To understand the factors
that contribute to this outcome, we analyze
a novel dataset of more than one million
code reviews for the Google Chromium
project, from which we extract linguis-
tic features of feedback that elicited re-
sponsive actions from coworkers. Using a
manually-labeled subset of reviewer com-
ments, we trained a highly accurate clas-
sifier to identify “acted-upon” comments
(AUC = 0.85). Our results demonstrate
the utility of our dataset, the feasibility of
using NLP for this new task, and the po-
tential of NLP to improve our understand-
ing of how communications between col-
leagues can be authored to elicit positive,
proactive responses.

1 Introduction

As in many other work environments, such as hos-
pitals and law firms, employees in software devel-
opment must communicate through written feed-
back and comments to develop functional and se-
cure code. Developers elicit feedback from their
collaborators on the code that they write through
the code review process, which is an integral
part of the mature software development lifecy-
cle. Most large software development organi-
zations, including Microsoft (Lipner, 2004) and
Google (Chromium, 2017), mandate the review of

all changes to the code base. Code reviews iden-
tify potential bugs or errors in software, but not
all of the comments made by reviewers are acted
upon by developers.

Some code reviews are taken seriously by de-
velopers and prompt significant fixes, while many
others are overlooked or dismissed. In some cases,
such as when code reviewers misunderstand the
purpose of a proposed change or identify an unim-
portant issue, it may be appropriate to ignore their
comments. At other times, however, the presenta-
tion and language of the reviewer’s feedback may
cause the problems it identifies to be overlooked.
Understanding which linguistic characteristics of
code reviews influence whether reviews are taken
seriously can aid developers in providing effective
feedback that is acted upon by their peers. In turn,
this can contribute to our general understanding of
how to provide meaningful written feedback in a
collaborative workplace setting.

With this in mind, we present a dataset of
over one million code review comments from the
Chromium project (Chromium, 2017), designed
with the goal of discovering the linguistic fea-
tures associated with actionable developer feed-
back. We describe the dataset, along with an ar-
ray of linguistic features capturing characteristics
of complexity, content, and style, extracted from
that dataset. Using a labeled subset of this large
dataset, we develop a highly accurate classifier for
identifying examples of actionable feedback that
performs better than the keyword and sentiment
features previously explored for similar tasks.

The contributions of this work are: (1) the intro-
duction of a new NLP task: identifying actionable
feedback in collaborative work conversations; (2)
a large structured dataset of automatically linguis-
tically annotated software developer conversations
for feature exploration1; (3) a smaller manually-
labeled subset of that dataset for hypothesis test-
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ing1; and (4) a demonstration of the feasibility
of using NLP for this task in the form of a high-
accuracy classifier of actionable feedback.

2 Background

A typical code review is initiated by a developer
(change-author) who wishes to have a collection
(patchset) of local changes (patches) to the source
code merged into the software product. The patch-
set is reviewed by other developers (reviewers)
who provide feedback to ensure that the change
does not negatively impact the overall quality of
the product. In response to this feedback, the
change-author can submit one or more additional
patchsets for further review. The process repeats
until the owner of the source code approves the
change. The Chromium project, which underlies
Google’s Chrome browser and Chrome OS, fol-
lows this typical code review process, requiring all
changes to the source code to be reviewed before
being accepted into the repository. Rietveld (The
Chromium Project, 2017), an open-source tool, fa-
cilitates the code review process in Chromium.

The process of providing direct assessment of
an individual’s actions or performance, known as
feedback intervention, has been widely studied in
a number of domains (Judd, 1905; Kluger and
DeNisi, 1996, 1998; Xiong et al., 2010; Xiong and
Litman, 2010), but previous work applying NLP
to the specific task of evaluating code review feed-
back is somewhat limited. Rahman et al. (2017)
examined a small set of text features (e.g., reading
ease, stop word ratio) in a small set of code review
comments but found associations between those
features and comment usefulness to be mostly in-
significant. Pletea et al. (2014) examined senti-
ment as an indicator of comment usefulness, while
Bosu et al. (2015) considered both sentiment and
the presence of pre-defined keywords in feedback.
While these studies offer insights into the lan-
guage used by developers, they are limited to sen-
timent and basic lexical attributes. In contrast, we
explore more subtle linguistic features that more
accurately characterize actionable feedback.

3 Data

Our dataset consists of written natural language
conversations among developers working to find

1https://meyersbs.github.io/chromium-
conversations/

Figure 1: Example code review comment thread.

flaws in proposed changes to software. An ex-
ample is shown in Figure 1. We used Rietveld’s
RESTful API to retrieve, in JSON formatted doc-
uments, publicly-accessible code reviews in the
Chromium project spanning eight years (2008-
16). We processed the JSON documents and ex-
tracted reviews with their associated patchsets,
patches, and comments, saving them to a Post-
greSQL database. Of the 2,855,018 comments,
1,591,431 were posted by reviewers. We refer to
this set of comments, for which we provide val-
ues for the 9 linguistic features (described in Sec-
tion 4), as the full dataset.

With the goal of characterizing the linguistic at-
tributes of actionable feedback, we created a la-
beled dataset, which reflects the overall distri-
bution of actionable comments in the full dataset
by including 2,994 comments automatically iden-
tified as acted-upon and 800 comments manually
identified as not (known-to-be) acted-upon. We
automatically identified acted-upon comments us-
ing the Rietveld functionality that allows change-
authors to respond to feedback by clicking a link
labeled “Done”, which automatically posts a spe-
cial comment containing only the word ‘Done.’.
We consider comments by reviewers that elicit this
‘Done.’ response to be acted-upon. Of the 1.5
million comments posted by reviewers, 690,881
(43%) were identified as acted-upon using the
‘Done.’ metric. We independently verified a sub-
set of 700 of these comments (Cohen’s κ = 0.89)
and found that in 97% of instances when a devel-
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oper posted a comment with ‘Done.’, there was an
associated code change implemented.

To identify comments that were not acted upon,
we manually inspected code review comments that
did not terminate in a ‘Done.’ comment. We ran-
domly sampled a set of 2,047 such comments and
inspected the line of code associated with a com-
ment across all patchsets and the source code com-
mit associated with the code review. Comments
for which the authors could not find evidence that
the developer acted upon the feedback were la-
beled as not (known-to-be) acted-upon. Within the
sample, 800 (39.08%) were manually identified as
not (known-to-be) acted-upon.

4 Feature Extraction

We extract nine linguistic features from the re-
viewer comments (examples in Table 1) that cap-
ture structure, information content, style, and tone.
Before extracting features, we automatically re-
place all sequences of source code tokens with a
single custom token. Since comments can span
multiple sentences, we aggregate sentence-level
features at the comment level as described below
for each feature.

Syntactic complexity: Previous work (Rah-
man et al., 2017) attempted to measure struc-
tural complexity using readability metrics, such as
Flesch reading ease (Flesch, 1948), which approx-
imate complexity using word and sentence length.
We instead evaluate the structure of comments
by calculating YNGVE (Yngve, 1960) and FRA-
ZIER (Frazier, 1987) scores, two complimentary
approaches derived from constituent parses (as in
Roark et al. (2011); Pakhomov et al. (2011)) that
approximate the cognitive load of sentence pro-
cessing (Baddeley, 2003; Sweller and Chandler,
1991). We take the maximum over all sentences
in a comment for each of these scores.

Information content: We calculate both con-
tent density (C-DENSITY), which measures the
content of text using the ratio of open-class to
closed-class words, and propositional density (P-
DENSITY), which is the ratio of propositions to
the number of words in a text (Roark et al., 2011).
We use an approach similar to that used by Brown
et al. (2008) to detect propositions, and we aggre-
gate both scores over the sentences in a comment.

Style and tone: We explore several features
characterizing style and tone to learn whether the
way reviewers choose to communicate their feed-

back has an influence on how their colleagues re-
spond to that feedback.

SENTIMENT: We extract the sentiment of a
code review comments using Stanford CoreNLP
(Manning et al., 2014). In contrast to previous
work (Bosu et al., 2015; Agarwal et al., 2011),
we use only three values, merging the two positive
classes and the two negative classes, and introduce
a fourth class, non-neutral, which ignores the sen-
timent polarity. The sentiment at a comment level
is the ratio of negative/neutral/positive/non-neutral
tokens to all tokens.

FORMALITY: We use the dataset provided by
Lahiri (2015) to train a logistic regression model
for estimating the formality of a sentence, with
precision and recall of 83%. We reduce the 7-
point rating scale to a binary (formal vs. infor-
mal) scale. The features used to train the model in-
cluded parts-of-speech, character n-grams, chunk-
ing tags, and other features used in predicting un-
certainty Vincze (2014). For this feature and PO-
LITENESS, we find the maximum and minimum
values over all sentences in a comment.

POLITENESS: To measure politeness, we use
a corpus of Wikipedia editor and Stack Ex-
change user conversations annotated for politeness
(Danescu-Niculescu-Mizil et al., 2013). We re-
implemented their logistic regression model with
newer programming languages and frameworks,
yielding 94% precision and 95% recall.

UNCERTAINTY: Uncertainty in natural lan-
guage has been studied by Vincze (2014) and
Farkas et al. (2010), who worked with Szarvas
et al. (2012) to compile the Szeged Uncertainty
Corpus. While Vincze (2014) trained a binary
(certain vs. uncertain) model on the corpus, we
trained a multi-label logistic regression model us-
ing the same features to predict the type of uncer-
tainty exhibited by each word in a comment.

5 Results

Using the labeled dataset described in Section 3,
we evaluated the association between each feature
and the class labels. For continuous valued fea-
tures, we used the non-parametric Mann-Whitney-
Wilcoxon to test for association and Cliff’s δ to as-
sess the strength of that association. For boolean-
valued features, we used the χ2 test to test for
independence between the feature and class la-
bel. Our results show that acted-upon code review
comments were shorter, more polite, more formal,
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Feature Example Sentence from Chromium dataset

FRAZIER
Low: This ‘if’ can be done more elegantly with Min(x,y)
High: Please see this warning about adding things to NavigationEntry.

YNGVE
Low: The description is a little confusing.
High: The only time we call one but not the other is in the destructor, when we don’t need to call
needsNewGenID, but setting two fields needlessly might be a low price to pay to ensure we never
accidentally call one without the other.

P-DENSITY
Low: In addition to what I suggested earlier about testing for the non-existence of a third file, we could
also verify that the contents of the sync database files are not nonsense.
High: I tried patching this in locally and it doesn’t compile.

C-DENSITY
Low: Slight reordering: please put system modules first, then a blank line, then local ones
(PRESUBMIT).
High: Please check that given user id is child user, not currently active user is child.

FORMALITY
Low: But yeah, I’m just being an API astronaut*; I think that what I wrote up there is neat, but after
sleeping, don’t worry about it; it’s too much work to go and rewrite stuff.
High: Moving this elsewhere would also keep this module focused on handling the content settings /
heuristics for banners, which is what it was originally intended for.

POLITENESS
Low: You don’t actually manage the deopt table’s VirtualMemory, so you shouldn’t act like you do.
High: Thanks for writing this test, getting there, but I think you could do this in a more principled way.

SENTIMENT
Negative: That’s not good use of inheritance.
Neutral: Are we planning on making use of this other places?
Positive: It looks slightly magical.

UNCERTAINTY
Epistemic: This seems a bit fragile.
Doxastic: I assume we added this notification purely for testing purposes?
Investigative: Did you check whether it was needed?
Conditional: Another possible option, if it does not cause user confusion, would be to automatically
select those projects in the Files view when the dialog closes.

Table 1: Example code review comments for a subset of the linguistic features.

Feature Set Precision Recall F1 AUC
# Tokens 0.793 0.996 0.883 0.610
# Sentences 0.792 0.999 0.884 0.584
All 0.829 0.926 0.872 0.849
Significant 0.805 0.953 0.871 0.805
Relevant 0.802 0.963 0.874 0.819

Table 2: Results of 10×10−fold cross-validation.

less uncertain, and had a lower density of proposi-
tions than those that were not acted-upon.

We then trained a classifier to identify code re-
view comments that are likely to be acted upon.
In training the classifier, we considered three sets
of linguistic features: (1) all features, (2) sig-
nificant features from association analysis, and
(3) relevant features from recursive feature elim-
ination. Through recursive feature elimination,
we found MAX POLITENESS, P-DENSITY, MIN

FORMALITY, and MAX FORMALITY to be the
four most relevant features for discriminating be-
tween acted-upon and not acted-upon comments.

We trained logistic regression classifiers with
these three sets of linguistic features, evaluating

performance using 10x10-fold cross validation.
We compare these with two baseline classifiers us-
ing only token count and sentence count. Table 2
shows the average precision, recall, F1-measure,
and AUC. The classifiers trained on the linguistic
features, while performing near the baselines on
the first three measures, substantially outperform
the baselines on AUC, with all three yielding val-
ues over 0.8. Given these results and the imbal-
anced nature of the dataset, it seems that the clas-
sifiers trained on the linguistic features are able to
identify both classes of comments with high ac-
curacy, while the baseline classifiers perform only
marginally better than a majority class baseline.

6 Discussion & Future work

Overall, we find that the way in which cowork-
ers communicate feedback to each other strongly
influences whether their peers will act on their ad-
vice. Remarkably, politeness and formality, two
high-level discourse features, are among the most
effective in distinguishing acted upon feedback. It
seems that the manner in which feedback is deliv-
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ered has more impact on the actions of developers
than might be expected given the practical and im-
personal nature of written code reviews. These re-
sults point to the critical importance of how feed-
back is phrased and delivered in workplace set-
tings, beyond just the content of the feedback it-
self.

In our future work, we plan to explore whether
these and other features can be incorporated into
a code review tool like Rietveld to automatically
flag feedback that is less likely to be acted upon
and to encourage more effective communication
strategies. We also plan to use our methods to an-
alyze the linguistic patterns of individual review-
ers to identify those with particularly effective or
weak communication styles.

Our work demonstrates the potential of apply-
ing NLP to the task of identifying actionable feed-
back in collaborative work scenarios and the util-
ity of our two datasets for this task. More broadly,
these results speak to the importance of training
code reviewers–and indeed all employees work-
ing in highly collaborative environments–not just
in how to do their jobs effectively but also how to
communicate their findings and feedback to their
coworkers in a way that will elicit proactive re-
sponses.
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Abstract

Humans rely on multiple sensory
modalities when examining and reasoning
over images. In this paper, we describe
a new multimodal dataset that consists
of gaze measurements and spoken
descriptions collected in parallel during
an image inspection task. The task was
performed by multiple participants on 100
general-domain images showing everyday
objects and activities. We demonstrate
the usefulness of the dataset by applying
an existing visual-linguistic data fusion
framework in order to label important
image regions with appropriate linguistic
labels.

1 Introduction

In recent years, eye tracking has become
widespread, with applications ranging from VR
to assistive communication (Padmanaban et al.,
2017; Holmqvist et al., 2017). Gaze data, such as
fixation location and duration, can reveal crucial
information about where observers look and how
long they look at those locations. Researchers
have used gaze measurements to understand where
drivers look and to identify differences in experts’
and novices’ viewing behaviors in domain-specific
tasks (Underwood et al., 2003; Eivazi et al.,
2012). Numerous studies highlight the potential
of gaze data to shed light on how humans process
information, make decisions, and vary in observer
behaviors (Fiedler and Glöckner, 2012; Guo et al.,
2014; Hayes and Henderson, 2017; Brunyé and
Gardony, 2017). Eye tracking has also long been
an important tool in psycholinguistics (Cooper,
1974; Rayner, 1998; Richardson and Dale, 2005;
Shao et al., 2013).

Co-collecting observers’ gaze information and
spoken descriptions of visual input has the

potential to provide insight into how humans
understand what they see. There is a need for
public datasets containing both modalities. In this
paper, we present the Spoken Narratives and Gaze
dataset (SNAG), which contains gaze information
and spoken narratives co-captured from observers
as they view general domain images. We describe
the data collection procedure using a high-quality
eye-tracker, summary statistics of the multimodal
data, and the results of applying a visual-lingustic
alignment framework to automatically annotate
regions of general-domain images, inspired by
Vaidyanathan et al.’s (2016) work on medical
images. Our main contributions are as follows:

1. We provide the language and vision
communities with a unique multimodal
dataset1 comprised of co-captured gaze and
audio data, and transcriptions. This dataset
was collected via an image-inspection
task with 100 general-domain images and
American English speakers.

2. We demonstrate the usefulness of this
general-domain dataset by applying
an existing visual-linguistic annotation
framework that successfully annotates image
regions by combining gaze and language
data.

2 Multimodal Data Collection

The IRB-approved data collection involved 40
university students who were native speakers
of American English (10 were later removed),
ranging in age from 18 to 25 years, viewing
and describing 100 general-domain images. We
sought out subjects who were speakers of
American English in order to ensure reliable ASR
output and a consistent vocabulary across subjects.
Subjects consented to data release. The images

1https://mvrl-clasp.github.io/SNAG/
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Figure 1: Data collection set-up. The eye tracker
is under the display. The observer wears a lapel
microphone connected to a TASCAM recorder.

were selected from MSCOCO (Microsoft Common
Objects in Context) (Lin et al., 2014), which
totals over 300,000 images representing complex
everyday scenes. The MSCOCO dataset was
created by pooling images from sources such as
Flickr and crowdsourcing them to obtain segments
and captions (not used in this work). A researcher
selected the images so that typically they depicted
an event with at least one initiator of the event
and one target of the action. Of the 100 images,
69 images clearly depict at least one event. The
MSCOCO images vary in number of objects, scale,
lighting, and resolution.

Gaze data was collected using a SensoMotoric
Instruments (Sensomotoric Instruments, 2016)
RED 250Hz eye-tracker attached under a display
(Figure 1). The reported accuracy of the RED 250
eye-tracker is 0.5 degree. It is a non-intrusive and
remote eye tracker that monitors the observer’s
gaze. Each image was presented to the observer
on a 22-inch LCD monitor (1680 × 1050 pixels)
located approximately 68 cm from the observer.
We employed a double computer set-up with
one computer used to present the image and the
other used to run the SMI software iViewX and
Experiment Center 2.3. After each stimulus, a
blank gray slide was inserted to ensure that the
gaze on the previous stimulus did not affect the
gaze on the following stimulus. The blank gray
slide was followed by a test slide with a small,
visible target at the center with an invisible trigger
area of interest. Using the test slide we could
measure the drift between the location of the target
at the center and the predicted gaze location over
time that may have occurred due to the observer’s
movements. A validation was performed every
10 images and re-calibration was applied if the

Figure 2: Example of multimodal data. Left: ASR
transcript of a participant’s spoken description.
Right: Gaze data for the same observer overlaid
on the image. Green circles show fixations, with
radius representing fixation duration. Green lines
connecting fixations represent saccades.

observer’s validation error was more than one
degree.

A TASCAM DR-100MKII recorder with
a lapel microphone was used to record the
spoken descriptions. To approximate the
Master-Apprentice data collection method
that helps in eliciting rich details (Beyer and
Holtzblatt, 1997), observers were instructed to
“describe the action in the images and tell the
experimenter what is happening.” Observers were
given a mandatory break after 50 images and
optional smaller breaks if needed to avoid fatigue.
Observers were given a package of cookies along
with a choice between entering into a raffle
to win one of two $25 gift cards or receiving
course credits. Observers were cooperative and
enthusiastic.

3 Fixations, Narratives, and Quality

The SMI software BeGaze 3.1.117 with default
parameters and a velocity-based (I-VT) algorithm
was used to detect eye-tracking events. Figure 2
shows an example of the scanpath with fixations
and saccades of an observer overlaid on an image.
Of the original 40 observers, we removed one
observer with partial data loss and nine observers
whose mean calibration and validation error was
greater than two standard deviations from the
mean in the horizontal or vertical direction. The
mean calibration accuracy (standard deviation)
for the remaining subjects was 0.67(0.25) and
0.74(0.27) degrees for the x and y directions,
respectively. One degree would translate to
approximately 40 pixels in our set-up, therefore
our mean calibration accuracy was roughly 27
pixels. For the remainder of this work, the corpus
size is 3000 multimodal instances (100 images
× 30 participants), with 13 female and 17 male
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Figure 3: Scatter plot of mean word types vs.
tokens per image. Example images have low
(green) and high (magenta) type-token ratio.

participants.
The speech recordings for the 3000 instances

were machine-transcribed using the cloud-based
IBM Watson Speech-to-Text service, an ASR
system accessible via a Websocket connection2.
Figure 2 (left panel) shows example ASR output,
which is accurate other than the substitution of
Kate for cake. IBM Watson reports timestamps
for each word, and those timestamps are included
in the released dataset. Additionally, all spoken
descriptions for a subset of 5 images were
manually corrected using Praat (Boersma, 2002)
in order to verify the quality of the ASR output.
We found the word error rate (WER) to be
remarkably low (5%), demonstrating the viability
of using ASR to automate the transcription of
the narratives. The ASR and manually corrected
transcriptions are included in the dataset.

A descriptive analysis of the gaze and narratives
shows that the average fixation duration across
the 30 participants was 250 milliseconds and the
average narrative duration was about 22 seconds.
The transcribed narratives were segmented into
word tokens using the default NLTK word
tokenizer. Various measures for the first-order
analysis of the narratives were then calculated.
The mean number of tokens and the average
duration of narratives together indicate that on
average observers uttered 2.5 words per second.
The mean type-token ratio was 0.75, suggesting
that there is substantial lexical diversity in the
narratives, which demonstrates the richness of
the dataset. Figure 3 shows a scatter plot for
the mean number of word types against the
mean number of word tokens for the 100 images

2https://www.ibm.com/watson/services/speech-to-text/

Figure 4: RegionLabeler GUI (released with
dataset) used to acquire reference alignments.
Annotator draws borders around regions and
checks off linguistic units.

across 30 participants. The plot illustrates that
a larger number of tokens typically results in
a larger number of types. Images 23, 3, and
24, highlighted in green, have fewer mean word
tokens and types than images 35, 90, and 94,
highlighted in magenta. For this dataset, this may
be due to the number of significant objects in the
images where a significant object is defined as an
object that occupies a significantly large area of
the image. Images 23, 3, and 24 have on average
two objects while images 35, 90, and 94 have more
than two.

4 Application to Multimodal Alignment

We examine the usefulness of our general-domain
dataset on image-region annotation, adapting the
framework given by Vaidyanathan et al. (2016).

Linguistic units: We process the narratives in
order to extract nouns and adjectives, which serve
as the linguistic units. Additionally, we remove
word tokens with a frequency of 1 in order to
reduce the impact of speech errors and one-off
ASR errors.

Visual units: To encode fixations into
meaningful regions similar to Vaidyanathan et al.
(2016) we apply mean shift fixation clustering
(MSFC). We also use modified k-means and
gradient segmentation (GSEG). Modified k-means
uses the number of clusters obtained from MSFC
as the value of k instead of 4 as in the original
framework. GSEG uses color and texture with
region merging to segment an image (Ugarriza
et al., 2009). The outputs of the three clustering
methods are shown in Figure 5. The rest of
the alignment framework, including using the
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Figure 5: Example region annotations. Top-left: Reference alignments. Alignment output using:
top-right: MSFC; bottom-left: modified k-means; and bottom-right: GSEG. Correct alignments in pink.
Misalignments and labels not belonging to reference alignments in yellow.

Berkeley aligner (Liang et al., 2006), remained the
same.

Reference alignments: Both SURE and
POSSIBLE (Och and Ney, 2003) reference
alignments were prepared using RegionLabeler,
a GUI (Figure 4) to allow evaluation of the
resulting multimodal alignments. With this tool,
an annotator drew borders of image regions and
selected the associated linguistic units.

Baseline alignments: For comparison, we use
the baselines proposed by Vaidyanathan et al.
(2016): simultaneous which assumes that the
observers utter the word corresponding to a region
at the exact moment their eyes fixate on that
region, and 1-second delay which assumes that
there is a 1-second delay between a fixation and
the utterance of the word corresponding to that
region.

5 Results and Discussion

We calculated average precision, recall, and AER
for alignments and compared them against the
baselines following Och and Ney (2003).

The two baselines performed similarly. Table 1
shows that the alignment framework performs
better than either baseline. MSFC yields the
highest recall and lowest AER with an absolute
improvement of 0%, 19%, and 10% for precision,
recall and AER, over the 1-second delay baseline.
Modified k-means achieves higher precision with

an absolute improvement of 6%, 14%, and 14%
over baseline. GSEG performed with less success.

Figure 5 visually compares reference and
obtained alignments. Most words are correctly
aligned. MSFC correctly aligns labels such as
cake and plates, yielding higher recall. It aligns
some labels such as plates to incorrect regions,
explaining the lower precision. All methods
erroneously assign labels not grounded to any
region but representing the perspective of the
photographer, such as camera, to regions in the
image, which lowers precision.

6 Related Work

There are publicly available datasets that provide
gaze data with no language data (Krafka et al.,
2016; Borji and Itti, 2015; Wilming et al.,
2017) for tasks such as image saliency or
driving. Vasudevan et al. (2018b) collected a
dataset in which crowdworkers viewed objects
in bounding boxes and read aloud pre-scripted
phrases describing those objects. Although their
dataset consists of spoken language, it lacks
co-collected gaze data and uses a bounding box
to highlight an object as opposed to allowing
the observer to view the image freely. A more
recent study describes the collection of a dataset
in which crowdworkers were instructed to draw
bounding boxes around objects in videos and
provide written phrases describing these objects
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MSFC Modified k-means
Precision Recall AER Precision Recall AER

Simultaneous 0.42 0.30 0.65 0.49 0.17 0.74
1-second delay 0.43 0.31 0.64 0.50 0.17 0.74
Alignment framework 0.43 0.50 0.54 0.56 0.31 0.60

Table 1: Average alignment performance across images. MSFC provides the best recall and lowest AER,
and modified k-means the best precision. In all cases, the alignment framework yields stronger results
than either of the timing-based baselines.

(Vasudevan et al., 2018a). In a separate task,
crowdworkers were asked to view those same
videos and to gaze within the bounding boxes
for each object while face data was recorded.
The authors infer gaze using the recorded
face data. None of these datasets involves
simultaneous visual-linguistic capture of spoken
narration or precision eye-tracking equipment
during naturalistic free viewing. Ho et al. (2015)
provide a dataset that consists only of gaze and
speech time stamps during dyadic interactions.
The closest dataset to ours is the multimodal but
non-public data described by Vaidyanathan et al.
(2016).

7 Conclusions

The SNAG dataset is a unique and novel resource
that can provide insights into how humans view
and describe scenes with common objects. In
this paper, we use SNAG to demonstrate that
multimodal alignment does not depend on expert
observers or image type, with comparable results
to Vaidyanathan et al. (2016) for dermatological
images. SNAG could also serve researchers outside
NLP, including psycholinguistics. Spontaneous
speech coupled with eye-tracking data could be
useful in answering questions about how humans
produce language when engaging with visual
tasks. Parallel data streams can, for example,
help in investigating questions such as the effects
of word complexity or frequency on language
formation and production. It might also aid in
studies of syntactic constructions and argument
structure, and how they relate to visual perception.
Qualitative analysis of our transcripts indicates
that they contain some emotional information in
the form of holistic comments on the overall
affect of the images, which could be helpful
in affective visual or linguistic computing tasks.
Future work could co-collect modalities such as
facial expressions, galvanic skin response, or other

biophysical signals with static or dynamic visual
materials.
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Abstract

Analogical reasoning is effective in cap-
turing linguistic regularities. This paper
proposes an analogical reasoning task on
Chinese. After delving into Chinese lexi-
cal knowledge, we sketch 68 implicit mor-
phological relations and 28 explicit se-
mantic relations. A big and balanced
dataset CA8 is then built for this task,
including 17813 questions. Furthermore,
we systematically explore the influences
of vector representations, context features,
and corpora on analogical reasoning. With
the experiments, CA8 is proved to be a re-
liable benchmark for evaluating Chinese
word embeddings.

1 Introduction

Recently, the boom of word embedding draws our
attention to analogical reasoning on linguistic reg-
ularities. Given the word representations, anal-
ogy questions can be automatically solved via vec-
tor computation, e.g. “apples - apple + car ≈
cars” for morphological regularities and “king -
man + woman ≈ queen” for semantic regularities
(Mikolov et al., 2013). Analogical reasoning has
become a reliable evaluation method for word em-
beddings. In addition, It can be used in inducing
morphological transformations (Soricut and Och,
2015), detecting semantic relations (Herdagdelen
and Baroni, 2009), and translating unknown words
(Langlais and Patry, 2007).

It is well known that linguistic regularities vary
a lot among different languages. For example,
Chinese is a typical analytic language which lacks
inflection. Figure 1 shows that function words and
reduplication are used to denote grammatical and
semantic information. In addition, many semantic

† Corresponding author.
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最 
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简单 

jiǎn	dān	

简单 

Figure 1: Examples of Chinese lexical knowledge:
(a) function words (in orange boxes) are used to
indicate the comparative and superlative degrees;
(b) reduplication yields the meaning of “every”.

relations are closely related with social and cul-
tural factors, e.g. in Chinese “shı̄-xiān” (god of
poetry) refers to the poet Li-bai and “shı̄-shèng”
(saint of poetry) refers to the poet Du-fu.

However, few attempts have been made in
Chinese analogical reasoning. The only Chi-
nese analogy dataset is translated from part of
an English dataset (Chen et al., 2015) (denote as
CA_translated). Although it has been widely used
in evaluation of word embeddings (Yang and Sun,
2015; Yin et al., 2016; Su and Lee, 2017), it could
not serve as a reliable benchmark since it includes
only 134 unique Chinese words in three semantic
relations (capital, state, and family), and morpho-
logical knowledge is not even considered.

Therefore, we would like to investigate linguis-
tic regularities beneath Chinese. By modeling
them as an analogical reasoning task, we could
further examine the effects of vector offset meth-
ods in detecting Chinese morphological and se-
mantic relations. As far as we know, this is the first
study focusing on Chinese analogical reasoning.
Moreover, we release a standard benchmark for
evaluation of Chinese word embedding, together
with 36 open-source pre-trained embeddings at
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GitHub1, which could serve as a solid basis for
Chinese NLP tasks.

2 Morphological Relations

Morphology concerns the internal structure of
words. There is a common belief that Chinese is
a morphologically impoverished language since a
morpheme mostly corresponds to an orthographic
character, and it lacks apparent distinctions be-
tween roots and affixes. However, Packard (2000)
suggests that Chinese has a different morpholog-
ical system because it selects different “settings”
on parameters shared by all languages. We will
clarify this special system by mapping its morpho-
logical analogies into two processes: reduplication
and semi-affixation.

2.1 Reduplication

Reduplication means a morpheme is repeated to
form a new word, which is semantically and/or
syntactically distinct from the original morpheme,
e.g. the word “tiān-tiān”(day day) in Figure 1(b)
means “everyday”. By analyzing all the word cat-
egories in Chinese, we find that nouns, verbs, ad-
jectives, adverbs, and measure words have redupli-
cation abilities. Given distinct morphemes A and
B, we summarize 6 repetition patterns in Figure 2.

A-BAA-yi-A Pattern 2

A-lái-A-qù

Pattern 3

A-A
Pattern 1

A-lǐ-A-B

A-B-A-B

A-A-B-B
Pattern 4 

Pattern 5

Pattern 6

Figure 2: Reduplication patterns of A and A-B.

Each pattern may have one or more morpho-
logical functions. Taking Pattern 1 (A→AA) as
an example, noun morphemes could form kinship
terms or yield every/each meaning. For verbs, it
signals doing something a little bit or things hap-
pen briefly. AA reduplication could also intensify
an adjective or transform it to an adverb.

• bà(dad)→ bà-bà(dad)

• tiān(day)→ tiān-tiān(everyday)

• shuō(say)→ shuō-shuo(say a little)

• kàn(look)→ kàn-kàn(have a brief look)

• dà(big)→ dà-dà(very big; greatly)

• shēn(deep)→ shēn-shēn(deeply)
1https://github.com/Embedding/Chinese-Word-Vectors

2.2 Semi-affixation
Affixation is a morphological process whereby a
bound morpheme (an affix) is attached to roots or
stems to form new language units. Chinese is a
typical isolating language that has few affixes. Liu
et al. (2001) points out that although affixes are
rare in Chinese, there are some components be-
having like affixes and can also be used as inde-
pendent lexemes. They are called semi-affixes.

To model the semi-affixation process, we un-
cover 21 semi-prefixes and 41 semi-suffixes.
These semi-suffixes can be used to denote changes
of meaning or part of speech. For example, the
semi-prefix “dì-” could be added to numerals to
form ordinal numbers, and the semi-suffix “-zi” is
able to nominalize an adjective:

• yı̄(one)→ dì-yı̄(first)
èr(two)→ dì-èr(second)
• pàng(fat)→ pàng-zi(a fat man)

shòu(thin)→ shòu-zi(a thin man)

3 Semantic Relations

To investigate semantic knowledge reasoning, we
present 28 semantic relations in four aspects: ge-
ography, history, nature, and people. Among them
we inherit a few relations from English datasets,
e.g. country-capital and family members, while
the rest of them are proposed originally on the ba-
sis of our observation of Chinese lexical knowl-
edge. For example, a Chinese province may have
its own abbreviation, capital city, and representa-
tive drama, which could form rich semantic analo-
gies:

• ān-huı̄ vs zhè-jiāng (province)
• wǎn vs zhè (abbreviation)
• hé-féi vs háng-zhōu (capital)
• huáng-méi-xì vs yuè-jù (drama)

We also address novel relations that could be
used for other languages, e.g. scientists and their
findings, companies and their founders.

4 Task of Chinese Analogical Reasoning

Analogical reasoning task is to retrieve the answer
of the question “a is to b as c is to ?”. Based
on the relations discussed above, we firstly collect
word pairs for each relation. Since there are no
explicit word boundaries in Chinese, we take dic-
tionaries and word segmentation specifications as
references to confirm the inclusion of each word
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Benchmark Category Type #questions #words Relation

CA_translated Semantic
Capital 506 46 capital-country
State 175 54 city-province

Family 272 34 family members

CA8

Morphological

Reduplication A 2554 344 A-A, A-yi-A, A-lái-A-qù
Reduplication AB 2535 423 A-A-B-B, A-lı̌-A-B, A-B-A-B

Semi-prefix 2553 656 21 semi-prefixes: 大,小,老,第,亚, etc.
Semi-suffix 2535 727 41 semi-suffixes: 者,式,主义,性, etc.

Semantic

Geography 3192 305
country-capital, country-currency,

province-abbreviation, province-capital,
province-dramma, etc.

History 1465 177 dynasty-emperor, dynasty-capital,
title-emperor, celebrity-country

Nature 1370 452 number, time, animal, plant, body,
physics, weather, reverse, color, etc.

People 1609 259 finding-scientist, work-writer,
family members, etc.

Table 1: Comparisons of CA_translated and CA8 benchmarks. More details about the relations in CA8
can be seen in GitHub.

Window
(dynamic) Iteration Dimension Sub-

sampling
Low-frequency

threshold
Context distribution

smoothing
Negative

(SGNS/PPMI)
Vector
offset

5 5 300 1e-5 50 0.75 5/1 3COSMUL

Table 2: Hyper-parameter details. Levy and Goldberg (2014b) unifies SGNS and PPMI in a framework,
which share the same hyper-parameter settings. We exploit 3COSMUL to solve the analogical questions
suggested by Levy and Goldberg (2014a).

pair. To avoid the imbalance problem addressed in
English benchmarks (Gladkova et al., 2016), we
set a limit of 50 word pairs at most for each rela-
tion. In this step, 1852 unique Chinese word pairs
are retrieved. We then build CA8, a big, balanced
dataset for Chinese analogical reasoning including
17813 questions. Compared with CA_translated
(Chen et al., 2015), CA8 incorporates both mor-
phological and semantic questions, and it brings
in much more words, relation types and questions.
Table 1 shows details of the two datasets. They are
both used for evaluation in Experiments section.

5 Experiments

In Chinese analogical reasoning task, we aim at in-
vestigating to what extent word vectors capture the
linguistic relations, and how it is affected by three
important factors: vector representations (sparse
and dense), context features (character, word, and
ngram), and training corpora (size and domain).
Table 2 shows the hyper-parameters used in this
work. All the text data used in our experiments (as
shown in Table 3) are preprocessed via the follow-
ing steps:

• Remove the html and xml tags from the texts
and set the encoding as utf-8. Digits and
punctuations are remained.

• Convert traditional Chinese characters into
simplified characters with Open Chinese
Convert (OpenCC)2.

• Conduct Chinese word segmentation with
HanLP(v_1.5.3)3.

5.1 Vector Representations

Existing vector representations fall into two types,
dense vectors and sparse vectors. SGNS (skip-
gram model with negative sampling) (Mikolov
et al., 2013) and PPMI (Positive Pointwise Mutual
Information) (Levy and Goldberg, 2014a) are re-
spectively typical methods for learning dense and
sparse word vectors. Table 4 lists the performance
of them on CA_translated and CA8 datasets under
different configurations.

We can observe that on CA8 dataset, SGNS
representations perform better in analogical rea-
soning of morphological relations and PPMI rep-
resentations show great advantages in semantic
relations. This result is consistent with per-
formance of English dense and sparse vectors
on MSR (morphology-only), SemEval (semantic-
only), and Google (mixed) analogy datasets (Levy
and Goldberg, 2014b; Levy et al., 2015). It is

2https://github.com/BYVoid/OpenCC
3https://github.com/hankcs/HanLP
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Corpus Size #tokens |V | Description

Wikipedia 1.3G 223M 2129K Wikipedia data obtained from
https://dumps.wikimedia.org/

Baidubaike 4.1G 745M 5422K Chinese wikipedia data from
https://baike.baidu.com/

People’s Daily News 3.9G 668M 1664K News data from People’s Daily (1946-2017)
http://data.people.com.cn/

Sogou news 3.7G 649M 1226K News data provided by Sogou Labs
http://www.sogou.com/labs/

Zhihu QA 2.1G 384M 1117K Chinese QA data from https://www.zhihu.com/,
including 32137 questions and 3239114 answers

Combination 14.8G 2668M 8175K We build this corpus by combining the above corpora

Table 3: Detailed information of the corpora. #tokens denotes the number of tokens in corpus. |V |
denotes the vocabulary size.

CA_translated CA8
Cap. Sta. Fam. A AB Pre. Suf. Mor. Geo. His. Nat. Peo. Sem.

SGNS
word .706 .966 .603 .117 .162 .181 .389 .222 .414 .345 .236 .223 .327

word+ngram .715 .977 .640 .143 .184 .197 .429 .250 .449 .308 .276 .310 .368
word+char .676 .966 .548 .358 .540 .326 .612 .455 .468 .226 .296 .305 .368

PPMI
word .925 .920 .548 .103 .139 .138 .464 .226 .627 .501 .300 .515 .522

word+ngram .943 .960 .658 .102 .129 .168 .456 .230 .680 .535 .371 .626 .586
word+char .913 .886 .614 .106 .190 .173 .505 .260 .638 .502 .288 .515 .524

Table 4: Performance of word representations learned under different configurations. Baidubaike is used
as the training corpus. The top 1 results are in bold.

probably because the reasoning on morphological
relations relies more on common words in con-
text, and the training procedure of SGNS favors
frequent word pairs. Meanwhile, PPMI model
is more sensitive to infrequent and specific word
pairs, which are beneficial to semantic relations.

The above observation shows that CA8 is a re-
liable benchmark for studying the effects of dense
and sparse vectors. Compared with CA_translated
and existing English analogy datasets, it offers
both morphological and semantic questions which
are also balanced across different types 4.

5.2 Context Features

To investigate the influence of context features on
analogical reasoning, we consider not only word
features, but also ngram features inspired by sta-
tistical language models, and character (Hanzi)
features based on the close relationship between
Chinese words and their composing characters 5.
Specifically, we use word bigrams for ngram fea-
tures, character unigrams and bigrams for charac-
ter features.

4CA_translated and SemEval datasets contain only se-
mantic questions, MSR dataset contains only morphological
questions, and in Google dataset the capital:country relation
constitutes 56.72% of all semantic questions.

5The SGNS with word and character features are im-
plemented by fasttext toolkit, the rest are implemented by
ngram2vec toolkit.

Ngrams and Chinese characters are effective
features in training word representations (Zhao
et al., 2017; Chen et al., 2015; Bojanowski et al.,
2016). However, Table 4 shows that there is
only a slight increase on CA_translated dataset
with ngram features, and the accuracies in most
cases decrease after integrating character features.
In contrast, on CA8 dataset, the introduction of
ngram and character features brings significant
and consistent improvements on almost all the cat-
egories. Furthermore, character features are espe-
cially advantageous for reasoning of morphologi-
cal relations. SGNS model integrating with char-
acter features even doubles the accuracy in mor-
phological questions.

Besides, the representations achieve surpris-
ingly high accuracies in some categories of
CA_translated, which means that there is little
room for further improvement. However it is
much harder for representation methods to achieve
high accuracies on CA8. The best configuration
only achieves 68.0%.

5.3 Corpora
We compare word representations learned upon
corpora of different sizes and domains. As shown
in Table 3, six corpora are used in the experi-
ments: Chinese Wikipedia, Baidubaike, People’s
Daily News, Sogou News, Zhihu QA, and “Com-
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CA_translated CA8
Cap. Sta. Fam. A AB Pre. Suf. Mor. Geo. His. Nat. Peo. Sem.

Wikipedia 1.2G .597 .771 .360 .029 .018 .152 .266 .180 .339 .125 .147 .079 .236
Baidubaike 4.3G .706 .966 .603 .117 .162 .181 .389 .222 .414 .345 .236 .223 .327

People’s Daily 4.2G .925 .989 .547 .140 .158 .213 .355 .226 .694 .019 .206 .157 .455
Sogou News 4.0G .619 .966 .496 .057 .075 .131 .176 .115 .432 .067 .150 .145 .302
Zhihu QA 2.2G .277 .491 .625 .175 .199 .134 .251 .189 .146 .147 .250 .189 .181

Combination 15.9G .872 .994 .710 .223 .300 .234 .518 .321 .662 .293 .310 .307 .467

Table 5: Performance of word representations learned upon different training corpora by SGNS with
context feature of word. The top 2 results are in bold.

bination” which is built by combining the first five
corpora together.

Table 5 shows that accuracies increase with the
growth in corpus size, e.g. Baidubaike (an online
Chinese encyclopedia) has a clear advantage over
Wikipedia. Also, the domain of a corpus plays
an important role in the experiments. We can ob-
serve that vectors trained on news data are benefi-
cial to geography relations, especially on People’s
Daily which has a focus on political news. An-
other example is Zhihu QA, an online question-
answering corpus which contains more informal
data than others. It is helpful to reduplication rela-
tions since many reduplication words appear fre-
quently in spoken language. With the largest size
and varied domains, “Combination” corpus per-
forms much better than others in both morpholog-
ical and semantic relations.

Based on the above experiments, we find that
vector representations, context features, and cor-
pora all have important influences on Chinese ana-
logical reasoning. Also, CA8 is proved to be a re-
liable benchmark for evaluation of Chinese word
embeddings.

6 Conclusion

In this paper, we investigate the linguistic regular-
ities beneath Chinese, and propose a Chinese ana-
logical reasoning task based on 68 morphological
relations and 28 semantic relations. In the experi-
ments, we apply vector offset method to this task,
and examine the effects of vector representations,
context features, and corpora. This study offers an
interesting perspective combining linguistic anal-
ysis and representation models. The benchmark
and embedding sets we release could also serve as
a solid basis for Chinese NLP tasks.
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Abstract 

Metaphors are frequently used to convey 

emotions. However, there is little research 

on the construction of metaphor corpora 

annotated with emotion for the analysis of 

emotionality of metaphorical expressions. 

Furthermore, most studies focus on Eng-

lish, and few in other languages, particu-

larly Sino-Tibetan languages such as Chi-

nese, for emotion analysis from metaphor-

ical texts, although there are likely to be 

many differences in emotional expressions 

of metaphorical usages across different 

languages. We therefore construct a signif-

icant new corpus on metaphor, with 5,605 

manually annotated sentences in Chinese. 

We present an annotation scheme that con-

tains annotations of linguistic metaphors, 

emotional categories (joy, anger, sadness, 

fear, love, disgust and surprise), and inten-

sity. The annotation agreement analyses 

for multiple annotators are described. We 

also use the corpus to explore and analyze 

the emotionality of metaphors. To the best 

of our knowledge, this is the first relatively 

large metaphor corpus with an annotation 

of emotions in Chinese. 

1 Introduction 

Metaphorical expressions are frequently used in 
human communication, and they occur on average 

in every third sentence of natural language, ac-

cording to empirical studies (Cameron, 2003; 

Steen et al., 2010; Shutova and Teufel, 2010). 
Metaphor not only involves linguistic expressions, 

but also involves a cognitive process of conceptu-

al knowledge (Lakoff and Johnson, 1980). Ac-
cording to Lakoff and Johnson (1980), humans 

use one concept in metaphors to describe another 
concept for reasoning and communication. For in-

stance, in the metaphorical utterance: “experience 

is treasure,” we use “treasure” to describe “experi-

ence” to emphasize that “experience” can be valu-
able. To take another metaphorical instance as an 

example: “he killed the engine.” “An engine” is 

viewed as a living thing, and thus stopping its op-
eration is related to the act of killing. Metaphor 

has been viewed as a mapping system that con-

ceptualizes one domain (target) in terms of anoth-

er (source). 
Emotion, as an abstract and vague conception, 

is frequently described and conceptualized by 

metaphor (Goatly Musolff and Project LLE, 2007; 
Kövecses, 1995, 2000). There seem to be two 

main types of metaphors that evoke emotion. One 

is the metaphor in which the target domain is 
emotion. For example, in the instance “he was 

blazing at what she did,” the angry, emotional self 

is conceptualized as “fire,” and so is expressed 

metaphorically in terms of “blaze.” The other type 
is metaphors that have emotional connotations. 

For example, in “The financial crisis has eaten up 

all my savings,” the target domain is finances and 
the source domain, implied by the verb “eat up,” 

is some sort of ravenous beast. This metaphorical 

sentence thus may express senses of anger and 

fear about a “financial crisis.” From the above ex-
amples, we can see that metaphorical expressions 

often state or evoke emotions implicitly and indi-

rectly. Neuroimaging studies have provided evi-
dence that metaphorical language elicits more 

emotional activation of the human brain than lit-

eral language in the same context (Citron and 

Goldberg, 2014).  
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The interaction between emotion and metaphor 

has been studied from different perspectives by 

scholars in many fields such as psychology (Aver-
ill, 1990; Thibodeau and Boroditsky, 2011; Fet-

terman et al., 2016), linguistics (Fainsilber and Or-

tony, 1987; Kövecses, 2010), neuroscience (Az-iz-
Zadeh and Damasio, 2008; Malinowski and Hor-

ton, 2015; Jabbi et al., 2008) and natural lan-

guage processing (NLP) (Mohammad, Shutova 

and Turney, 2016). Many approaches for senti-
ment analysis of metaphorical texts have been 

proposed in the area of NLP (Smith et al., 2007; 

Veale, 2012; Reyes and Rosso, 2012; Kozareva, 
2013; Strzalkowski et al., 2014). In particular, 

along with the rapid explosion of social media ap-

plications such as Twitter and Weibo, emotional 
texts containing metaphorical expressions have 

increased considerably. It seems to be very com-

mon for Internet users to use vivid and colorful 

metaphorical language to express emotions on so-
cial media. 

Corpora are fundamental for sound analysis of 

emotionality in metaphor and for high-quality au-
tomatic emotion detection in metaphor. However, 

many resources cover sentiment analysis (Alm et 

al., 2005; Dong et al., 2014; Kiritchenko et al., 

2014; Mohammad et al., 2013; Strapparava and 
Mihalcea, 2007; Ratnadeep et al., 2013) and met-

aphor detection (Lönneker, 2004; Martin, 2006; 

Pragglejaz Group, 2007; Steen et al., 2010) sepa-
rately. Moreover, although NLP has proposed ap-

proaches for sentiment analysis of metaphor, as 

mentioned above, an overwhelming majority of 

studies focus on the annotation of only positive 
and negative emotions rather than a range of emo-

tions. In addition, there is limited research in NLP 

in languages other than English analyzing emo-
tions in metaphors. Nevertheless there are likely to 

be many differences in emotional expressions of 

metaphorical usages in different cultures, although 
multiple languages share similar conceptual meta-

phors based on the same human cognition and 

physical experience (Kövecses, 1995).  

According to the above account, we propose a 
Chinese corpus with annotations of both linguistic 

metaphors and emotion. Unlike the widely applied 

annotation of only positive and negative, we have 
annotated a range of emotions (joy, anger, sad-

ness, fear, love, disgust and surprise).Based on the 

analysis of the corpus, our results indicate that a 

significant proportion of Chinese metaphorical 
expressions in the corpus contain emotions and 

the most frequent emotion is love. We also sug-

gest potentials of the corpus contributing to auto-

matic emotion and metaphor detection as well as 
further investigating mechanisms underlying emo-

tion in metaphor from the perspectives of different 

cultures for future work. To the best of our 
knowledge, this is the first relatively large meta-

phor corpus with an annotation of emotions in 

Chinese. 

2 Data Collection  

With the aim of constructing a corpus in the study 

of emotionality of metaphorical texts in real-world 
Chinese, data collection took place in accordance 

with two principles: (1) balance, and (2) relatively 

abundant emotional information. Specifically, to 
ensure the corpus is balanced in genre, theme, and 

style, we selected data from a wide range of 

sources including books, journals, movie scripts, 

and networks. In addition, we focused on sources 
with rich emotional information such as mi-

croblogs. Table 1 presents information on corpus 

sources. 
 

Sources Characters  Words Sentences 

Books  258,9723 182,046 9,6182 

Journals 52,0743 39,7065 2,1640 

Scripts 168,236 108,184 11,852 

Networks 124,6329 87,2210 9,5153 

Total  4,525,031 1,559,505 224,827 

 
Table 1: Information on Corpus Sources 

3 Annotation Scheme 

3.1 Annotation Model 

We annotated metaphorical sentences with 
target and source domain vocabulary, emotion 
categories and intensity, metaphor categories 
(verb or noun metaphor : verb or noun used met-
aphorically),data sources, and metaphor devices 

such as 像 “like ,” 好似 “as,” etc. as “indicators”. 
“Indicators” can be null, while the other varia-
bles cannot. For example, if there are some terms 
without values, we need annotators to complete 
them.  

The text files are organized into XML docu-
ments. The annotation model is: MetaEmo-
tionModel=(Target, Source, EmotionCategory, 
Intensity, MetaphorCategory, [indicator], Data-
Source).The following is an example of a sen-
tence annotation: 
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<metaphor> 

<ID>W2833</ID> 

<Sentences>他攻击了我在这个问题上的观点 

“He attacked my perspective on this problem” 
</Sentences> 

<Target>观点“perspective”</Target> 

<Source>攻击“attack”</Source> 

<EmotionCategory>ND</EmotionCategory> 

<EmotionIntensity>5</EmotionIntensity> 

<MetaphorCategory>V</MetaphorCategory> 
<Indicator> </Indicator> 

<DataSource>W</DataSource> 

</metaphor>  

3.2 Metaphor Annotation 

Metaphor category. Based on our investiga-

tion of a wide range of texts, we focused on two 

main types of the most frequently appearing met-
aphorical sentences: verb metaphor, which con-

tains a verb used metaphorically (e.g., 她怀揣着

美好的梦想 “She wove a good dream in her 

mind”); noun metaphor, which contains a noun 

used metaphorically. Noun metaphor includes a 

metaphor of “A is B” (e.g., 语言就是力量 “lan-

guage is power”) and metaphor with linguistic 

makers such as “as” and “like” (e.g., 他像箭似的

跑开了“he ran away like an arrow”), which is 

normally identified as “simile” from a linguistic 

perspective, but as “metaphor” in this paper, be-

cause it accords with metaphor as we define it: 
whenever one concept is used to describe another 

concept (Lakoff and Johnson, 1980). The decision 

to define both metaphors and similes as metaphors 
is based on the wish to give a fuller picture of 

metaphor in our study than one that does not in-

clude similes.  
Literal or metaphorical. The metaphor anno-

tation is at the relational level, which involves 

identification of metaphorical relations between 

source and target domain vocabulary. However, 
scholars have different opinions on the distinction 

between literal and metaphorical senses. Some on-

ly consider novel expressions (e.g.,她为办公室注

入新的活力“She breathed new energy into the 

office”) as metaphorical, whereas others consid-

er conventional expressions as metaphors (e.g.,他

们赢得了这场争论 “they won the argument”), 

where they are conventionalized and fixed in 
form, and they are used literally by native speak-

ers, although they have the nature of metaphor 

(Nunberg, 1987). In this study, following Shutova 

(2017), we define metaphors as both novel and 

conventional, but we exclude “dead metaphors” 
(from which the literal sense has disappeared) 

from conventional metaphors. That is, conven-

tional metaphors only include those for which the 
literal and metaphorical senses are clearly distinc-

tive, and both are used contemporarily. This con-

sideration is based on the potential application of 

our annotation for identification of metaphor, 
which focuses on word sense disambiguation ra-

ther than novel or conventional identification. 

3.3 Emotion Annotation 

Emotion categories. Scholars define basic 
emotions in numerous different ways despite re-

search that has challenged the theories of basic 

emotions (Lindquist et al., 2012; De Leersnyder et 
al., 2015). Confucianism claims that there are sev-

en basic human emotions (joy, anger, sadness, 

fear, love, disgust, and desire) (Ma et al., 2011). 

“七情” (Seven Emotions) is an idiomatic expres-

sion commonly used by Chinese people to de-

scribe human emotions. However, according to 

our study of the collected instances in the corpus, 

we found that “desire” does not appear widely and 
that “surprise” does. We therefore adopted “sur-

prise” to replace “desire” in the Severn Emotions. 

The resulting classification is very close to Ekman 
(1992), with the only difference being the inclu-

sion of “love” as a basic emotion. However, based 

on our study of the research and its wide appear-

ance in the corpus, “love” is listed as a basic emo-
tion in this paper. 

The annotation of emotions takes place on the 

sentence level. The emotion contained in each 
metaphorical sentence was identified from one of 

the seven categories of emotion. We also catego-

rized the intensity of emotion into one of five lev-
els: 1, 3, 5, 7, or 9. 

3.4 Annotation Process 

Annotation setup. The annotator team com-

prised seven native Chinese annotators. Annota-
tors were given standards and principles of anno-

tation and detailed instruction for potential diffi-

cult and common problems with many annotated 

samples. Aside from giving them annotators de-
tailed guidelines, we gave them a formal training 

lesson and a lab meeting to exchange ideas and to 

discuss problems about annotation once a month 
during the nine months of the annotation process. 
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The guidelines changed four times, as we added 

information on newly found annotation difficulties 

during the project period. The annotator team 
comprised seven students, who were not paid for 

their work.  

These seven annotators were divided to three 
groups with two members for each group plus one 

group with one person. Using cross-validation 

methods for annotation, the two-member groups 

annotated, and the one-person group participated 
in the final decision when there was divergence. If 

there was no divergence between the members of 

the same group, the annotating work was com-
plete. Otherwise another group annotated again, 

and the final group annotated if there was still di-

vergence. Finally, if the three groups could not 
reach agreement on the annotation, everyone dis-

cussed and determined the annotation to ensure its 

accuracy and consistency. 

Quality monitoring and control (QMC).We 
used a standardized operating method to achieve 

high-quality annotation as follows: 

(1) Entry interface. On the basis of multiple 
manual checks and controlled information updat-

ing, we provided an interface that allowed us to 

enter information precisely and quickly.  

(2) Error correction. We used emotional lexi-
con ontology 

1
 as a support tool to correct human 

errors. When there was divergence of emotion in 

the annotation and the sentence/word, we did not 
enter the annotation. 

 

flag=WordConsistency(Memo,Wemo)SentConsiste
ncy(Memo, Semo).                                          (1) 

 

If the annotation result was the same as the 
word’s emotion, we set WordConsistency(M emo, 

Wemo) to 1; otherwise, we set it to 0; SentCon-

sistency(M emo, Semo) followed the same logic. We 

entered the result when the flag was 1, while it 
needed checking when it was 0. 

4 Annotation Agreement 

Annotations of both metaphor and emotion were 

based on the annotators’ intuition, which may be 

very subjective. The reliability of annotations 

needed to be verified, so three independent anno-
tators annotated the same 811 sentences in the 

corpus to assess inter-annotator agreement. 

                                                 
1 http://ir.dlut.edu.cn/EmotionOntologyDownload 

The kappa score, κ, is widely adopted by com-

putational linguistics to correct for agreement on 

the reliability of the annotation scheme by chance. 
We use the κ statistic to measure inter-annotator 

agreements (Siegel and Castellan, 1988) for emo-

tion annotation. κ is calculated as below: 
 

κ = 
P(A) – P(E) 

,  (2) 
1 – P(E) 

 
The agreement on the identification of source 

and target domain words was κ=0.82, which 
means it is substantially reliable. Compared with 
noun metaphors, for verb metaphors it is relative-
ly difficult to identify source and target words, 
because they are related to the assignment of lev-
els of conventionality of metaphorical senses as 
discussed in 4.1. 

The agreement on the choice of emotion cate-
gory scored κ=0.68. For the agreement measure 
on emotion intensity, we classified emotion in-
tensity into three: {1, 3}, {5, 7}, or {9}. The re-
sulting agreement on classification of emotion 
intensity was κ=0.58. 

5 Corpus Analysis 

We annotated 4,600 sentences out of a total of 

5,605 metaphorical sentences as containing emo-

tions. That is, a significant proportion of Chinese 
metaphorical expressions in the corpus contain 

emotions. The most frequent emotion in the cor-

pus is love. Figure 1 shows the number of sen-

tences in the corpus of each emotion category. 
 

 
Figure 1: The number of sentences of each emo-

tion category 
 

We also explored the interactions between emo-

tions and source (or target) words. We analyzed 
every emotional category and related it to each 
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source or target word; we also analyzed which 

source or target vocabulary conveyed which emo-

tions most frequently. Our results indicate emo-
tions are related to some particular source or target 

vocabulary. These associations frequently occur 

together. For example, the emotion love is related 

to the source words 海洋“sea”, 花“flower”and

阳光“sunshine” etc. 

Unlike the widely applied annotation of valence 
(positive-neutral-negative) in sentiment analysis, 
we annotated a wider range of emotions in meta-
phorical texts. The corpus proposed by Moham-
mad et al. (2016) focused on containing or not 
containing emotion in metaphor. We have extend-
ed their study by providing evidence that meta-
phorical texts can convey specific emotions such 
as love and joy. A simple positive/negative emo-
tion distinction does not seem very useful for any-
thing beyond evaluating product reviews. In addi-
tion, Mohammad et al. (2016) focus on verb met-
aphors, whereas we collect both verb and noun 
metaphors from a variety of sources. Furthermore, 
since both metaphor and emotion annotations are 
very subjective, we propose a QMC method (see 
above 4.4) to achieve high-quality annotation. 

6 Conclusions and Future Work 

With 5,605 diverse instances and 101,616 Chinese 

characters of metaphor, our corpus provides an 

important resource with relatively fine-grained 

sorting and annotation with both metaphors and 
emotion. Our study involves the Chinese lan-

guage, which is very different from English, the 

focus of the vast majority of current research. This 
may encourage research into emotion analysis in 

other languages, particularly Sino-Tibetan lan-

guages, since there are differences in emotion be-

tween cultures (De Leersnyder, 2015). 
Seven annotators spent nine months on the an-

notation. The manually annotated data is an im-

portant step towards automatic emotion analysis 
and detection of metaphorical texts, as well as 

metaphor detection. In addition, the application of 

the corpus to machine translation will be explored 
to improve the poor translation of metaphorical 

expressions (Shutova et al., 2013). Furthermore, 

we hope research using bilingual resources will be 

conducted on the datasets we have released. This 
may make contributions to some novel and inter-

esting studies of the emotionality of metaphor 

from cross cultural perspectives as well as explor-
ing the related, underlying mechanism.  
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Abstract

Comments of online articles provide ex-
tended views and improve user engage-
ment. Automatically making comments
thus become a valuable functionality for
online forums, intelligent chatbots, etc.
This paper proposes the new task of auto-
matic article commenting, and introduces
a large-scale Chinese dataset1 with mil-
lions of real comments and a human-
annotated subset characterizing the com-
ments’ varying quality. Incorporating the
human bias of comment quality, we further
develop automatic metrics that general-
ize a broad set of popular reference-based
metrics and exhibit greatly improved cor-
relations with human evaluations.

1 Introduction

Comments of online articles and posts provide ex-
tended information and rich personal views, which
could attract reader attentions and improve inter-
actions between readers and authors (Park et al.,
2016). In contrast, posts failing to receive com-
ments can easily go unattended and buried. With
the prevalence of online posting, automatic arti-
cle commenting thus becomes a highly desirable
tool for online discussion forums and social media
platforms to increase user engagement and foster
online communities. Besides, commenting on ar-
ticles is one of the increasingly demanded skills
of intelligent chatbot (Shum et al., 2018) to enable
in-depth, content-rich conversations with humans.

Article commenting poses new challenges for
machines, as it involves multiple cognitive abil-

⇤Work done while Lianhui interned at Tencent AI Lab
1The dataset is available on http://ai.tencent.

com/upload/PapersUploads/article_
commenting.tgz

ities: understanding the given article, formulat-
ing opinions and arguments, and organizing natu-
ral language for expression. Compared to summa-
rization (Hovy and Lin, 1998), a comment does
not necessarily cover all salient ideas of the ar-
ticle; instead it is often desirable for a comment
to carry additional information not explicitly pre-
sented in the articles. Article commenting also dif-
fers from making product reviews (Tang et al.,
2017; Li et al., 2017), as the latter takes structured
data (e.g., product attributes) as input; while the
input of article commenting is in plain text format,
posing a much larger input space to explore.

In this paper, we propose the new task of au-
tomatic article commenting, and release a large-
scale Chinese corpus with a human-annotated sub-
set for scientific research and evaluation. We fur-
ther develop a general approach of enhancing pop-
ular automatic metrics, such as BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005), to better fit the characteristics of the new
task. In recent years, enormous efforts have been
made in different contexts that analyze one or
more aspects of online comments. For example,
Kolhatkar and Taboada (2017) identify construc-
tive news comments; Barker et al. (2016) study hu-
man summaries of online comment conversations.
The datasets used in these works are typically not
directly applicable in the context of article com-
menting, and are small in scale that is unable to
support the unique complexity of the new task.

In contrast, our dataset consists of around 200K
news articles and 4.5M human comments along
with rich meta data for article categories and
user votes of comments. Different from traditional
text generation tasks such as machine transla-
tion (Brown et al., 1990) that has a relatively small
set of gold targets, human comments on an article
live in much larger space by involving diverse top-
ics and personal views, and critically, are of vary-
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Title:˘úl¯iPhone 8—⇤⇢ö(9�>L
(Apple’s iPhone 8 event is happening in Sept.)

Content: ˘úl¯c✏⌘íS—⇤Ä˜
˝�£⇤⌃é9�12ÂÏ�˘ú∞¡—⇤
⇢�Âl¯⌃—⇤↵�„iPhone�èKÙ∞
Ñÿ ˘úKh�˘úTV�åiOSoˆ⇥Ÿ
!—⇤⇢⌃&e >∞iPhones⇢&OLED>
:Oå3D∫8kœÄ/Ñ↵�„iPhone8�
/iPhone 7�iPhone 7PlusÑÙ∞H⇥
(Apple has sent out invites for its next big
event on September 12th, where the company
is expected to reveal the next iPhone, along
with updates to the Apple Watch, Apple TV,
and iOS software. Apple is expected to
announce three new iPhones at the event: a
next-generation iPhone 8 model with an OLED
display and a 3D face-scanning camera; and
updated versions of the iPhone 7 and 7 Plus.)

Score Criteria Example Comments

5 Rich in content;
attractive; deep
insights; new yet
relevant viewpoints

ÿ∞ó£tiphone 4—⇤�èK�eÑ
séiPhone 5Ñ ˚⌫?Çú˘ú t
_/Ÿ7⌘⇢…óà—=⇥
(Remember a year of iPhone 5 rumors
followed by the announcement of the
iPhone 4S? I will be highly entertained if
Apple does something similar.)

4 Highly relevant with
meaningful ideas

1Ù⇢⌘Ï¯¶(£*lÌ⇥
(Could have said: Meet us at the Park.)

3 Less relevant; applied
to other articles

à�ÖŸˆã�
(Looking forward to this event!)

2 Fluent/grammatical;
irrelevant

⌘ú"ŸÍ+�ÉàÔ1��
(I like the cat. it is so cute !)

1 Hard to read; Broken
language; Only emoji

LOL⇥⇥⇥���
(LOL... !!!)

Table 1: A data example of an article (including title and content) paired with selected comments. We
also list a brief version of human judgment criteria (more details are in the supplement).

Train Dev Test

#Articles 191,502 5,000 1,610
#Cmts/Articles 27 27 27
#Upvotes/Cmt 5.9 4.9 3.4

Table 2: Data statistics.

ing quality in terms of readability, relevance, argu-
ment quality, informativeness, etc (Diakopoulos,
2015; Park et al., 2016). We thus ask human an-
notators to manually score a subset of over 43K
comments based on carefully designed criteria for
comment quality. The annotated scores reflect hu-
man’s cognitive bias of comment quality in the
large comment space. Incorporating the scores in
a broad set of automatic evaluation metrics, we
obtain enhanced metrics that exhibit greatly im-
proved correlations with human evaluations. We
demonstrate the use of the introduced dataset and
metrics by testing on simple retrieval and seq2seq
generation models. We leave more advanced mod-
eling of the article commenting task for future re-
search.

2 Related Work

There is a surge of interest in natural lan-
guage generation tasks, such as machine transla-
tion (Brown et al., 1990; Bahdanau et al., 2014),
dialog (Williams and Young, 2007; Shum et al.,
2018), text manipulation (Hu et al., 2017), visual
description generation (Vinyals et al., 2015; Liang
et al., 2017), and so forth. Automatic article com-
menting poses new challenges due to the large in-
put and output spaces and the open-domain nature

of comments.
Many efforts have been devoted to studying spe-

cific attributes of reader comments, such as con-
structiveness, persuasiveness, and sentiment (Wei
et al., 2016; Kolhatkar and Taboada, 2017; Barker
et al., 2016). We introduce the new task of gen-
erating comments, and develop a dataset that is
orders-of-magnitude larger than previous related
corpus. Instead of restricting to one or few spe-
cific aspects, we focus on the general comment
quality aligned with human judgment, and pro-
vide over 27 gold references for each data instance
to enable wide-coverage evaluation. Such setting
also allows a large output space, and makes the
task challenging and valuable for text generation
research. Yao et al. (2017) explore defense ap-
proaches of spam or malicious reviews. We be-
lieve the proposed task and dataset can be poten-
tially useful for the study.

Galley et al. (2015) propose �BLEU that
weights multiple references for conversation gen-
eration evaluation. The quality weighted metrics
developed in our work can be seen as a generaliza-
tion of �BLEU to many popular reference-based
metrics (e.g., METEOR, ROUGE, and CIDEr).
Our human survey demonstrates the effectiveness
of the generalized metrics in the article comment-
ing task.

3 Article Commenting Dataset

The dataset is collected from Tencent News
(news.qq.com), one of the most popular Chinese
websites of news and opinion articles. Table 1
shows an example data instance in the dataset (For
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readability we also provide the English translation
of the example). Each instance has a title and text
content of the article, a set of reader comments,
and side information (omitted in the example) in-
cluding the article category assigned by editors,
and the number of user upvotes of each comment.

We crawled a large volume of articles posted in
Apr–Aug 2017, tokenized all text with the popu-
lar python library Jieba, and filtered out short arti-
cles with less than 30 words in content and those
with less than 20 comments. The resulting corpus
is split into train/dev/test sets. The selection and
annotation of the test set are described shortly. Ta-
ble 2 provides the key data statistics. The dataset
has a vocabulary size of 1,858,452. The average
lengths of the article titles and content are 15 and
554 Chinese words (not characters), respectively.
The average comment length is 17 words.

Notably, the dataset contains an enormous vol-
ume of tokens, and is orders-of-magnitude larger
than previous public data of article comment anal-
ysis (Wei et al., 2016; Barker et al., 2016). More-
over, each article in the dataset has on average over
27 human-written comments. Compared to other
popular text generation tasks and datasets (Chen
et al., 2015; Wiseman et al., 2017) which typi-
cally contain no more than 5 gold references, our
dataset enables richer guidance for model train-
ing and wider coverage for evaluation, in order
to fit the unique large output space of the com-
menting task. Each article is associated with one
of 44 categories, whose distribution is shown in
the supplements. The number of upvotes per com-
ment ranges from 3.4 to 5.9 on average. Though
the numbers look small, the distribution exhibits
a long-tail pattern with popular comments having
thousands of upvotes.

Test Set Comment Quality Annotations Real
human comments are of varying quality. Select-
ing high-quality gold reference comments is nec-
essary to encourage high-quality comment gener-
ation, and for faithful automatic evaluation, espe-
cially with reference-based metrics (sec.4). The
upvote count of a comment is shown not to be
a satisfactory indicator of its quality (Park et al.,
2016; Wei et al., 2016). We thus curate a subset
of data instances for human annotation of com-
ment quality, which is also used for enhancing au-
tomatic metrics as in the next section.

Specifically, we randomly select a set of 1,610
articles such that each article has at least 30 com-

ments, each of which contains more than 5 words,
and has over 200 upvotes for its comments in
total. Manual inspection shows such articles and
comments tend to be meaningful and receive lots
of readings. We then randomly sample 27 com-
ments for each of the articles, and ask 5 profes-
sional annotators to rate the comments. The cri-
teria are adapted from previous journalistic crite-
ria study (Diakopoulos, 2015) and are briefed in
Table 1, right panel (More details are provided in
the supplements). Each comment is randomly as-
signed to two annotators who are presented with
the criteria and several examples for each of the
quality levels. The inter-annotator agreement mea-
sured by the Cohen’s  score (Cohen, 1968) is
0.59, which indicates moderate agreement and is
better or comparable to previous human studies
in similar context (Lowe et al., 2017; Liu et al.,
2016). The average human score of the test set
comments is 3.6 with a standard deviation of 0.6,
and 20% of the comments received at least one 5
grade. This shows the overall quality of the test set
comments is good, though variations do exist.

4 Quality Weighted Automatic Metrics

Automatic metrics, especially the reference-based
metrics such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE (Lin,
2004), CIDEr (Vedantam et al., 2015), are widely
used in text generation evaluations. These metrics
have assumed all references are of equal golden
qualities. However, in the task of article comment-
ing, the real human comments as references are
of varying quality as shown in the above human
annotations. It is thus desirable to go beyond the
equality assumption, and account for the differ-
ent quality scores of the references. This section
introduces a series of enhanced metrics general-
ized from respective existing metrics, for leverag-
ing human biases of reference quality and improv-
ing metric correlations with human evaluations.

Let c be a generated comment to evaluate, R =
{rj} the set of references, each of which has a
quality score sj by human annotators. We assume
properly normalized sj 2 [0, 1]. Due to space lim-
itations, here we only present the enhanced ME-
TEOR, and defer the formulations of enhancing
BLEU, ROUGE, and CIDEr to the supplements.
Specifically, METEOR performs word matching
through an alignment between the candidate and
references. The weighted METEOR extends the
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Figure 1: Scatter plots showing the correlation between metrics and human judgments. Left: BLEU-
1; Middle: METEOR; Right: W-METEOR. Following (Lowe et al., 2017), we added Gaussian noise
drawn from N (0, 0.05) to the integer human scores to better visualize the density of points.

original metric by weighting references with sj :

W-METEOR(c, R) = (1 � BP ) maxj sjFmean,j , (1)

where Fmean,j is a harmonic mean of the preci-
sion and recall between c and rj , and BP is the
penalty (Banerjee and Lavie, 2005). Note that the
new metrics fall back to the respective original
metrics by setting sj = 1.

5 Experiments

We demonstrate the use of the dataset and metrics
with simple retrieval and generation models, and
show the enhanced metrics consistently improve
correlations with human judgment. Note that this
paper does not aim to develop solutions for the
article commenting task. We leave the advanced
modeling for future work.

Metric Spearman Pearson

METEOR 0.5595 0.5109
W-METEOR 0.5902 0.5747

Rouge L 0.1948 0.1951
W-Rouge L 0.2558 0.2572

CIDEr 0.3426 0.1157
W-CIDEr 0.3539 0.1261

BLEU-1 0.2145 0.1790
W-BLEU-1 0.2076 0.1604

BLEU-4 0.0983 0.0099
W-BLEU-4 0.0998 0.0124

Human 0.7803 0.7804

Table 3: Human correlation of metrics. “Human”
is the results from randomly dividing human
scores into two groups. All p-value < 0.01.

Setup We briefly present key setup, and defer
more details to the supplements. Given an article
to comment, the retrieval-based models first find a
set of similar articles in the training set by TF-IDF,

and return the comments most relevant to the tar-
get article with a CNN-based relevance predictor.
We use either the article title or full title/content
for the article retrieval, and denote the two mod-
els with IR-T and IR-TC, respectively. The gen-
eration models are based on simple sequence-to-
sequence network (Sutskever et al., 2014). The
models read articles using an encoder and gen-
erate comments using a decoder with or without
attentions (Bahdanau et al., 2014), which are de-
noted as Seq2seq and Att if only article titles are
read. We also set up an attentional sequence-to-
sequence model that reads full article title/content,
and denote with Att-TC. Again, these approaches
are mainly for demonstration purpose and for eval-
uating the metrics, and are far from solving the
difficult commenting task. We discard comments
with over 50 words and use a truncated vocabu-
lary of size 30K.

Results We follow previous setting (Papineni
et al., 2002; Liu et al., 2016; Lowe et al., 2017) to
evaluate the metrics, by conducting human eval-
uations and calculating the correlation between
the scores assigned by humans and the metrics.
Specifically, for each article in the test set, we ob-
tained six comments, five of which come from IR-
T, IR-TC, Seq2seq, Att, and Att-TC, respectively,
and one randomly drawn from real comments that
are different from the reference comments. The
comments were then graded by human annotators
following the same procedure of test set scoring
(sec.3). Meanwhile, we measure each comment
with the vanilla and weighted automatic metrics
based on the reference comments.

Table 3 shows the Spearman and Pearson co-
efficients between the comment scores assigned
by humans and the metrics. The METEOR fam-
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ily correlates best with human judgments, and
the enhanced weighted metrics improve over their
vanilla versions in most cases (including BLEU-
2/3 as in the supplements). E.g., the Pearson of
METEOR is substantially improved from 0.51 to
0.57, and the Spearman of ROUGE L from 0.19 to
0.26. Figure 1 visualizes the human correlation of
BLEU-1, METEOR, and W-METEOR, showing
that the BLEU-1 scores vary a lot given any fixed
human score, appearing to be random noise, while
the METEOR family exhibit strong consistency
with human scores. Compared to W-METEOR,
METEOR deviates from the regression line more
frequently, esp. by assigning unexpectedly high
scores to comments with low human grades.

Notably, the best automatic metric, W-
METEOR, achieves 0.59 Spearman and 0.57
Pearson, which is higher or comparable to au-
tomatic metrics in other generation tasks (Lowe
et al., 2017; Liu et al., 2016; Sharma et al.,
2017; Agarwal and Lavie, 2008), indicating a
good supplement to human judgment for efficient
evaluation and comparison. We use the metrics to
evaluate the above models in the supplements.

6 Conclusions and Future Work

We have introduced the new task and dataset
for automatic article commenting, as well as de-
veloped quality-weighted automatic metrics that
leverage valuable human bias on comment qual-
ity. The dataset and the study of metrics establish
a testbed for the article commenting task.

We are excited to study solutions for the task in
the future, by building advanced deep generative
models (Goodfellow et al., 2016; Hu et al., 2018)
that incorporate effective reading comprehension
modules (Rajpurkar et al., 2016; Richardson et al.,
2013) and rich external knowledge (Angeli et al.,
2015; Hu et al., 2016).

The large dataset is also potentially useful for
a variety of other tasks, such as comment rank-
ing (Hsu et al., 2009), upvotes prediction (Ri-
zos et al., 2016), and article headline genera-
tion (Banko et al., 2000). We encourage the use
of the dataset in these context.
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Abstract

Plagiarism is a major issue in science
and education. It appears in various
forms, starting from simple copying and
ending with intelligent paraphrasing and
summarization. Complex plagiarism, such
as plagiarism of ideas, is hard to detect,
and therefore it is especially important to
track improvement of methods correctly
and not to overfit to the structure of
particular datasets. In this paper, we study
the performance of plagdet, the main
measure for Plagiarism Detection Systems
evaluation, on manually paraphrased
plagiarism datasets (such as PAN
Summary). We reveal its fallibility
under certain conditions and propose an
evaluation framework with normalization
of inner terms, which is resilient to the
dataset imbalance. We conclude with the
experimental justification of the proposed
measure. The implementation of the new
framework is made publicly available as a
Github repository.

1 Introduction

Plagiarism is a problem of primary concern among
publishers, scientists, teachers (Maurer et al.,
2006). It is not only about text copying with
minor revisions but also borrowing of ideas.
Plagiarism appears in substantially paraphrased
forms and presents conscious and unconscious
appropriation of others’ thoughts (Gingerich and
Sullivan, 2013). This kind of borrowing has very
serious consequences and can not be detected with
common Plagiarism Detection Systems (PDS).
That is why detection of complex plagiarism cases
comes to the fore and becomes a central challenge
in the field.

2 Plagiarism Detection

Most of the contributions to the plagiarism text
alignment were made during the PAN annual
track for plagiarism detection held from 2009 to
2015. The latest winning approach (Sanchez-
Perez et al., 2014) achieved good performance on
all the plagiarism types except the Summary part.
Moreover, this type of plagiarism turned out to be
the hardest for all the competitors.

In a brief review, Kraus emphasized (2016)
that the main weakness of modern PDS is
imprecision in manually paraphrased plagiarism
and, as a consequence, the weak ability to deal
with real-world problems. Thus, the detection of
manually paraphrased plagiarism cases is a focus
of recently proposed methods for plagiarism text
alignment. In the most successful contributions,
scientists applied genetic algorithms (Sanchez-
Perez et al., 2018; Vani and Gupta, 2017), topic
modeling methods (Le et al., 2016), and word
embedding models (Brlek et al., 2016) to manually
paraphrased plagiarism text alignment. In all of
these works, authors used PAN Summary datasets
to develop and evaluate their methods.

3 Task, Dataset, and Evaluation Metrics

3.1 Text Alignment
In this work we deal with an extrinsic text
alignment problem. Thus, we are given pairs of
suspicious documents and source candidates and
try to detect all contiguous passages of borrowed
information. For a review of plagiarism detection
tasks, see Alzahrani et al. 2012.

3.2 Datasets
PAN corpora of datasets for plagiarism text
alignment is the main resource for PDS evaluation.
This collection consists of slightly or substantially
different datasets used at the PAN competitions
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since 2009 to 2015. We used the most recent
2013 (Potthast et al., 2013) and 2014 (Potthast
et al., 2014) English datasets to develop and
evaluate our models and metrics. They consist
of copy&paste, random, translation, and summary
plagiarism types. We consider only the last part,
as it exhibits the problems of plagdet framework
to the greatest extent.

3.3 Evaluation Metrics
Standard evaluation framework for text alignment
task is plagdet (Potthast et al., 2010), which
consists of macro- and micro-averaged precision,
recall, granularity and the overall plagdet score. In
this work, we consider only the macro-averaged
metrics, where recall can be defined as follows:

recmacro(S,R) =
1

|S|
∑

s∈S
recsingle

macro
(s,Rs), (1)

and precision can be defined through recall as
follows:

precmacro(S,R) = recmacro(R,S), (2)

where S and R are true plagiarism cases and
system’s detections, respectively.

Single case recall recsingle
macro

(s,Rs) is defined as

follows:

|splg ∩ (Rs)plg|+ |ssrc ∩ (Rs)src|
|splg|+ |ssrc|

,

where Rs is the union of all detections of a
given case s.

4 Problem Statement

In this section, we explore problems representative
to several manual plagiarism datasets (mainly,
Summary part of PAN corpora), and show that the
plagdet framework can fail to correctly estimate
PDS quality on these datasets.

4.1 Dataset Imbalance
The PAN Summary datasets turn out to be highly
imbalanced.

• Source part of each plagiarism case takes up
the whole source document:

∀s ∈ S ∃dsrc ∈ Dsrc : ssrc = dsrc. (3)

Plagiarism
document
(dplg)

Source
document
(dsrc)

true case s

splg ssrc

detection r1

(r1)src

(r2)plg (r2)src

detection r2

(Rs)plg (Rs)src

(r1)plg

Figure 1: Single case recall computation for text
alignment task. Note the imbalance in this case:
plagiarism part splg is much shorter than source
part ssrc.

• For any given case, its plagiarism part is
much shorter than its source part1:

∀s ∈ S : |splg| << |ssrc|. (4)

As these datasets are publicly available, anyone
can figure out these details and, therefore,
construct an algorithm where statements 3 and 4
are true for detections R as well.

Let us now consider a true case s, its detections
Rs and its source document dsrc. Then single case
recall for PAN Summary document will be equal
to:

|splg ∩ (Rs)plg|+ |dsrc|
|splg|+ |dsrc|

(5)

(here we used that and ssrc = (Rs)src = dsrc).
Since plagiarism part splg of the case s is much

shorter than source document dsrc, the term |dsrc|
dominates numerator and denominator in eq. 5,
which results in inadequately high document-
level precision and recall on PAN Summary
datasets.

1For exact lengths, see table 3
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Other datasets for manual plagiarism detection
display the similar properties, however, not to
the PAN Summary extent. Examples include:
Palkovskii15, Mashhadirajab et al. 2016, and
Sochenkov et al. 2017.

Discussion
The important question is whether such dataset
imbalance reflects the real-world plagiarizers’
behavior.

There is an evidence that performing length
unrestricted plagiarism task people tend to make
texts shorter, however, not to the PAN Summary
extent (Barrón-Cedeño et al., 2013). Moreover,
we can find some supporting theoretical reasons.
Firstly, summarization and paraphrasing are the
only techniques students are taught to use for
the transformation of texts. Hence, they can
use summarization to plagiarize intellectually.
Secondly, in the cases of inadvertent plagiarism
and the plagiarism of ideas details of source texts
are usually omitted or forgotten. This should
also lead to smaller plagiarized texts. Though
we can find some reasons, such huge imbalance
does not seem to be supported enough and may be
considered as a bias.

4.2 Degenerate Intersection
Lemma 4.1. For any sets e1 ⊆ d and e2 ⊆ d,
their intersection length |e1 ∩ e2| is bounded by:

a(e1, e2, d) 6 |e1 ∩ e2| 6 b(e1, e2),

where:

a(e1, e2, d) = max(0, |e1|+ |e2| − |d|),
b(e1, e2) = min(|e1|, |e2|).

Let us take a fresh look at a source part of
recsingle

macro
. We assume that |ssrc∩(Rs)src|

|ssrc| ∈ [0; 1],

and this is actually the case if:

0 6 |ssrc ∩ (Rs)src| 6 |ssrc|.

But, according to lemma 4.1, we see that:

0 6 asrc 6 |ssrc ∩ (Rs)src| 6 bsrc 6 |ssrc|,

where:

asrc = a(ssrc, (Rs)src, dsrc),

bsrc = b(ssrc, (Rs)src).

.

d

e1 e2e1 ∩ e2 

a(e1,e2, d)

d

e2e1 = e1 ∩ e2 

b(e1,e2)

Figure 2: Degenerate intersection lemma.
Intuitively, lower bound (a) is achieved when e1
and e2 are “farthest” away from each other in d,
and upper bound (b) is achieved when e1 ⊆ e2 (or
e2 ⊆ e1).

This results in a smaller possible value range
of intersection length and, therefore, range of
precision and recall values. Because of (3), on
PAN Summary this leads to the extreme case of
asrc = bsrc = |dsrc|, which causes precision and
recall to take constant values on the source part of
the dataset.

5 Proposed Metrics

5.1 Normalized Single Case Recall

To address issues of dataset imbalance (section
4.1) and degenerate intersection (section 4.2),
we propose the following normalized version of
single case recall nrecsingle

macro
(s,Rs) for macro-

averaged case:

wplg(|splg ∩ (Rs)plg|) + wsrc(|ssrc ∩ (Rs)src|)
wplg(|splg|) + wsrc(|ssrc|)

,

where:

wi(x) =
(x− ai)(bi − ai)

|di|
,

ai = a(si, (Rs)i, di),

bi = b(si, (Rs)i),

i ∈ {plg, src}.
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5.2 Normalized recall, precision and plagdet
The result of (1) where every recsingle

macro
(s,Rs)

term is replaced for nrecsingle
macro

(s,Rs) is defined as

normalized recall nrecmacro(S,R). Normalized
precision nprecmacro(S,R) can be obtained from
normalized recall using eq. 2.

Normalized macro-averaged plagdet, or
normplagdet, is defined as follows:

normplagdet(S,R) =
Fα(S,R)

log2(1 + gran(S,R))
,

where Fα is the weighted harmonic mean of
nprecmacro(S,R) and nrecmacro(S,R), i.e. the
Fα-measure, and gran(S,R) is defined as in
Potthast et al. 2010.

6 Adversarial models

To justify the proposed evaluation metrics, we
construct two models, M1 and M2, which achieve
inadequately high macro-averaged precision and
recall.

6.1 Preprocessing
We represent each plagiarism document dplg as
a sequence of sentences, where each sentence
sentdplg ,i ∈ dplg is a set of tokens. Each source
document dsrc will be represented as a set of its
tokens.

For each sentence sentdplg ,i we also define a
measure of similarity simdplg ,dsrc,i with respect to
the source document as:

simdplg ,dsrc,i =
|sentdplg ,i ∩ dsrc|
|sentdplg ,i|

.

6.2 Models
Our models are rule-based classifiers, which
proceed in three steps for each pair of documents
dplg, dsrc:

1. Form a candidate set according to similarity
score: cand =

{
i|simdplg ,dsrc,i >

3
4

}
.

2. Find the candidate with highest
similarity score (if it exists): best =
argmax

i

{
simdplg ,dsrc,i|i ∈ cand

}
.

3. (M1) Output sentence best as a detection (if
it exists).
(M2) Output sentences

{
i|i 6= best

}
as a

detection (or all sentences if best does not
exist).

7 Results and Discussion

We evaluated our adversarial models as well as
several state-of-the-art algorithms, whose source
code was available to us, using plagdet and
normplagdet scores on all PAN Summary datasets
available to date.

In plagdet score comparison (Table 1) we
included additional state-of-the-art algorithms’
results (marked by ∗), borrowed from respective
papers. Proposed models M1 and M2 outperform
all algorithms by macro-averaged plagdet and
recall measures on almost every dataset. Despite
their simplicity, they show rather good results.

On the contrary, while measuring normplagdet
score (Table 2), M1 and M2 exhibit poor
results, while tested state-of-the-art systems
evenly achieve better recall and normplagdet
scores. These experimental results back up our
claim that normplagdet is more resilient to dataset
imbalance and degenerate intersection attacks and
show that tested state-of-the-art algorithms do not
exploit these properties of PAN Summary datasets.

The code for calculating normplagdet metrics,
both macro- and micro-averaged, is made
available as a Github repository2. We preserved
the command line interface of plagdet framework
to allow easy adaptation for existing systems.

8 Conclusion

Our paper shows that the standard evaluation
framework with plagdet measure can be misused
to achieve high scores on datasets for manual
plagiarism detection. We constructed two
primitive models that achieve state-of-the-art
results for detecting plagiarism of ideas by
exploiting flaws of standard plagdet. Finally, we
proposed a new framework, normplagdet, that
normalizes single case scores to prevent misuse
of datasets such as PAN Summary, and proved
its correctness experimentally. The proposed
evaluation framework seems beneficial not only
for plagiarism detection but for any other text
alignment task with imbalance or degenerate
intersection dataset properties.
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Table 1: Results of Summary Plagiarism Detection using Plagdet
Dataset Model Year Precision Recall Plagdet

PAN 2013 Train

Sanchez-Perez et al. 2014 0.9942 0.4235 0.5761
Brlek et al. 2016 0.9154 0.6033 0.7046
Le et al. ∗ 2016 0.8015 0.7722 0.7866
Sanchez-Perez et al. 2018 0.9662 0.7407 0.8386
Adversarial M1 2018 0.9676 0.7892 0.8693
Adversarial M2 2018 0.5247 0.8704 0.4816

PAN 2013 Test-1

Sanchez-Perez et al. 2014 1.0000 0.5317 0.6703
Brlek et al. 2016 0.9832 0.7003 0.8180
Vani and Gupta ∗ 2017 0.9998 0.7622 0.8149
Sanchez-Perez et al. 2018 0.9742 0.8093 0.8841
Adversarial M1 2018 0.9130 0.7641 0.8320
Adversarial M2 2018 0.4678 0.8925 0.4739

PAN 2013 Test-2

Sanchez-Perez et al. 2014 0.9991 0.4158 0.5638
Brlek et al. 2016 0.9055 0.6144 0.7072
Le et al. ∗ 2016 0.8344 0.7701 0.8010
Vani and Gupta ∗ 2017 0.9987 0.7212 0.8081
Sanchez-Perez et al. 2018 0.9417 0.7226 0.8125
Adversarial M1 2018 0.9594 0.8109 0.8789
Adversarial M2 2018 0.5184 0.8938 0.4848

Table 2: Results of Summary Plagiarism Detection using NormPlagdet
Dataset Model Year Precision Recall Plagdet

PAN 2013 Train
Sanchez-Perez et al. 2014 0.9917 0.6408 0.7551
Brlek et al. 2016 0.8807 0.7889 0.8064
Sanchez-Perez et al. 2018 0.8929 0.9238 0.9081
Adversarial M1 2018 0.9673 0.1617 0.2770
Adversarial M2 2018 0.1769 0.2984 0.1634

PAN 2013 Test-1
Sanchez-Perez et al. 2014 0.9997 0.7020 0.7965
Brlek et al. 2016 0.9384 0.8254 0.8783
Sanchez-Perez et al. 2018 0.9180 0.9463 0.9319
Adversarial M1 2018 0.9130 0.1525 0.2614
Adversarial M2 2018 0.1488 0.4237 0.1700

PAN 2013 Test-2
Sanchez-Perez et al. 2014 0.9977 0.6377 0.7470
Brlek et al. 2016 0.8701 0.8104 0.8107
Sanchez-Perez et al. 2018 0.8771 0.9067 0.8859
Adversarial M1 2018 0.9585 0.1687 0.2869
Adversarial M2 2018 0.1552 0.3299 0.1559

Table 3: Average Length of Plagiarism and Source Cases in Summary Datasets
Dataset Plagiarism (plg) Source (src)
PAN 2013 Train 626 ± 45 5109 ± 2431
PAN 2013 Test-1 639 ± 40 3874 ± 1427
PAN 2013 Test-2 627 ± 42 5318 ± 3310
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Abstract

In neural abstractive summarization,
the conventional sequence-to-sequence
(seq2seq) model often suffers from
repetition and semantic irrelevance. To
tackle the problem, we propose a global
encoding framework, which controls the
information flow from the encoder to the
decoder based on the global information
of the source context. It consists of a
convolutional gated unit to perform global
encoding to improve the representations
of the source-side information. Evalu-
ations on the LCSTS and the English
Gigaword both demonstrate that our
model outperforms the baseline models,
and the analysis shows that our model is
capable of generating summary of higher
quality and reducing repetition1.

1 Introduction

Abstractive summarization can be regarded as a
sequence mapping task that the source text should
be mapped to the target summary. Therefore,
sequence-to-sequence learning can be applied to
neural abstractive summarization (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Cho
et al., 2014), whose model consists of an encoder
and a decoder. Attention mechanism has been
broadly used in seq2seq models where the decoder
extracts information from the encoder based on
the attention scores on the source-side information
(Bahdanau et al., 2014; Luong et al., 2015). Many
attention-based seq2seq models have been pro-
posed for abstractive summarization (Rush et al.,
2015; Chopra et al., 2016; Nallapati et al., 2016),
which outperformed the conventional statistical
methods.

1The code is available at https://www.github.
com/lancopku/Global-Encoding

Text: the mainstream fatah movement on monday offi-
cially chose mahmoud abbas, chairman of the palestine lib-
eration organization (plo), as its candidate to run for the
presidential election due on jan. #, ####, the official wafa
news agency reported.
seq2seq: fatah officially officially elects abbas as

candidate for candidate .
Gold: fatah officially elects abbas as candidate for presi-
dential election

Table 1: An example of the summary of the con-
ventional attention-based seq2seq model on the
Gigaword dataset. The text highlighted indicates
repetition, “#” refers to masked number.

However, recent studies show that there are
salient problems in the attention mechanism. Zhou
et al. (2017) pointed out that there is no obvious
alignment relationship between the source text and
the target summary, and the encoder outputs con-
tain noise for the attention. For example, in the
summary generated by the seq2seq in Table 1, “of-
ficially” is followed by the same word, as the at-
tention mechanism still attends to the word with
high attention score. Attention-based seq2seq
model for abstractive summarization can suffer
from repetition and semantic irrelevance, causing
grammatical errors and insufficient reflection of
the main idea of the source text.

To tackle this problem, we propose a model
of global encoding for abstractive summariza-
tion. We set a convolutional gated unit to perform
global encoding on the source context. The gate
based on convolutional neural network (CNN) fil-
ters each encoder output based on the global con-
text due to the parameter sharing, so that the repre-
sentations at each time step are refined with con-
sideration of the global context. We conduct ex-
periments on LCSTS and Gigaword, two bench-
mark datasets for sentence summarization, which
shows that our model outperforms the state-of-the-
art methods with ROUGE-2 F1 score 26.8 and
17.8 respectively. Moreover, the analysis shows
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Figure 1: Structure of our proposed Convolu-
tional Gated Unit. We implement 1-dimensional
convolution with a structure similar to the Incep-
tion (Szegedy et al., 2015) over the outputs of the
RNN encoder, where k refers to the kernel size.

that our model is capable of reducing repetition
compared with the seq2seq model.

2 Global Encoding

Our model is based on the seq2seq model with at-
tention. For the encoder, we set a convolutional
gated unit for global encoding. Based on the out-
puts from the RNN encoder, the global encod-
ing refines the representation of the source context
with a CNN to improve the connection of the word
representation with the global context. In the fol-
lowing, the techniques are introduced in detail .

2.1 Attention-based seq2seq

The RNN encoder receives the word embedding
of each word from the source text sequentially.
The final hidden state with the information of the
whole source text becomes the initial hidden state
of the decoder. Here our encoder is a bidirectional
LSTM encoder, where the encoder outputs from
both directions at each time step are concatenated
(hi=[

−→
hi ;
←−
hi ]).

We implement a unidirectional LSTM decoder
to read the input words and generate summary
word by word, with a fixed target vocabulary
embedded in a high-dimensional space Y ∈
R|Y |×dim. At each time step, the decoder gener-
ates a summary word yt by sampling from a dis-
tribution of the target vocabulary Pvocab until sam-
pling the token representing the end of sentence.
The hidden state of the decoder st and the en-

coders output hi at each time step i of the encod-
ing process are computed with a weight matrixWa

to obtain the global attention αt,i and the context
vector ct. It is described below:

Pvocab = softmax(g([ct; st])) (1)

st = LSTM(yt−1, st−1, Ct−1) (2)

ct =
n∑

i=1

αt,ihi (3)

αt,i =
exp(et,i)∑n
j=1 exp(et,j)

(4)

et,i = s>t−1Wahi (5)

where C refers to the cell state in the LSTM, and
g(·) refers to a non-linear function.

2.2 Convolutional Gated Unit

Abstractive summarization requires the core infor-
mation at each encoding time step. To reach this
goal, we implement a gated unit on top of the en-
coder outputs at each time step, which is a CNN
that convolves all the encoder outputs. The pa-
rameter sharing of the convolutional kernels en-
ables the model to extract certain types of fea-
tures, specifically n-gram features. Similar to im-
age, language also contains local correlation, such
as the internal correlation of phrase structure. The
convolutional units can extract these common fea-
tures in the sentence and indicate the correlation
among the source annotations. Moreover, to fur-
ther strengthen the global information, we imple-
ment self-attention (Vaswani et al., 2017) to mine
the relationship of the annotation at a certain time
step with other annotations. Therefore, the gated
unit is able to find out both common n-gram fea-
tures and global correlation. Based on the con-
volution and self-attention, the gated unit sets a
gate to filter the source annotations from the RNN
encoder, in order to select information relevant to
the global semantic meaning. The global encod-
ing allows the encoder output at each time step
to become new representation vector with further
connection to the global source side information.
For convolution, we implement a structure simi-
lar to inception (Szegedy et al., 2015). We use 1-
dimension convolution to extract n-gram features.
Following the design principle of inception, we
did not use kernel where k = 5 but instead used
two kernels where k = 3 to avoid large kernel size.
The details of convolution block is described be-
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low:

gi = ReLU(W [hi−k/2, ..., hi+k/2] + b) (6)

where ReLU refers to the non-linear activation
function Rectified Linear Unit (Nair and Hinton,
2010). Based on the convolution block, we imple-
ment a structure similar to inception, as shown in
Figure 1.

On top of the new representations generated
by the CNN module, we further implement self-
attention upon these representations so as to dig
out the global correlations. Vaswani et al. (2017)
pointed out that self-attention encourages the
model to learn long-term dependencies and does
not create much computational complexity, so we
implement its scaled dot-product attention for the
connection between the annotation at each time
step and the global information:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

where the representations, are computed through
the attention mechanism with itself and packed
into a matrix. To be specific, we refer Q and V
to the representation matrix generated by the CNN
module, while K =WattV where Watt is a learn-
able matrix.

A further step is to set a gate based on the gen-
eration from the CNN and self-attention module
g for the source representations h′ from the RNN
encoder, where:

h̃ = h� σ(g) (8)

Since the CNN module can extract n-gram fea-
tures of the whole source text and self-attention
learns the long-term dependencies among the
components of the input source text, the gate can
perform global encoding on the encoder outputs.
Based on the output of the CNN and self-attention,
the logistic sigmoid function outputs a vector of
value between 0 and 1 at each dimension. If the
value is close to 0, the gate removes most of the
information at the corresponding dimension of the
source representation, and if it is close to 1, it re-
serves most of the information.

2.3 Training
In the following, we introduce the datasets that we
conduct experiments on as well as our experimen-
tal settings.

Given the parameters θ and source text x, the
models generates a summary ỹ. The learning pro-
cess is to minimize the negative log-likelihood be-
tween the generated summary ỹ and reference y:

L = − 1

N

N∑

n=1

T∑

t=1

p(y
(n)
t |ỹ

(n)
<t , x

(n), θ) (9)

where the loss function is equivalent to maximiz-
ing the conditional probability of summary y given
parameters θ and source sequence x.

3 Experiment Setup

In the following, we introduce the datasets that we
conduct experiments on and our experiment set-
tings as well as the baseline models that we com-
pare with.

3.1 Datasets
LCSTS is a large-scale Chinese short text sum-
marization dataset collected from Sina Weibo, a
famous Chinese social media website (Hu et al.,
2015), consisting of more than 2.4 million text-
summary pairs. The original texts are shorter than
140 Chinese characters, and the summaries are
created manually. We follow the previous research
(Hu et al., 2015) to split the dataset for training,
validation and testing, with 2.4M sentence pairs
for training, 8K for validation and 0.7K for test-
ing.

The English Gigaword is a sentence summa-
rization dataset based on Annotated Gigaword
(Napoles et al., 2012), a dataset consisting of sen-
tence pairs, which are the first sentence of the col-
lected news articles and the corresponding head-
lines. We use the data preprocessed by Rush et al.
(2015) with 3.8M sentence pairs for training, 8K
for validation and 2K for testing.

3.2 Experiment Settings
We implement our experiments in PyTorch on an
NVIDIA 1080Ti GPU. The word embedding di-
mension and the number of hidden units are both
512. In both experiments, the batch size is set
to 64. We use Adam optimizer (Kingma and Ba,
2014) with the default setting α = 0.001, β1 =
0.9, β2 = 0.999 and ε = 1 × 10−8. The learn-
ing rate is halved every epoch. Gradient clipping
is applied with range [-10, 10].

Following the previous studies, we choose
ROUGE score to evaluate the performance of our
model (Lin and Hovy, 2003). ROUGE score is to
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Model R-1 R-2 R-L
RNN 21.5 8.9 18.6
RNN-context 29.9 17.4 27.2
CopyNet 34.4 21.6 31.3
SRB 33.3 20.0 30.1
DRGD 37.0 24.2 34.2
seq2seq (Our impl.) 33.8 23.1 32.5
+CGU 39.4 26.9 36.5

Table 2: F-Score of ROUGE on LCSTS.

calculate the degree of overlapping between gen-
erated summary and reference, including the num-
ber of n-grams. F1 scores of ROUGE-1, ROUGE-
2 and ROUGE-L are used as the evaluation met-
rics.

3.3 Baseline Models

As we compare our results with the results of the
baseline models reported in their original papers,
the evaluation on the two datasets has different
baselines. In the following, we introduce the base-
lines for LCSTS and Gigaword respectively.

Baselines for LCSTS are introduced in the fol-
lowing. RNN and RNN-context are the RNN-
based seq2seq models (Hu et al., 2015), without
and with attention mechanism respectively. Copy-
Net is the attention-based seq2seq model with the
copy mechanism (Gu et al., 2016). SRB is a model
that improves semantic relevance between source
text and summary (Ma et al., 2017). DRGD is the
conventional seq2seq with a deep recurrent gener-
ative decoder (Li et al., 2017).

As to the baselines for Gigaword, ABS and
ABS+ are the models with local attention and
handcrafted features (Rush et al., 2015). Feats
is a fully RNN seq2seq model with some spe-
cific methods to control the vocabulary size. RAS-
LSTM and RAS-Elman are seq2seq models with
a convolutional encoder and an LSTM decoder
and an Elman RNN decoder respectively. SEASS
is a seq2seq model with a selective gate mecha-
nism. DRGD is also a baseline for Gigaword.

Results of our implementation of the conven-
tional seq2seq model on both datasets are also
used for the evaluation of the improvement of our
proposed convolutional gated unit (CGU).

4 Analysis

In the following sections, we report the results of
our experiments and analyze the performance of

Model R-1 R-2 R-L
ABS 29.6 11.3 26.4
ABS+ 29.8 11.9 27.0
Feats 32.7 15.6 30.6
RAS-LSTM 32.6 14.7 30.0
RAS-Elman 33.8 16.0 31.2
SEASS 36.2 17.5 33.6
DRGD 36.3 17.6 33.6
seq2seq (Our impl.) 33.6 16.3 31.3
+CGU 36.3 18.0 33.8

Table 3: F-Score of ROUGE on Gigaword.

our model on the evaluation of repetition. Also,
we provide an example to demonstrate that our
model can generate summary that is more seman-
tically consistent with the source text.

4.1 Results
In the experiments on the two datasets, our model
achieves advantages of ROUGE score over the
baselines, and the advantages of ROUGE score on
the LCSTS are significant. Table 2 presents the
results of our model and the baselines on the LC-
STS, and Table 2 shows the results of models on
the Gigaword. We compare the F1 scores of our
model with those of the baseline models (reported
in their original articles) and our own implemen-
tation of the attention-based seq2seq. Compared
with the conventional seq2seq model, our model
owns an advantage of ROUGE-2 score 3.7 and 1.5
on the LCSTS and Gigaword respectively.

4.2 Discussion
We show a summary generated by our model,
compared with that of the baseline seq2seq model
and the reference. The source text introduces
a phenomenon that Starbucks, an ordinary cof-
fee brand in the United States, becomes a brand
of high class and sells coffee in a much higher
price. It is apparent that the main idea of the
text is about the high price of Starbucks coffee
in China. However, the seq2seq model generates
a summary which only contains the information
of the brand and the country. In addition, it has
committed a mistake of redundant repetition of the
word “China”. It is not semantically relevant to
the source text and it is not coherent and adequate.
Compared with it, the summary of our model is
more coherent and more semantically relevant to
the source text. Our model focuses on the infor-
mation about price instead of country, and points
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Source: 较早进入中国市场的星巴克， 是不少小资钟
情的品牌。相比在美国的平民形象，星巴克在中国就
显得“高端”得多。用料并无差别的一杯中杯美式咖
啡，在美国仅约合人民币12元，国内要卖21元，相当
于贵了75%。第一财经日报
Starbucks, which entered Chinese market early, is a brand
appealing to young people of petit bourgeoisie. Compared
with its ordinary image in the United States, Starbucks
seems to be of higher class in China. A Tall Americano sells
about 12RMB in the United States, but 21RMB in China,
which means it is 75% more expensive.
Reference: 媒体称星巴克美式咖啡售价中国比美国
贵75%。
Media report that the price of Starbucks Americano in
China is 75% more expensive than that in the United States.
seq2seq: 星巴克中国美式咖啡在中国。
Starbucks China Americano in China.
+CGU:星巴克美式咖啡中国贵75%。
Starbucks Americano is 75% more expensive in China.

Table 4: An example of our summarization, com-
pared with that of the seq2seq model and the ref-
erence.

out the price gap in its generated summary. As
“China” appears twice in the source text and it is
hard for the baseline model to put it in a less sig-
nificant place, but for our model with CGU, it is
able to filter the trivial details that are irrelevant
to the core meaning of the source text and just fo-
cuses on the information that contributes most to
the main idea.

As our CGU is responsible for selecting impor-
tant information of the outputs from the RNN en-
coder to improve the quality of the attention score,
it should be able to reduce repetition in the gen-
erated summary. We evaluate the degree of repe-
tition by calculating the percentage of the dupli-
cates at the sentence level. The evaluations on
the Gigaword for duplicates of 1-gram to 4 gram
prove that our model significantly reduces repeti-
tion compared to the conventional seq2seq and its
repetition rate is similar to the reference’s. This
also shows that our model is able to generate sum-
maries of higher diversity with less repetition.

5 Related Work

Researchers developed many statistical methods
and linguistic-rule-based methods to study auto-
matic summarization (Banko et al., 2000; Dorr
et al., 2003; Zajic et al., 2004; Cohn and Lapata,
2008). With the development of Neural Network
in NLP, more and more researches have appeared
in abstractive summarization since it seems possi-
ble that Neural Network can help achieve the two
goals. Rush et al. (2015) first applied sequence-

1-gram 2-gram 3-gram 4-gram
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Figure 2: Percentage of the duplicates at sen-
tence level. Evaluated on the Gigaword.

to-sequence model with attention mechanism to
abstractive summarization and realized significant
achievements. Chopra et al. (2016) changed the
ABS model with an RNN decoder and Nallap-
ati et al. (2016) changed the system to a fully-
RNN sequence-to-sequence model and achieved
outstanding performance. Zhou et al. (2017) pro-
posed a selective gate mechanism to filter sec-
ondary information. Li et al. (2017) proposed a
deep recurrent generative decoder to learn latent
structure information. Ma et al. (2018) proposed a
model that generates words by querying word em-
beddings.

6 Conclusion

In this paper, we propose a new model for abstrac-
tive summarization. The convolutional gated unit
performs global encoding on the source side in-
formation so that the core information can be re-
served and the secondary information can be fil-
tered. Experiments on the LCSTS and Gigaword
show that our model outperforms the baselines,
and the analysis shows that it is able to reduce
repetition in the generated summaries, and it is
more robust to inputs of different lengths, com-
pared with the conventional seq2seq model.
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Abstract

We herein present a language-model-
based evaluator for deletion-based sen-
tence compression, and viewed this task
as a series of deletion-and-evaluation op-
erations using the evaluator. More specif-
ically, the evaluator is a syntactic neural
language model that is first built by learn-
ing the syntactic and structural collocation
among words. Subsequently, a series of
trial-and-error deletion operations are con-
ducted on the source sentences via a re-
inforcement learning framework to obtain
the best target compression. An empirical
study shows that the proposed model can
effectively generate more readable com-
pression, comparable or superior to sev-
eral strong baselines. Furthermore, we in-
troduce a 200-sentence test set for a large-
scale dataset, setting a new baseline for the
future research.

1 Introduction

Deletion-based sentence compression aims to
delete unnecessary words from source sentence
to form a short sentence (compression) while re-
taining grammatical and faithful to the under-
lying meaning of the source sentence. Previ-
ous works used either machine-learning-based ap-
proach or syntactic-tree-based approaches to yield
most readable and informative compression (Jing,
2000; Knight and Marcu, 2000; Clarke and La-
pata, 2006; McDonald, 2006; Clarke and La-
pata, 2008; Filippova and Strube, 2008; Berg-
Kirkpatrick et al., 2011; Filippova et al., 2015;
Bingel and Søgaard, 2016; Andor et al., 2016;
Zhao et al., 2017; Wang et al., 2017). For example,
(Clarke and Lapata, 2008) proposed a syntactic-
tree-based method that considers the sentence

compression task as an optimization problem by
using integer linear programming, whereas (Filip-
pova et al., 2015) viewed the sentence compres-
sion task as a sequence labeling problem using
the recurrent neural network (RNN), using max-
imum likelihood as the objective function for op-
timization. The latter sets a relatively strong base-
line by training the model on a large-scale parallel
corpus. Although an RNN (e.g., Long short-term
memory networks) can implicitly model syntactic
information, it still produces ungrammatical sen-
tences. We argue that this is because (i) the la-
bels (or compressions) are automatically yielded
by employing the syntactic-tree-pruning method.
It thus contains some errors caused by syntactic
tree parsing error, (ii) more importantly, the op-
timization objective of an RNN is the likelihood
function that is based on individual words instead
of readability (or informativeness) of the whole
compressed sentence. A gap exists between opti-
mization objective and evaluation. As such, we are
of great interest that: (i) can we take the readabil-
ity of the whole compressed sentence as a learning
objective and (ii) can grammar errors be recovered
through a language-model-based evaluator to yield
compression with better quality?

To answer the above questions, a syntax-based
neural language model is trained on large-scale
datasets as a readability evaluator. The neural
language model is supposed to learn the correct
word collocations in terms of both syntax and se-
mantics. Subsequently, we formulate the deletion-
based sentence compression as a series of trial-
and-error deletion operations through a reinforce-
ment learning framework. The policy network
performs either RETAIN or REMOVE action to
form a compression, and receives a reward (e.g.,
readability score) to update the network.

The empirical study shows that the proposed
method can produce more readable sentences that
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preserve the source sentences, comparable or su-
perior to several strong baselines. In short, our
contributions are two-fold: (i) an effective syntax-
based evaluator is built as a post-hoc checker,
yielding compression with better quality based
upon the evaluation metrics; (ii) a large scale news
dataset with 1.02 million sentence compression
pairs are compiled for this task in addition to 200
manually created sentences. We made it publicly
available.

2 Methodology

2.1 Task and Framework

Formally, deletion-based sentence compression
translates word tokens, (w1, w2, ..., wn) into a se-
ries of ones and zeros, (l1, l2, ..., ln), where n
refers to the length of the original sentence and
li ∈ {0, 1}. Here, ”1” refers to RETAIN and
”0” refers to REMOVE. We first converted the
word sequence into a dense vector representa-
tion through the parameter matrix E. Except
for word embedding, (e(w1), e(w2), ..., e(wn)),
we also considered the part-of-speech tag and
the dependency relation between wi and its
head word as extra features. Each part-of-
speech tag was mapped into a vector represen-
tation, (p(w1), p(w2), ..., p(wn)) through the pa-
rameter matrix P , while each dependency re-
lation was mapped into a vector representation,
(d(w1), d(w2), ..., d(wn)) through the parameter
matrix D. Three vector representations are con-
catenated, [e(wi); p(wi); d(wi)] as the input to the
next part, policy network.

Figure 1 shows the graphical illustration of our
model. The policy network is a bi-directional
RNN that uses the input [e(wi); p(wi); d(wi)] and
yields the hidden states in the forward direction,
(hf1 , h

f
2 , ..., h

f
n), and hidden states in the backward

direction, (hb1, h
b
2, ..., h

b
n). Then, concatenation of

hidden states in both directions, [hfi ;h
b
i ] are fol-

lowed by a nonlinear layer to turn the output into a
binary probability distribution, yi = σ(W [hfi ;h

b
i ])

where σ is a nonlinear function sigmoid, and W
is a parameter matrix.

The policy network continues to sample actions
from the binary probability distribution above un-
til the whole action sequence is yielded. In
this task, binary actions space is {RETAIN, RE-
MOVE}. We turn the action sequence into the pre-
dicted compression, (w1, w2, ..., wm), by deleting
the words whose current action is REMOVE. Then

[e(w1);p(w1);d(w1)] [e(wn);p(wn);d(wn)] 

����������������������������� ��

������

w2  …… wn

Evaluator

Po
lic

y 
N

et

Update

Figure 1: Graphical illustration of the framework.

the (w1, w2, ..., wm) is fed into a pre-trained eval-
uator which will be described in the next section.

2.2 Syntax-based Evaluator

The syntax-based evaluator should assess the de-
gree to which the compressed sentence is gram-
matical, through being used as a reward function
during the reinforcement learning phase. It needs
to satisfy three conditions: (i) grammatical com-
pressions should obtain a higher score than un-
grammatical compressions, (ii) for two ungram-
matical compressions, it should be able to discrim-
inate them through the score despite the ungram-
maticality, (iii) lack of important parts (such as the
primary subject or verb) in the original sentence
should receive a greater penalty.

We therefore considered an ad-hoc evaluator,
i.e., the syntax-based language model (evaluator-
SLM) for these requirements. It integrates the
part-of-speech tags and the dependency relations
in the input, while the output to be predicted is
the next word token. We observed that the pre-
diction of the next word could not only be based
on the previous word but also the syntactic com-
ponents, e.g., for the part-of-speech tag, the noun
is often followed by a verb instead of an adjec-
tive or adverb and the integration of the part-of-
speech tag allows the model to learn such cor-
rect word collocations. Figure 2 shows the graphi-
cal illustration of the evaluator-SLM where the in-
put is xi = [e(wi); p(wi); d(wi)], followed by a
bi-directional RNN whose last layer is the Soft-
max layer used to represent word probability dis-
tribution. Similar to (Mousa and Schuller, 2017),
we added two special tokens, <S> and </S> in
the input so as to stagger the hidden vectors, thus
avoiding self-prediction. Finally, we have the fol-
lowing formula as one part of the reward functions
in the learning framework.
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<S>                    X1 Xn-2                         Xn-1

������

w1 w2 w3 w4 w5

X2                             X3                             Xn </S> 

W1                              W2                          Wn-1                    Wn

������

Figure 2: Graphical illustration of bi-directional
recurrent neural network language model.

RSLM (Ŷ ) = e
( 1

|Ŷ |

∑|Ŷ |
t=1

logPLM (yt|y0:t−1))
(1)

where RSLM ∈ [0, 1] and Ŷ is the predicted
compression by the policy network.

Further, it is noteworthy that the performance
comparison should be based on a similar com-
pression rate1 (CR) (Napoles et al., 2011), and a
smooth reward function RCR = (a+b)(a+b)

aabb
xa(1−

x)b (both a, b are positive integers; e.g. a = 2,
b = 2 could lead the compression rate to 0.5) is
also used to attain a compressed sentence of simi-
lar length.

The total reward is R = RSLM +RCR. By us-
ing policy gradient methods (Sutton et al., 2000),
the policy network is updated with the following
gradient:

∇L(θ) =
|Ŷ |∑

t=1

R(Ŷ )∇logπθ(at|St) (2)

Where at ∈ {RETAIN, REMOVE}, is the ac-
tion token by the policy network, and St refers to
hidden state of the network, [hfi ;h

b
i ] (section 2.1).

3 Experiments

3.1 Data

As neural network-based methods require a large
amount of training data, we for the first time
considered using Gigaword2, a news domain cor-
pus. More specifically, the first sentence and the
headline of each article are extracted. After data
cleansing, we finally compiled 1.02 million sen-
tence and headline pairs (see details here3). It is
noteworthy that the headline is not the extractive

1compression rate is the length of compression divided by
the length of the sentence.

2https://catalog.ldc.upenn.edu/ldc2011t07
3https://github.com/code4conference/Data

compression. Further, we asked two near native
English speakers to create 200 extractive compres-
sions for the first 200 sentences of this dataset; us-
ing it as the testing set, the first 1,000 sentences
(excluding the testing set) is the development set,
and the remainder is the training set. To assess the
inter-assessor agreements, we computed Cohen ’s
unweighted κ. The computed unweighted κ was
0.423, reaching a moderate agreement level4

The second dataset we used was the Google
dataset that contains 200,000 sentence compres-
sion pairs (Filippova et al., 2015). For the purpose
of comparison, we used the very first 1,000 sen-
tences as the testing set, the next 1,000 sentences
as the development set, and the remainder as the
training set.

3.2 Comparison Methods

We choose several strong baselines; the first one is
the dependency-tree-based method that considers
the sentence compression task as an optimization
problem by using integer linear programming5.
Inspired by (Filippova and Strube, 2008), (Clarke
and Lapata, 2008), and (Wang et al., 2017), we de-
fined some constrains: (1) if a word is retained in
the compression, its parent should be also retained.
(2) whether a word wi is retained should partly
depend on the word importance score that is the
product of the TF-IDF score and headline score
h(wi), tf -idf(wi) · h(wi) where h(wi) represents
that whether a word (limited to nouns and verbs) is
also in the headline. h(wi)=5 if wi is in the head-
line; h(wi)=1 otherwise. (3) the dependency rela-
tions, ROOT, dobj, nsubj, pobj, should be retained
as they are the skeletons of a sentence. (4) the sen-
tence length should be over than α but less than
β. (5) the depth of the node (word), λdep(wi),
in the dependency tree. (6) the word with the de-
pendency relation amod is to be removed. It is
noteworthy that the method is unsupervised.

The second method is the long short-term
memory networks (LSTMs) which showed strong
promise in sentence compression by (Filippova
et al., 2015). The labels were obtained using the
dependency tree pruning method (Filippova and
Altun, 2013) and the LSTMs were applied in a su-
pervised manner. Following their works, we also

4(Landis and Koch, 1977) characterize κ values <0 as no
agreement, 0 ∼ 0.20 as slight, 0.21 ∼ 0.40 as fair, 0.41 ∼
0.60 as moderate, 0.61 ∼ 0.80 as substantial, and 0.81 ∼ 1
as almost perfect agreement.)

5we use http://pypi.python.org/pypi/PuLP
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Gigaword Dataset Annotator 1 Annotator 2
F1 RASP-F1 F1 RASP-F1 CR

#1 Seq2seq with attention 54.9 60.3 58.6 64.6 0.53
#2 Dependency tree+ILP 58.0 65.1 61.0 70.9 0.55
#3 LSTMs+pseudo label 60.3 64.1 64.1 69.2 0.51
#4 Evaluator-LM 64.5 67.3 66.9 72.2 0.50
#5 Evaluator-SLM 65.0 69.6 68.2 73.9 0.51

Table 1: F1 and RASP-F1 results for Gigaword dataset.

consider the labels yielded by our dependency-
tree-based method as pseudo labels and employ
LSTMs as a baseline.

Furthermore, for a comprehensive comparison,
we applied the sequence-to-sequence with atten-
tion method widely used in abstractive text sum-
marization for sentence compression. Previous
works such as (Rush et al., 2015; Chopra et al.,
2016) have shown promising results with this
framework, although the focus was generation-
based summarization rather than extractive sum-
marization. More specifically, the source sequence
of this framework is the original sentence, while
the target sequence is a series of zeros and ones
(zeros represents REMOVE and ones represents
RETAIN). Further, we incorporated dependency
labels and part-of-speech tag features in the source
side of the sequence-to-sequence method.

3.3 Training

The embedding size for word, part-of-speech tag,
and the dependency relation is 128. We employed
the vanilla RNN with a hidden size of 512 for both
the policy network and neural language model.
The mini-batch size was chosen from [5, 50, 100].
Vocabulary size was 50,000. The learning rate for
neural language model is 2.5e-4, and 1e-05 for
the policy network. For policy learning, we used
the REINFORCE algorithm (Williams, 1992) to
update the parameters of the policy network and
find an policy that maximizes the reward. Because
starting from a random policy is impractical ow-
ing to the high variance, we pre-trained the policy
network using pseudo labels in a supervised man-
ner. For the comparison methods, the hyperparam-
eters and were set to 0.4 and 0.7, respectively, and
was set to 0.5. For reproduction, we released the
source code here6.

6https://github.com/code4conference/code4sc

4 Result and Discussion

This section demonstrates the experimental results
on both datasets. As the Gigaword dataset has no
ground truth, we evaluated the baseline and our
method on the 200-sentence test sets created by
two human annotators. For the automatic evalua-
tion, we employed F1 and RASP-F1 (Briscoe and
Carroll, 2002) to measure the performances. The
latter compares grammatical relations (such as nc-
subj and dobj ) found in the system compressions
with those found in the gold standard, providing
a means to measure the semantic aspects of the
compression quality. For the human evaluation,
we asked two near native English speakers to as-
sess the quality of 50 compressed sentences out
of the 200-sentence test set in terms of readability
and informativeness. Here are our observations:

Gigaword Readability Informativeness
$1 LSTMs 3.56 3.10
$2 SLM 4.16† 3.16

Table 2: Human Evaluation for Gigaword dataset.
†stands for significant difference with 0.95 confi-
dence in the column.

Google Dataset F1 RASP-F1 CR
&1 Seq2seq with attention 71.7 63.8 0.34
&2 LSTM (Filippova, 2015) 82.0 - 0.38
&3 LSTMs (our implement) 84.8 81.9 0.40
&4 Evaluator-LM 85.0 82.0 0.41
&5 Evaluator-SLM 85.1 82.3 0.39

Table 3: F1 and RASP-F1 results for Google
dataset.

(1) As shown in Table 1, our Evaluator-SLM-
based method yields a large improvement over the
baselines, demonstrating that the language-model-
based evaluator is effective as a post-hoc gram-
mar checker for the compressed sentences. This
is also validated by the significant improvement
in the readability score in Table 2 ($1 vs $2). To
investigate the evaluator in detail, a case study is
shown in section 4.1.
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Case study
SENTENCE The Dalian shipyard has built two new huge ships

POS tags DET ADJ NOUN VERB VERB NUM ADJ ADJ NOUN
DEP. rels det compound nsubj aux root nummod amod amod dobj

#1 The Dalian shipyard has built two new huge ships
#2 The Dalian shipyard has built two new huge 
#3 The Dalian shipyard has two new huge ships
#4 The Dalian has built two new huge ships
#5 The Dalian has built two ships
#6 The has built two ships
#7 The Dalian shipyard has built two huge ships
#8 The Dalian shipyard has built two ships
#9 The shipyard has built two ships

e-logR

59.8
140.5
582.9
1313.5
1244.8
1331.2
46.9
18.2
66.5

Figure 3: Case study for evaluator.

(2) by comparing annotator 1 with annotator 2
in Table 1, we observed different performances for
two annotated test sets, showing that compress-
ing a text while preserving the original sentence
is subjective across the annotators.

(3) As for Google news dataset, LSTMs
(LSTM+pos+dep) (&3) is a relatively strong base-
line, suggesting that incorporating dependency re-
lations and part-of-speech tags may help model
learn the syntactic relations and thus make a bet-
ter prediction. When further applying Evaluator-
SLM, only a tiny improvement is observed (&3
vs &4), not comparable to the improvement be-
tween #3 and #5. This may be due to the differ-
ence in perplexity of the our Evaluator-SLM. For
Gigaword dataset with 1.02 million instances, the
perplexity of the language model is 20.3, while
for the Google news dataset with 0.2 million in-
stances, the perplexity is 76.5.

(4) To further explore the degree to which syn-
tactic knowledge (dependency relations and part-
of-speech tags) is helpful to evaluator (language
model), we implemented a naive language model,
i.e., Evaluator-LM, which did not include depen-
dency relations and part-of-speech tags as input
features. The results shows that small improve-
ments are observed on two datasets (#4 vs #5;
&4 vs &5), suggesting that incorporating syntactic
knowledge may help evaluator to encourage more
unseen but reasonable word collocations.

4.1 Evaluator Analysis

To further analyze the Evaluator-SLM perfor-
mance, we used an example sentence, “The Dalian
shipyard has built two new huge ships” to observe
how a language model scores different word dele-
tion operations. We converted the reward function
RSLM to e−logRSLM for a better observation (sim-

ilar to ”sentence perplexity”, the higher the score
is, the worse is the sentence). As shown in Figure
3, deleting the object(#2), verb(#3), or subject(#4)
results in a significant increase in ”sentence per-
plexity”, implying that the syntax-based language
model is highly sensitive to the lack of such syn-
tactic components. Interestingly, when deleting
words such as new or/and huge, the score be-
comes lower, suggesting that the model may pre-
fer short sentences, with unnecessary parts such
as amod being removed. This property makes it
quite suitable for the sentence compression task
aiming to shorten sentences by removing unnec-
essary words.

5 Conclusion

We presented a syntax-based language model
for the sentence compression task. We em-
ployed unsupervised methods to yield labels to
train a policy network in a supervised man-
ner. The experimental results demonstrates that
the compression could be further improved by a
post-hoc language-model-based evaluator, and our
evaluator-enhanced model performs better or com-
parable upon the evaluation metrics on two large-
scale datasets.
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Abstract

In the age of social news, it is important
to understand the types of reactions that
are evoked from news sources with various
levels of credibility. In the present work
we seek to better understand how users re-
act to trusted and deceptive news sources
across two popular, and very different, so-
cial media platforms. To that end, (1) we
develop a model to classify user reactions
into one of nine types, such as answer,
elaboration, and question, etc, and (2) we
measure the speed and the type of reac-
tion for trusted and deceptive news sources
for 10.8M Twitter posts and 6.2M Reddit
comments. We show that there are signif-
icant differences in the speed and the type
of reactions between trusted and deceptive
news sources on Twitter, but far smaller
differences on Reddit.

1 Introduction

As the reliance on social media as a source of news
increases and the reliability of sources is increas-
ingly debated, it is important to understand how
users react to various sources of news. Most stud-
ies that investigate misinformation spread in so-
cial media focus on individual events and the role
of the network structure in the spread (Qazvinian
et al., 2011; Wu et al., 2015; Kwon et al., 2017) or
detection of false information (Rath et al., 2017).
These studies have found that the size and shape
of misinformation cascades within a social net-
work depends heavily on the initial reactions of
the users. Other work has focused on the language
of misinformation in social media (Rubin et al.,
2016; Rashkin et al., 2017; Mitra et al., 2017;
Wang, 2017; Karadzhov et al., 2017; Volkova
et al., 2017) to detect types of deceptive news.

As an alternative to studying newsworthy events
one at a time (Starbird, 2017), the current work ap-
plies linguistically-infused models to predict user
reactions to deceptive and trusted news sources.
Our analysis reveals differences in reaction types
and speed across two social media platforms —
Twitter and Reddit.

The first metric we report is the reaction type.
Recent studies have found that 59% of bitly-URLs
on Twitter are shared without ever being read (Ga-
bielkov et al., 2016), and 73% of Reddit posts were
voted on without reading the linked article (Glen-
ski et al., 2017). Instead, users tend to rely on
the commentary added to retweets or the com-
ments section of Reddit-posts for information on
the content and its credibility. Faced with this
reality, we ask: what kind of reactions do users
find when they browse sources of varying credi-
bility? Discourse acts, or speech acts, can be used
to identify the use of language within a conversa-
tion, e.g., agreement, question, or answer. Recent
work by Zhang et al. (2017) classified Reddit com-
ments by their primary discourse act (e.g., ques-
tion, agreement, humor), and further analyzed pat-
terns from these discussions.

The second metric we report is reaction speed.
A study by Jin et al. (2013) found that trusted news
stories spread faster than misinformation or ru-
mor; Zeng et al. (2016) found that tweets which
deny rumors had shorter delays than tweets of sup-
port. Our second goal is to determine if these
trends are maintained for various types of news
sources on Twitter and Reddit.

Hence, the contributions of this work are two-
fold: (1) we develop a linguistically-infused neu-
ral network model to classify reactions in social
media posts, and (2) we apply our model to label
10.8M Twitter posts and 6.2M Reddit comments
in order to evaluate the speed and type of user re-
actions to various news sources.
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2 Reaction Type Classification

In this section, we describe our approach to clas-
sify user reactions into one of eight types of
discourse: agreement, answer, appreciation, dis-
agreement, elaboration, humor, negative reaction,
or question, or as none of the given labels, which
we call “other”, using linguistically-infused neural
network models.

2.1 Reddit Data

We use a manually annotated Reddit dataset from
Zhang et al. (2017) to train our reaction classifica-
tion model. Annotations from 25 crowd-workers
labelled the primary discourse act for 101,525
comments within 9,131 comment threads on Red-
dit. The Reddit IDs, but not the text content of
the comments themselves, were released with the
annotations. So we collected the content of Red-
dit posts and comments from a public archive of
Reddit posts and comments.1 Some content was
deleted prior to archival, so the dataset shown in
Table 1 is a subset of the original content. Despite
the inability to capture all of the original dataset,
Table 1 shows a similar distribution between our
dataset and the original.

Zhang et al. Present work
Reaction Type # % # %
agreement 5,054 4.73 3,857 4.61
answer 41,281 38.63 32,561 38.94
appreciation 8,821 8.25 6,973 8.34
disagreement 3,430 3.21 2,654 3.17
elaboration 19,315 18.07 14,966 17.90
humor 2,358 2.21 1,878 2.25
negative reaction 1,901 1.78 1,473 1.76
other 1,979 1.85 1,538 1.84
question 10,568 9.89 8,194 9.80
no majority label 12,162 11.38 9532 11.40
Total 106,869 100 83, 626 100

Table 1: Summary of the training data we recovered com-
pared to the data collected by Zhang et al. (2017) reported as
distributions of comments across reaction types.

2.2 Model

We develop a neural network architecture that re-
lies on content and other linguistic signals ex-
tracted from reactions and parent posts, and takes
advantage of a “late fusion” approach previ-
ously used effectively in vision tasks (Karpathy
et al., 2014; Park et al., 2016). More specifi-
cally, we combine a text sequence sub-network
with a vector representation sub-network as shown

1bigquery.cloud.google.com/dataset/
fh-bigquery:reddit_posts|reddit_comments

Predicted Label

Probability Activation
Layer (soft max)

Dense Layer
(100 units)

Tensor Concatenation

Max Pooling Layer
(1D, Pool Size=3)

Convolutional
Layer (100 units)

Convolutional
Layer (100 units)

Embedding Layer
(200 units)

Word Sequences

Dense Layer
(100 units)

Dense Layer
(100 units)

LIWC Features

Vector Sub-Network Text Sub-Network

Figure 1: Architecture of neural network model used to pre-
dict reaction types.

in Figure 1. The text sequence sub-network
consists of an embedding layer initialized with
200-dimensional GloVe embeddings (Pennington
et al., 2014) followed by two 1-dimensional con-
volution layers, then a max-pooling layer followed
by a dense layer. The vector representation sub-
network consists of two dense layers. We incorpo-
rate information from both sub-networks through
concatenated padded text sequences and vector
representations of normalized Linguistic Inquiry
and Word Count (LIWC) features (Pennebaker
et al., 2001) for the text of each post and its parent.

2.3 Reaction Type Classification Results

As shown in Figure 2, our linguistically-infused
neural network model that relies solely on the
content of the reaction and its parent has com-
parable performance to the more-complex CRF
model by Zhang et al. (2017), which relies on con-
tent as well as additional metadata like the author,
thread (e.g., the size of the the thread, the number
of branches), structure (e.g., the position within
the thread), and community (i.e., the subreddit in
which the comment is posted).

agreement
answer

appreciation

disagreement
elaboration

humor

negative reaction
question

0

0.25

0.5
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1

F1
Sc

or
e

F1 Scores by Reaction-Type

Zhang et al. (2017) Present work
Figure 2: Comparison of our model’s performance, measured
using F1 score, trained only on content features, with the per-
formance reported by Zhang et al. (2017) trained on content,
author, thread, structure, and community features.
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3 Measuring Reactions to Trusted and
Deceptive News Sources

In this section, we present key results of our anal-
ysis of how often and how quickly users react to
content from sources of varying credibility using
the reaction types predicted by our linguistically-
infused neural network model.

3.1 Twitter and Reddit News Data

We focus on trusted news sources that provide
factual information with no intent to deceive
and deceptive news sources. Deceptive sources
are ranked by their intent to deceive as fol-
lows: clickbait (attention-grabbing, misleading, or
vague headlines to attract an audience), conspir-
acy theory (uncorroborated or unreliable informa-
tion to explain events or circumstances), propa-
ganda (intentionally misleading information to ad-
vance a social or political agenda), and disinfor-
mation (fabricated or factually incorrect informa-
tion meant to intentionally deceive readers).

Trusted, clickbait, conspiracy, and propaganda
sources were previously compiled by Volkova
et al. (2017) through a combination of crowd-
sourcing and public resources. Trusted news
sources with Twitter-verified accounts were man-
ually labeled and clickbait, conspiracy, and pro-
paganda news sources were collected from several
public resources that annotate suspicious news ac-
counts2. We collected news sources identified as
spreading disinformation by the European Union’s
East Strategic Communications Task Force from
euvsdisinfo.eu. In total, there were 467 news
sources: 251 trusted and 216 deceptive.

We collected reaction data for two popular plat-
forms, Reddit and Twitter, using public APIs over
the 13 month period from January 2016 through
January 2017. For our Reddit dataset, we col-
lected all Reddit posts submitted during the 13
month period that linked to domains associated
with one of our labelled news sources. Then we
collected all comments that directly responded to
those posts. For our Twitter dataset, we collected
all tweets posted in the 13 month period that ex-
plicitly @mentioned or directly retweeted content
from a source and then assigned a label to each
tweet based on the class of the source @mentioned

2Example resources used by Volkova et al (2017)
to compile deceptive news sources: http://www.
fakenewswatch.com/, http://www.propornot.
com/p/the-list.html and others.

Reddit Dataset
Type # Sources # Comments
Trusted 169 5,429,694
Deceptive (no disinfo) 128 664,670
Deceptive 179 795,591
Total 348 6,225,285

Twitter Dataset
Type # Sources # Tweets
Trusted 182 6,567,002
Deceptive (no disinfo) 100 775,844
Deceptive 150 4,263,576
Total 232 10,830,578

Table 2: Summary of Twitter and Reddit datasets used to
measure the speed and types of reactions to Trusted and De-
ceptive news sources excluding (no disinformation) or in-
cluding (All) the most extreme of the deceptive sources —
those identified as spreading disinformation.
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Figure 3: Distributions of Deceptive news sources and re-
actions to those sources (Reddit comments or tweets, respec-
tively) for the Reddit and Twitter datasets across the four sub-
categories of deceptive news sources.

or retweeted. A breakdown of each dataset by
source type is shown in Table 2. Figure 3 illus-
trates the distribution of deceptive news sources
and reactions across the four sub-categories of de-
ceptive news sources. In our analysis, we consider
the set of all deceptive sources and the set exclud-
ing the most extreme (disinformation).

3.2 Methodology

We use the linguistically-infused neural network
model from Figure 1 to label the reaction type of
each tweet or comment. Using these labels, we ex-
amine how often response types occur when users
react to each type of news source. For clarity, we
report the five most frequently occurring reaction
types (expressed in at least 5% of reactions within
each source type) and compare the distributions of
reaction types for each type of news source.

To examine whether users react to content from
trusted sources differently than from deceptive
sources, we measure the reaction delay, which we
define as the time elapsed between the moment the
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link or content was posted/tweeted and the mo-
ment that the reaction comment or tweet occurred.
We report the cumulative distribution functions
(CDFs) for each source type and use Mann Whit-
ney U (MWU) tests to compare whether users re-
spond with a given reaction type with significantly
different delays to news sources of different levels
of credibility.

3.3 Results and Discussion

For both Twitter and Reddit datasets, we found
that the primary reaction types were answer, ap-
preciation, elaboration, question, or “other” (no la-
bel was predicted). Figure 4 illustrates the distri-
bution of reaction types among Reddit comments
(top plot) or tweets (bottom plot) responding to
each type of source, as a percentage of all com-
ments/tweets reacting to sources of the given type
(i.e., trusted, all deceptive, and deceptive exclud-
ing disinformation sources).

For Twitter, we report clear differences in user
reactions to trusted vs. deceptive sources. De-
ceptive (including disinformation) sources have a
much higher rate of appreciation reactions and a
lower rate of elaboration responses, compared to
trusted news sources. Differences are still signifi-
cant (p < 0.01) but the trends reverse if we do not
include disinformation sources. We also see an in-
crease in the rate of question-reactions compared
to trusted news sources if we exclude disinforma-
tion sources.

For Reddit, there appears to be a very simi-
lar distribution across reaction types for trusted
and deceptive sources. However, MWU tests still
found that the differences between trusted and de-
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Figure 5: CDF plots of the volumes of reactions by reac-
tion delays for the frequently occurring reactions (i.e., , re-
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ceptive news sources were statistically significant
(p < 0.01) — regardless of whether we include
or exclude disinformation sources. Posts that link
to deceptive sources have higher rates of ques-
tion, appreciation, and answering reactions, while
posts that link to trusted sources have higher rates
of elaboration, agreement, and disagreement.

Next, we compared the speed with which users
reacted to posts of sources of varying credibil-
ity. Our original hypothesis was that users re-
act to posts of trusted sources faster than posts
of deceptive sources. The CDFs for each source
type and platform (solid and dashed lines repre-
sent Reddit and Twitter respectively) are shown
in Figure 5. We observe that the lifetime of di-
rect reactions to news sources on Twitter is often
more extended than for sources on Reddit. One
exception is answer reactions which almost al-
ways occur within the first hour after the Twitter
new source originally posted the tweet being an-
swered. This may be due to the different ways
that users consume content on the two platforms.
Users follow accounts on Twitter, whereas on Red-
dit users “follow” topics through their subscrip-
tions to various subreddits. Users can view the
news feeds of individual sources on Twitter and
view all of the sources’ posts. Reddit, on the other
hand, is not designed to highlight individual users
or news sources; instead new posts (regardless of
the source) are viewed based on their hotness score
within each subreddit.

In addition, we observe that reactions to posts
linked to trusted sources are less heavily concen-
trated within the first 12 to 15 hours of the post’s
lifetime on Reddit. The opposite is found on Twit-
ter. Twitter sources may have a larger range
of reaction delays, but they are also more heav-
ily concentrated in the lower end of that range
(p < 0.01).

4 Related Work

As we noted above, most studies that examine
misinformation spread focus on individual events
such as natural disasters (Takahashi et al., 2015),
political elections (Ferrara, 2017), or crises (Star-
bird et al., 2014) and examine the response to the
event on social media. A recent study by Vosoughi
et al. (2018) found that news stories that were fact-
checked and found to be false spread faster and
to more people than news items found to be true.
In contrast, our methodology considers immediate

reactions to news sources of varying credibility, so
we can determine whether certain reactions or re-
actions to trusted or deceptive news sources evoke
more or faster responses from social media users.

5 Conclusion

In the current work, we have presented a content-
based model that classifies user reactions into one
of nine types, such as answer, elaboration, and
question, etc., and a large-scale analysis of Twitter
posts and Reddit comments in response to content
from news sources of varying credibility.

Our analysis of user reactions to trusted and de-
ceptive sources on Twitter and Reddit shows sig-
nificant differences in the distribution of reaction
types for trusted versus deceptive news. However,
due to differences in the user interface, algorith-
mic design, or user-base, we find that Twitter users
react to trusted and deceptive sources very differ-
ently than Reddit users. For instance, Twitter users
questioned disinformation sources less often and
more slowly than they did trusted news sources;
Twitter users also expressed appreciation towards
disinformation sources more often and faster than
towards trusted sources. Results from Reddit show
similar, but far less pronounced, reaction results.

Future work may focus on analysis of reaction
behavior from automated (i.e., ’bot’), individual,
or organization accounts; on additional social me-
dia platforms and languages; or between more
fine-grained categories of news source credibility.
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Abstract

Online petitions are a cost-effective way
for citizens to collectively engage with
policy-makers in a democracy. Predicting
the popularity of a petition — commonly
measured by its signature count — based
on its textual content has utility for policy-
makers as well as those posting the pe-
tition. In this work, we model this task
using CNN regression with an auxiliary
ordinal regression objective. We demon-
strate the effectiveness of our proposed ap-
proach using UK and US government pe-
tition datasets.1

1 Introduction

A petition is a formal request for change or an
action to any authority, co-signed by a group of
supporters. Research has shown the impact of on-
line petitions on the political system (Lindner and
Riehm, 2011; Hansard, 2016; Bochel and Bochel,
2017). Modeling the factors that influence peti-
tion popularity — measured by the number of sig-
natures a petition gets — can provide valuable in-
sights to policy makers as well as those authoring
petitions (Proskurnia et al., 2017).

Previous work on modeling petition popularity
has focused on predicting popularity growth over
time based on an initial popularity trajectory (Hale
et al., 2013; Yasseri et al., 2017; Proskurnia et al.,
2017), e.g. given the number of signatures a peti-
tion gets in the first x hours, prediction of the to-
tal number of signatures at the end of its lifetime.
Asher et al. (2017) and Proskurnia et al. (2017)
examine the effect of sharing petitions on Twitter
on its overall success, as a time series regression

1 The code and data from this paper are avail-
able from http://github.com/shivashankarrs/
Petitions

task. Other work has analyzed the importance of
content on the success of the petition (Elnoshokaty
et al., 2016). Proskurnia et al. (2017) also consider
the anonymity of authors and petitions featured on
the front-page of the website as additional factors.
Huang et al. (2015) analyze ‘power’ users on pe-
tition platforms, and show their influence on other
petition signers.

In general, the target authority for a petition can
be political or non-political. In this work, we use
petitions from the official UK and US government
websites, whereby citizens can directly appeal to
the government for action on an issue. In the case
of UK petitions, they are guaranteed an official re-
sponse at 10k signatures, and the guarantee of par-
liamentary debate on the topic at 100k signatures;
in the case of US petitions, they are guaranteed a
response from the government at 100k signatures.
Political scientists refer to this as advocacy democ-
racy (Dalton et al., 2003), in that people are able to
engage with elected representatives directly. Our
objective is to predict the popularity of a petition at
the end of its lifetime, solely based on the petition
text.

Elnoshokaty et al. (2016) is the closest work to
this paper, whereby they target Change.org peti-
tions and perform correlation analysis of popular-
ity with the petition’s category, target goal set,2

and the distribution of words in General Inquirer
categories (Stone et al., 1962). In our case, we are
interested in the task of automatically predicting
the number of signatures.

We build on the convolutional neural network
(CNN) text regression model of Bitvai and Cohn
(2015) to infer deep latent features. In addi-
tion, we evaluate the effect of an auxiliary ordi-
nal regression objective, which can discriminate
petitions that attract different scales of popular-

2See http://bit.ly/2BXd0Sl.
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ity (e.g., 10 signatures, the minimum count needed
to not be closed vs. 10k signatures, the minimum
count to receive a response from UK government).

Finally, motivated by text-based message prop-
agation analysis work (Tan et al., 2014; Piotrkow-
icz et al., 2017), we hand-engineer features which
capture wording effects on petition popularity, and
measure the ability of the deep model to automat-
ically infer those features.

2 Proposed Approach

Inspired by the successes of CNN for text cate-
gorization (Kim, 2014) and text regression (Bit-
vai and Cohn, 2015), we propose a CNN-based
model for predicting the signature count. An out-
line of the model is provided in Figure 1. A peti-
tion has three parts: (1) title, (2) main content, and
(3) (optionally) additional details.3 We concate-
nate all three parts to form a single document for
each petition. We have n petitions as input train-
ing examples of the form {ai, yi}, where ai and
yi denote the text and signature count of petition i,
respectively. Note that we log-transform the sig-
nature count, consistent with previous work (El-
noshokaty et al., 2016; Proskurnia et al., 2017).

We represent each token in the document via
its pretrained GloVe embedding (Pennington et al.,
2014), which we update during learning. We then
apply multiple convolution filters with width one,
two and three to the dense input document matrix,
and apply a ReLU to each. They are then passed
through a max-pooling layer with a tanh activa-
tion function, and finally a multi-layer perceptron
via the exponential linear unit activation,

f(x) =

{
x, if x > 0

α (exp(x)− 1) otherwise ,

to obtain the final output (yi), which is guaranteed
to be positive. We train the model by minimizing
mean squared error in log-space,

Lreg =
1

n

n∑

i=1

‖ŷi − yi‖22 , (1)

where ŷi is the estimated signature count for peti-
tion i. We refer to this model as CNNregress .

2.1 Auxiliary Ordinal Regression Task
We augment the regression objective with an ordi-
nal regression task, which discriminates petitions

3Applicable for the UK government petitions only.
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Figure 1: CNN-Regression Model. y denotes sig-
nature count. > rk is the auxiliary task that de-
notes p(petition attracting > rk signatures).

that achieve different scale of signatures. The in-
tuition behind this is that there are pre-determined
thresholds on signatures which trigger different
events, with the most important of these being 10k
(to guarantee a government response) and 100k (to
trigger a parliamentary debate) for the UK peti-
tions; and 100k (to get a government response)
for the US petitions. In addition to predicting
the number of signatures, we would like to be
able to predict whether a petition is likely to meet
these thresholds, and to this end we use the ex-
ponential ordinal scale based on the thresholds
O = {10, 100, 1000, 10000, 100000}.4 Overall
this follows the exponential distribution of signa-
ture counts closely (Yasseri et al., 2017).

We transform the ordinal regression problem
into a series of simpler binary classification sub-
problems, as proposed by Li and Lin (2007). We
construct binary classification objectives for each
threshold in O. For each petition i we construct
an additional binary vector ~oi, with a 0–1 encod-
ing for each of the ordinal classes ({ai,yi,~oi}).
Note that the transformation is done in a consis-
tent way, i.e., if a petition has y signatures, then
in addition to immediate lower-bound threshold in
O determined by l = blog10 yc (for y < 106), all
classes which have a lesser threshold are also set
to 1 (ot:t<l).

With this transformation, apart from the real-
valued output yi, we also learn a mapping from
hi with sigmoid activation for each class (~ri). Fi-
nally we minimize cross-entropy loss for each bi-
nary classification task, denoted Laux.

4We use O = {1000, 10000, 100000} for the US peti-
tions, as only petitions which get a minimum of 150 signa-
tures are published on the website.
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Overall, the loss function for the joint model is:

LJ = Lreg + γLaux (2)

where γ ≥ 0 is a hyper-parameter which is tuned
on the validation set. We refer to this model as
CNNregress+ord .

3 Hand-engineered Features

We hand-engineered custom features, partly based
on previous work on non-petition text. This in-
cludes features from Tan et al. (2014) and Pi-
otrkowicz et al. (2017) such as structure, syntax,
bias, polarity, informativeness of title, and novelty
(or freshness), in addition to novel features devel-
oped specifically for our task, such as policy cate-
gory and political bias features. We provide a brief
description of the features below:
• Additional Information (ADD): binary flag in-

dicating whether the petition has additional de-
tails or not.
• Ratio of indefinite (IND) and definite (DEF) ar-

ticles.
• Ratio of first-person singular pronouns (FSP),

first-person plural pronouns (FPP), second-
person pronouns (SPP), third-person singular
pronouns (TSP), and third-person plural pro-
nouns (TPP).
• Ratio of subjective words (SUBJ) and difference

between count of positive and negative words
(POL), based on General Inquirer lexicon.
• Ratio of biased words (BIAS) from the bias lex-

icon (Recasens et al., 2013).
• Syntactic features: number of nouns (NNC),

verbs (VBC), adjectives (ADC) and adverbs
(RBC).
• Number of named entities (NEC), based on the

NLTK NER model (Bird et al., 2009).
• Freshness (FRE): cosine similarity with all pre-

vious petitions, inverse weighted by the differ-
ence in start date of petitions (in weeks).
• Action score of title (ACT): probability of title

conveying the action requested. Predictions are
obtained using an one-class SVM model built
on the universal representation (Conneau et al.,
2017) of titles of rejected petitions,5 as they
don’t contain any action request. These rejected
petitions are not part of our evaluation dataset.
• Policy category popularity score (CSC): com-

monality of the petition’s policy issue (Subra-

5https://petition.parliament.uk/help
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Figure 3: US Petitions Signature Distribution

manian et al., 2017), based on the recent UK/US
election manifesto promises.
• Political bias and polarity: relative lean-

ing/polarity based on: (a) #left+#right
#left+#right+#neutral

(PBIAS) (b) #left−#right
#left+#right (L–R). Sentence-level

left, right and neutral classes are obtained us-
ing a model built on the CMP dataset, and the
categorization given by Volkens et al. (2013).
The custom features are passed through a hid-

den layer with tanh activations (ci), and concate-
nated with the hidden representation learnt using

the dense input document (Section 2),
[
hi
ci

]
, be-

fore mapping to the output layer (Figure 1). We
refer to this model as CNNregress+ord+feat . We use
the Adam optimizer (Kingma and Ba, 2014) to
train all our models.

4 Evaluation

We collected our data from the UK6 and US7

government websites over the term of the 2015–
17 Conservative and 2011–14 Democratic gov-
ernments respectively. The UK dataset contains
10950 published petitions, with over 31m signa-
tures in total. We removed US petitions with
≤ 150 signatures, resulting in a total of 1023 pe-
titions, with over 12m signatures in total. We split
the data chronologically into train/dev/test splits
based on a 80/10/10 breakdown. Distribution over
log signature counts is given in Figures 2 and 3.

To analyze the statistical significance of each
feature varying across ordinal groups O, we ran

6https://petition.parliament.uk
7https://petitions.whitehouse.gov/
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a Kruskal-Wallis test (at α = 0.05: Kruskal and
Wallis (1952)) on the training set. The test re-
sults in the test statistic H and the corresponding
p-value, with a high H indicating that there is a
difference between the two groups. The analysis
is given in Table 2, where p < 0.001, p < 0.01
and p < 0.05 are denoted as “***”, “**” and
“*”, respectively. Note that the ordinal groups are
different for the two datasets: analyzing the UK
dataset with the same ordinal groups used for the
US dataset ({1000,10000,100000}) resulted in a
similarly sparse set of significance values for non-
syntactic features as the US dataset.

We benchmark our proposed approach against
the following baseline approaches:
Mean: average signature count in the raining set.
LinearBoW: linear regression (Linear) model us-

ing TF-IDF weighted bag-of-words features.
LinearGI: linear regression model based on word

distributions from the General Inquirer lexicon;
similar to (Elnoshokaty et al., 2016), but with-
out the target goal set or category of the petition
(neither of which is relevant to our datasets).

SVRBoW: support vector regression (SVR) model
with RBF kernel and TF-IDF weighted bag-of-
words features.

SVRfeat: SVR model using the hand-engineered
features from Section 3.

SVRBoW+feat: SVR model using combined
TF-IDF weighted bag-of-words and hand-
engineered features.
We present the regression results for the base-

line and proposed approaches based on: (1) mean
absolute error (MAE), and (2) mean absolute per-
centage error (MAPE, similar to Proskurnia et al.
(2017)), calculated as 100

n

∑n
i=1

|ŷi−yi|
yi

. Results
are given in Table 1.

The proposed CNN models outperform all of
the baselines. Comparing the CNN model with
regression loss only, CNNregress , and the joint
model, CNNregress+ord is superior across both
datasets and measures. When we add the hand-
engineered features (CNNregress+ord+feat), there is
a very small improvement. In order to further un-
derstand the effect of the hand-engineering fea-
tures without the ordinal regression loss, we use
it only with the regression task (CNNregress+feat),
which mildly improves over CNNregress , but is be-
low CNNregress+ord+feat . We also evaluate a vari-
ant of CNNregress+ord+feat with an additional hid-
den layer, given in the final row of Table 1, and

find it to lead to further improvements in the re-
gression results. Adding more hidden layers did
not show further improvements.

4.1 Classification Performance
The F-score is calculated over the three classes
of [0, 10000), [10000, 100000) and [100000,∞)
(corresponding to the thresholds at which the peti-
tion leads to a government response or parliamen-
tary debate) for the UK dataset; and [150, 100000)
and [100000,∞) for the US dataset, by determin-
ing if the predicted and actual signature counts
are in the same bin or not. We also built an
SVM-based ordinal classifier (Li and Lin, 2007)
over the significant ordinal classes, as an addi-
tional baseline. The CNN models struggle to
improve F-score (in large part due to the imbal-
anced data). For the UK dataset, CNN mod-
els with an ordinal objective (CNNregress+ord and
CNNregress+ord+feat) result in a macro-averaged F-
score of 0.36, compared to 0.33 for all other meth-
ods. But for the US dataset, which is a binary clas-
sification task, all methods obtain a 0.49 F-score.
In addition to text, considering other factors such
as early signature growth (Hale et al., 2013) —
which determines the timeliness to get the issue
online on the US website — could be necessary.

4.2 Latent vs. Hand-engineered Features
Finally, we built a linear regression model with
the estimated hidden features from CNNregress+ord
as independent variables and hand-engineered fea-
tures as dependent variables, to study their linear
dependencies in a pair-wise fashion. The most sig-
nificant dependencies (given by p-value, phidden)
over the test set are given in Table 2. We found
that the model is able to learn latent feature rep-
resentations for syntactic features (NNC, VBC,
ADC,8 RBC9), FRE, NEC, IND and DEF,8 but
not the other features — these can be considered to
provide deeper information than can be extracted
automatically from the data, or else information
that has no utility for the signature prediction task.
From the analysis in Table 2, some of the features
that vary across ordinal groups are not linearly
dependent with the deep latent features. These
include ADD,8 BIAS, CSC,8 PBIAS,9 and L–R,
where the latter ones are policy-related features.
This indicates that the custom features and hidden
features contain complementary signals.

8UK dataset only.
9US dataset only.

185



UK Petitions US Petitions

Approach MAE MAPE MAE MAPE

Mean 4.37 159.7 2.82 44.61
LinearBoW 1.75 57.56 2.51 37.01
LinearGI 1.77 58.22 1.84 27.71
SVRBoW 1.53 45.35 1.39 20.37
SVRfeat 1.54 46.96 1.40 20.48
SVRBoW+feat 1.52 44.71 1.39 20.38

CNNregress 1.44 36.72 1.24 14.98
CNNregress+ord 1.42 33.86 1.22 14.68
CNNregress+ord+feat 1.41 32.92 1.20 14.47
CNNregress+feat 1.43 35.84 1.23 14.75
CNNregress+ord+feat + Additional hidden layer 1.40 31.68 1.16 14.38

Table 1: Results over UK and US Government petition datasets. Best scores are given in bold.

UK Petitions US Petitions

Feature Description H p phidden H p phidden

ADD Additional details 94.59 ***
IND Indefinite articles 14.87 * 8.56 * *
DEF Definite articles 34.91 *** * 3.69
FSP First-person singular pronouns 53.36 *** 6.84 *
FPP First-person plural pronouns 11.26 * 6.10
SPP Second-person pronouns 13.80 * 3.95
TSP Third-person singular pronouns 5.82 9.07 *
TPP Third-person plural pronouns 16.13 ** 5.58
SUBJ Subjective words 12.25 * 7.21 * ***
POL Polarity 2.60 * 4.27
BIAS Biased words 11.92 * 4.56 *
NNC Nouns 7.34 *** 1.93 **
VBC Verbs 2.75 ** 7.46 * ***
ADC Adjectives 26.14 *** *** 4.07
RBC Adverbs 17.09 ** 2.99 *
NEC Named entities 51.11 *** *** 3.94 *
FRE Freshness 86.97 *** * 13.86 ** *
ACT Title’s action score 3.89 3.54
CSC Policy category popularity 38.22 *** 1.94
PBIAS Political bias 4.13 12.23 **
L–R Left–right scale 10.94 * 12.88 **

Table 2: Dependency of hand-engineered features against the signature count (p andH) and deep hidden
features (phidden). ADD is not applicable for the US government petitions dataset. p < 0.001, p < 0.01
and p < 0.05 are denoted as “***”, “**” and “*”, respectively.

Overall our proposed approach with the
auxiliary loss and hand-engineered features
(CNNregress+ord+feat) provides a reduction in
MAE over CNNregress by 2.1% and 3.2%, and
SVR by 7.2% and 13.7% on the UK and US
datasets, resp. Although the ordinal classification
performance is not very high, it must be noted
that the data is heavily skewed (only 2% of the
UK test-set falls in the [10000, 100000) and
[100000,∞) bins put together), and we tuned the
hyper-parameters wrt the regression task only.

5 Conclusion and Future Work

This paper has targeted the prediction of the popu-
larity of petitions directed at the UK and US gov-

ernments. In addition to introducing a novel task
and dataset, contributions of our work include: (a)
we have shown the utility of an auxiliary ordi-
nal regression objective; and (b) determined which
hand-engineered features are complementary to
our deep learning model. In the future, we aim to
study other factors that can influence petition pop-
ularity in conjunction with text, e.g., social media
campaigns, news coverage, and early growth rates.
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Abstract

We introduce a new approach to tackle the
problem of offensive language in online
social media. Our approach uses unsuper-
vised text style transfer to translate offen-
sive sentences into non-offensive ones. We
propose a new method for training encoder-
decoders using non-parallel data that com-
bines a collaborative classifier, attention
and the cycle consistency loss. Experimen-
tal results on data from Twitter and Red-
dit show that our method outperforms a
state-of-the-art text style transfer system in
two out of three quantitative metrics and
produces reliable non-offensive transferred
sentences.

1 Introduction

The use of offensive language is a common prob-
lem of abusive behavior on online social media
networks. Various work in the past have attacked
this problem by using different machine learning
models to detect abusive behavior (Xiang et al.,
2012; Warner and Hirschberg, 2012; Kwok and
Wang, 2013; Wang et al., 2014; Nobata et al., 2016;
Burnap and Williams, 2015; Davidson et al., 2017;
Founta et al., 2018). Most of these work follow the
assumption that it is enough to filter out the entire
offensive post. However, a user that is consuming
some online content may not want an entirely fil-
tered out message but instead have it in a style that
is non-offensive and still be able to comprehend it
in a polite tone. On the other hand, for those users
who plan to post an offensive message, if one could
not only alert that a content is offensive and will be
blocked, but also offer a polite version of the mes-
sage that can be posted, this could encourage many
users to change their mind and avoid the profanity.

∗Equal contribution.

In this work we introduce a new way to deal with
the problem of offensive language on social media.
Our approach consists on using style transfer tech-
niques to translate offensive sentences into non-
offensive ones. A simple encoder-decoder with
attention (Bahdanau et al., 2014) would be enough
to create a reasonable translator if a large parallel
corpus is available. However, unlike machine trans-
lation, to the best of our knowledge, there exists no
dataset of parallel data available for the case of of-
fensive to non-offensive language. Moreover, it is
important that the transferred text uses a vocabulary
that is common in a particular application domain.
Therefore, unsupervised methods that do not use
parallel data are needed to perform this task.

We propose a method to perform text style trans-
fer addressing two main challenges arising when us-
ing non-parallel data in the encoder-decoder frame-
work: (a) there is no straightforward way to train
the encoder-decoder because we cannot use maxi-
mum likelihood estimation on the transferred text
due to lack of ground truth; (b) it is difficult to pre-
serve content while transferring the input to a new
style. We address (a) using a single collaborative
classifier, as an alternative to commonly used adver-
sarial discriminators, e.g., as in (Shen et al., 2017).
We approach (b) by using the attention mechanism
combined with a cycle consistency loss.

In this work we also introduce two benchmark
datasets for the task of transferring offensive to
non-offensive text that are based on data from two
popular social media networks: Twitter and Red-
dit. We compare our method to the approach of
Shen et al. (2017) using three quantitative metrics:
classification accuracy, content preservation and
perplexity. Additionally, some qualitative results
are also presented with a brief error analysis.
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2 Method

We assume access to a text dataset consisting of
two non-parallel corpora X = X0 ∪X1 with dif-
ferent style values s0 and s1 (offensive and non-
offensive) of a total ofN = m+n sentences, where
|X0| = m and |X1| = n. We denote a randomly
sampled sentence k of style si from X as xik, for
k ∈ 1, . . . , N and i ∈ {0, 1}. A natural approach
to perform text style transfer is to use a regular
encoder-decoder network. However, the training of
such network would require parallel data. Since in
this work we consider a problem of unsupervised
style transfer on non-parallel data, we propose to
extend the basic encoder-decoder by introducing
a collaborative classifier and a set of specialized
loss functions that enable the training on such data.
Figure 1 shows an overview of the proposed style
transfer approach. Note that for clarity, in Figure
1 we have used multiple boxes to show encoder,
decoder and classifier, the actual model contains a
single encoder and decoder, and one classifier.

As can be seen from Figure 1, the encoder (a
GRU RNN, E(xik, si) = H i

k) takes as input a
sentence xik together with its style label si, and
outputs H i

k, a sequence of hidden states. The de-
coder/generator (also a GRU RNN, G(H i

k, sj) =

x̂i→jk for i, j ∈ 0, 1) takes as input the previously
computed H i

k and a desired style label sj and out-
puts a sentence x̂i→jk , which is the original sen-
tence but transferred from style si to style sj . The
hidden states H i

k are used by the decoder in the at-
tention mechanism (Bahdanau et al., 2014), and in
general can improve the quality of the decoded
sentence. When i = j, the decoded sentence
x̂i→ik is in its original style si (top part of Fig-
ure 1); for i 6= j, the decoded/transferred sen-
tence x̂i→jk is in a different style sj (bottom part
of Figure1). Denote all transferred sentences as
X̂ = {x̂i→jk | i 6= j, k = 1, . . . , N}. The classifier
(a CNN), then takes as input the decoded sentences
and outputs a probability distribution over the style
labels, i.e., C(x̂i→jk ) = pC(sj |x̂i→jk ) (see Eq. (2)).
By using the collaborative classifier our goal is to
produce a training signal that indicates the effec-
tiveness of the current decoder on transferring a
sentence to a given style.

Note that the top branch of Figure 1 can be con-
sidered as an auto-encoder and therefore we can en-
force the closeness between x̂i→ik and xik by using a
standard cross-entropy loss (see Eq. (1)). However,
for the bottom branch, once we transferred X to X̂

(forward-transfer step), due to the lack of parallel
data, we cannot use the same approach. For this
purpose, we propose to transfer X̂ back toX (back-
transfer step) and compute the reconstruction loss
between x̂i→j→ik and xik (see Eq. (4). Note also
that as we transfer the text forward and backward,
we also control the accuracy of style transfer using
the classifier (see Eqs. (2), (3) and (5)). In what
follows, we present the details of the loss functions
employed in training.

2.1 Forward Transfer

Reconstruction Loss. Given the encoded input
sentence xik and the decoded sentence x̂i→ik , the
reconstruction loss measures how well the decoder
G is able to reconstruct it:

Lrec = Exik∼X
[
- log pG(xik|E(xik, si), si)

]
. (1)

Classification Loss. Formulated as follows:

Lclass td = E
x̂i→j
k ∼X̂

[
− log pC(sj |x̂i→jk )

]
. (2)

For the encoder-decoder this loss gives a feedback
on the current generator’s effectiveness on transfer-
ring sentences to a new style. For the classifier, it
provides an additional training signal from gener-
ated data, enabling the classifier to be trained in a
semi-supervised regime.
Classification Loss - Original Data. In order to
enforce a high classification accuracy, the classifier
also uses a supervised classification loss, measur-
ing the classifier predictions on the original (super-
vised) instances xik ∈ X:

Lclass od = Exik∼X
[
− log pC(si|xik)

]
. (3)

2.2 Backward Transfer

Reconstruction Loss. The back-transfer (or cycle
consistency) loss (Zhu et al., 2017) is motivated
by the difficulty of imposing constraints on the
transferred sentences. Back-transfer transforms
the transferred sentences x̂i→jk back to the origi-
nal style si, i.e., x̂i→j→ik and compares them to
xik. This also implicitly imposes the constraints on
the generated sentences and improves the content
preservation. The loss is formulated as follows:

Lback rec=Exik∼X
[
− log pG(x

i
k|E(x̂i→jk , sj), si)

]
, (4)

which can be thought to be similar to an auto-
encoder loss in (1) but in the style domain.
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Figure 1: Proposed framework of a Neural Text Style Transfer algorithm using non-parallel data.

Classification Loss. Finally, we ensure that the
back-transferred sentences x̂i→j→ik have the correct
style label si:

Lclass btd=E
x̂i→j
k ∼X̂

[
− log pC(si|G(E(x̂i→jk , sj), si))

]
. (5)

In summary, the training of the components of
our architecture consists in optimizing the follow-
ing loss function using SGD with back-propagation:

L(θE , θG, θC) = min
E,G,C

Lrec + Lback rec

+Lclass od + Lclass td + Lclass btd

3 Related Work

Most previous work that address the problem of
offensive language on social media has focused on
text classification using different machine learn-
ing methods (Xiang et al., 2012; Warner and
Hirschberg, 2012; Kwok and Wang, 2013; Wang
et al., 2014; Burnap and Williams, 2015; Nobata
et al., 2016; Davidson et al., 2017; Founta et al.,
2018). To the best of our knowledge, there is no
previous work on approaching the offensive lan-
guage problem using style transfer methods.

Different strategies for training encoder-
decoders using non-parallel data have been
proposed recently. Many of these methods
borrow the idea of using an adversarial discrimi-
nator/classifier from the Generative Adversarial
Networks (GANs) framework (Goodfellow et al.,
2014) and/or use a cycle consistency loss. Zhu

et al. (2017) proposed the pioneering use of the
cycle consistency loss in GANs to perform image
style transfer from non-parallel data. In the NLP
area, some recent effort has been done on the
use of non-parallel data for style/content transfer
(Shen et al., 2017; Melnyk et al., 2017; Fu et al.,
2018) and machine translation (Lample et al.,
2018; Artetxe et al., 2018). Shen et al. (2017),
Fu et al. (2018) and Lample et al. (2018) use
adversarial classifiers as a way to force the decoder
to transfer the encoded source sentence to a
different style/language. Lample et al. (2018) and
Artetxe et al. (2018) use the cycle consistency loss
to enforce content preservation in the translated
sentences. Our work differs from the previous
mentioned work in different aspects: we propose
a new relevant style transfer task that has not
been previously explored; our proposed method
combines a collaborative classifier with the cycle
consistency loss, which gives more stable results.
Note that a potential extension to a problem of
multiple attributes transfer would still use a single
classifier, while in (Shen et al., 2017; Fu et al.,
2018) this may require as many discriminators as
the number of attributes.

Another line of research connected to this work
consists in the automatic text generation condi-
tioned on stylistic attributes. (Hu et al., 2017) and
(Ficler and Goldberg, 2017) are examples of this
line of work which use labeled data during training.
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4 Experiments

4.1 Datasets
We created datasets of offensive and non-offensive
texts by leveraging Henderson et al. (2018)’s pre-
processing of Twitter (Ritter et al., 2010) and Red-
dit Politics (Serban et al., 2017) corpora, which
contain a large number of social media posts. Hen-
derson et al. (2018) have used Twitter and Reddit
datasets to evaluate the impact of offensive lan-
guage and hate speech in neural dialogue systems.

We classified each entry in the two datasets using
the offensive language and hate speech classifier
from (Davidson et al., 2017). For Reddit, since
the posts are long, we performed the classification
at the sentence level. We note that since ground
truth (parallel data) is not available, it is important
to use the same classifier for data generation and
evaluation so as to have a fair comparison and avoid
inconsistencies. Therefore, we use the classifier
from (Davidson et al., 2017) to test the performance
of the compared algorithms in Sec. 4.3.

For our experiments, we used sentences/tweets
with size between 2 and 15 words and removed
repeated entries, which were frequent in Reddit.
The final datasets have the following number of
instances: Twitter - train [58,642 / 1,962,224] (of-
fensive / non-ofensive), dev [7842] (offensive),
test [7734]; Reddit - [224,319 / 7,096,473], dev
[11,883], test [30,583] . In both training sets the
number of non-offensive entries is much larger than
of the offensive ones, which is not a problem since
the objective is to have the best possible transfer
to the non-offensive domain. We limited the vo-
cabulary size by using words with frequency equal
or larger than 70 (20) in Reddit (Twitter) dataset.
All the other words are replaced by a placeholder
token.

4.2 Experimental Setup
In all the presented experiments, we have used the
same model parameters and the same configuration:
the encoder/decoder is a single layer GRU RNN
with 200 hidden neurons; the classifier is a single
layer CNN with a set of filters of width 1, 2, 3 and
4, and size 128 (the same configuration as in the
discriminators of (Shen et al., 2017)). Following
(Shen et al., 2017), we have also used randomly ini-
tialized word embeddings of size 100, and trained
the model using Adam optimizer with the mini-
batch size of 64 and learning rate of 0.0005. The
validation set has been used to select the best model

by early stopping. Our model has a quite fast con-
vergence rate and achieves good results within just
1 epoch for the Reddit dataset and 5 epochs for the
Twitter dataset.

Our baseline is the model of Shen et al. (2017)1

and it has been used with the default hyperparame-
ter setting proposed by the authors. We have trained
the baseline neural net for three days using a K40
GPU machine, corresponding to about 13 epochs
on the Twitter dataset and 5 epochs on the Reddit
dataset. The validation set has also been used to
select the best model by early stopping.

4.3 Results and Discussion

Although the method proposed in this paper can
be used to transfer text in both directions, we are
interested in transferring in the direction of offen-
sive to non-offensive only. Therefore, all the results
reported in this section correspond to this direction.

In Table 1, we compare our method with the ap-
proach of Shen et al. (2017) using three quantitative
metrics: (1) classification accuracy (Acc.), which
we compute by applying Davidson et al. (2017)’s
classifier to the transferred test sentences; (2) con-
tent preservation (CP), a metric recently proposed
by Fu et al. (2018) which uses pre-trained word
embeddings to compute the content similarity be-
tween transferred and original sentences. We use
Glove embeddings of size 300 (Pennington et al.,
2014); (3) perplexity (PPL), which is computed by
a word-level LSTM language model trained using
the non-offensive training sentences.

Dataset System Acc. CP PPL

Reddit
[Shen17] 87.66 0.894 93.59
Ours 99.54 0.933 115.75

Twitter
[Shen17] 95.36 0.891 90.97
Ours 99.63 0.947 162.75

Table 1: Classification accuracy, content preserva-
tion and perplexity for two datasets.

As can be seen from the table, our proposed
method achieves high accuracy on both datasets,
which means that almost 100% of the time David-
son et al. (2017)’s classifier detects that the trans-
ferred sentences are non-offensive. In terms of the
content preservation, for both datasets our method
also produces better results (the closer to 1 the
better) when compared to (Shen et al., 2017) . A

1https://github.com/shentianxiao/language-style-transfer
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Reddit Twitter
Original for f**k sake , first world problems are the worst i ’m back bitc**s ! ! !
(Shen et al., 2017) for the money , are one different countries i ’m back ! ! !
Ours for hell sake , first world problems are the worst i ’m back bruh ! ! !
Original what a f**king circus this is . lol damn imy fake as* lol
(Shen et al., 2017) what a this sub is bipartisan . lol damn imy sis lol
Ours what a big circus this is . lol dude imy fake face lol
Original i hope they pay out the as* , fraudulent or no . bros before hoes
(Shen et al., 2017) i hope the work , we out the UNK and no . club tomorrow
Ours i hope they pay out the state , fraudulent or no . bros before money

Table 2: Example of offensive sentences from Reddit and Twitter and their respective transferred versions.

what big century are you living in ?
life is so big cheap to some people .
you ’re big pathetic .

Table 3: Examples of common mistakes made by
our proposed model.

reason for these good results can be found by check-
ing the examples presented in Table 2. The use of
the back transfer loss and the attention mechanism
makes our model good at preserving the original
sentence content while being precise at replacing
offensive words by the non-offensive ones. Also
observe from Table 2 that, quite often, Shen et al.
(2017)’s model changes many words in the original
sentence, significantly modifying the content.

On the other hand, our model produces worse
results in terms of perplexity values. We believe
this can be due to one type of mistake that is fre-
quent among the transferred sentences and that is
illustrated in Table 3. The model uses the same
non-offensive word (e.g. big) to replace an offen-
sive word (e.g. f***ing) almost everywhere, which
produces many unusual and unexpected sentences.

We have performed ablation experiments by re-
moving some components of the proposed model.
The results for the Twitter dataset are shown in Ta-
ble 4. We can see that attention and back-transfer
loss play important roles in the model. In partic-
ular, when both of them are removed (last row in
Table 4), although the classification accuracy im-
proves, the perplexity and the content preservation
drop significantly. This behavior happens due to
the trade off that the decoder has to balance when
transferring a sentence from a style to another. The
decoder must maintain a proper balance between
transferring to the correct style and generating sen-
tences of good quality. Each of these properties
can easily be achieved on its own, e.g., copying the
entire input sentence will give low perplexity and

good content preservation but low accuracy, on the
other hand, outputting a single keyword can give
high accuracy but high perplexity and low content
preservation. While the classification loss guides
the decoder to generate sentences that belong to the
target style, the back transfer loss and the attention
mechanism encourage the decoder to copy words
from the input sentence. When both back transfer
loss and attention are removed, the model is encour-
aged to just meet the classification requirement in
the transfer step.

System Acc. CP PPL
Full 99.63 0.947 162.75
No Attention 99.88 0.939 196.65
No Back Transfer 97.08 0.938 257.93
No Att & Back Trans 100.0 0.876 751.56

Table 4: Ablation results for the Twitter dataset.

It is important to note that current unsupervised
text style transfer approaches can only handle well
cases where the offensive language problem is lexi-
cal (such as the examples shown in Table 2), and
just changing/removing few words can solve the
problem. The models experimented in this work
will not be effective in cases of implicit bias where
ordinarily inoffensive words are used offensively.

5 Conclusions

This work is a first step in the direction of a new
promising approach for fighting abusive posts on
social media. Although we focus on offensive lan-
guage, we believe that further improvements on the
proposed methods will allow us to cope with other
types of abusive behaviors.
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Abstract

Natural languages change over time be-
cause they evolve to the needs of their
users and the socio-technological envi-
ronment. This study investigates the di-
achronic accuracy of pre-trained language
models for downstream tasks in machine
learning and user profiling. It asks the
question: given that the social media plat-
form and its users remain the same, how
is language changing over time? How
can these differences be used to track the
changes in the affect around a particular
topic? To our knowledge, this is the first
study to show that it is possible to mea-
sure diachronic semantic drifts within so-
cial media and within the span of a few
years.

1 Introduction

Natural languages are dynamic–they are con-
stantly evolving and adapting to the needs of their
users and the environment of their use (Frermann
and Lapata, 2016). The arrival of large-scale col-
lections of historic texts and online libraries and
Google Books have greatly facilitated computa-
tional investigations of language change over the
span of decades. Diachronic differences measure
semantic drift specifically for languages over time.
For instance, the meaning of the word ‘follow’
has changed from a reference, then to surveil-
lance, and finally to the act of subscribing to a
social media user’s feed. In a quantitative anal-
ysis, diachronic differences may explain why pre-
dictive models go ‘stale’. For instance, a sentiment
model trained on Victorian-era language would la-
bel ‘aweful’ as positive sentiment; however, in
contemporary usage, ‘awful’ is considered a nega-
tive word (Wijaya and Yeniterzi, 2011). Thus mo-

tivated, we raise the following research questions:

• How do language models trained at one point
in time, perform at predicting age and gender
on language from a subsequent time?
• What is the practical benefit of measuring di-

achronic differences on Twitter?

To our knowledge, there is no existing work which
has investigated whether, and how, language mod-
els degrade over time, i.e. why predictive models
trained on an older sample of language, may fail
to work on contemporary language. While pre-
vious studies have explored the change in word
meanings spanning decades or hundreds of years,
we address a research gap by exploring finer tem-
poral granularity and using a more accessible lan-
guage corpus. Twitter’s1 discourse is rather differ-
ent from traditional English writing. So far, word
embeddings trained on Twitter (Kulkarni et al.,
2015; Mikolov et al., 2013) have considered it a
static corpus, and have not used it to study short
term changes in word connotations. It contributes
with the following observations:

• Diachronic differences are greater (hence,
language change is faster) for younger social
media users than older social media users.
• Diachronic language differences enable the

measurement of the change in social attitudes
(captured by word embeddings).

In order to study this phenomenon, we define the
notion of temporal cohorts as a set of social me-
dia users who have posted on Twitter during the
same time period, e.g., in the year 2011. In this
study, we evaluate the linguistic differences be-
tween temporal cohorts, e.g. 20-year-olds in 2011
vs. 20-year-olds in 2015.

1https://twitter.com/
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2 Related work

A number of studies have built language models
to predict users’ age and gender (Sap et al., 2014),
personality (Schwartz et al., 2013) and other traits
(Jaidka et al., 2018a) with high accuracy from a
sample of their social media posts. We offer the
explanation that these language models may have
‘degraded’ due to the diachronic changes in lan-
guage over the past few years, as compared to the
predictions on their posts in 2011, which is closer
to the time period for which their model was actu-
ally trained (see Figure 1).

The work by Frerman and Lapata (2016) quan-
tified meaning change in terms of emerging mean-
ings over many time periods, on a corpus collating
documents spanning the years 1700-2010. Studies
measuring semantic drift using word embedding
models trained on Twitter corpora, such as Twit-
ter GloVe and Word2Vec (Mikolov et al., 2013;
Kulkarni et al., 2015), have considered microblog
posts a static resource, reflective of modern lan-
guage usage at a single point in time. Szymanski
(2017) highlights the need to explore it in contem-
porary language e.g. social media. We illustrate
that it is possible to measure diachronic semantic
drifts within social media and within the span of a
few years. Furthermore, we are arguing that year-
related change affects different cohorts differently.

We use part-of-speech information about word
embeddings to better understand semantic drift in
terms of the adjective and affective words used
to connotate everyday concepts. In doing so, we
follow the approach outlined in previous work by
Gart et al. (2017) and Hamilton et al. (2016a) to
consider different kinds of contexts (e.g., adjec-
tives, verbs and emotion words) to learn and com-
pare distributional representations of target words.

3 Method

We first establish the diachronic validity of
language-based models through predictive evalu-
ations. We then use topic models and word em-
beddings as the quantitative lens through which to
study the diachronic differences in the language
of social media users, and linear methods to eas-
ily interpret the differences between standardized
coefficients as diachronic differences in user trait
prediction from language.

3.1 Predictive validity

We test the predictive performance of language
models trained on a year’s worth of social media
posts from a subset of users who have provided
their age and gender information.
• We train language models on the age- and

gender-labeled primary dataset and evalu-
ate their diachronic validity (Hamilton et al.,
2016b), i.e. their predictive performance on
subsequently collected language samples.
• We identify age groups which drift faster than

others by reporting predictive performance
on users, stratified by year of birth.

3.2 Language insights about diachronic
differences

We use language for the following insights into di-
achronic drift:
• Important changes: For each temporal co-

hort, we identify the language features which
have the most drift in terms of recalibrated
coefficients, in regression models trained in
2011 vs. 2015. In doing so, we follow the
approach described by Rieman et al. (2017)
to compare the standardized coefficients of
the age and gender models trained on the lan-
guage samples from 2011 and 2015.
• High drift concepts: We use word embed-

dings to identify the semantic differences in
the connotations around common concepts,
for two sets of users who are a generation
apart. Following the framework proposed by
Garg et al. (2017), we calculate semantic drift
as the changes in the relative normalized dis-
tance for the context words describing a set
of target concepts.

Target concepts comprise a group of words rep-
resenting a single idea (Garg et al., 2017), for in-
stance, positive emotion, derived from the LIWC
psycholinguistic dictionary (Pennebaker et al.,
2007), and sexual orientation and gender expres-
sion (LGBTQ issues), based on a glossary on
LGBTQ terms provided by the Human Rights
Campaign 2. We use the relative norm distance to
identify the contextual words (mainly adjectives,
adverbs and sentiment words) that are most differ-
ent across the two word embedding models. Reg-
ular expression matching for part-of-speech, sen-
timent and emotion words was based on LIWC
and the NRC emotion lexicon (Mohammad et al.,

2https://www.hrc.org/resources/glossary-of-terms
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2013). Among a variety of distance metrics, eu-
clidean distances provided the most interpretable
results.

4 Datasets and Pre-processing

Primary data: Our primary dataset consists of
the Twitter posts of adults in the United States
of America who were recruited by Qualtrics (a
crowdsourcing platform similar to Amazon Me-
chanical Turk) for an online survey, and consented
to share access to their Twitter posts. This data
was collected in a previous study by Preoţiuc-
Pietro et al. (2017) and is available online 3. We
restrict our analysis to tweets posted between Jan-
uary 2011 and December 2015, by those users
who indicated English as a primary language, have
written at least 10 posts in their posts in each
year, and have reported age and binary gender as
a part of the survey. This resulted in a dataset of
N = 554 users, who wrote a mean of 265 and a
median of 156 posts per year and over 13.5 million
words collectively. The mean age of the popula-
tion was 33.54 years. 59% of them self-identified
as male.
Decahose (Twitter 10%) dataset: For insights
based on word embeddings, we used the decahose
samples for the years 2011 and 2014 collected
by the TrendMiner project (Preotiuc-Pietro et al.,
2012), which comprises a 10% random sample
of the real-time Twitter firehose using a realtime
sampling algorithm. To match with our primary
data, we used bounding boxes to consider only
those tweets with geolocation information which
were posted in the United States. In this manner,
we obtained 130 and 179 million Twitter posts for
2011 and 2014 respectively.
Pre-processing: In a dataset of 554 users, the ab-
solute vocabulary overlap may be low. By convert-
ing each users string of words into their probabilis-
tic usage of 2000 topics, we expected to get more
stable estimates than using word-based language
models. We represent the language of each user as
a probabilistic distribution of 2000 topics derived
using Latent Dirichlet Allocation (LDA) with α
set to 0.30 to favor fewer topics per document.
These topics are modeled as open-ended clusters
of words from actual distributions in social media
over approximately 18 million Facebook updates,
and are provided as an open-sourced resource in
the DLATK python toolkit (Schwartz et al., 2017).

3https://web.sas.upenn.edu/danielpr/resources/

Predictive evaluation: We use Python’s sklearn
library to conduct a ten-fold cross-validation and
train weighted linear regression models for age,
and binary logistic regression models for gender,
on the LDA-derived features for users in nine
folds, and test on the users in the held out fold.
We use feature selection, elastic-net regulariza-
tion, and randomized PCA to avoid over-fitting.
Although we tested other linguistic features such
as n-grams, the best predictive performance was
for models trained on the topic features.
Word embeddings: We separately train word
embeddings on the language of the Twitter 10%
sample from 2011, and the sample from 2014.
We use Google’s Tensorflow framework (Abadi
et al., 2016) to optimize the prediction of co-
occurrence relationships using an approximate ob-
jective known as skip-gram with negative sam-
pling (Mikolov et al., 2013) with incremental ini-
tialization and optimizing our embeddings with
a stochastic gradient descent. Embeddings were
trained using the top-50000 words by their average
frequency over the entire time period. A similar
threshold has also been applied in previous papers
(Hamilton et al., 2016a,b). We experimented with
different window sizes and parameter settings, fi-
nally choosing a window size of 4, embeddings
with 1000 dimensions, and the negative sample
prior α set to log(5) and the number of negative
samples set to 500.4

5 Results
5.1 Predictive performance

In Figure 1, we report performance error in pre-
dicting age as the mean of (actual−predicted) in
order to better understand the model bias towards
predicting younger or older ages.

We observe that the age- and gender- predic-
tive models by Sap et al. (2014) degrade in per-
formance on language samples from more re-
cent years. They have a lower mean error in age
prediction and higher accuracy in gender predic-
tion on the a language sample from 2011 as com-
pared to 2015; yet, our test sets are ostensibly
drawn from the same corpus as the original train-
ing data. This shows that even models trained
on large datasets show performance degradation
if they are tested against newer language samples
for the same set of users. We observe the same

4The trained word embedding models can be downloaded
from http://www.wwbp.org/publications.html
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Figure 1: Cross-year performance for predicting (a) age (re-
ported asMeanError = Ageactual−Agepredicted) and (b)
gender (reported as Accuracy). The columns depict the train-
ing set for regression models: language samples posted in a
particular year. The rows depict the test sets. Deeper shades
of blue reflect higher underestimation errors; deeper shades
of red reflect higher overestimation errors. Deeper shades of
green depict higher accuracy.

trends on in-sample models trained and tested on
our primary data (see Figure 1). Age and gender
models perform the best when tested on a sam-
ple from the same year, but age models degrade in
performance over time, with older models tending
to over-predict the age on subsequent samples.
Newer models tend to under-predict the age on
older samples of language. Taken together, these
insights suggest that the rate of change in age (1
unit per year) is less than the rate of change in lan-
guage use. Gender models demonstrate an approx-
imately 7-12% drop in accuracy for subsequent or
older years.
In the next step, we attempt to understand the rate
of change of language for social media users of
different ages, which show larger variance as com-
pared to gender. Figure 2 provides the results for
a language model trained on the language sample
of 2011 and tested to predict age from a language
sample from 2011 and the subsequent years. The
columns depict the birth year for users in the test
set. This figure provides some important insights:

1. The first row has the smallest mean errors,
which is expected since it is an in-sample pre-
diction of a 2011-trained language model on
itself.

2. The largest mean errors are seen at the bottom
left, where the model is consistently under-
predicting the age of older social media
users whose language usage has little change
over 5 years.

3. In the bottom-right, social media users born
between 1992-1997 observe the highest over-
estimation errors as they ‘sound’ older than
they are. Despite their annual increment in
age, the model still overpredicts their age by
approximately twice as many years.

5.2 Insights about Diachronic Differences

We want to understand performance degradation
in terms of the change in the associations of lin-
guistic features associated with higher age or with
one of the genders. The age range in 2011 were
[14, 41] years and in 2015 were [18, 45] years
respectively. To explore diachronic differences
in topic usage across two age-matched popula-
tions, we subset the population to the subjects
to the age range of [18, 41] years during 2011-
2015 (N=429).
Important changes: In Table 1, we compare the
standardized coefficients (p < .001) of the predic-
tors in models trained on the language of the year
2011 against those of 2015. We observe that a lot
of the topics typically associated with older social
media users in the 2011 model, 5 such as swearing,
tiredness and sleep, changed their age bias. On the
other hand, topics popular among younger social
media users – for instance, topics mentioning em-
ployable skills and meetings, percolated upward as
the early adopters of social media grew older. In
the case of gender, topics related to business meet-
ings, the government, computers, and money were
no longer predictive of males, while topics associ-
ated with proms, relationships, and hairstyles were
no longer predictive of females. 6

Age β2011 β2015
Email communication: (send, email, message, contact) 168.5 -53.7
Accommodation (place, stay, found, move) 162.2 -101.8
Sleep (bed, lay, sleep, head, tired) 59.6 -88.5
Swear (wtf, damn, sh**, wth, wrong, pissed) 38.1 -46.0
Tiredness (i’m, sick, tired, feeling, hearing) 33.6 -98.3
Hacking (virus, called, open, steal, worm, system) -99.6 253.5
Software (computer, error, photoshop, server, website) -87.2 80.7
Feeling (feeling, weird, awkward, strange, dunno) -70.5.0 23.2
Meetings (meeting, conference, student, council, board ) -44.0 38.6
Skills (management, business, learning, research) -26.4 158.0

Gender β2011∗ β2015∗
Apple products (iphone, apple, ipad, mac, download) 4.1 (0)
Sports (win, lose, game, betting, streak, change) 3.2 (0)
Bills (pay, money, paid, job, rent) 2.8 (0)
Government (government, freedom, country, democracy) 2.8 (0)
Prom (dress, prom, shopping, formal, homecoming) 1.8 (0)
Hairstyles (hair, blonde, dye, color, highlights) 1.7 (0)
Relationships (amazing, boyfriend, wonderful, absolutely) 1.7 (0)
Negative emotions (inside, deep, feel, heart, pain, empty) 1.6 (0)

Table 1: The features whose coefficients had the biggest
change and flipped sign when comparing the age and gen-
der prediction models trained on 2011 language against those
trained on 2015 language. (0) depicts that the feature was no
longer significant in the 2015 model. *:(X10−4)

High drift concepts: We now illustrate di-
achronic differences in terms of the changing con-
text around the same concept, in Table 2. We have

5See Schwartz et al. (2013)
6We also estimated feature importance through an abla-

tion analysis, according to the difference made to the overall
prediction (

∑
wixβi), which also yielded similar results.

198



Figure 2: Cross-year performance for predicting (a) age (reported as Mean Error = actualage − predictedage). The rows
reflect the test sets: language samples posted in the same or different year. The columns reflect users stratified according to their
year of birth. Deeper shades of blue reflect higher underestimation errors; deeper shades of red reflect higher overestimation
errors.

identified the words which show the largest drift
between 2011-2014, in terms of their association
with LGBTQ issues and positive emotion. We ob-
serve that this method of comparing the relative
differences in distances, proposed by Garg et al.
(2017), is able to capture social attitudes towards
gender issues, as well as the emerging trends in
netspeak. Specifically, in the discussions around
LGBTQ issues in 2014, the words that emerge are
closer to the actual experiences of the group, with
words referring to ‘passing’ (a reference to trans-
sexuals) and ‘coping’, as well as more positive
emotion words (‘yayy’, ‘harmony’).

Concept Year Context words
LGBTQ issues 2011 strippers, conservative, pedophile,

subjective, shocking
2014 coping, passed, balance, yayy, finally, harmony

Positive emotion 2011 fagazy, bomb, totally, awesomeness, tight, fly
2014 kickback, swag, winning,

dontgiveafuck, bi*ch, thicka**

Table 2: Context words for concepts in the language of Twit-
ter 2011 vs. 2014, selected among the words with the highest
relative norm difference in distances from the concepts in the
first column, between the two sets of Twitter embeddings.

6 Discussion

To summarize, our findings show that diachronic
differences in language can be observed on so-
cial media and their effect differs for social me-
dia users of varying ages. In Figure 2, consider
again the users of the same age at different points
of time. For instance, compare the errors for 22-
year old users in 2011 (born in 1989) against those
for 22-year-old users in 2012 (born in 1990), and
so on. The variance in error along these diagonals,
are high in the right side of the table. This suggests
that in every subsequent year, the language of late-
teens and early-twenties is more different from the
language of their contemporaries from the year be-
fore. On the other hand, compare the errors for
37-year-olds in 2011 (born in 1974) against those
for 37-year-olds in 2012 (born in 1975). The er-
rors have a low variance along the diagonals in the

left of the Figure. Among social media users in
their late thirties, the language of each cohort of
35-year-olds changes little over the previous year.

Next, consider the quantitative insights from Ta-
ble 1. The results suggest that over time, young
users from 2011 continued to use certain topics,
while older users adopted newer trends. We found
that if we do not use age-matched samples in this
experiment, the coefficients for other topics are
also flipped, but this effect is noticeably dimin-
ished with an age-matched subset. This suggests
that indeed, a part of the language drift appeared
because 1/5th of the population was shifting along
the temporal axis, which also associates their dis-
tinct topical preferences with an older age group.

7 Conclusion & Future Work
This study offers an empirical study of how gender
and age classifiers degrade over time, a qualitative
study of the features whose coefficients change the
most, and concepts that drift in meaning over time.
The language of social media posts can be used
to study semantic drift over short periods of time,
even from a dataset of 554 social media users.
These methods can also find application in the
study of other linguistic phenomena such as pol-
ysemy (Hamilton et al., 2016b; Szymanski, 2017).
However, there is a need to disentangle which dif-
ferences are due to the changing use of language
from the ones due to changes in topics and trends
on social media.

Language models degrade over time, but it not
always feasible to retrain models with new data. In
future work, we plan to explore whether domain
adaptation techniques can resolve diachronic per-
formance differences, in addition to generalizing
language models to other platforms (Jaidka et al.,
2018b) or scaling to measure communities (Rie-
man et al., 2017).
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Abstract

In this paper, we make a move to build
a dialogue system for automatic diagno-
sis. We first build a dataset collected from
an online medical forum by extracting
symptoms from both patients’ self-reports
and conversational data between patients
and doctors. Then we propose a task-
oriented dialogue system framework to
make the diagnosis for patients automat-
ically, which can converse with patients to
collect additional symptoms beyond their
self-reports. Experimental results on our
dataset show that additional symptoms ex-
tracted from conversation can greatly im-
prove the accuracy for disease identifica-
tion and our dialogue system is able to
collect these symptoms automatically and
make a better diagnosis.

1 Introduction

Automatic phenotype identification using elec-
tronic health records (EHRs) has been a rising
topic in recent years (Shivade et al., 2013). Re-
searchers explore with various machine learning
approaches to identify symptoms and diseases for
patients given multiple types of information (both
numerical data and pure texts). Experimental re-
sults prove the effectiveness of the identification
of heart failure (Jonnalagadda et al., 2017; Choi
et al., 2016), type 2 diabetes (Li et al., 2015; Zheng
et al., 2017), autism spectrum disorders (Doshi-
Velez et al., 2014), infection detection (Tou et al.,
2018) etc. Currently, most attempts focus on some

*Corresponding author

specific types of diseases and it is difficult to trans-
fer models from one disease to another.

In general, each EHR contains multiple types
of data, including personal information, admission
note, diagnose tests, vital signs and medical im-
age. And it is collected accumulatively following a
diagnostic procedure in clinic, which involves in-
teractions between patients and doctors and some
complicated medical tests. Therefore, it is very
expensive to collect EHRs for different diseases.
How to collect the information from patient auto-
matically remains the challenge for automatic di-
agnosis.

Recently, due to its promising potentials and
alluring commercial values, research about task-
oriented dialogue system (DS) has attracted in-
creasing attention in different domains, including
ticket booking (Li et al., 2017; Peng et al., 2017a),
online shopping (Yan et al., 2017) and restaurant
searching (Wen et al., 2017). We believe that ap-
plying DS in the medical domain has great poten-
tial to reduce the cost of collecting data from pa-
tients.

However, there is a gap to fill for applying DS in
disease identification. There are basically two ma-
jor challenges. First, the lack of annotated med-
ical dialogue dataset. Second, no available DS
framework for disease identification. By address-
ing these two problems, we make the first move
to build a dialogue system facilitating automatic
information collection and diagnosis making for
medical domain. Contributions are two-fold:

• We annotate the first medical dataset for dia-
logue system that consists of two parts, one
is self-reports from patients and the other
is conversational data between patients and
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doctors.

• We propose a reinforcement learning based
framework for medical DS. Experiment re-
sults on our dataset show that our dialogue
system is able to collect symptoms from pa-
tients via conversation and improve the accu-
racy for automatic diagnosis.

2 Dataset for Medical DS

Our dataset is collected from the pediatric depart-
ment in a Chinese online healthcare community 1.
It is a popular website for users to inquire with
doctors online. Usually, a patient would provide a
piece of self-report presenting his/her basic condi-
tions. Then a doctor will initialize a conversation
to collect more information and make a diagno-
sis based on both the self-report and the conversa-
tional data. An example is shown in Table 1. As
we can see, the doctor can obtain additional symp-
toms during conversation beyond the self-report.
For each patient, we can also obtain the final di-
agnosis from doctors as the label. For clarity, we
term symptoms from self-reports as explicit symp-
toms while those from conversational data as im-
plicit symptoms.

We choose four types of diseases for annota-
tion, including upper respiratory infection, chil-
dren functional dyspepsia, infantile diarrhea and
children’s bronchitis. We invite three annotators
(one with medical background) to label all the
symptom phrases in both self-reports and conver-
sational data. The annotation is performed in two
steps, namely symptom extraction and symptom
normalization.

Symptom Extraction We follow the BIO
(begin-in-out) schema for symptom identification
(Figure 1). Each Chinese character is assigned a
label of ”B”, ”I” or ”O”. Also, each extracted
symptom expression is tagged with True or False
indicating whether the patient suffers from this
symptom or not. In order to improve the anno-
tation agreement between annotators, we create
two guidelines for the self-report and the conver-
sational data respectively. Each record is anno-
tated by at least two annotators. Any inconsis-
tency would be further judged by the third one.
The Cohen’s kappa coefficient between two anno-
tators are 71% and 67% for self-reports and con-
versations respectively.

1http://muzhi.baidu.com

Self-report
宝宝嗓子有痰，腹泻并伴有拉水的症状。请问要吃什么药？
The little baby get sputum in throat and have watery diarrhea.
what kind of medicine needs to be taken?
Conversation
. . . . . .
Doctor: 宝宝现在咳嗽拉肚子吗？
Doctor: Does the baby have a cough or diarrhea now?
Patient: 不咳嗽，拉肚子。
Patient: No cough, but diarrhea.
Doctor: 平常呛奶吗？
Doctor: Does the baby choking milk?
Patient: 偶尔会吐奶。
Patient: He vomits milk sometimes.
. . . . . .

Table 1: An example of a user record. Each record
consists of two parts: self-report from the patient
and the conversation between the doctor and the
patient. Underlined phrases are symptom expres-
sions.

Extracted symptom expression Related concept in
SNOMED CT

咳嗽(cough) 咳嗽(cough)
喷嚏(sneez) 打喷嚏(sneezing)
鼻涕(cnot) 鼻流涕(cnot)
拉肚子(have loose bowels) 腹泻(diarrhea)
温度37.5-37.7之间(body tempera-
ture between 37.5-37.7)

低热(low-grade fever)

Table 2: Examples of extracted symptom expres-
sions and the related concepts in SNOMED CT.

Symptom Normalization After symptom ex-
pression identification, medical experts manually
link each symptom expression to the most rele-
vant concept on SNOMED CT 2 for normaliza-
tion. Table 2 shows some phrases that describe
symptoms in the example and some related con-
cepts in SNOMED CT. The overview of dataset is
presented in Table 3.

After symptom extraction and normalization,
there are 144 unique symptoms identified. In or-
der to reduce the size of action space of the DS,
only 67 symptoms with a frequency greater than
or equal to 10 are kept. Samples are then gener-
ated, called user goal. As we know, each user goal
(see Figure 2) is derived from one real world pa-
tient record 3.

3 Proposed Framework

A task-oriented DS typically contains three com-
ponents, namely Natural Language Understanding
(NLU), Dialogue Manager (DM) and Natural Lan-
guage Generation (NLG). NLU detects the user
intent and slots with values from utterances; DM

2https://www.snomed.org/snomed-ct
3The dataset is available at:

www.sdspeople.fudan.edu.cn/zywei/data/acl2018-mds.zip
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Figure 1: An example utterance with annotations
of symptoms in BIO format.

Disease ] of
user
goal

Ave ] of ex-
plicit symp-
toms

Ave ] of im-
plicit symp-
toms

infantile diarrhea 200 2.15 2.71
children functional dyspepsia 150 1.70 3.20
upper respiratory infection 160 2.56 3.55
children’s bronchitis 200 2.87 3.64

Table 3: Overview of the dataset. ] of user goal is
the number of dialogue sessions of each disease,
Ave ] of explicit symptoms and Ave ] of implicit
symptoms are the average number of explicit and
implicit symptoms among user goals respectively.

tracks the dialogue states and takes system actions;
NLG generates natural language given the system
actions. In this work, we focus on the DM for au-
tomatic diagnosis consisting of two sub-modules,
namely, dialogue state tracker (DST) and policy
learning. Both NLU and NLG are implemented
with template-based models. Typically, a user
simulator is designed to interact with the dialogue
system (Liu et al., 2017; Peng et al., 2017b; Su
et al., 2016; Schatzmann et al., 2006). We follow
the same setting as Li et al. (2017) to design our
medical DS. At the beginning of a dialogue ses-
sion, the user simulator samples a user goal (see
Figure 2), while the agent attempts to make a di-
agnosis for the user. The system will learn to se-
lect the best response action at each time step by
maximizing a long term reward.

3.1 User Simulator

At the beginning of each dialogue session, a user
simulator samples a user goal from the experiment
dataset. At each turn t, the user takes an action
au,t according to the current user state su,t and the
previous agent action at−1, and transits into the
next user state su,t+1. In practice, the user state su
is factored into an agenda A (Schatzmann et al.,
2007) and a goal G, noted as su = (A,G). Dur-
ing the course of the dialogue, the goal G ensures
that the user behaves in a consistent, goal-oriented
manner. And the agenda contains a list of symp-
toms and their status (whether or not they are re-
quested) to track the progress of the conversation.

Every dialogue session is initiated by the user

Figure 2: An example of user goal. Each user
goal consists of four parts, disease tag is the dis-
ease that the user suffers; explicit symptoms are
symptoms extracted from the user self-report; im-
plicit symptoms are symptoms extracted from the
conversational data between the patient and the
doctor; request slots is the disease slot that the
user would request.

via the user action au,1 which consists of the re-
quested disease slot and all explicit symptoms.
In terms of the symptom requested by the agent
during the course of the dialogue, the user will
take one of the three actions including True (if
the symptom is positive), False (if the symptom
is negative), and not sure (if the symptom is not
mentioned in the user goal). If the agent informs
correct disease, the dialogue session will be termi-
nated as successful by the user. Otherwise, the di-
alogue session will be recognized as failed if the
agent makes incorrect diagnosis or the dialogue
turn reaches the maximum dialogue turn T.

3.2 Dialogue Policy Learning

Markov Decision Process Formulation for Au-
tomatic Diagnosis We cast DS as Markov De-
cision Process (MDP) (Young et al., 2013) and
train the dialogue policy via reinforcement learn-
ing (Cuayahuitl et al., 2015). An MDP is com-
posed of states, actions, rewards, policy, and tran-
sitions.

State S. A dialogue state s includes symptoms
requested by the agent and informed by the user
till the current time t, the previous action of the
user, the previous action of the agent and the turn
information. In terms of the representation vector
of symptoms, it’s dimension is equal to the num-
ber of all symptoms, whose elements for positive
symptoms are 1, negative symptoms are -1, not-
sure symptoms are −2 and not-mentioned symp-
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toms are 0. Each state s ∈ S is the concatenation
of these four vectors.

Actions A. An action a ∈ A is composed
of a dialogue act (e.g., inform, request, deny and
confirm) and a slot (i.e., normalized symptoms or
a special slot disease). In addition, thanks and
close dialogue are also two actions.

Transition T . The transition from st to st+1

is the updating of state st based on the agent ac-
tion at, the previous user action au,t−1 and the step
time t.

Reward R. The reward rt+1 = R(st, at) is the
immediate reward at step time t after taking the
action at, also known as reinforcement.

Policy π. The policy describes the behaviors
of an agent, which takes the state st as input
and outputs the probability distribution over all
possible actions π(at|st).

Learning with DQN In this paper, the pol-
icy is parameterized with a deep Q-network
(DQN) (Mnih et al., 2015), which takes the state
st as input and outputs Q(st, a; θ) for all actions
a. A Q-network can be trained by updating
the parameters θi at iteration i to reduce the
mean squared error between the Q-value com-
puted from the current network Q(s, a|θi) and
the Q-value obtained from the Bellman equation
yi = r+γmaxa′ Q(s′, a′|θ−i ), whereQ(s′, a′|θ−i )
is the target network with parameters θ−i from
some previous iteration. In practice, the behavior
distribution is often selected by an ε-greedy policy
that takes an action a = argmaxa′ Q(st, a

′; θ)
with probability 1 − ε and selects a random
action with probability ε, which can improve
the efficiency of exploration. When training the
policy, we use a technique known as experience
replay. We store the agent’s experiences at each
time-step, et = (st, at, rt, st+1) in a fixed size,
queue-like buffer D.

In a simulation epoch, the current DQN network
is updated multiple times (depending on the batch
size and the current size of replay buffer) with dif-
ferent batches drawn randomly from the buffer,
while the target DQN network is fixed during the
updating of current DQN network. At the end of
each epoch, the target network is replaced by the
current network and the current network is evalu-
ated on training set. The buffer will be flushed if
the current network performs better than all previ-
ous versions.

4 Experiments and Results

4.1 Experimental Setup

The max dialogue turn T is 22. A positive reward
of +44 is given to the agent at the end of a suc-
cess dialogue, and a −22 reward is given to a fail-
ure one. We apply a step penalty of −1 for each
turn to encourage shorter dialogues. The dataset is
divided into two parts: 80% for training with 568
user goals and 20% for testing with 142 user goals.
The ε of ε-greedy strategy is set to 0.1 for effec-
tive action space exploration and the γ in Bellman
equation is 0.9. The size of buffer D is 10000 and
the batch size is 30. And the neural network of
DQN is a single layer network. The learning rate
is 0.001. Each simulation epoch consists of 100
dialogue sessions and the current network is eval-
uated on 500 dialogue sessions at the end of each
epoch. Before training, the buffer is pre-filled with
the experiences of the rule-based agent (see below)
to warm start our dialogue system.

To evaluate the performance of the proposed
framework, we compare our model with baselines
in terms of three evaluation metrics following Li et
al. (2017) and Peng at al. (2017a; 2017b), namely,
success rate, average reward and the average num-
ber of turns per dialogue session. As for classifi-
cation models, we use accuracy as the metric.

The baselines include: (1) SVM: This model
treats the automatic diagnosis as a multi-class clas-
sification problem. It takes one-hot representation
of symptoms in the user goal as input, and predicts
the disease. There are two configurations: one
takes both explicit and implicit symptoms as in-
put (denoted as SVM-ex&im), and the other takes
only explicit symptoms to predict the disease (de-
noted as SVM-ex). (2) Random Agent: At each
turn, the random agent takes an action randomly
from the action space as the response to the user’s
action. (3) Rule-based Agent: The rule-based
agent takes an action based on handcrafted rules.
Conditioned on the current dialogue state st, the
agent will inform disease if all the known symp-
toms related are detected. If no disease can be
identified, the agent will select one of the left
symptoms randomly to inform. The relations be-
tween diseases and symptoms are extracted from
the annotated corpus in advance. In this work,
only the first T/2.5 4 symptoms with high fre-
quency are kept for each disease so that the rule-

42.5 is a hyper-parameter.
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based agent could inform a disease within the max
dialogue turn T .

Disease SVM-ex&im SVM-ex
Infantile diarrhea 0.91 0.89
Children functional dyspepsia 0.34 0.28
Upper respiratory infection 0.52 0.44
Children’s bronchitis 0.93 0.71
Overall 0.71 0.59

Table 4: Accuracy of classification models

Figure 3: Learning curve of policy learning

Model Success Reward Turn
Random Agent 0.06 -24.36 17.51
Rule Agent 0.23 -13.78 17.00
DQN Agent 0.65 20.51 5.11

Table 5: Performance of three dialogue systems on
5K simulated dialogues

4.2 Results
Table 4 shows the accuracy of two SVM-based
models. The result shows that the implicit symp-
toms can greatly improve the accuracy of dis-
ease identification for all the four diseases, which
demonstrates the contribution of implicit symp-
toms when making diagnosis for patients. Figure
3 shows the learning curve of all the three dia-
logue systems and Table 5 shows the performance
of these agents on testing set. Due to the large ac-
tion space, the random agent performs badly. The
rule-based agent outperforms the random agent
in a large margin. This indicates that the rule-
based agent is well designed. We can also see that
the RL-based DQN agent outperforms rule-based
agent significantly. Moreover, DQN agent outper-
forms SVM-ex by collecting additional implicit

symptoms via conversing with patients. However,
there is still a gap between the performance of
DQN agent and SVM-ex&im in terms of accuracy,
which indicates that there is still rooms for the im-
provement of the dialogue system.

5 Related Works

In 2003, an ontology-based dialogue system that
supports electronic referrals for breast cancer is
proposed (Milward and Beveridge, 2003), which
can deal with the informative response of users
based on the medical domain ontologies. In ad-
dition, there are two works where deep reinforce-
ment learning is applied for automatic diagnosis
(Tang et al., 2016; Kao et al., 2018). However,
their models need extra human resources to cat-
egorize the diseases into different groups and the
data used is simulated that can not reflect the situ-
ation of the real patients.

6 Conclusions and Future Works

In this paper, we propose a reinforcement learning
based framework of dialogue system for automatic
diagnosis and build a dataset for training DS which
is derived from the dialogue text between real pa-
tients and doctors. Experiment results on a self-
constructed dataset show that our dialogue system
is able to collect additional symptoms via conver-
sation with patients and improve the accuracy for
automatic diagnosis.

The relationship between diseases and symp-
toms is an external knowledge which is thought
to be useful for the automatic diagnosis. One of
our future directions is to explore models that can
incorporate external knowledge for better policy
learning.
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Abstract

Building multi-turn information-seeking
conversation systems is an important and
challenging research topic. Although sev-
eral advanced neural text matching models
have been proposed for this task, they are
generally not efficient for industrial appli-
cations. Furthermore, they rely on a large
amount of labeled data, which may not be
available in real-world applications. To al-
leviate these problems, we study transfer
learning for multi-turn information seek-
ing conversations in this paper. We first
propose an efficient and effective multi-
turn conversation model based on convo-
lutional neural networks. After that, we
extend our model to adapt the knowledge
learned from a resource-rich domain to en-
hance the performance. Finally, we de-
ployed our model in an industrial chatbot
called AliMe Assist 1 and observed a sig-
nificant improvement over the existing on-
line model.

1 Introduction

With the popularity of online shopping, there is
an increasing number of customers seeking infor-
mation regarding their concerned items. To effi-
ciently handle customer questions, a common ap-
proach is to build a conversational customer ser-
vice system (Li et al., 2017; Yang et al., 2018).
In the E-commerce environment, the information-
seeking conversation system can serve millions
of customer questions per day. According to the
statistics from a real e-commerce website (Qiu
et al., 2017), the majority of customer questions

1 Interested readers can access AliMe Assist through
the Taobao App, or the web version via https://
consumerservice.taobao.com/online-help

(nearly 90%) are business-related or seeking infor-
mation about logistics, coupons etc. Among these
conversation sessions, 75% of them are more than
one turn2. Hence it is important to handle multi-
turn conversations or context information in these
conversation systems.

Recent researches in this area have focused on
deep learning and reinforcement learning (Shang
et al., 2015; Yan et al., 2016; Li et al., 2016a,b;
Sordoni et al., 2015; Wu et al., 2017). One
of these methods is Sequential Matching Net-
work(Wu et al., 2017), which matches a response
with each utterance in the context at multiple lev-
els of granularity and leads to state-of-the-art per-
formance on two multi-turn conversation corpora.
However, such methods suffer from at least two
problems: they may not be efficient enough for
industrial applications, and they rely on a large
amount of labeled data which may not be available
in reality.

To address the problem of efficiency, we made
three major modifications to SMN to boost the
efficiency of the model while preserving its ef-
fectiveness. First, we remove the RNN layers
of inputs from the model; Second, SMN uses
a Sentence Interaction based (SI-based) Pyramid
model (Pang et al., 2016) to model each utterance
and response pair. In practice, a Sentence Encod-
ing based (SE-based) model like BCNN (Yin and
Schütze, 2015) is complementary to the SI-based
model. Therefore, we extend the component to in-
corporate an SE-based BCNN model, resulting in
a hybrid CNN (hCNN) (Yu et al., 2017); Third,
instead of using a RNN to model the output rep-
resentations, we consider a CNN model followed
by a fully-connected layer to further boost the ef-
ficiency of our model. As shown in our experi-
ments, our final model yields comparable results

2According to a statistic in AliMe Assist in Alibaba Group
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but with higher efficiency than SMN.
To address the second problem of insufficient

labeled data, we study transfer learning (TL) (Pan
and Yang, 2010) to utilize a source domain with
adequate labeling to help the target domain. A
typical TL approach is to use a shared NN (Mou
et al., 2016; Yang et al., 2017) and domain-specific
NNs to derive shared and domain-specific features
respectively. Recent studies (Ganin et al., 2016;
Taigman et al., 2017; Chen et al., 2017; Liu et al.,
2017) consider adversarial networks to learn more
robust shared features across domains. Inspired
by these studies, we extended our method with a
Transfer Learning module to leverage information
from a resource-rich domain. Similarly, our TL
module consists of a shared NN and two domain-
specific NNs for source and target domains. The
output of the shared NN is further linked to an
adversarial network as used in (Liu et al., 2017)
to help learn domain invariant features. Mean-
while, we also use domain discriminators on both
source and target features derived by domain-
specific NNs to help learn domain-specific fea-
tures. Experiments show that our TL method can
further improve the model performance on a target
domain with limited data.

To the best of our knowledge, our work is the
first to study transfer learning for context-aware
question matching in conversations. Experiments
on both benchmark and commercial data sets show
that our proposed model outperforms several base-
lines including the state-of-the-art SMN model.
We have also deployed our model in an industrial
bot called AliMe Assist 3 and observed a signifi-
cant improvement over the existing online model.

2 Model

Our model is designed to address the following
general problem. Given an input sequence of utter-
ances {u1, u2, . . . , un} and a candidate question r,
our task is to identify the matching degree between
the utterances and the question. When the num-
ber of utterances is one, our problem is identical
to paraphrase identification (PI) (Yin and Schütze,
2015) or natural language inference (NLI) (Bow-
man et al., 2015). Furthermore, we consider
a transfer learning setting to transfer knowledge
from a source domain to help a target domain.

3https://consumerservice.taobao.com/
online-help

2.1 Multi-Turn hCNN (MT-hCNN)
We present an overview of our model in Fig. 1. In
a nutshell, our model first obtains a representation
for each utterance and candidate question pair us-
ing hybrid CNN (hCNN), then concatenates all the
representations, and feeds them into a CNN and
fully-connected layer to obtain our final output.

Max$pooling

Convolu.on

Fully$Connected

hCNN

+

Candidate8Ques.on88888888888888U<erances

Output

P

O

r88888888888888888888888888888U18U288888888888888Un

CNN1 CNN1
CNN2

CNN3

H

Figure 1: Our proposed multi-turn hybrid CNN.

The hybrid CNN (hCNN) model (Yu et al.,
2017) is based on two models: a modified SE-
based BCNN model (Yin et al., 2016) and a SI-
based Pyramid model (Pang et al., 2016). The
former encode the two input sentences separately
with a CNN and then combines the resulting sen-
tence embeddings as follows:

h1 = CNN1(X1); h2 = CNN1(X2).

Hb = h1 ⊕ h2 ⊕ (h1 − h2)⊕ (h1 · h2).

where ‘−’ and ‘·’ refer to element-wise subtrac-
tion and multiplication, and ‘⊕’ refers to concate-
nation.

Furthermore, we add a SI-base Pyramid compo-
nent to the model, we first produce an interaction
matrix M ∈ Rm×m, where Mi,j denotes the dot-
product score between the ith word in X1 and the
jth word in X2. Next, we stack two 2-D convolu-
tional layers and two 2-D max-pooling layers on
it to obtain the hidden representation Hp. Finally,
we concatenate the hidden representations as out-
put for each input sentence pair: ZX1,X2 =
hCNN(X1, X2) = Hb ⊕Hp.
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We now extend hCNN to handle multi-turn
conversations, resulting MT-hCNN model. Let
{u1, u2, u3, . . . , un} be the utterances, r is the
candidate question.

hui,r = hCNN(ui, r). for i ∈ [1, n]

H = [hu1,r;hu2,r; · · · ;hun,r].
P = CNN3(H).

O = Fully-Connected(P )

Note that H is obtained by stacking all the h,
CNN3 is another CNN with a 2-D convolutional
layer and a 2-D max-pooling layer, the output of
CNN3 is feed into a fully-connected layer to ob-
tain the final representation O.

2.2 Transfer with Domain Discriminators

We further study transfer learning (TL) to learn
knowledge from a source-rich domain to help our
target domain, in order to reduce the dependency
on a large scale labeled training data. As sim-
ilar to (Liu et al., 2017), we use a shared MT-
hCNN and two domain-specific MT-hCNNs to de-
rive shared features Oc and domain-specific fea-
tures Os and Ot. The domain specific output lay-
ers are:

ŷk =

{
σ(WscOc + WsOs + bs), if k = s

σ(WtcOc + WtOt + bt), if k = t
(1)

where Wsc, Wtc, Ws, and Wt are the weights
for shared-source, shared-target, source, and tar-
get domains respectively, while bs and bt are the
biases for source and target domains respectively.

Following (Liu et al., 2017), we use an adver-
sarial loss La to encourage the shared features
learned to be indiscriminate across two domains:

La =
1

n

n∑

i=1

∑

d∈s,t
p(di = d|U, r) log p(di = d|U, r).

where di is the domain label and p(di|·) is the do-
main probability from a domain discriminator.

Differently, to encourage the specific feature
space to be discriminable between different do-
mains, we consider applying domain discrimina-
tion losses on the two specific feature spaces. We
further add two negative cross-entropy losses: Ls

for source and Lt for target domain:

Ls =−
1

ns

ns∑

i=1

Idi=s log p(di = s|Us, rs).

Lt =−
1

nt

nt∑

i=1

Idi=t log p(di = t|Ut, rt).

where Idi=d is an indicator function set to 1 when
the statement (di = d) holds, or 0 otherwise.

Finally, we obtain a combined loss as follows:

L =
∑

k∈s,t
− 1

nk

nk∑

j=1

1

2
(ykj − ŷkj )2 +

λ1
2
La

+
λ2
2
Ls +

λ3
2
Lt +

λ4
2
||Θ||2F .

where Θ denotes model parameters.

3 Experiments

We evaluate the efficiency and effectiveness of our
base model, the transferability of the model, and
the online evaluation in an industrial chatbot.
Datasets: We evaluate our methods on two multi-
turn conversation corpus, namely Ubuntu Dialog
Corpus (UDC) (Lowe et al., 2015) and AliMe
data.

Ubuntu Dialog Corpus: The Ubuntu Dialog
Corpus (UDC) (Lowe et al., 2015) contains multi-
turn technical support conversation data collected
from the chat logs of the Freenode Internet Re-
lay Chat (IRC) network. We used the data copy
shared by Xu et al. (Xu et al., 2016), in which
numbers, urls and paths are replaced by special
placeholders. It is also used in several previous re-
lated works (Wu et al., 2017). It consists of 1 mil-
lion context-response pairs for training, 0.5 mil-
lion pairs for validation and 0.5 million pairs for
testing.

AliMe Data: We collect the chat logs between
customers and a chatbot called AliMe from “2017-
10-01” to “2017-10-20” in Alibaba 4. The chatbot
is built based on a question-to-question matching
system (Li et al., 2017), where for each query, it
finds the most similar candidate question in a QA
database and return its answer as the reply. It in-
dexes all the questions in our QA database using
Lucence5. For each given query, it uses TF-IDF
ranking algorithm to call back candidates. To form

4The textual contents related to user information are fil-
tered.

5https://lucene.apache.org/core/
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Table 1: Comparison of base models on Ubuntu Dialog Corpus (UDC) and an E-commerce data (AliMe).

Data UDC AliMeData
Methods MAP R@5 R@2 R@1 Time MAP R@5 R@2 R@1 Time
ARC-I 0.2810 0.4887 0.1840 0.0873 16 0.7314 0.6383 0.3733 0.2171 23
ARC-II 0.5451 0.8197 0.5349 0.3498 17 0.7306 0.6595 0.3671 0.2236 24
Pyramid 0.6418 0.8324 0.6298 0.4986 17 0.8389 0.7604 0.4778 0.3114 27
Duet 0.5692 0.8272 0.5592 0.4756 20 0.7651 0.6870 0.4088 0.2433 30
MV-LSTM 0.6918 0.8982 0.7005 0.5457 1632 0.7734 0.7017 0.4105 0.2480 2495
SMN 0.7327 0.9273 0.7523 0.5948 64 0.8145 0.7271 0.4680 0.2881 91
MT-hCNN-d 0.7027 0.8992 0.7512 0.5838 20 0.8401 0.7712 0.4788 0.3238 31
MT-hCNN 0.7323 0.9172 0.7525 0.5978 24 0.8418 0.7810 0.4796 0.3241 36

our data set, we concatenated utterances within
three turns 6 to form a query, and used the chat-
bot system to call back top 15 most similar candi-
date questions as candidate “responses”. 7 We then
asked a business analyst to annotate the candidate
responses, where a “response” is labeled as pos-
itive if it matches the query, otherwise negative.
In all, we have annotated 63,000 context-response
pairs. This dataset is used as our Target data.

Furthermore, we build our Source data as fol-
lows. In the AliMe chatbot, if the confidence
score of answering a given user query is low, i.e.
the matching score is below a given threshold8,
we prompt top three related questions for users to
choose. We collected the user click logs as our
source data, where we treat the clicked question as
positive and the others as negative. We collected
510,000 query-question pairs from the click logs
in total as the source. For the source and target
datasets, we use 80% for training, 10% for valida-
tion, and 10% for testing.
Compared Methods: We compared our multi-
turn model (MT-hCNN) with two CNN based
models ARC-I and ARC-II (Hu et al., 2014), and
several advanced neural matching models: MV-
LSTM (Wan et al., 2016), Pyramid (Pang et al.,
2016) Duet (Mitra et al., 2017), SMN (Wu et al.,
2017)9, and a degenerated version of our model
that removes CNN3 from our MT-hCNN model
(MT-hCNN-d). All the methods in this paper
are implemented with TensorFlow and are trained
with NVIDIA Tesla K40M GPUs.
Settings: We use the same parameter settings of
hCNN in (Yu et al., 2017). For the CNN3 in our
model, we set window size of convolution layer as
2, ReLU as the activation function, and the stride

6Around 85% of conversations are within 3 turns.
7A “response” here is a question in our system.
8The threshold is determined by a business analyst
9The results are based on the TensorFlow code from au-

thors, and with no over sampling of negative training data.

of max-pooling layer as 2. The hidden node size of
the Fully-Connected layer is set as 128. AdaDelta
is used to train our model with an initial learning
rate of 0.08. We use MAP, Recall@5, Recall@2,
and Recall@1 as evaluation metrics. We set λ1 =
λ2 = λ3 = 0.05, and λ4 = 0.005.

3.1 Comparison on Base Models

The comparisons on base models are shown in Ta-
ble 1. First, the RNN based methods like MV-
LSTM and SMN have clear advantages over the
two CNN-based approaches like ARC-I and ARC-
II, and are better or comparable with the state-of-
the-art CNN-based models like Pyramid and Duet;
Second, our MT-hCNN outperforms MT-hCNN-
d, which shows the benefits of adding a convolu-
tional layer to the output representations of all the
utterances; Third, we find SMN does not perform
well in AliMeData compared to UDC. One po-
tential reason is that UDC has significantly larger
data size than AliMeData (1000k vs. 51k), which
can help to train a complex model like SMN; Last
but not least, our proposed MT-hCNN shows the
best results in terms of all the metrics in AliMe-
Data, and the best results in terms of R@2 and
R@1 in UDC, which shows the effectiveness of
MT-hCNN.

We further evaluate the inference time 10 of
these models. As shown in Table 1, MT-hCNN
has comparable or better results when compared
with SMN (the state-of-the-art multi-turn conver-
sation model), but is much more efficient than
SMN (∼60% time reduction). MT-hCNN also has
similar efficiency with CNN-based methods but
with better performance. As a result, our MT-
hCNN module is able to support a peak QPS 11

of 40 on a cluster of 2 service instances, where
each instance reserves 2 cores and 4G memory on

10The time of scoring a query and N candidate questions,
where N is 10 in UDC, and 15 in AliMeData.

11Queries Per Second
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an Intel Xeon E5-2430 machine. This shows the
model is applicable to industrial bots. In all, our
proposed MT-hCNN is shown to be both efficient
and effective for question matching in multi-turn
conversations.

3.2 Transferablity of our model
To evaluate the effectiveness of our transfer learn-
ing setting, we compare our full model with three
baselines: Src-only that uses only source data,
Tgt-only that uses only target data, and TL-S that
uses both source and target data with the adversar-
ial training as in (Liu et al., 2017). All the methods
are evaluated on the test set of the target data.

As in Table 2, Src-only performs worse than
Tgt-only. This shows the source and target do-
mains are related but different. Despite the domain
shift, TL-S is able to leverage knowledge from the
source domain and boost performance; Last, our
model shows better performance than TL-S, this
shows the helpfulness of adding domain discrimi-
nators on both source and target domains.

Table 2: Transferablity of our model.

Data E-commerce data (AliMeData)
Methods MAP R@5 R@2 R@1
Src-only 0.7012 0.7123 0.4343 0.2846
Tgt-only 0.8418 0.7810 0.4796 0.3241
TL-S 0.8521 0.8022 0.4812 0.3255
Ours 0.8523 0.8125 0.4881 0.3291

3.3 Online Evaluations
We deployed our model online in AliMe Assist
Bot. For each query, the bot uses the TF-IDF
model in Lucene to return a set of candidates, then
uses our model to rerank all the candidates and re-
turns the top. We set the candidate size as 15 and
context length as 3. To accelerate the computation,
we bundle the 15 candidates into a mini-batch to
feed into our model. We compare our method with
the online model - a degenerated version of our
model that only uses the current query to retrieve
candidate, i.e. context length is 1. We have run 3-
day A/B testing on the Click-Through-Rate (CTR)
of the models. As shown in Table 3, our method
consistently outperforms the online model, yield-
ing 5% ∼ 10% improvement.
4 Related Work

Recent research in multi-turn conversation sys-
tems has focused on deep learning and reinforce-

Table 3: Comparison with the online model.

CTR Day1 Day2 Day3
Online Model 0.214 0.194 0.221
Our Model 0.266 0.291 0.288

ment learning (Shang et al., 2015; Yan et al., 2016;
Li et al., 2016a,b; Sordoni et al., 2015; Wu et al.,
2017). The recent proposed Sequential Matching
Network (SMN) (Wu et al., 2017) matches a re-
sponse with each utterance in the context at multi-
ple levels of granularity, leading to state-of-the-art
performance on two multi-turn conversation cor-
pora. Different from SMN, our model is built on
CNN based modules, which yields comparable re-
sults but with better efficiency.

We study transfer learning (TL) (Pan and Yang,
2010) to help domains with limited data. TL has
been extensively studied in the last decade. With
the popularity of deep learning, many Neural Net-
work (NN) based methods are proposed (Yosin-
ski et al., 2014). A typical framework uses a
shared NN to learn shared features for both source
and target domains (Mou et al., 2016; Yang et al.,
2017). Another approach is to use both a shared
NN and domain-specific NNs to derive shared and
domain-specific features (Liu et al., 2017). This
is improved by some studies (Ganin et al., 2016;
Taigman et al., 2017; Chen et al., 2017; Liu et al.,
2017) that consider adversarial networks to learn
more robust shared features across domains. Our
TL model is based on (Liu et al., 2017), with en-
hanced source and target specific domain discrim-
ination losses.

5 Conclusion

In this paper, we proposed a conversation model
based on Multi-Turn hybrid CNN (MT-hCNN).
We extended our model to adapt knowledge
learned from a resource-rich domain. Extensive
experiments and an online deployment in AliMe
E-commerce chatbot showed the efficiency, effec-
tiveness, and transferablity of our proposed model.
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Abstract

We present a novel multi-task model-
ing approach to learning multilingual dis-
tributed representations of text. Our sys-
tem learns word and sentence embeddings
jointly by training a multilingual skip-
gram model together with a cross-lingual
sentence similarity model. Our architec-
ture can transparently use both monolin-
gual and sentence aligned bilingual cor-
pora to learn multilingual embeddings,
thus covering a vocabulary significantly
larger than the vocabulary of the bilingual
corpora alone. Our model shows com-
petitive performance in a standard cross-
lingual document classification task. We
also show the effectiveness of our method
in a limited resource scenario.

1 Introduction

Learning distributed representations of text,
whether it be at the level of words, phrases,
sentences or documents has been one of the
most widely researched subjects in natural lan-
guage processing in recent years (Mikolov et al.,
2013; Pennington et al., 2014; Gouws et al.,
2015; Socher et al., 2010; Pham et al., 2015b;
Kiros et al., 2015; Conneau et al., 2017; Le and
Mikolov, 2014; Chen, 2017; Wu et al., 2017).
Word/sentence/document embeddings, as they are
now commonly referred to, have quickly become
essential ingredients of larger and more complex
NLP systems looking to leverage the rich seman-
tic and linguistic information present in distributed
representations (Bengio et al., 2003; Maas et al.,
2011; Collobert et al., 2011; Bahdanau et al.,
2014; Chen and Manning, 2014).

Research that has been taking place in the con-
text of distributed text representations is learn-

ing multilingual text representations shared across
languages (Faruqui and Dyer, 2014; Bengio and
Corrado, 2015; Luong et al., 2015). Multilingual
embeddings open up the possibility of transferring
knowledge across languages and building complex
systems even for languages with limited amount of
supervised resources (Ammar et al., 2016; John-
son et al., 2016). By far the most popular approach
to learning multilingual embeddings is to train a
multilingual word embedding model that is then
used to derive representations for sentences and
documents by composition (Hermann and Blun-
som, 2014). These models are typically trained
solely on word or sentence aligned corpora and
the composition models are usually simple pre-
defined functions like averages over word embed-
dings (Lauly et al., 2014; Hermann and Blunsom,
2014; Mogadala and Rettinger, 2016) or paramet-
ric composition models learned along with the
word embeddings (Schwenk et al., 2017). For a
thorough survey of cross-lingual text embedding
models, please refer to (Ruder, 2017).

In this work we learn word and sentence embed-
dings jointly by training a multilingual skip-gram
model together with a cross-lingual sentence sim-
ilarity model. Our multilingual skip-gram model
is similar to (Luong et al., 2015). It transparently
consumes (word, context) pairs constructed from
monolingual as well as sentence aligned bilingual
corpora. We process word embeddings with a
bidirectional LSTM and then take an average of
the LSTM outputs, which can be viewed as con-
text dependent word embeddings, to produce sen-
tence embeddings. Since our multilingual skip-
gram and cross-lingual sentence similarity mod-
els are trained jointly, they can inform each other
through the shared word embedding layer and pro-
mote the compositionality of learned word embed-
dings at training time. Further, the gradients flow-
ing back from the sentence similarity model can
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affect the embeddings learned for words outside
the vocabulary of the parallel corpora. We hypoth-
esize these two aspects of approach lead to more
robust sentence embeddings.

The main motivation behind our approach is to
learn high quality multilingual sentence and doc-
ument embeddings in the low resource scenario
where parallel corpus sizes are limited. The main
novelty of our approach is the joint training of
multilingual skip-gram and cross-lingual sentence
similarity objectives with a shared word embed-
ding layer which allows the gradients from the
sentence similarity task to affect the embeddings
learned for words outside the vocabulary of the
parallel corpora. By jointly training these two
objectives, we can transparently use monolingual
and parallel data for learning multilingual sen-
tence embeddings. Using a BiLSTM layer to con-
textualize word embeddings prior to averaging is
orthogonal to the joint multi-task learning idea.
We observed that this additional layer is benefi-
cial in most settings and this is consistent with
the observations of recent works on learning sen-
tence and document embeddings such as (Con-
neau et al., 2017; Yang et al., 2016)

2 Model

Our model jointly optimizes multilingual skip-
gram (Luong et al., 2015) and cross-lingual sen-
tence similarity objectives using a shared word
embedding layer in an end-to-end fashion.

Multilingual Skip-gram: Multilingual skip-
gram model (Luong et al., 2015) extends the tradi-
tional skip-gram model by predicting words from
both the monolingual and the cross-lingual con-
text. The monolingual context consists of words
neighboring a given word as in the case of the tra-
ditional skip-gram model. The cross-lingual con-
text, on the other hand, consists of words neigh-
boring the target word aligned with a given source
word in a parallel sentence pair. Figure 1 shows
an example alignment, where an aligned pair of
words are attached to both their monolingual and
bilingual contexts. For a pair of languages L1
and L2, the word embeddings are learned by op-
timizing the traditional skip-gram objective with
(word, context word) pairs sampled from mono-
lingual neighbors in L1 → L1 and L2 → L2
directions as well as cross-lingual neighbors in
L1 → L2 and L2 → L1 directions. In our setup,
cross-lingual pairs are sampled from parallel cor-

Figure 1: Example context attachments for a bilin-
gual (en-de) skip-gram model.

Figure 2: Overview of the architecture that we use
for computing sentence representations RS and
RT for input word sequences S and T .

pora while monolingual pairs are sampled from
both parallel and monolingual corpora.

Cross-lingual Sentence Similarity: We pro-
cess word embeddings with a bi-directional
LSTM (Hochreiter et al., 2001; Hochreiter and
Schmidhuber, 1997) and then take an average of
the LSTM outputs (Figure 2). There are various
implementations of LSTMs available; in this work
we use an implementation based on (Zaremba
et al., 2014). The LSTM outputs (hidden states)
contextualize input word embeddings by encod-
ing the history of each word into its represen-
tation. We hypothesize that this is better than
averaging word embeddings as sentences gener-
ally have complex semantic structure and two sen-
tences with different meanings can have exactly
the same words. Let R : S → Rd denote our
sentence encoder mapping a given sequence of
words S to a continuous vector in Rd. Given a
pair of parallel sentences (S, T ), we define their
distance as d(S, T ) = ‖RS −RT ‖2. For every
parallel sentence pair, we randomly sample k neg-
ative sentences {Ni|i = 1 . . . k} and define the
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cross-lingual sentence similarity loss as follows:

l(S, T ) =
k∑

i=1

max(0,m+ d(S, T )− d(S,Ni))

Without the LSTM layer, this loss is similar to the
BiCVM loss (Hermann and Blunsom, 2014) ex-
cept that we use also the reversed sample (T, S)
to train the model, therefore showing each pair of
sentences to the model two times per epoch.

3 Experiments

3.1 Corpora

We learn the distributed representations on the Eu-
roparl corpus v71 (Koehn, 2005). For a fair com-
parison with literature, we use the first 500K paral-
lel sentences for each of the English-German (en-
de), English-Spanish (en-es) and English-French
(en-fr) language pairs. We keep the first 90% for
training and the remaining 10% for development
purposes. We also use additional 500K monolin-
gual sentences from the Europarl corpus for each
language. These sentences do not overlap with the
sentences in parallel data.

Words that occur less than 5 times are replaced
with the <unk> symbol. In the joint multi-task
setting, the words are counted in the combined
monolingual and parallel corpora. The vocabulary
sizes for German (de) and English (en) are respec-
tively 39K and 21K in the parallel corpus, 120K
and 68K in the combined corpus.

We evaluate our models on the RCV1/RCV2
cross-lingual document classification task (Kle-
mentiev et al., 2012), where for each language we
use 1K documents for training and 5K documents
for testing.

3.2 Models

In addition to the proposed joint multi-task (JMT)
model, JMT-Sent-LSTM, we also present ab-
lation experiments where we omit the LSTM
layer, the multilingual skip-gram objective or
both. JMT-Sent-Avg is like the proposed model
but does not include an LSTM layer. Sent-LSTM
and Sent-Avg are the single-task variants of these
models.

We construct document embeddings by averag-
ing sentence representations produced by a trained
sentence encoder. For a language pair L1-L2, a
document classifier (single layer average percep-
tron) is trained on documents from L1, and tested

on documents from L2. Due to lack of supervision
on theL2 side, this setup relies on documents from
different languages with similar meaning having
similar representations.

3.3 Training

The single-task models are trained with the cross-
lingual sentence similarity objective end-to-end
using parallel data only. We also tried train-
ing word embeddings beforehand on parallel and
mono data and tuning them on the cross-lingual
sentence similarity task but that did not improve
the results. Those results are omitted for brevity.
The multi-task models are trained by alternating
between the two tasks.

Multilingual Skip-gram: We use stochastic
gradient descent with a learning rate of 0.01 and
exponential decay of 0.98 after 10K steps (1 step
is 256 word pairs), negative sampling with 512
samples, skip-gram context window of size 5. Re-
ducing the learning rate of the skip-gram model
helps in the multi-task scenario by allowing skip-
gram objective to converge in parallel with the
sentence similarity objective. At every step, we
sample equal number of monolingual and cross-
lingual word pairs to make a mini-batch.

Cross-lingual Sentence Similarity: The batch
size is 50 sentence pairs. LSTM hidden state di-
mension is 128 or 512. We use dropout at the em-
bedding layer with drop probability 0.3. Hinge-
loss margin m is equal to sentence embedding
size. We sample 10 negative samples for the noise-
contrastive loss. The model is trained using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 and an exponential decay of
0.98 after 10K steps (1 step is 50 sentence pairs).

3.4 Results

Table 1 shows the results for our models and com-
pares them to some state-of-the-art approaches.
When the sentence embedding dimension is 512,
our results are close to the best results from litera-
ture. When the sentence embedding dimension is
128, our JMT-Sent-LSTM model outperforms all
of the systems compared. Models with an LSTM
layer (Sent-LSTM and JMT-Sent-LSTM) perform
better than those without one. Joint multi-task
training consistently improves the performance.
The results for the data ablation experiments (*no-
mono) suggest that the gains obtained in the JMT
setting are partly due to the addition of monolin-
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Model en→ de de→ en
500k parallel sentences, dim=128
BiCVM-add+ 86.4 74.7
BiCVM-bi+ 86.1 79.0
BiSkip-UnsupAlign 88.9 77.4
Our Models
Sent-Avg 88.2 80.0
JMT-Sent-Avg 88.5 80.5
Sent-LSTM 89.5 80.4
JMT-Sent-LSTM 90.4 82.2
JMT-Sent-Avg*no-mono 88.8 80.3
JMT-Sent-LSTM*no-mono 89.5 81.5
100k parallel sentences, dim=128
Sent-Avg 81.6 75.2
JMT-Sent-Avg 85.3 79.1
Sent-LSTM 82.1 76.0
JMT-Sent-LSTM 87.4 80.7
JMT-Sent-LSTM*no-mono 83.4 76.5

Table 1: Results for models trained on en-de
language pair. *no-mono means no monolin-
gual data was used in training. We compare our
models to: BiCVM-add+ (Hermann and Blun-
som, 2014), BiCVM-bi+ (Hermann and Blunsom,
2014), BiSkip-UnsupAlign (Luong et al., 2015)
and para doc (Pham et al., 2015a).

gual data and partly due to the multi-task objec-
tive.

Varying monolingual vs parallel data: The
main motivation behind the multi-task architecture
is to create high quality embeddings in the limited
resource scenario. The bottom section of Table 1
shows the results for 128 dimensional embeddings
when parallel data is limited to 100K sentences.
JMT-Sent-LSTM results in this scenario are com-
parable to the results from the middle section of
Table 1 which use 500K parallel sentences. These
findings suggest that JMT-Sent-LSTM model can
produce high quality embeddings even with a lim-
ited amount of parallel data by exploting addi-
tional monolingual data. Table 2 compares Sent-
LSTM vs. JMT-Sent-LSTM at different data con-
ditions. JMT-Sent-LSTM produces consistently
better embeddings as long as the amount of ad-
ditional monolingual data is neither too large nor
too small compared to the amount of parallel data
– 3-4 times parallel data size seems to be a good
heuristic for choosing monolingual data size.

Multilingual vs Bilingual models: Table 3
compares multilingual models (en, es, de) to bilin-
gual models. First four rows of Table 3 show re-
sults for multilingual systems where sentence en-

Mono
Parallel

20K 50K 100K 500K

no-mono 60.3 68.3 82.1 89.5
20K 57.4 68.7 80.2 89.5
50K 62.7 69.0 83.5 89.5
100K 61.5 71.9 85.1 89.6
200K 58.1 72.1 85.5 90.0
500K 52.6 64.8 87.4 90.4

Table 2: Sent-LSTM vs. JMT-Sent-LSTM at dif-
ferent data conditions (en-de, dim=128).

Model en-es en-de de-en es-en es-de
Sent-Avg 49.8 86.8 78.4 63.5 69.4
Sent-LSTM 53.1 89.9 77.0 67.8 65.3
JMT-Sent-Avg 51.5 87.2 75.7 60.3 72.6
JMT-Sent-LSTM 57.4 91.0 75.1 63.3 68.1
JMT-Sent-LSTM* 54.1 90.4 82.2 68.4 -

Table 3: Multilingual vs. bilingual* models
(dim=128).

coder is trained for three languages (en,es,de) us-
ing en-es and en-de parallel data and additional
monolingual data for each language. Document
representations obtained from this sentence en-
coder are then used to train a classifier for a
language pair like en-de, where the classifier is
trained on en documents and then tested on de doc-
uments. In this scenario, we can build classifiers
for language pairs like es-de even though we do
not have access to es-de parallel data since embed-
dings we learn are shared between the three lan-
guages. Bottom row in Table 3 shows results for
bilingual systems where we train the sentence en-
coder for two languages, and then use that encoder
to train a document classifier for one language and
test on the other. In this scenario, we cannot build
classifiers for language pairs like es-de for which
we do not have access to parallel data.

Multilingual models perform better than bilin-
gual ones when English is the source language but
they perform worse in the other direction. We be-
lieve this discrepancy is because Europarl docu-
ments were originally in English and later trans-
lated to other languages. The multilingual mod-
els also show promising results for es-de pair, for
which there was no parallel data.

4 Linguistic analysis

As classification experiments focused on keeping
semantic information in sentence level representa-
tions, we also checked if produced word embed-
dings still made sense. We use JMT-Sent-LSTM
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Figure 3: t-SNE projections for 3 English words
(clarification, transcribe, cunningly) which are not
in the parallel corpus and their four nearest neigh-
bors. Red words are only in the monolingual cor-
pus. Blue words exist in parallel corpus too.

model for this purpose. Figure 3 shows t-SNE
projections for some sample words. Even though
the model didn’t use any German-Spanish parallel
data it managed to map words which have sim-
ilar meaning (transkribiert and transcribi) closer.
Words that are antonyms but still have a similar
meaning are close to each other (cunnigly (en),
honestly (en) and astucia (es)). Nearest neighbors
in the multilingual representation space are gener-
ally of same form across languages. It can also be
observed that English words lie towards the mid-
dle of Spanish and German words which we be-
lieve is due to English being the pivot for the other
two languages.

5 Conclusion

Our results suggest that joint multi-task learning
of multilingual word and sentence embeddings is
a promising direction. We believe that our sen-
tence embedding model can be improved further
with straightforward modifications to the sentence
encoder architecture, for instance using stacked
LSTMs or batch/layer normalization, and addition
of sentence level auxiliary tasks such as sentiment
classification or natural language inference. We
plan to explore these directions and evaluate our
approach on additional tasks in the future.

6 Discussion and Future Work

In our exploration of architectures for the sen-
tence encoding model, we also tried using a self-
attention layer following the intuition that not all
words are equally important for the meaning of a
sentence. However, we later realized that the cross

lingual sentence similarity objective is at odds
with what we want the attention layer to learn.
When we used self attention instead of simple av-
eraging of word embeddings, the attention layer
learns to give the entire weight to a single word in
both the source and the target language since that
makes optimizing cross lingual sentence similarity
objective easier. Another approach could be to de-
rive high dimensional embeddings in a way similar
to (Conneau et al., 2017) and using max-pooling
which can allow efficient selection for each dimen-
sion to represent meaning.

Even though they are related tasks, multilin-
gual skip-gram and cross-lingual sentence similar-
ity models are always in a conflict to modify the
shared word embeddings according to their objec-
tives. This conflict, to some extent, can be eased
by careful choice of hyper-parameters. This de-
pendency on hyper-parameters suggests that better
hyper-parameters can lead to better results in the
multi-task learning scenario. We have not yet tried
a full sweep of the hyper-parameters of our current
models but we believe there may be easy gains to
be had from such a sweep especially in the multi-
task learning scenario. Other thing that remains
rather unexplored is to do other levels of multi-
tasking, like learning character representations or
multitasking at sentence level.
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Abstract

We investigate the behavior of maps
learned by machine translation methods.
The maps translate words by projecting
between word embedding spaces of dif-
ferent languages. We locally approximate
these maps using linear maps, and find
that they vary across the word embedding
space. This demonstrates that the underly-
ing maps are non-linear. Importantly, we
show that the locally linear maps vary by
an amount that is tightly correlated with
the distance between the neighborhoods
on which they are trained. Our results can
be used to test non-linear methods, and to
drive the design of more accurate maps for
word translation.

1 Introduction

Following the success of monolingual word em-
beddings (Collobert et al., 2011), a number of
studies have recently explored multilingual word
embeddings. The goal is to learn word vectors
such that similar words have similar vector repre-
sentations regardless of their language (Zou et al.,
2013; Upadhyay et al., 2016). Multilingual word
embeddings have applications in machine trans-
lation, and hold promise for cross-lingual model
transfer in NLP tasks such as parsing or part-of-
speech tagging.

A class of methods has emerged whose core
technique is to learn linear maps between vec-
tor spaces of different languages (Mikolov et al.,
2013a; Faruqui and Dyer, 2014; Vulic and Korho-
nen, 2016; Artetxe et al., 2016; Conneau et al.,
2018). These methods work as follows: For a
given pair of languages, first, monolingual word
vectors are learned independently for each lan-
guage, and second, under the assumption that

x Mx

M
(en) (de)

x
(en) (de)

Mx0

Mxn

xn
0

Figure 1: Top: Assumption of linearity implies
a single linear map M. Bottom: Our hypothesis
is that the underlying map is expected to be non-
linear but in small enough neighborhoods can be
approximated by linear maps Mxi for each neigh-
borhood defined by xi.

word vector spaces exhibit comparable structure
across languages, a linear mapping function is
learned to connect the two monolingual vector
spaces. The map can then be used to translate
words between the language pair.

Both seminal (Mikolov et al., 2013a), and state-
of-the-art methods (Conneau et al., 2018) found
linear maps to substantially outperform specific
non-linear maps generated by feedforward neu-
ral networks. Advantages of linear maps include:
1) In settings with limited training data, accurate
linear maps can still be learned (Conneau et al.,
2018; Zhang et al., 2017; Artetxe et al., 2017;
Smith et al., 2017). For example, in unsuper-
vised learning, (Conneau et al., 2018) found that
using non-linear mapping functions made adver-
sarial training unstable1. 2) One can easily im-
pose constraints on the linear maps at training time
to ensure that the quality of the monolingual em-

1https://openreview.net/forum?id=H196sainb
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beddings is preserved after mapping (Xing et al.,
2015; Smith et al., 2017).

However, it is not well understood to what ex-
tent the assumption of linearity holds and how it
affects performance. In this paper, we investigate
the behavior of word translation maps, and show
that there is clear evidence of departure from lin-
earity.

Non-linear maps beyond those generated by
feedforward neural networks have also been ex-
plored for this task (Lu et al., 2015; Shi et al.,
2015; Wijaya et al., 2017; Shi et al., 2015). How-
ever, no attempt was made to characterize the re-
sulting maps.

In this paper, we allow for an underlying map-
ping function that is non-linear, but assume that
it can be approximated by linear maps at least
in small enough neighborhoods. If the underly-
ing map is linear, all local approximations should
be identical, or, given the finite size of the train-
ing data, similar. In contrast, if the underlying
map is non-linear, the locally linear approxima-
tions will depend on the neighborhood. Figure 1
illustrates the difference between the assumption
of a single linear map, and our working hypothe-
sis of locally linear approximations to a non-linear
map. The variation of the linear approximations
provides a characterization of the nonlinear map.
We show that the local linear approximations vary
across neighborhoods in the embedding space by
an amount that is tightly correlated with the dis-
tance between the neighborhoods on which they
are trained. The functional form of this variation
can be used to test non-linear methods.

2 Review of Prior Work

To learn linear word translation maps, differ-
ent loss functions have been proposed. The
simplest is the regularized least squares loss,
where the linear map M is learned as follows:
M̂ = arg minM ||MX − Y||F + λ||M||,
here X and Y are matrices that contain word
embedding vectors for the source and target lan-
guage (Mikolov et al., 2013a; Dinu et al., 2014;
Vulic and Korhonen, 2016). The translation t
of a source language word s is then given by:
t = arg maxt cos(Mxs, yt).

(Xing et al., 2015) obtained improved results
by imposing an orthogonality constraint on M,
M = ||MWT − I|| where I is the identify
matrix. Another loss function used in prior work

s=
0.
1:

co
pen

hage
n, dinosaur, orchids, ...

s=
0.
6:

ant
iobiotic, dosage, ...

s=
0.
8:
die

tary,nutrition,...

mu
ltivitamins

Figure 2: Neighborhoods formed around the word
“multivitamins”.

is the max-margin loss, which has been shown
to significantly outperform the least squares loss
(Lazaridou et al., 2015; Nakashole and Flauger,
2017).

Unsupervised or limited supervision methods
for learning word translation maps have recently
been proposed (Conneau et al., 2018; Zhang et al.,
2017; Artetxe et al., 2017; Smith et al., 2017).
However, the underlying methods for learning the
mapping function are similar to prior work (Xing
et al., 2015).

Non-linear cross-lingual mapping methods have
been proposed. In (Wijaya et al., 2017) when
dealing with rare words, the proposed method
backs-off to a feed-forward neural network. (Shi
et al., 2015) model relations across languages. (Lu
et al., 2015) proposed a deep canonical correla-
tion analysis based mapping method. Work on
phrase translation has explored the use of many lo-
cal maps that are individually trained (Zhao et al.,
2015). In contrast to our work, these prior papers
do not attempt to characterize the behavior of the
resulting maps.

Our hypothesis is similar in spirit to the use
of locally linear embeddings for nonlinear dimen-
sionality reduction (Roweis and Saul, 2000).

3 Neighborhoods in Word Vector Space

In order to study the behavior of word transla-
tion maps, we begin by introducing a simple no-
tion of neighborhoods in the embedding space.
For a given language (e.g., English, en), we de-
fine a neighborhood of a word as follows: First,
we pick a word xi, whose corresponding vector
is xi ∈ Xen, as an anchor. Second, we ini-
tialize a neighborhood N (xi) containing a single
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vector xi. We then grow the neighborhood by
adding all words whose cosine similarity to xi is
≥ s. The resulting neighborhood is defined as:
N (xi, s) = {xj | cos(xi, xj) ≥ s }.

Suppose we pick the word multivitamins as the
anchor word. We can generate neighborhoods us-
ing N (x multivitamins, s) where for each value of s
we get a different neighborhood. Neighborhoods
corresponding to larger values of s are subsumed
by those corresponding to smaller values of s.

Figure 2 illustrates the process of generating
neighborhoods around the word multivitamins.
For large values of s (e.g., s = 0.8), the resulting
neighborhoods only contain words that are closely
related to the anchor word, such as dietary and
nutrition. As s gets smaller (e.g., s = 0.6), the
neighborhood gets larger, and includes words that
are less related to the anchor, such as antibiotic.

Using this simple method, we can define
different-sized neighborhoods around any word in
the vocabulary.

4 Analysis of Map Behavior

Given the above neighborhood definition, we now
seek to understand how word translation maps
change as we move across neighborhoods in word
embedding space.

Questions Studied. We study the following
questions: [Q.1] Is there a single linear map for
word translation that produces the same level of
performance regardless of where in the vector
space the words being translated fall? [Q.2] If
there is no such single linear map, but instead mul-
tiple neighborhood-specific ones, is there a rela-
tionship between neighborhood-specific maps and
the distances between their respective neighbor-
hoods?

4.1 Experimental Setup and Data
In our first experiment we translate from En-
glish (en) to German (de). We obtained pre-
trained word embeddings from FastText (Bo-
janowski et al., 2017). In the first experiment, we
follow common practice (Mikolov et al., 2013a;
Ammar et al., 2016; Nakashole and Flauger, 2017;
Vulic and Korhonen, 2016), and used the Google
Translate API to obtain training and test data. We
make our data available for reproducibility2. For
the second experiment, we repeat the first exper-
iment, but instead of using Google Translate, we

2nakashole.com/mt.html

use the recently released Facebook AI Research
dictionaries 3 for training and test data. To test the
generality of the findings of the first experiment,
the second experiment was performed on a differ-
ent language pair: English (en) to Swedish (sv).

In our all experiments, the cross-lingual maps
are learned using the max-margin loss, which has
been shown to perform competitively, while hav-
ing fast run-times. (Lazaridou et al., 2015; Nakas-
hole and Flauger, 2017). The max-margin loss
aims to rank correct training data pairs (xi, yi)
higher than incorrect pairs (xi, yj) with a margin
of at least γ. The margin γ is a hyper-parameter
and the incorrect labels, yj can be selected ran-
domly such that j 6= i or in a more applica-
tion specific manner. In our experiments, we set
γ = 0.4 and randomly selected negative exam-
ples, one negative example for each training data
point.

Given a seed dictionary as training data of the
form Dtr = {xi, yi}mi=1, the mapping function is

Ŵ = arg min
W

m∑
i=1

k∑
j 6=i

max
(

0, γ

+d(yi,Wxi)− d(yj ,Wxi)
)
, (1)

where ŷi = Wxi is the prediction, k is the num-
ber of incorrect examples per training instance,
and d(x, y) = (x− y)2 is the distance measure.

For the first experiment, we picked the fol-
lowing words as anchor words and obtained
maps associated with each of their neighbor-
hoods: M (multivitamins), M (antibiotic), M (disease),
M (blowflies), M (dinosaur), M (orchids), M (copenhagen).
For each anchor word, we set s = 0.5, thus the
neighborhoods areN (xi, 0.5) where xi is the vec-
tor of the anchor word. The training data for learn-
ing each neighborhood-specific linear map con-
sists of vectors in N (xi, 0.5) and their transla-
tions.

Table 1 shows details of the training and test
data for each neighborhood. The words shown in
Table 1 were picked as follows: first we picked
the word multivitamins, then we picked the other
words to have varying degrees of similarity to it.
The cosine similarity of these words to the word
‘multivitamins’ are shown in column 3 of Table 1.
It is also worth noting that there is nothing special
about these words. In fact, the second experiment

3https://github.com/facebookresearch/
MUSE
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0 1 2 3 4 5 6 7 8 9

Anchor
Word

Data, N (xi, s = 0.5) x0 Similarity Translation Accuracy Matrix Property

Train Test cos(x0, xi) M Mx0 Mxi ∆ cos(Mx0 ,Mxi) ||M ||
x0:multivitamins 3,415 500 1.0 58.3 68.2 68.2 0 1.0 33.07

x1:antibiotic 3,507 500 0.60 61.1 67.3 72.7 5.4 ↑ 0.59 33.29

x2:disease 2,478 500 0.45 69.3 59.2 73.4 14.2 ↑ 0.31 35.35

x3:blowflies 2,434 500 0.33 71.4 28.4 73.2 44.8 ↑ 0.20 33.36

x4:dinosaur 990 500 0.24 63.2 14.7 77.1 62.4 ↑ 0.14 36.50

x5:orchids 2,981 500 0.19 73.7 19.3 78.0 58.7 ↑ 0.20 30.68

x6:copenhagen 2,083 500 0.11 38.5 31.2 67.4 36.2 ↑ 0.15 31.42

Table 1: The behavior of word translation maps trained on different neighborhoods ( en→ de translation).
Highlighted columns illustrate variations in maps. Accuracy refers to precision at 10.

was carried out on different set of words, and on a
different language pair.

4.2 Map Similarity Analysis
If indeed there exists a map that is the same
linear map everywhere, we expect the above
neighborhood-specific maps to be similar. Our
analysis makes use of the following definition of
matrix similarity:

cos(M1,M2) =
tr(M1

TM2)√
tr(M1

TM1)tr(M2
TM2)

(2)
Here tr(M) denotes the trace of the matrix

M. tr(M1
TM1) computes the Frobenius norm

||M1||2, and tr(M1
TM2) is the Frobenius inner

product. That is, cos(M1,M2) computes the co-
sine similarity between the vectorized versions of
matrices M1 and M2.

4.3 Experimental Results
The main results of our analysis are shown in Ta-
ble 1.

We now analyze the results of Table 1 in de-
tail. The 0th column contains the anchor word, xi,
around which the neighborhood is formed. The
1st, and 2nd columns contain the size of the train-
ing and test data from N (xi, s = 0.5) where xi is
the word vector for the anchor word.

The 3rd column contains the cosine similarity
between x0, multivitamins, and xi. For example,
x1 (antibiotic) is the most similar to x0 (0.6), and
x6, copenhagen, is the least similar to x0 (0.11).

The 4th column is the translation accuracy of
the single global map M , training on data from all
xi neighborhoods. The 5th column is the transla-
tion accuracy of the mapMx0 , trained on the train-
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Figure 3: Correlation between the 8th column (x-
axis), map similarity cos(Mx0 ,Mxi), and the 5th
column (y-axis), performance of map Mx0 on test
data from the neighborhood anchored at xi.

ing data of x0, and tested on the test data in xi.
We use precision at top-10 as a measure of trans-
lation accuracy. Going down this column we can
see that accuracy is highest on the test data from
the neighborhood anchored at x0 itself, and lowest
on the test data from the neighborhood anchored
at x6, copenhagen, which is also the furthest word
from x0.

The 6th column is translation accuracy of the
mapMxi , trained on the training data of the neigh-
borhood anchored at xi, and tested on the test data
in xi. We can see that compared to the 5th col-
umn, in all cases performance is higher when we
apply the map trained on data from the neigh-
borhood, Mxi instead of Mx0 . The 7th column
shows the difference in translation accuracy of the
map Mxi and Mx0 . This shows that the more dis-
similar the neighborhood anchor word xi is from
x0 according to the cosine similarity shown in the
4rd column, the larger this difference is.

The local maps, 6th column, Mxi in all cases
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0 1 2 3 4 5 6

Anchor
Word

Data, N (xi, s = 0.5) x0 Similarity Translation Accuracy

Train Test cos(x0, xi) M Mx0 Mxi

x0:species 1,765 200 1.0 58.0 60.0 60.0
x1:genus 1,374 200 0.77 56.4 53.1 56.0
x2:laticeps 1,868 200 0.60 81.0 73.4 79.1
x3:femoralis 1,689 200 0.52 85.3 76.3 83.4
x4:coneflower 1,077 200 0.47 39.6 31.6 43.0
x5:epicauta 1,339 200 0.43 53.4 42.1 54.2
x6:kristoffersen 1,227 200 0.09 24.3 10.3 57.1

Table 2: Different language pair ( en → sv) English to Swedish, and different sets of neighborhoods.
Train and test is from the FAIR/MUSE word translation lexicons. Accuracy refers to precision at 10.

outperform the global map 4th column.

The 8th column shows the similarity between
maps Mxi and Mx0 as computed by Equation
2. This column shows that the similarity be-
tween these learned maps is highly correlated
with the cosine similarity or distance between the
words in 3rd column. We also see a correlation
with the translation accuracy in the 5th column.
This correlation is visualized in Figure 3. Fi-
nally, the 9th column shows the magnitudes of the
maps. The magnitudes vary somewhat between
the maps trained on the different neighborhoods,
and are significantly different from the magnitude
expected for an orthogonal matrix. (For an or-
thogonal 300 × 300 matrix O the norm is ||O|| =√

300 ≈ 17).

In order to determine the generality of our re-
sults, we carried out the same experiment on a dif-
ferent language pair, as shown in Table 2. Cru-
cially, we see the same trends as those observed in
Table 1. This supports the generality of our find-
ings.

4.4 Experiments Summary

Our experimental study suggests the following: i)
linear maps vary across neighborhoods, implying
that the assumption of a linear map does not to
hold. ii) the difference between maps is tightly
correlated with the distance between neighbor-
hoods.

5 Conclusions

In this paper, we provide evidence that the as-
sumption of linearity made by a large body of
current work on cross-lingual mapping for word
translation does not hold. We locally approximate
the underlying non-linear map using linear maps,
and show that these maps vary across neighbor-
hoods in vector space by an amount that is tightly
correlated with the distance between the neighbor-
hoods on which they are trained. These results can
be used to test non-linear methods, and we plan to
use our finding to design more accurate maps in
future work.
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Abstract

We learn a joint multilingual sentence em-
bedding and use the distance between sen-
tences in different languages to filter noisy
parallel data and to mine for parallel data
in large news collections. We are able
to improve a competitive baseline on the
WMT’14 English to German task by 0.3
BLEU by filtering out 25% of the training
data. The same approach is used to mine
additional bitexts for the WMT’14 system
and to obtain competitive results on the
BUCC shared task to identify parallel sen-
tences in comparable corpora.

The approach is generic, it can be applied
to many language pairs and it is indepen-
dent of the architecture of the machine
translation system.

1 Introduction

Parallel data, also called bitexts, is an important
resource to train neural machine translation sys-
tems (NMT). It is usually assumed that the qual-
ity of the automatic translations increases with the
amount of available training data. However, it was
observed that NMT systems are more sensitive to
noise than SMT systems, e.g. (Belinkov and Bisk,
2017). Well known sources of parallel data are
international organizations like the European Par-
liament or the United Nations, or community pro-
vided translations like the TED talks. In addi-
tion, there are many texts on the Internet which
are potential mutual translations, but which need
to be identified and aligned. Typical examples are
Wikipedia or news collections which report on the
same facts in different languages. These collec-
tions are usually called comparable corpora.

In this paper we propose an unified approach
to filter noisy bitexts and to mine bitexts in huge

monolingual texts. The main idea is to first learn
a joint multilingual sentence embedding. Then, a
threshold on the distance between two sentences
in this joint embedding space can be used to fil-
ter bitexts (distance between source and target sen-
tences), or to mine for additional bitexts (pairwise
distances between all source and target sentences).
No additional features or classifiers are needed.

2 Related work

The problem of how to select parts of bitexts has
been addressed before, but mainly from the aspect
of domain adaptation (Axelrod et al., 2011; San-
tamarı́a and Axelrod, 2017). It was successfully
used in many phrase-based MT systems, but it was
reported to be less successful for NMT (van der
Wees et al., 2017). It should be stressed that do-
main adaptation is different from filtering noisy
training data. Data selection extracts the most rel-
evant bitexts for the test set domain, but does not
necessarily remove wrong translations, e.g. source
and target sentences are both in-domain and well
formed, but they are not mutual translations.

There is a huge body of research on mining bi-
texts, e.g. by analyzing the name of WEB pages
or links (Resnik and Smith, 2003). Another di-
rection of research is to use cross-lingual informa-
tion retrieval, e.g. (Utiyama and Isahara, 2003;
Munteanu and Marcu, 2005; Rauf and Schwenk,
2009). There are some works which use joint em-
beddings in the process of filtering or mining bi-
texts. For instance, Grégoire and Langlais (2017)
first embed sentences into two separate spaces.
Then, a classifier is learned on labeled data to de-
cide whether sentences are parallel or not. Our ap-
proach clearly outperforms this technique on the
BUCC corpus (cf. section 4). Bouamor and Saj-
jad (2018) use averaged multilingual word embed-
dings to calculate a joint embedding of all sen-
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tences. However, distances between all sentences
are only used to extract a set of potential mutual
translation. The decision is based on a different
system. In Hassan et al. (2018) NMT systems for
Zh↔ En are learned using a joint encoder. A sen-
tence representation is obtained as the mean of the
last encoder states. Noisy bitexts are filtered based
on the distance. In all these works, embeddings
are learned for two languages only, while we learn
one joint embedding for up to nine languages.

3 Multilingual sentence embeddings

We are aiming at an embedding of entire sen-
tences in different languages into one joint space,
with the goal that the distance in that space re-
flects their semantic difference, independently of
the language. There are several works on learning
multilingual sentence embeddings which could be
used for that purpose, i.e. (Hermann and Blunsom,
2014; Pham et al., 2015; Zhou et al., 2016; Chan-
dar et al., 2013; Mogadala and Rettinger, 2016).

In this paper, we extend our initial approach
(Schwenk and Douze, 2017). The underlying idea
is to use multiple sequence encoders and decoders
and to train them with N -way aligned corpora
from the MT community. Instead of using one en-
coder for each language as in the original paper,
we use a shared encoder which handles all the in-
put languages. Joint encoders (and decoders) have
already been used in NMT (Johnson et al., 2016).
In contrast to that work, we do not use a special in-
put token to indicate the target language. Our joint
encoder has no information at all on the encoded
language, or what will be done with sentence rep-
resentation.

We trained this architecture on nine languages1

of the Europarl corpus with about 2M sentences
each. We use BPE (Sennrich et al., 2016b) to
learn one 20k joint vocabulary for all the nine lan-
guages.2 The joint encoder is a 3-layer BLSTM.
The word embeddings are of size 384 and the
hidden layer of the BLSTM is 512-dimensional.
The 1024 dimensional sentence embedding is ob-
tained by max-pooling over the BLSTM outputs.
Dropout is set to 0.1. These settings are identical
to those reported in (Schwenk and Douze, 2017),
with the difference that we observe slight improve-
ment by using a deeper network for the joint en-
coder. Once the system is learned, all the BLSTM

1en, fr, es, it, pt, de, da, nl and fi
2Larger vocabularies achieve only slight improvements.

decoders are discarded and we only use the mul-
tilingual BLSTM encoder to embed the sentences
into the joint space.

A very similar approach was also proposed in
España-Bonet et al. (2017). A joint NMT sys-
tem with attention is trained on several languages
pairs, similar to (Johnson et al., 2016), including a
special token to indicate the target language. Af-
ter training, the sum of the encoder output states is
used to obtain a fixed size sentence representation.

4 Experimental evaluation: BUCC
shared task on mining bitexts

Since 2017, the workshop on Building and Us-
ing Comparable Corpora (BUCC) is organizing
a shared task to evaluate the performance of ap-
proaches to mine for parallel sentences in compa-
rable corpora (Zweigenbaum et al., 2018). Table 1
summarizes the available data, and Table 2 the
official results. Roughly a 40th of the sentences
are aligned. The best performing system “VIC”
is based on the so-called STACC method which
was shown to achieve state-of-the-art performance
(Etchegoyhen and Azpeitia, 2016). It combines
probabilistic dictionaries, search for similar sen-
tences in both directions and a decision module
which explores various features (common word
prefixes, numbers, capitalized true-case tokens,
etc). This STACC system was improved and
adapted to the BUCC tasks with a word weight-
ing scheme which is optimized on the monolin-
gual corpora, and a named entity penalty. This
task adaption substantially improved the generic
STACC approach (Azpeitia et al., 2018). The sys-
tems RALI (Grégoire and Langlais, 2017) and H2
(Bouamor and Sajjad, 2018) have been already
described in section 2. NLP2CT uses a denois-
ing auto-encoder and a maximum-entropy classi-
fier (Leong et al., 2018).

We applied our approach to all language pairs of
the BUCC shared task (see Table 3). We used the

Lang. Train Test
Pair en other aligned en other
en-de 400k 414k 9580 397k 414k
en-fr 370k 272k 9086 373k 277k
en-ru 558k 461k 14435 566k 457k
en-zh 89k 95k 1899 90k 92k

Table 1: BUCC evaluation to mine bitexts. Num-
ber of sentences and size of the gold alignments.
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System en-fr en-de en-ru en-zh
VIC’17 79 84 - -
RALI’17 20 - - -
LIMSI’17 - - - 43
VIC’18 81 86 81 77
H2’18 76 - - -
NLP2CT’18 - - - 56

Table 2: Official test set results of the 2017 and
2018 BUCC shared tasks (F-scores).

embeddings from (Schwenk and Douze, 2017) for
ru and zh, which were trained on the UN corpus.
The only task-specific adaptation is the optimiza-
tion of the threshold on the distance in the multi-
lingual joint space. Our system does not match the
performance of the heavily tuned VIC system, but
it is on-pair with H2 on en-fr, and outperforms all
other approaches by a large margin. We would like
to emphasize that our approach uses no additional
features or classifiers, and that we apply the same
approach to all language pairs. It is nice to see that
the performance varies little for the languages.

España-Bonet et al. (2017) have also evaluated
their technique on the BUCC data, but results on
the official test set are not provided. Also, their
joint encoder uses the “news-commentary” corpus
during training. This is likely to add an important
bias since all the parallel sentences in the BUCC
corpus are from the news-commentary corpus.

Since we learn multilingual embeddings for
many languages in one joint space, we can mine
for parallel data for any language pair. As an
example, we have mined for French/German and
Chinese/Russian bitexts, respectively. There are
no reference alignments to optimize the threshold
for this language pair. Based on the experiments
with the other languages, we chose a value of 0.55.

Task en-fr en-de en-ru en-zh
P 81.9 82.2 79.9 76.7

Train R 69.1 70.1 67.8 67.1
F1 74.9 76.1 73.3 71.6

Threshold 0.58 0.50 0.57 0.64
P 84.8 84.1 81.1 77.7

Test R 68.6 70.7 67.6 66.4
F1 75.8 76.9 73.8 71.6

Table 3: Results on the BUCC test set of our ap-
proach: Precision, Recall and F-measure (%). We
also provide the optimal threshold.

In the annex, we provide examples of extracted
parallel sentences for various values of the mul-
tilingual distance. These examples show that our
approach may wrongly align sentences which are
mainly an enumeration of named entities, numer-
ical values, etc. Many of these erroneous align-
ments could be possibly excluded by some post-
processing, e.g. comparing the number of named
entities in each sentence.

5 Experimental evaluation: improving
WMT’14 En-De NMT systems

5.1 Baseline NMT systems

We have performed all our experiments with
the freely available Sequence-to-Sequence Py-
Torch toolkit from Facebook AI Research,3 called
fairseq-py. It implements a convolutional
model which achieves very competitive results
(Gehring et al., 2017). We use this system to show
the improvements obtained by filtering the stan-
dard training data and by integrating additional
mined data. We will freely share this data so that it
can be used to train different NMT architectures.

In this work, we focus on translating from En-
glish into German using the WMT’14 data. This
task was selected for two reasons:

• it is the de-facto standard to evaluate NMT
systems and many comparable results are
available, e.g. (Sennrich et al., 2016b;
Chunga et al., 2016; Wu et al., 2016; Gehring
et al., 2017; Ashish Vaswani et al., 2017);

• only a limited amount of parallel training
data is available (4.5M sentences). 2.1M
are high quality human translations and 2.4M
are crawled and aligned sentences (Common
Crawl corpus).

As in other works, we use newstest-2014
as test set. However, in order to follow
the standard WMT evaluation setting, we use
mteval-v14.pl on untokenized hypothesis to
calculate case-sensitive BLEU scores. Note
that in some papers, BLEU is calculated with
multi-bleu.perl on tokenized hypothesis.
All our results are for one single system only.

We trained the fairseq-py system with de-
fault parameters, but a slightly different pre- and

3https://github.com/facebookresearch/
fairseq-py
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Corpus
Human only All WMT’14
(Eparl+NC) (Eparl+NC+CC)

#sents 2.1M 4.5M
BLEU 21.87 24.75

Table 4: Our baseline results on WMT’14 en-de.

post-processing scheme. In particular, we lower-
case all data and use a 40k BPE vocabulary (Sen-
nrich et al., 2016b). Before scoring, the case of
the hypothesis is restored using a recaser trained
on the WMT German news data. Table 4 gives
our baseline results using the provided data as it
is. We distinguish results when training on human
labeled data only, i.e. Europarl and News Com-
mentary (2.1M sentences), and with all WMT’14
training data, i.e. human + Common Crawl (total
of 4.5M sentences). Gehring et al. (2017) report a
tokenized BLEU score of 25.16 on a slightly dif-
ferent version of newstest-2014 as defined in (Lu-
ong et al., 2015).4 Please remember that the goal
of this paper is not to set a new state-of-the-art
in NMT on this data set, but to show relative im-
provement with respect to a competitive baseline.

5.2 Filtering Common Crawl
The Common Crawl corpus is provided by the or-
ganizers of WMT’14. We do not know how this
corpus was produced, but like all crawled corpora,
it is inherently noisy. To filter that corpus, we first
embed all the sentences into the joint space and
calculate the cosine distance between the English
source and the provided German translation. We
then extract subsets of different sizes as a function
of the threshold on this distance.

All Commas <50 words LID
2399k 2144k 2071k 1935k

Table 5: Pre-processing of the Common Crawl
corpus before distance-based filtering.

After some initial experiments, it turned out
that some additional steps are needed before cal-
culating the distances (see Table 5): 1) remove
sentences with more than 3 commas. Those are
indeed often enumerations of names, cities, etc.
While such sentences maybe useful to train NMT
systems, the multilingual distance is not very reli-
able to distinguish list of named entities; 2) limit
to sentences with less than 50 words; 3) perform
LID on source and target sentences; These steps

4This version uses a subset of 2737 out of 3003 sentences.
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Figure 1: Filtering the Common Crawl corpus:
size of corpus (pink) and BLEU scores (green).

discarded overall 19% of the data. It is surpris-
ing that almost 6% of the data seems to have the
wrong source or target language.5

Figure 1 (pink curve) shows the amount of data
as a function of the threshold on the multilingual
distance. Some human inspection of the filtered
corpus indicated that the translations start to be
wrong for a threshold larger than 1.0. Therefore,
we build NMT systems using a filtered version of
Common Crawl for thresholds in the range of 0.8
to 1.2 (see Figure 1, green curve). It is good to
see that the BLEU score increases when less but
better data is used and then decreases again since
we discard too much data. Best performance of
25.06 BLEU is achieved for a threshold of 1.0.
This corresponds to a gain of 0.3 BLEU on top
of a very competitive baseline (24.75→25.06), us-
ing only 3.4M instead of the original 4.5M sen-
tence pairs. We actually discard almost half of the
Common Crawl data. For comparison, we also
trained an NMT system using the pre-processed
Common Crawl corpus of 1.9M sentences (cf. Ta-
ble 5), but without distance-based filtering. This
gives a BLEU score of 24.82, a small 0.07 change.

Aiming at a compromise between speed and
full convergence, we trained all systems for 55
epochs which takes less than two days on 8 NVidia
GPU100s. Longer training may improve the over-
all results slightly.

5.3 Mining Parallel Data in WMT News

In the framework of the WMT evaluation, large
news corpora are provided: 144M English and
187M German sentences (after removing sentence
with more than 50 words). As in section 4, we

5LID itself may also commit errors, we used
https://fasttext.cc/docs/en/
language-identification.html
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embed all sentences into the joint space. For each
source sentence, we search for the k-nearest sen-
tences in the target language. We use k = 20
since it can happen that for the same source sen-
tence, several possible translations are found (dif-
ferent news sites reporting on the same fact with
different wordings). This search has a complex-
ity of O(N ×M), while filtering presumed paral-
lel corpora is O(N). In our case, 144M × 185M
amounts to 26 peta distance calculations. This can
be quite efficiently done with the highly optimized
FAISS toolkit (Johnson et al., 2017).

To start, we trained NMT systems on the ex-
tracted data only (see Table 6, 3rd column). As
with the Common Crawl corpus, we discarded
sentences pairs with the wrong language and many
commas. By varying the threshold on the distance
between two sentences in the embedding space,
we can extract various amounts of data. However,
the larger the threshold, the more unlikely the sen-
tences are translations. Training on 1M mined sen-
tences gives a modest BLEU score of 4.18, which
increases up to 7.77 when 4.3M sentences are ex-
tracted. This result is well below an NMT system
trained on “real parallel data”.

We have observed that the length distribution of
the mined sentences is very different of the one of
the WMT’14 training corpora (see Figure 2). The
average sentence length for all the WMT training
corpora is 24, while it is only 8 words for our
mined texts. On one hand, it could be of course
that our distance based mining approach works
badly for long sentences. But on the other hand,
the longer the sentences, the more unlikely it is to
find perfect translation in crawled news data. If

BLEU

Threshold #Sents
Mined Eparl All
alone + mined + mined

baseline - - 21.87 25.06
0.25 1.0M 4.18 22.32 25.07
0.26 1.5M 5.17 22.09 -
0.27 1.9M 5.92 21.97 -
0.28 2.5M 6.48 22.29 25.03
0.29 3.3M 6.01 22.10 -
0.30 4.3M 7.77 22.24 -

Table 6: BLEU scores when training on the mined
data only, adding it (at different thresholds) to the
human translated training corpus (Eparl+NC) and
to our best system using filtered Common Crawl.
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Figure 2: Number of sentences as a function of
their length, for WMT’14 training corpora and the
mined news texts.

we shuffle the Europarl corpus and consider it as
a comparable corpus, our approach is able to ex-
tract more than 95% of the translation pairs. It is
also an open question how short sentences impact
the training of NMT systems. Further research in
those directions is needed.

When adding our mined data to the Europarl
and News Commentary corpora (2.1M sentences),
we are able to achieve an improvement of 0.45
BLEU (21.87→22.32, 4th column of Table 6).
However, we observe no improvement when
adding the mined data to our best system which
uses the filtered Common Crawl data (5th column
of Table 6). It could be that some of our mined
data is actually a subset of Common Crawl.

6 Conclusion

We have shown that a simple cosine distance in a
joint multilingual sentence embedding space can
be used to filter noisy parallel data and to mine for
bitexts in large news collections. We were able to
improve a competitive baseline on the WMT’14
English to German task by 0.3 BLEU by filtering
out 25% of the training data. We will make the
filtered and extracted data freely available, as well
as a tool to filter noisy bitexts in nine languages.

There are many directions to extend this re-
search, in particular to scale-up to larger corpora.
We will apply it to the data mined by the European
ParaCrawl project.6 The proposed multilingual
sentence distance could be also used in MT con-
fidence estimation, or to filter back-translations of
monolingual data (Sennrich et al., 2016a).

6http://paracrawl.eu/download.html
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Cristina España-Bonet, Ádám Csaba Varga, Alberto
Barrón-Cedeño, and Josef van Genabith. 2017. An
empirical analysis of nmt-derived interlingual em-
beddings and their use in parallel sentence identifi-
cation. IEEE Journal of Selected Topics in Sigmal
Processing, pages 1340–1348.

Thierry Etchegoyhen and Andoni Azpeitia. 2016. Set-
theoretic alignment of comparable corpora. In ACL.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In ICML.
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Abstract
This paper proposes hybrid semi-
Markov conditional random fields
(SCRFs) for neural sequence labeling in
natural language processing. Based on
conventional conditional random fields
(CRFs), SCRFs have been designed for
the tasks of assigning labels to segments
by extracting features from and describing
transitions between segments instead of
words. In this paper, we improve the
existing SCRF methods by employing
word-level and segment-level information
simultaneously. First, word-level labels
are utilized to derive the segment scores
in SCRFs. Second, a CRF output layer
and an SCRF output layer are integrated
into an unified neural network and trained
jointly. Experimental results on CoNLL
2003 named entity recognition (NER)
shared task show that our model achieves
state-of-the-art performance when no
external knowledge is used1.

1 Introduction

Sequence labeling, such as part-of-speech (POS)
tagging, chunking, and named entity recognition
(NER), is a category of fundamental tasks in
natural language processing (NLP). Conditional
random fields (CRFs) (Lafferty et al., 2001), as
probabilistic undirected graphical models, have
been widely applied to the sequence labeling tasks
considering that they are able to describe the
dependencies between adjacent word-level labels
and to avoid illegal label combination (e.g., I-ORG
can’t follow B-LOC in the NER tasks using the
BIOES tagging scheme). Original CRFs utilize
hand-crafted features which increases the difficul-
ty of performance tuning and domain adaptation.

1The code of our models is available at http://
github.com/ZhixiuYe/HSCRF-pytorch

In recent years, neural networks with distribut-
ed word representations (i.e., word embeddings)
(Mikolov et al., 2013; Pennington et al., 2014)
have been introduced to calculate word scores
automatically for CRFs (Chiu and Nichols, 2016;
Huang et al., 2015).

On the other hand, semi-Markov condition-
al random fields (SCRFs) (Sarawagi and Cohen,
2005) have been proposed for the tasks of as-
signing labels to the segments of input sequences,
e.g., NER. Different from CRFs, SCRFs adopt
segments instead of words as the basic units for
feature extraction and transition modeling. The
word-level transitions within a segment are usual-
ly ignored. Some variations of SCRFs have also
been studied. For example, Andrew (2006) ex-
tracted segment-level features by combining hand-
crafted CRF features and modeled the Markov
property between words instead of segments in
SCRFs. With the development of deep learning,
some models of combining neural networks and
SCRFs have also been studied. Zhuo et al. (2016)
and Kong et al. (2015) employed gated recur-
sive convolutional neural networks (grConvs) and
segmental recurrent neural networks (SRNNs) to
calculate segment scores for SCRFs respectively.

All these existing neural sequence labeling
methods using SCRFs only adopted segment-level
labels for score calculation and model training.
In this paper, we suppose that word-level labels
can also contribute to the building of SCRFs and
thus design a hybrid SCRF (HSCRF) architecture
for neural sequence labeling. In an HSCRF,
word-level labels are utilized to derive the
segment scores. Further, a CRF output layer
and an HSCRF output layer are integrated into
a unified neural network and trained jointly. We
evaluate our model on CoNLL 2003 English
NER task (Sang and Meulder, 2003) and achieve
state-of-the-art performance when no external
knowledge is used.
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Figure 1: The diagram of a neural network with an
HSCRF output layer for sequence labeling.

In summary, the contributions of this paper are:
(1) we propose the HSCRF architecture which
employs both word-level and segment-level labels
for segment score calculation. (2) we propose
a joint CRF-HSCRF training framework and a
naive joint decoding algorithm for neural sequence
labeling. (3) we achieve state-of-the-art perfor-
mance in CoNLL 2003 NER shared task.

2 Methods

2.1 Hybrid semi-Markov CRFs
Let s = {s1, s2, ..., sp} denote the segmentation
of an input sentence x = {x1, ..., xn} and w =
{w1, ..., wn} denote the sequence of word repre-
sentations of x derived by a neural network as
shown in Fig. 1. Each segment si = (bi, ei, li),
0 ≤ i ≤ p, is a triplet of a begin word index bi,
an end word index ei and a segment-level label li,
where b1 = 1, ep = |x|, bi+1 = ei + 1, 0 ≤ ei −
bi < L, and L is the upperbound of the length of
si. Correspondingly, let y = {y1, ..., yn} denote
the word-level labels of x. For example, if a sen-
tence x in NER task is “Barack Hussein Obama
and Natasha Obama”, we have the corresponding
s = ((1, 3, PER), (4, 4, O), (5, 6, PER)) and y =
(B-PER, I-PER, E-PER, O, B-PER, E-PER).

Similar to conventional SCRFs (Sarawagi and
Cohen, 2005), the probability of a segmentation ŝ
in an HSCRF is defined as

p(ŝ|w) =
score(ŝ,w)∑

s′∈S score(s
′ ,w)

, (1)

where S contains all possible segmentations and

score(s,w) =

|s|∏

i=1

ψ(li−1, li,w, bi, ei). (2)

Here, ψ(li−1, li,w, bi, ei) = exp{mi + bli−1,li},
where mi = ϕh(li,w, bi, ei) is the segment score

and bi,j is the segment-level transition parameter
from class i to class j.

Different from existing methods of utilizing
SCRFs in neural sequence labeling (Zhuo et al.,
2016; Kong et al., 2015) , the segment score in an
HSCRF is calculated using word-level labels as

mi =

ei∑

k=bi

ϕc(yk,w
′
k) =

ei∑

k=bi

a>ykw
′
k, (3)

where w′k is the feature vector of the k-th word,
ϕc(yk,w

′
k) calculates the score of the k-th word

being classified into word-level class yk, and ayk is
a weight parameter vector corresponding to class
yk. For each word, w′k is composed of word
representation wk and another two segment-level
descriptions, i.e., (1) wei − wbi which is derived
based on the assumption that word representations
in the same segment (e.g., “Barack Obama”) are
closer to each other than otherwise (e.g., “Obama
is”), and (2) φ(k−bi+1) which is the embedding
vector of the word index in a segment. Finally, we
have w′k = [wk;wei −wbi ;φ(k− bi+1)], where
bi ≤ k ≤ ei and [; ; ] is a vector concatenation
operation.

The training and decoding criteria of conven-
tional SCRFs (Sarawagi and Cohen, 2005) are
followed. The negative log-likelihood (NLL), i.e.,
−logp(ŝ|w), is minimized to estimate the param-
eters of the HSCRF layer and the lower neural
network layers that derive word representations.
For decoding, the Viterbi algorithm is employed
to obtain the optimal segmentation as

s∗ = argmax︸ ︷︷ ︸
s′∈S

logp(s′|m), (4)

where S contains all legitimate segmentations.

2.2 Jointly training and decoding using CRFs
and HSCRFs

To further investigate the effects of word-level
labels on the training of SCRFs, we integrate
a CRF output layer and a HSCRF output layer
into an unified neural network and train them
jointly. These two output layers share the same
sequence of word representations w which are
extracted by lower neural network layers. Given
both word-level and segment-level ground truth
labels of training sentences, the model parameters
are optimized by minimizing the summation of the
loss functions of the CRF layer and the HSCRF
layer with equal weights.
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At decoding time, two label sequences, i.e., sc
and sh, for an input sentence can be obtained using
the CRF output layer and the HSCRF output layer
respectively. A naive joint decoding algorithm is
also designed to make a selection between them.
Assume the NLLs of measuring sc and sh using
the CRF and HSCRF layers are NLLc and NLLh
respectively. Then, we exchange the models and
measure the NLLs of sc and sh by HSCRF and
CRF and obtain another two valuesNLLc by h and
NLLh by c. We just naively assign the summation
ofNLLc andNLLc by h to sc, and the summation
ofNLLh andNLLh by c to sh. Finally, we choose
the one between sc and sh with lower NLL sum as
the final result.

3 Experiments

3.1 Dataset

We evaluated our model on the CoNLL 2003
English NER dataset (Sang and Meulder, 2003).
This dataset contained four labels of named en-
tities (PER, LOC, ORG and MISC) and label O
for others. The existing separation of training,
development and test sets was followed in our
experiments. We adopted the same word-level
tagging scheme as the one used in Liu et al.
(2018) (e.g., BIOES instead of BIO). For better
computation efficiency, the max segment length
L introduced in Section 2.1 was set to 6, which
pruned less than 0.5% training sentences for build-
ing SCRFs and had no effect on the development
and test sets.

3.2 Implementation

As shown in Fig. 1, the GloVe (Pennington et al.,
2014) word embedding and the character encoding
vector of each word in the input sentence were
concatenated and fed into a bi-directional LSTM
to obtain the sequence of word representations
w. Two character encoding models, LM-BLSTM
(Liu et al., 2018) and CNN-BLSTM (Ma and
Hovy, 2016), were adopted in our experiments.
Regarding with the top classification layer, we
compared our proposed HSCRF with conventional
word-level CRF and grSemi-CRF (GSCRF) (Zhuo
et al., 2016), which was an SCRF using only
segment-level information. The descriptions of
the models built in our experiments are summa-
rized in Table 1.

For a fair comparison, we implemented all
models in the same framework using PyTorch

library2. The hyper-parameters of the models are
shown in Table 2 and they were selected according
to the two baseline methods without fine-tuning.
Each model in Table 1 was estimated 10 times and
its mean and standard deviation of F1 score were
reported considering the influence of randomness
and the weak correlation between development set
and test set in this task (Reimers and Gurevych,
2017).

3.3 Results
Table 1 lists the F1 score results of all built
models on CoNLL 2003 NER task. Comparing
model 3 with model 1/2 and model 9 with model
7/8, we can see that HSCRF performed better
than CRF and GSCRF. The superiorities were
significant since the p-values of t-test were smaller
than 0.01. This implies the benefits of utilizing
word-level labels when deriving segment scores
in SCRFs. Comparing model 1 with model 4,
3 with 5, 7 with 10, and 9 with 11, we can
see that the jointly training method introduced in
Section 2.2 improved the performance of CRF
and HSCRF significantly (p < 0.01 in all these
four pairs). This may be attributed to that jointly
training generates better word representations that
can be shared by both CRF and HSCRF decoding
layers. Finally, comparing model 6 with model
4/5 and model 12 with model 10/11, we can see
the effectiveness of the jointly decoding algorith-
m introduced in Section 2.2 on improving F1
scores (p < 0.01 in all these four pairs). The
LM-BLSTM-JNT model with jointly decoding
achieved the highest F1 score among all these built
models.

3.4 Comparison with existing work
Table 3 shows some recent results3 on the CoN-
LL 2003 English NER task. For the conve-
nience of comparison, we also listed the maximum
F1 scores among 10 repetitions when building
our models. The maximum F1 score of our
re-implemented CNN-BLSTM-CRF model was
slightly worse than the one originally reported in
Ma and Hovy (2016), but it was similar to the one
reported in Reimers and Gurevych (2017).

2http://pytorch.org/
3It should be noticed that the results of Liu et al.

(2018) were inconsistent with the original ones reported
in their paper. According to its first author’s GitHub
page (https://github.com/LiyuanLucasLiu/LM-LSTM-CRF),
the originally reported results had errors due to some bugs.
Here, we report the results after the bugs got fixed.
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No. Model Name Word Representation Top Layer Decoding Layer F1 Score (±std)
1 CNN-BLSTM-CRF CNN-BLSTM CRF CRF 90.92± 0.08
2 CNN-BLSTM-GSCRF CNN-BLSTM GSCRF GSCRF 90.96± 0.12
3 CNN-BLSTM-HSCRF CNN-BLSTM HSCRF HSCRF 91.10± 0.12
4 CNN-BLSTM-JNT(CRF) CNN-BLSTM CRF+HSCRF CRF 91.08± 0.12
5 CNN-BLSTM-JNT(HSCRF) CNN-BLSTM CRF+HSCRF HSCRF 91.20± 0.10
6 CNN-BLSTM-JNT(JNT) CNN-BLSTM CRF+HSCRF CRF+HSCRF 91.26± 0.10
7 LM-BLSTM-CRF LM-BLSTM CRF CRF 91.17± 0.11
8 LM-BLSTM-GSCRF LM-BLSTM GSCRF GSCRF 91.06± 0.05
9 LM-BLSTM-HSCRF LM-BLSTM HSCRF HSCRF 91.27± 0.08

10 LM-BLSTM-JNT(CRF) LM-BLSTM CRF+HSCRF CRF 91.24± 0.07
11 LM-BLSTM-JNT(HSCRF) LM-BLSTM CRF+HSCRF HSCRF 91.34± 0.10
12 LM-BLSTM-JNT(JNT) LM-BLSTM CRF+HSCRF CRF+HSCRF 91.38± 0.10

Table 1: Model descriptions and their performance on CoNLL 2003 NER task.

Component Parameter Value
word-level dimension 100

embedding†‡

character-level dimension 30
embedding†‡

character-level LSTM†
depth 1

hidden size 300
highway network† layer 1

word-level BLSTM†
depth 1

hidden size 300

word-level BLSTM‡
depth 1

hidden size 200

CNN‡
window size 3
filter number 30

φ(·)†‡ dimension 10
dropout†‡ dropout rate 0.5

optimization†‡

learning rate 0.01
batch size 10
strategy SGD

gradient clip 5.0
decay rate 1/(1+0.05t)

Table 2: Hyper-parameters of the models built
in our experiments, where † indicates the ones
when using LM-BLSTM for deriving word
representations and ‡ indicates the ones when
using CNN-BLSTM.

In the NER models listed in Table 3, Zhuo
et al. (2016) employed some manual features and
calculated segment scores by grConv for SCRF.
Lample et al. (2016) and Ma and Hovy (2016) con-
structed character-level encodings using BLSTM
and CNN respectively, and concatenated them
with word embeddings. Then, the same BLSTM-
CRF architecture was adopted in both models. Rei
(2017) fed word embeddings into LSTM to obtain
the word representations for CRF decoding and to
predict the next word simultaneously. Similarly,
Liu et al. (2018) input characters into LSTM to
predict the next character and to get the character-
level encoding for each word.

Model Test Set F1 Score
Type Value (±std)

Zhuo et al. (2016) reported 88.12
Lample et al. (2016) reported 90.94
Ma and Hovy (2016) reported 91.21

Rei (2017) reported 86.26

Liu et al. (2018) mean 91.24 ± 0.12
max 91.35

CNN-BLSTM-CRF mean 90.92 ± 0.08
max 91.04

LM-BLSTM-CRF mean 91.17 ± 0.11
max 91.30

CNN-BLSTM-JNT(JNT) mean 91.26 ± 0.10
max 91.41

LM-BLSTM-JNT(JNT) mean 91.38± 0.10
max 91.53

Luo et al. (2015)∗ reported 91.2
Chiu and Nichols (2016)∗ reported 91.62 ± 0.33

Tran et al. (2017)∗ reported 91.66
Peters et al. (2017)∗ reported 91.93 ± 0.19
Yang et al. (2017)∗ reported 91.26

Table 3: Comparison with existing work on
CoNLL 2003 NER task. The models labelled with
∗ utilized external knowledge beside CoNLL 2003
training set and pre-trained word embeddings.

Some of the models listed in Table 3 utilized
external knowledge beside CoNLL 2003 training
set and pre-trained word embeddings. Luo et al.
(2015) proposed JERL model, which was trained
on both NER and entity linking tasks simultane-
ously. Chiu and Nichols (2016) employed lexicon
features from DBpedia (Auer et al., 2007). Tran
et al. (2017) and Peters et al. (2017) utilized
pre-trained language models from large corpus to
model word representations. Yang et al. (2017)
utilized transfer learning to obtain shared informa-
tion from other tasks, such as chunking and POS
tagging, for word representations.

From Table 3, we can see that our CNN-
BLSTM-JNT and LM-BLSTM-JNT models with
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No. Model Name Entity Length
1 2 3 4 5 ≥ 6 all

7 LM-BLSTM-CRF 91.68 91.88 82.64 75.81 73.68 72.73 91.17
8 LM-BLSTM-GSCRF 91.57 91.68 83.61 74.32 76.64 73.64 91.06
9 LM-BLSTM-HSCRF 91.65 91.84 82.97 76.20 78.95 74.55 91.27
12 LM-BLSTM-JNT(JNT) 91.73 92.03 83.78 77.27 79.66 76.55 91.38

Table 4: Model performance on CoNLL 2003 NER task for entities with different lengths.

jointly decoding both achieved state-of-the-art F1
scores among all models without using external
knowledge. The maximum F1 score achieved by
the LM-BLSTM-JNT model was 91.53%.

3.5 Analysis

To better understand the effectiveness of word-
level and segment-level labels on the NER task,
we evaluated the performance of models 7, 8,
9 and 12 in Table 3 for entities with different
lengths. The mean F1 scores of 10 training
repetitions are reported in Table 4. Comparing
model 7 with model 8, we can see that GSCRF
achieved better performance than CRF for long
entities (with more than 4 words) but worse for
short entities (with less than 3 words). Comparing
model 7 with model 9, we can find that HSCRF
outperformed CRF for recognizing long entities
and meanwhile achieved comparable performance
with CRF for short entities.

One possible explanation is that word-level la-
bels may supervise models to learn word-level
descriptions which tend to benefit the recognition
of short entities. On the other hand, segment-
level labels may guide models to capture the de-
scriptions of combining words for whole entities
which help to recognize long entities. By utilizing
both labels, the LM-BLSTM-HSCRF model can
achieve better overall performance of recogniz-
ing entities with different lengths. Furthermore,
the LM-BLSTM-JNT(JNT) model which adopted
jointly training and decoding achieved the best
performance among all models shown in Table 4
for all entity lengths.

4 Conclusions

This paper proposes a hybrid semi-Markov condi-
tional random field (HSCRF) architecture for neu-
ral sequence labeling, in which word-level labels
are utilized to derive the segment scores in SCRFs.
Further, the methods of training and decoding
CRF and HSCRF output layers jointly are also
presented. Experimental results on CoNLL 2003

English NER task demonstrated the effectiveness
of the proposed HSCRF model which achieved
state-of-the-art performance.
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Abstract

In this work, we discuss the importance of
external knowledge for performing Named
Entity Recognition (NER). We present a
novel modular framework that divides the
knowledge into four categories according
to the depth of knowledge they convey.
Each category consists of a set of features
automatically generated from different in-
formation sources, such as a knowledge-
base, a list of names, or document-specific
semantic annotations. Further, we show
the effects on performance when incre-
mentally adding deeper knowledge and
discuss effectiveness/efficiency trade-offs.

1 Introduction

Named Entity Recognition (NER) is the task of
detecting named entity mentions in text and as-
signing them to their corresponding type. It is a
crucial component in a wide range of natural lan-
guage understanding tasks, such as named entity
disambiguation (NED), question answering, etc.

Previous work (Ratinov and Roth, 2009) ar-
gued that NER is a knowledge-intensive task and
used prior knowledge with outstanding results. In
this work, we attempt to quantify to which extent
external knowledge influences NER performance.
Even though recent approaches have excelled in
end-to-end neural methods, this paper aims to
give transparency and user-comprehensible ex-
plainability. This is especially significant for in-
dustrial sectors (e.g., those heavily regulated) that
require the use of transparent methods for which a
particular decision is explainable.

We perform the study by devising a simple
modular framework to exploit different sources of
external knowledge. We divide the information

sources into four different categories according to
the depth of knowledge they convey, each one car-
rying more information than the previous. Each
category is composed of a set of features that re-
flect the degree of knowledge contained in each
source. Then, we feed a linear chain CRF, a trans-
parent, widely used method used for NER.

We perform our experiments on two standard
datasets by testing various combinations of knowl-
edge categories. Our results indicate that the
amount of knowledge is highly correlated with
NER performance. The configurations with more
external knowledge systematically outperform the
more agnostic ones.

2 Knowledge Augmented NER

In the following section, we describe the four
knowledge categories in detail. Table 1 gives an
overview of the features on the categories that use
external knowledge. The features were used to
train a linear chain CRF, a simple and explain-
able method, proven to work well for NER (Finkel
et al., 2005; Jun’ichi and Torisawa, 2007; Ratinov
and Roth, 2009; Passos et al., 2014; Radford et al.,
2015).

2.1 Knowledge Agnostic (A)
This category contains the “local” features, which
can be extracted directly from text without any ex-
ternal knowledge. They are mostly of a lexical,
syntactic or linguistic nature and have been well-
studied in literature. We implement most of the
features described in (Finkel et al., 2005):

(1) The current word and words in a window of
size 2; (2) Word shapes of the current word and
words in a window of size 2; (3) POS tags in a
window of size 2; (4) Prefixes (length three and
four) and Suffixes (length one to four); (5) Pres-
ence of the current word in a window of size 4; (6)
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Cat. Feature Description Example

Name
Mention tokens Some tokens are strongly associated to NEs county,john,school,station,. . .
POS-tag Multi-word NEs tend to share POS patterns Organization of American States
sequence ! NNP IN NNP NNP

KB
Type gazetteers Names that are associated to types Florida! location
Wiki. link prob. Tokens that are associated to NEs “Florida” linked in Wikipedia
Type prob. Probability of token to type associations Obama! person;

Entity Doc. gazetteers NE presence indicates other NEs European Union! EU

Table 1: Features by category (novel features are highlighted)

Beginning of sentence.

2.2 Name-Based Knowledge (Name)
Here, the knowledge is extracted from a list of
named entity names. These features attempt to
identify patterns in names and exploit the fact
that the set of distinct names is limited. We ex-
tracted a total of more than 20 million names from
YAGO (Suchanek et al., 2007) and derived the fol-
lowing features:

Frequent mention tokens. Reflects the fre-
quency of a given token in a list of entity names.
We tokenized the list and computed frequencies.
The feature assigns a weight to each token in the
text corresponding to their normalized frequency.
High weights should be assigned to tokens that in-
dicate named entities. For instance, the top-5 to-
kens we found in English were “county”, “john”,
“school”, “station” and “district”. All tokens with-
out occurrences are assigned 0 weight.

Frequent POS Tag Sequences. Intends to iden-
tify POS sequences common to named entities.
For example, person names tend to be described
as a series of proper nouns, while organizations
may have richer patterns. Both “Organization
of American States” and “Union for Ethical Bio-
trade” share the pattern NNP-IN-NNP-NNP. We
ranked the name POS tag sequences and kept the
top 100. The feature is implemented by finding
the longest matching sequences in the input text
and marking whether the current token belongs to
a frequent sequence or not.

2.3 Knowledge-Base-Based Knowledge (KB)
This category groups features extracted from a KB
or an entity annotated corpus. They encode knowl-
edge about named entities themselves or their us-
ages. We implemented three features:

Type-infused Gazetteer Match. Finds the
longest occurring token sequence in a type-
specific gazetteer. It adds a binary indicator to
each token, depending on whether the token is

part of a sequence. We use 30 dictionaries dis-
tributed by (Ratinov and Roth, 2009) containing
type-name information for English. These dictio-
naries can also be created automatically by map-
ping each dictionary to a set of KB types and ex-
tracting the corresponding names. This automatic
generation is useful in multilingual settings, which
we discuss in Section 3.5.

Wikipedia Link Probability. This feature mea-
sures the likelihood of a token being linked to a
named entity Wikipedia page. The intuition is that
tokens linked to named entity pages tend to be in-
dicative of named entities. For instance, the to-
ken “Obama” is usually linked while “box” is not.
The list of pages referring to named entities is ex-
tracted from YAGO. Given a token in the text, it is
assigned the probability of being linked according
to Eq. 1, where linkd(t) equals 1, if token t in doc-
ument d is linked to another Wikipedia document.
presentd equals 1 if t occurs in d.

PWiki(t) =

P
d2D linkd(t)P

d2D presentd(t)
(1)

Type Probability. Encodes the likelihood of a
token belonging to a given type. It captures the
idea that, for instance, the token “Obama” is more
likely a person than a location. Given a set of enti-
ties E in YAGO with mentions Me and tokens Tem

we calculate the probability of a class c 2 C given
a token t as in Eq. 2, where c(e) = 1 if entity
e belongs to class c and c(e) = 0 otherwise. For
each token in the text, we create one feature per
type with the respective probability as its value.

P (c|t) =

PE
e

PMe
me

PTem
tem

c(e)
PE

e

PMe
me

PTem
tem

PC
ci

ci(e)
(2)

Token Type Position. Reflects that tokens may
appear in different positions according to the en-
tity type. For instance, “Supreme Court of the
United States”, is an organization and “United”
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occurs at the end. In “United States”, a location,
it occurs at the beginning. This helps with nested
named entities.

This is implemented using the BILOU (Begin,
Inside, Last, Outside, Unit) encoding (Ratinov
and Roth, 2009), which tags each token with re-
spect to the position in which it occurs. The num-
ber of features depends on the number of types in
the dataset (4 BILU positions times n classes + O
position). For each token, each feature receives
the probability of a class given the token and po-
sition. The class probabilities are calculated as in
Equation 2, incorporating also the token position.

As a result, for each token we now have a proba-
bility distribution over 4n+1 classes. Take for in-
stance the token “Obama”. We would expect it to
have high probability for classes “B-Person” (i.e.,
last name in combination with first name) and “U-
Person” (i.e., last name without first name). The
probabilities for all other classes would be close to
zero. In comparison, the word “box” should have
high probability for class “O” and close to zero for
all others, since we would not expect it to occur in
many named entities.

2.4 Entity-Based Knowledge (Entity)

This category encodes document-specific knowl-
edge about the entities found in text to exploit
the association between NER and NED. Previous
work showed that the flow of information between
these generates significant performance improve-
ments (Radford et al., 2015; Luo et al., 2015).

Comparatively, this module needs significantly
more computational resources. It requires a first
run of NED to generate document specific fea-
tures, based on the disambiguated named entities.
These features are used in a second run of NER.

Following (Radford et al., 2015), after the first
run of NED, we create a set of document-specific
gazetteers derived from the disambiguated enti-
ties. This information helps in the second round
to find new named entities that were previously
missed. Take the sentence “Some citizens of the
European Union working in the United Kingdom
do not meet visa requirements for non-EU work-
ers after the uk leaves the bloc”. We can imagine
that in the first round of NED European Union and
United Kingdom can be easily identified but “EU”
or the wrongly capitalized “uk” might be missed.
After the disambiguation, we know that both enti-
ties are organizations and have the aliases EU and

UK respectively. Then, in a second round it may
be easier to spot mentions “EU” and “uk”.

After a first run of NER+NED, we extract
all surface forms of the identified entities from
YAGO. These are tokenized and assigned the type
of the corresponding entity plus its BILOU po-
sition. For example, the surface form “Barack
Obama” results in “Barack” and “Obama”, as-
signed to “B-Person” and “L-Person”. There are
17 binary features (BILU tags multiplied by four
coarse-grained types + O tag), which fire when a
token is part of a list that contains the mappings
from tokens to type-BILOU pairs.

3 Evaluation

3.1 Experimental Setup

System Setup. To perform our study we use a lin-
ear chain CRF(Lafferty et al., 2001). CRFs are
transparent and widely used for NER (Finkel et al.,
2005; Jun’ichi and Torisawa, 2007; Ratinov and
Roth, 2009; Passos et al., 2014; Radford et al.,
2015; Luo et al., 2015). The entity-based com-
ponent was implemented using the AIDA (Hoffart
et al., 2011) entity disambiguation system.

Datasets. We evaluate on two standard NER
datasets CoNLL2003. (Sang and Meulder, 2003),
a collection of English newswires covering enti-
ties with four types (PER, ORG, LOC, MISC)
and MUC-7, a set of New York Times articles
(Chinchor and Robinson, 1997) with annotations
on three types of entities (PER, ORG, LOC).

3.2 Incremental knowledge

Here we analyze the impact of incrementally
adding external knowledge. Fig. 1a shows four
variants. Each contains the features correspond-
ing to a given category plus all those from the
lighter categories to the left. In all cases adding
knowledge boosts F1 performance. The effect is
particularly strong for MUC-7-test which regis-
tered an overall increment of almost 10 points. In
both datasets, the biggest boost is registered when
the KB-based features are added. As a reference
point, one of the best systems to date (Chiu and
Nichols, 2016) (neural-based) achieves F1 91.62
on CoNLL2013-test, while our full-knowledge
CRF reaches F1 91.12.

Fig. 1c shows the performance for each entity
type on CoNLL2003. Again, there is a boost in all
cases, especially organizations. Persons also im-
prove significantly: At first they perform similar to
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(c) Type-based NER F1 score on CoNLL2003-test
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(d) Type-based NER F1 score on MUC-7-test

Figure 1: Evaluation results by type CoNLL2003-test and MUC-7-test.

locations, but the successive increment is sharper.
F1 for persons achieves F1 96.03 and locations F1

92.13. The positive effect is quite significant for
organizations (F1 80.86 to F1 89.32), while it is
moderate for miscellaneous. Fig. 1d shows results
by type for MUC-7-test. The positive effect is par-
ticularly strong for persons, improving more than
15 F1 points (78.70 to 94.28). Interestingly, lo-
cations register a slight decline between KB and
Entity (0.56 F1 points).

Finally, Fig. 1b shows the performance over
span detection, which is the span where the named
entity occurs without taking type information into
account. This is especially important for appli-
cations such as named entity disambiguation. It
drops slightly for the name-based category, but it
increases again as more knowledge is added. The
effect is similar on both datasets.

3.3 Ablation

Table 2 shows different combinations of knowl-
edge categories. The relatively small improvement

from KB to Entity suggests that KB features are
subsumed by the later. This is somehow expected
as the entity specific information is extracted from
the same KB and both rely on entity types. How-
ever, as we will see, this comes at a cost.

Feature Categories F1

A, Name, KB 88.73
A, Name, Entity 89.32
A, KB, Entity 91.09
All 91.12

Table 2: : Ablation study by categories on
CoNLL2003-test

3.4 Timing

The Entity-based component is by far the most
expensive concerning timing performance. We
measure 314ms, 494ms, 693ms, and 4139ms for
A, Name, KB and Entity based features, respec-
tively (Figure 2). Since KB-based features are
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comparable in performance to the Entity-based
features, but the latter are much more expensive,
these findings allow practitioners to carefully de-
cide whether the additional computational cost is
worth the relatively small performance improve-
ments. The modularity of our feature classes al-
lows for optimal tuning of a system regarding ef-
fectiveness/efficiency trade-offs.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

A Name KB Entity

time (ms)

Figure 2: Timing experiments for CoNLL2003e-
test in average milliseconds per document

3.5 Multilingualism
In order to demonstrate the general applicability
of our approach, we implement our NER system
for two additional languages, namely German and
Spanish. All features for the Name, KB and Entity
knowledge classes are derived from the respective
language’s Wikipedia. Performance is evaluated
on CoNLL2003g (Sang and Meulder, 2003) for
German and CoNLL2002 (Tjong Kim Sang, 2002)
for Spanish. Results can be found in Figure 3.
Similar to the performance on English data, we
can see that adding more external knowledge im-
proves performance. For reference, we found that
performance is close to the state-of-the art in both
languages. Our system lags only 1.56 F1 points
on (Lample et al., 2016) in German and 1.98 F1

points on (Yang et al., 2016) in Spanish.

4 Related Work

NER is a widely studied problem. Most of previ-
ous work rely on the use of CRFs (Finkel et al.,
2005; Jun’ichi and Torisawa, 2007; Ratinov and
Roth, 2009; Passos et al., 2014; Radford et al.,
2015; Luo et al., 2015). A recent trend has
achieved particularly good results modeling NER
as an end-to-end task using neural networks (dos
Santos and Guimarães, 2015; Chiu and Nichols,
2016; Lample et al., 2016; Yang et al., 2016;
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Figure 3: NER F1 for German on CoNLL2003g
dataset and Spanish on CoNLL2002 dataset.

Gillick et al., 2016). While this constitutes a big
step forward, certain applications (e.g., in heavily
regulated sectors) require a degree of explainabil-
ity that neural approaches cannot yet provide.

Previous work has already regarded NER as
a knowledge intensive task (Florian et al., 2003;
Zhang and Johnson, 2003; Jun’ichi and Torisawa,
2007; Ratinov and Roth, 2009; Lin and Wu, 2009;
Passos et al., 2014; Radford et al., 2015; Luo
et al., 2015). Most of these works incorporate
background knowledge in the form of entity-type
gazetteers (Florian et al., 2003; Zhang and John-
son, 2003; Jun’ichi and Torisawa, 2007; Ratinov
and Roth, 2009; Passos et al., 2014). Others, used
external knowledge by exploiting the association
between NER and NED (Durrett and Klein, 2014;
Radford et al., 2015; Luo et al., 2015; Nguyen
et al., 2016). In this study, we attempt to bring
more light on the issue by quantifying the effect
of different degrees of external knowledge. Our
modular framework allows to test this intuition via
novel feature sets that reflect the degree of knowl-
edge contained in available knowledge sources.

5 Conclusion

We investigated the importance of external knowl-
edge for performing Named Entity Recognition
by defining four feature categories, each of which
conveys a different amount of knowledge. In addi-
tion to commonly used features in existing litera-
ture, we defined four novel features that we incor-
porated into our category scheme. We experimen-
tally showed that although more external knowl-
edge leads to performance improvements, it comes
at a considerable performance trade-off.
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Abstract

News-related content has been extensively
studied in both topic modeling research
and named entity recognition. However,
expressive power of named entities and
their potential for improving the quality of
discovered topics has not received much
attention. In this paper we use named en-
tities as domain-specific terms for news-
centric content and present a new weight-
ing model for Latent Dirichlet Allocation.
Our experimental results indicate that in-
volving more named entities in topic de-
scriptors positively influences the overall
quality of topics, improving their inter-
pretability, specificity and diversity.

1 Introduction

News-centric content conveys information about
events, individuals and other entities. Analysis of
news-related documents includes identifying hid-
den features for classifying them or summarizing
the content. Topic modeling is the standard tech-
nique for such purposes, and Latent Dirichlet Al-
location (LDA) (Blei et al., 2003) is the most used
algorithm, which models the documents as distri-
bution over topics and topics as distribution over
words. A good topic model is characterized by
its coherence: any coherent topic should contain
related words belonging to the same concept. A
good topic must also be distinctive enough to in-
clude domain-specific content. For news-related
texts domain-specific content can be represented
by named entities (NE), describing facts, events
and people involved in news and discussions. It
explains the need to include named entities in topic
modeling process.

The main contribution of this work is improving
topic quality with LDA by increasing the impor-

tance of named entities in the model. The idea is
to adapt the topic model to include more domain-
specific terms (NE) in the topic descriptors. We
designed our model to be flexible, in order to be
used in different variations of LDA. We ultimately
employ a term-weighting approach for the LDA
input. Our results show that: i) named entities
can serve as favorable candidates for high-quality
topic descriptors, and ii) weighting model based
on pseudo term frequencies is able to improve
overall topic quality without the need to interfere
with LDA’s generative process, which makes it
adaptable to other LDA variations.

The paper is organized in the following manner:
in Section 2 we present the related work; Section 3
describes the proposed solution and is followed by
Section 4, where the details of evaluation process
and results are outlined. We finish with Section 5,
concluding the results and next steps.

2 Related Work

This section describes the related work in the area
of topic modeling, specifically LDA.

2.1 Topic Modeling and Named Entities
Several works explored the relation between LDA
and named entities in recent years. The most fa-
mous model is CorrLDA2 (Newman et al., 2006).
It introduces two types of topics, general and en-
tity, and represents word topics as a mixture of
entity topics. Hu et al. (2013) reverses the con-
cept, assuming that entities are critical for news-
centric content. Their entity-centered topic model
(ECTM) designs entity topics as a mixture of word
topics and shows better results in entity prediction
than CorrLDA2 (Hu et al., 2013). Both models,
however, introduce significant changes to the LDA
algorithm. In this paper we strive to incorporate
named entities into LDA in a natural way, with-
out affecting the generative algorithm, to keep it
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flexible and adaptable to any LDA variations.
Lau et al. (2013) study the impact of colloca-

tions on topic modeling and work with the in-
put of LDA by replacing unigrams with colloca-
tions. Adding multiword named entities, as a spe-
cial type of collocations, enhanced the topic model
for the tested dataset (Lau et al., 2013). Our work
follows similar tokenization process, but goes fur-
ther in improving the topic model by promoting
named entities in it.

2.2 Topic Modeling and Term Weighting

Traditionally, the input of LDA is a document-
term matrix of term frequencies (TF), according
to the bag-of-words model (BoW). However, Wil-
son and Chew (2010) showed that point-wise mu-
tual information (PMI) term weighting model can
be successfully applied to eliminate stop words
from topic descriptors. More weighting schemes
were evaluated by Truica et al. (2016) and showed
promising results for clustering accuracy. There-
fore, term weighting approach in LDA can be ben-
eficial for certain tasks. In this paper we intro-
duce unnormalized TF-based weighting scheme
using pseudo frequency as a way of increasing the
weight of a term.

3 Proposed model

LDA model has been criticized for favoring
highly frequent, general words in topic descriptors
(O’Callaghan et al., 2015). This problem can be
partly solved by eliminating domain-specific stop-
words from the corpus. On the other hand, instead
of narrowing the corpus, it may be more efficient
to promote domain-specific important words, es-
pecially if such words can be identified automat-
ically, like named entities. In this paper we deal
with the online Variational Bayes version of the
LDA algorithm from Hoffman et al. (2010), as
alternative to collapsed Gibbs sampling, used by
Wilson and Chew (2010) and Truica et al. (2016)
to incorporate weights into the LDA model. In
Hoffman et al. (2010) the authors demonstrate that
the objective of the optimization relies only on the
counts of terms in documents, and therefore docu-
ments can be summarized by their TF values. Our
proposed model takes the TF scores as initial term
weights (unnormalized). To increase the weight of
a named entity we add a pseudo-frequency to its
TF without changing the weights of other terms.
This strengthens the chances of NE to appear in

a topic descriptor, even if originally it was not
mentioned often in the corpus. There are multi-
ple ways of increasing the weights, e.g. we can
promote all NE in the same proportion, or set their
weights separately for each document in the cor-
pus.

3.1 Independent Named Entity Promoting

NE Independent model assumes that all named en-
tities in the corpus are α times more important
than their initial weights (TF), i.e. they may not
be the most important terms in the corpus, but
they should weigh α times more than they do now.
Therefore, for each column mw of document-term
matrix M , we apply scalar multiplication:

mw =

�
α ∗mw if w is NE
mw otherwise

(1)

By varying α, we can set the importance of
named entities in the corpus and impact the out-
come of topic modeling. The value need not be
an integer, since typical LDA implementation can
deal with any numbers. In Section 4 we provide
results for several tested values of α parameter and
discuss our findings.

3.2 Document Dependent Named Entity
Promoting

While we want the topics produced by LDA to
include more named entities as domain-specific
words, we may assume that NE, in fact, should be
the most important, i.e. the most frequent, terms
in each document. In order to set the weights ac-
cordingly, the maximum term-frequency per doc-
ument is calculated and added to each named en-
tity’s weight in each document:

mdw =

�
mdw + max

w
mdw if w is NE

mdw otherwise
(2)

This weighting scheme obliges named entities
to be the ”heaviest” terms in each document. At
the same time, we do not change the weight of
other frequent terms, so eventually they still have
a high probability to make the top terms list.

4 Evaluation

We designed a series of tests to evaluate our
proposed model: a) Baseline Unigram: basic
model on the corpus consisting of single tokens
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(no named entities involved); b) Baseline NE: ba-
sic model on the corpus with named entities (the
strategy of injecting NE in all tests is replacement
instead of supplementation, as suggested by Lau
et al., 2013); c) NE Independent: independent
named entity promoting model described in Sec-
tion 3.1; and d) NE Document Dependent: doc-
ument dependent named entity promoting model
described in Section 3.2. We evaluate the tests us-
ing the topic quality measures presented below.

4.1 Dataset And Preprocessing

Our test corpora consists of news-related publicly-
available datasets: 1) 20 Newsgroups1: widely
studied by NLP research community dataset (Ale-
tras and Stevenson, 2013; Truica et al., 2016; Wal-
lach et al., 2009; Röder et al., 2015; Hu et al.,
2013). Contains 18846 documents with messages
discussing news, people, events and other entities.
2) Reuters-2013: a set of 14595 news articles from
Reuters for year 2013, obtained from Financial
News Dataset2, first compiled and used in (Ding
et al., 2014). The documents in Reuters-2013 are
generally longer than in 20 Newsgroups. For NE
recognition we used NeuroNER3, a tool designed
by Dernoncourt et al. (2016, 2017), trained on
CONLL2003 dataset and recognizing four types
of NE: person, location, organization and miscel-
laneous. The further preprocessing pipeline con-
sists of classic steps used in topic modeling.

4.2 Topic Coherence

The term ”topic coherence” covers a set of mea-
sures describing the quality of the topics regard-
ing interpretability by a human. Most widely
used measures are based on PMI (or NPMI, nor-
malized) and log conditional probability, both of
which rely on the co-occurrence of terms (Lau
et al., 2013, 2014; O’Callaghan et al., 2015; Ale-
tras and Stevenson, 2013; Newman et al., 2010;
Mimno et al., 2011; Nikolenko, 2016; Nguyen
et al., 2015; Syed and Spruit, 2017). Recently a
study by Röder et al. (2015) put all known co-
herence measures into single framework, assessed
their correlation with human ratings and discov-
ered the best performing measure - previously un-
known Cv, based on cosine similarity of word vec-
tors over a sliding window. We inferred the defini-

1http://qwone.com/∼jason/20Newsgroups/
2https://github.com/philipperemy/financial-news-dataset
3https://github.com/Franck-Dernoncourt/NeuroNER

tion from Röder et al. (2015):

Cv = 1
N

�
t=1...N

1
Nt

�
i=1...Nt

scos(�vNPMI(wi),�vNPMI(Wt))

(3)
where N is the number of topics, Wt is the set of
top Nt terms in topic t, the vectors are defined as:

�vNPMI(wi) =
�

NPMI(wi, wj)
�

j∈Wt

(4)

�vNPMI(Wt) =
��

wi∈Wt
NPMI(wi, wj)

�
wj∈Wt

(5)

and the underlying measure is NPMI with proba-
bility Psw over a sliding window. Cv with sliding
window of 110 words (Röder et al., 2015) is the
coherence measure we use in this paper.

Majority of studies also use a reference cor-
pus like Wikipedia for calculating word frequen-
cies and co-occurrences (Aletras and Stevenson,
2013; O’Callaghan et al., 2015; Lau et al., 2014;
Röder et al., 2015; Yang et al., 2017). In our
case the need for reference corpus is particularly
significant, since we change natural frequencies
of named entities in the corpus, therefore coher-
ence will definitely decline if calculated on orig-
inal data. For the tests we have preprocessed the
dump of English Wikipedia from 2014/06/15 with
the same pipeline as used for the test corpora.

4.3 Generality Measures
Coherence measures tend to favor topics with gen-
eral highly frequent terms. As a result we end up
with well understandable but quite generic topics.
A good topic should also be specific enough to
distinguish documents (O’Callaghan et al., 2015).
Moreover, averaging the coherences of all topics
may produce very good coherence for a model
with many repeating words across topics. For cov-
ering these aspects of the topic quality we adopt
two other measures.

Exclusivity: Represents the degree of overlap
between topics, based on the appearance of terms
in multiple descriptors (O’Callaghan et al., 2015).
We define exclusivity as |Wu|

|W | , where |Wu| is the
number of unique terms and |W | is the total num-
ber of terms in topic descriptors.

Lift: Generally used for reranking the terms
in descriptors (Taddy, 2012; Sievert and Shirley,
2014), lift is employed here as a topic quality met-
ric. It is defined as βti

bi
, where βti is the weight

of word i in topic t and bi is the probability of
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Topics Test 20 Newsgroups Reuters-2013
Cv Lift Excl. Cv Lift Excl.

20 Baseline Unigram 0,534 3,390 0,788 0,539 3,891 0,610
Baseline NE 0,503 3,273 0,767 0,559 4,059 0,598
NE Independent (x1,3) 0,494 3,394 0,755 0,551 4,209 0,563
NE Independent (x1,5) 0,527 3,464 0,770 0,552 4,308 0,618
NE Independent (x2) 0,525 3,756 0,797 0,548 4,449 0,640
NE Independent (x2,5) 0,539 3,779 0,765 0,550 4,661 0,635
NE Independent (x5) 0,543 5,071 0,898 0,517 5,701 0,708
NE Independent (x10) 0,486 6,416 0,950 0,511 6,560 0,773
NE Doc. Dependent 0,543 4,600 0,780 0,566 5,749 0,625

50 Baseline Unigram 0,492 2,882 0,511 0,514 3,977 0,427
Baseline NE 0,467 2,704 0,469 0,534 4,064 0,402
NE Independent (x1,3) 0,476 2,825 0,487 0,538 4,291 0,406
NE Independent (x1,5) 0,479 2,987 0,497 0,527 4,370 0,423
NE Independent (x2) 0,471 3,394 0,533 0,510 4,684 0,459
NE Independent (x2,5) 0,467 3,652 0,561 0,499 4,958 0,483
NE Independent (x5) 0,437 5,243 0,702 0,461 5,956 0,564
NE Independent (x10) 0,385 6,693 0,787 0,447 6,943 0,641
NE Doc. Dependent 0,512 4,951 0,624 0,532 5,452 0,421

100 Baseline Unigram 0,486 2,457 0,325 0,503 3,692 0,286
Baseline NE 0,478 2,248 0,282 0,525 3,775 0,253
NE Independent (x1,3) 0,473 2,391 0,300 0,527 4,041 0,286
NE Independent (x1,5) 0,467 2,499 0,315 0,520 4,126 0,295
NE Independent (x2) 0,463 2,737 0,332 0,508 4,505 0,329
NE Independent (x2,5) 0,453 3,108 0,374 0,491 4,705 0,339
NE Independent (x5) 0,416 5,079 0,537 0,455 5,840 0,432
NE Independent (x10) 0,394 6,622 0,614 0,444 6,747 0,498
NE Doc. Dependent 0,478 4,310 0,442 0,509 5,030 0,266

Table 1: Topic quality results on the corpora

word i in the reference corpus. The overall model
measure is the average of the log-lift of descriptor
terms and shows the degree of presence of non-
general words in topics.

4.4 Results

Table 1 depicts the results of running the exper-
iments4 with N = {20, 50, 100} topics and top
10 words used for the measures. Firstly, we can
observe one common outcome: NE Independent
(x10) model exhibited the best exclusivity and lift
values across all tests, which is logical since this
model enforced the biggest number of pseudo-
frequent words to be in topic descriptors. How-
ever, the same model also showed the lowest co-
herence in all experiments. This confirms the sec-
ondary status of lift and exclusivity: the full per-

4Tests were run with gensim: https://radimrehurek.com/
gensim/

formance of the model is decided by the combi-
nation of all three measures. From the table we
can see that for 20 Newsgroups, Baseline Unigram
model resulted in better coherence than Baseline
NE. Previously Lau et al. (2013) showed that
coherence (NPMI-based) is supposed to improve
with NE replacement model. However, the goal of
this work goes beyond just including named en-
tities into LDA. We want to demonstrate that our
weighting model increases the number of NE in
topic descriptors, which makes them more under-
standable and diverse. For these purposes we use
different coherence measure (Röder et al., 2015),
and include additional NE type - miscellaneous,
which was omitted in (Lau et al., 2013) though it
contains some potentially important named enti-
ties. Hence, at the moment we do not compare our
results with Lau et al. (2013). For each dataset we
chose the baseline for comparison depending on
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Topic Baseline Unigram Cv Topic NE Doc. Dependent Cv

game, good, year, team, player, play,
think, get, time, like

0,507 game, ne espn, ne nhl, player, team,
ne steve, think, run, play, good

0,565

game, san, espn, chicago, lose, new,
won, day, york, road

0,488 ne nhl, ne brown, ne tor, ne cal,
ne flyers, team, ne det, ne rangers,
ne lindros, ne edmonton

0,584

year, ar, know, hockey, league, slave,
new, file, list, slip

0,291

space, launch, earth, mission, orbit,
satellite, moon, planet, solar, space-
craft

0,816 ne earth, ne saturn, ne pluto, ne jupiter,
ne nasa, ne venus, ne mars, ne galileo,
ne uranus, ne sun

0,902

gun, file, control, firearm, research,
crime, new, information, law, use

0,424 ne nra, ne united states, ne congress,
ne federal, ne code, ne gun control,
ne senate, ne section, ne constitution,
ne hci

0,530

Table 2: Comparison of Baseline Unigram and NE Doc. Dependent topics for 20 Newsgroups

coherence: Baseline Unigram for 20 Newsgroups,
and Baseline NE for Reuters-2013.

In the majority of cases NE Document Depen-
dent ended up being the optimal model for both
datasets: while it did not perform best in terms
of lift or exclusivity, it achieved the best or good
enough coherence values, better lift and better or
the same exclusivity as baseline models. The ex-
ceptions are 20 Newsgropus with 20 topics, where
NE Independent (x5) became the optimal model,
and Reuters-2013 with 100 topics, where NE In-
dependent (x1,3) performed the best for combina-
tion of all three measures. The only case where
baseline model achieved superior coherence is 20
Newsgroups with N = 100, but we note that NE
Document Dependent model came close in terms
of coherence while having much better lift and ex-
clusivity, therefore it can also be considered opti-
mal. In general, NE Independent model showed
improvement in coherence up to a certain value
of α (different in each case), followed by a de-
cline, reaching very low values for NE Indepen-
dent (x10). On the other hand, NE Document De-
pendent model does not introduce new parame-
ters into LDA and manages to achieve best perfor-
mance in the majority of settings, thus being more
stable and easy to use.

Table 2 demonstrates qualitative analysis on
the individual topics from 20 Newsgroups, gen-
erated by Baseline Unigram, and their semanti-
cally closest counterparts from NE Document De-
pendent model. As evident from the table, base-
line topics describe mostly abstract concepts of

”sport”, ”space” and ”gun control”. From NE
Document Dependent topics we get more specific
descriptors, resulting in better coherence (as well
as lift/exclusivity). It is worth particularly noting
the names of the organizations (in bold), crucial to
the corresponding topics, that, despite being uni-
grams, only appear in NE Document Dependent
model, because they are not met often enough in
the test corpus.

5 Conclusion

Presented results indicate that, firstly, our pro-
posed model is capable of improving topic qual-
ity by only modifying the TF scores in the in-
put of LDA in favor of named entities. This
makes it applicable to any LDA-based models
relying on the same input. Secondly, we have
shown that named entities are well suited to be
used as domain-specific terms and produce high-
quality topics in news-related texts. Next steps in
our research include experimenting with different
weights for different categories of named entities,
as well as adding new coherence measures, such as
word2vec-based one, used by O’Callaghan et al.
(2015).
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Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Min-
ing - WSDM15. ACM Press.

Carson Sievert and Kenneth Shirley. 2014. LDAvis: A
method for visualizing and interpreting topics. In
Proceedings of the Workshop on Interactive Lan-
guage Learning, Visualization, and Interfaces. As-
sociation for Computational Linguistics.

Shaheen Syed and Marco Spruit. 2017. Full-text or ab-
stract? examining topic coherence scores using la-
tent dirichlet allocation. In 2017 IEEE International
Conference on Data Science and Advanced Analyt-
ics (DSAA). IEEE.

Matt Taddy. 2012. On estimation and selection for
topic models. In Artificial Intelligence and Statis-
tics, pages 1184–1193.

Ciprian-Octavian Truica, Florin Radulescu, and
Alexandru Boicea. 2016. Comparing different
term weighting schemas for topic modeling. In
2016 18th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE.

Hanna M Wallach, David M Mimno, and Andrew Mc-
Callum. 2009. Rethinking lda: Why priors matter.
In Advances in neural information processing sys-
tems, pages 1973–1981.

Andrew T Wilson and Peter A Chew. 2010. Term
weighting schemes for latent dirichlet allocation. In
human language technologies: The 2010 annual
conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 465–
473. Association for Computational Linguistics.

252



Weiwei Yang, Jordan Boyd-Graber, and Philip Resnik.
2017. Adapting topic models using lexical associ-
ations with tree priors. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics.

253



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 254–259
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Obligation and Prohibition Extraction Using Hierarchical RNNs

Ilias Chalkidis1,2, Ion Androutsopoulos1, and Achilleas Michos2

1Department of Informatics, Athens University of Economics and Business, Greece
2Cognitiv+ Ltd., London, UK

Abstract

We consider the task of detecting con-
tractual obligations and prohibitions. We
show that a self-attention mechanism im-
proves the performance of a BILSTM clas-
sifier, the previous state of the art for this
task, by allowing it to focus on indica-
tive tokens. We also introduce a hierar-
chical BILSTM, which converts each sen-
tence to an embedding, and processes the
sentence embeddings to classify each sen-
tence. Apart from being faster to train, the
hierarchical BILSTM outperforms the flat
one, even when the latter considers sur-
rounding sentences, because the hierarchi-
cal model has a broader discourse view.

1 Introduction

Legal text processing (Ashley, 2017) is a growing
research area, comprising tasks such as legal ques-
tion answering (Kim and Goebel, 2017), contract
element extraction (Chalkidis et al., 2017), and le-
gal text generation (Alschnerd and Skougarevskiy,
2017). We consider obligation and prohibition ex-
traction from contracts, i.e., detecting sentences
(or clauses) that specify what should or should not
happen (Table 1). This task is important for le-
gal firms and legal departments, especially when
they process large numbers of contracts to mon-
itor the compliance of each party. Methods that
would automatically identify (e.g., highlight) sen-
tences (or clauses) specifying obligations and pro-
hibitions would allow lawyers and paralegals to in-
spect contracts more quickly. They would also be
a step towards populating databases with informa-
tion extracted from contracts, along with methods
that extract contractors, particular dates (e.g., start
and end dates), applicable law, legislation refer-
ences etc. (Chalkidis and Androutsopoulos, 2017).

Figure 1: Heatmap visualizing the attention scores
of BILSTM-ATT for some examples of Table 1.

Obligation and prohibition extraction is a kind
of deontic sentence (or clause) classification
(O’Neill et al., 2017). Different firms may use
different or finer deontic classes (e.g., distinguish-
ing between payment and delivery obligations),
but obligations and prohibitions are the most com-
mon coarse deontic classes. Using similar classes,
O’ Neill et al. (2017) reported that a bidirectional
LSTM (BILSTM) classifier (Graves et al., 2013)
outperformed several others (including logistic re-
gression, SVM, AdaBoost, Random Forests) in le-
gal sentence classification, possibly because long-
term dependencies (e.g., modal verbs or negations
interacting with distant dependents) are common
and crucial in legal texts, and LSTMs can cope with
long-term dependencies better than methods rely-
ing on fixed-size context windows.

We improve upon the work of O’ Neill et al.
(2017) in four ways. First, we show that self-
attention (Yang et al., 2016) improves the perfor-
mance of the BILSTM classifier, by allowing the
system to focus on indicative words (Fig 1). Sec-
ond, we introduce a hierarchical BILSTM, where
a first BILSTM processes each sentence word by
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No. Gold Class Sentences/Clauses
1 Obligation The Supplier is obliged to meet and comply with the Approved Requirements.

None Details shall be determined in the individual contracts.
2 Prohibition No Provider staff will provide services to any Customer Competitor.

Obligation Provider will take such measures to prevent these actions.
3 Prohibition Provider is not entitled to suspend this Agreement prior to the lapse of the fifth year.
4 Oblig./Prohib. List Intro The Supplier shall:

Obligation List Item (a) only process the Personal Data in accordance with Client’s written instructions;
Prohibition List Item (b) not transfer any Personal Data to any other third parties;

5 Oblig./Prohib. List Intro The Receiving Party will:
Obligation List Item (i) keep the Confidential Information secret and confidential;
Prohibition List Item (ii) not disclose the Confidential Information to any person other than in accordance

with Clauses 13.3; and
Prohibition List Item (iii) not use the Confidential Information other than for the purposes of this Agreement.

6 Oblig./Prohib. List Intro A Party shall not directly solicit the employment of:
Prohibition List Item (i) in the case of Client, Supplier’s employees engaged in the provision of the Services,
Prohibition List Item (ii) in the case of Supplier, Client’s employees engaged.
None Nothing in this section will restrict either Party’s right to recruit.

Table 1: Examples of sentences and clauses, with human annotations of classes. Terms that are highly
indicative of the classes are shown in bold and underlined here, but are not marked by the annotators.

Gold Class Train Dev Test
None 15,401 3,905 4,141

Obligation 11,005 2,860 970
Prohibition 1,172 314 108

Obligation List Intro 828 203 70
Obligation List Item 2888 726 255
Prohibition List Item 251 28 19

Total 31,545 8,036 5,563

Table 2: Sentences/clauses after sentence splitting.

word producing a sentence embedding, and a sec-
ond BILSTM processes the sentence embeddings
to classify each sentence. The hierarchical BIL-
STM is similar to Yang et al.’s (2016), but classi-
fies sentences, not entire texts (e.g., news articles
or product reviews). It outperforms a flat BILSTM

that classifies each sentence independently, even
when the latter considers neighbouring sentences,
because the hierarchical BILSTM has a broader
view of the discourse. Third, we experiment with
a dataset an order of magnitude larger than the
dataset of O’ Neill et al. Fourth, we introduce
finer classes (Tables 1–2), which fit better the tar-
get task, where nested clauses are frequent.

2 Data

We experimented with a dataset containing 6,385
training, 1,595 development, and 1,420 test sec-
tions (articles) from the main bodies (excluding in-
troductions, covers, recitals) of 100 randomly se-
lected English service agreements.1 The sections

1The splitting of the dataset into training, development,
and test subsets was performed by first agglomeratively clus-
tering all sections (articles) based on Levenshtein distance,

were preprocessed by a sentence splitter, which in
clause lists (Examples 4–6 in Table 1) treats the
introductory clause and each nested clause as sep-
arate sentences, since each nested clause may be-
long in a different class.2

The splitter produced 31,545 training, 8,036 de-
velopment, and 5,563 test sentences/clauses.3 Ta-
ble 2 shows their distribution in the six gold (cor-
rect) classes. Each section was annotated by a sin-
gle law student (5 students in total). All the an-
notations were checked and corrected by a single
paralegal expert, who produces annotations of this
kind on a daily basis, based on strict guidelines of
the firm that provided the data.

We used pre-trained 200-dimensional word em-
beddings and pre-trained 25-dimensional POS tag
embeddings, obtained by applying WORD2VEC

(Mikolov et al., 2013) to approx. 750k and 50k
English contracts, respectively, as in our previous
work (Chalkidis et al., 2017). We also pre-trained
5-dimensional token shape embeddings (e.g., all
capitals, first letter capital, all digits), obtained
as in our previous work (Chalkidis and Androut-
sopoulos, 2017). Each token is represented by the
concatenation of its word, POS, shape embeddings
(Fig. 2, bottom). Unknown tokens are mapped to

and then assigning entire clusters to the training, develop-
ment, or test subset, to avoid having similar sections (e.g.,
based on boilerplate clauses) in different subsets.

2We use NLTK’s splitter (http://www.nltk.org/),
with additional post-processing based on regular expressions.

3There are at most 15 sentences/clauses per section in
the training set. We hope to make the dataset, or a similar
anonymized one, publicly available in the near future, but the
dataset is currently not available due to confidentiality issues.
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pre-trained POS-specific ‘unk’ embeddings (e.g.,
‘unk-n’, ‘unk-vb’). The dataset of Table 2 has no
overlap with the corpus of contracts that was used
to pre-train the embeddings.

3 Methods

BILSTM: The first classifier we considered pro-
cesses a single sentence (or clause) at a time.
It feeds the concatenated word, POS, shape
embeddings (e1, . . . ,en ∈ R230) of the tokens
w1,w2, . . . ,wn of the sentence to a forward LSTM,
and (in reverse order) to a backward LSTM, ob-
taining the forward and backward hidden states
(
−→
h 1, . . . ,

−→
h n ∈ R300 and

←−
h 1, . . .

←−
h n ∈ R300). The

concatenation of the last states (h = [
−→
h n;
←−
h 1])

is fed to a multinomial Logistic Regression (LR)
layer, which produces a probability per class.

Figure 2: BILSTM with self-attention (ATT nodes)
used on its own (BILSTM-ATT) or as the sentence
encoder of the hierarchical BILSTM (H-BILSTM-
ATT, Fig. 3). In X-BILSTM-ATT, the two LSTM

chains also consider the words of surrounding sen-
tences. The red dashed line is a drop-out layer.

BILSTM-ATT: When self-attention is added
(Fig. 2), the sentence (or clause) is represented
by the weighted sum (h) of the hidden states
(ht = [

−→
h t ;
←−
h t ] ∈ R600) of the BILSTM, where

a1, . . . ,an ∈R are attention scores, v∈R600, b∈R:

h = a1h1 + · · ·+atht + · · ·+anhn (1)

a′t = tanh(vT ht +b) (2)

at = softmax(a′t ;a′1, . . . ,a
′
n) (3)

Again, h is then fed to a multinomial LR layer.
Figure 1 visualizes the attention scores (a1, . . . ,an)
of BILSTM-ATT when reading some of the sen-
tences (or clauses) of Table 1. The attention scores
are higher for modals, negations, words that in-
dicate obligations or prohibitions (e.g., ‘obliged’,
‘only’), and tokens indicating nested clauses (e.g.,
‘(a)’, ‘:’, ‘;’), which allows BILSTM-ATT to focus
more on these tokens (the corresponding states)
when computing the sentence representation (h).

X-BILSTM-ATT: In an extension of BILSTM-ATT,
called X-BILSTM-ATT, the BILSTM chain is fed
with the token embeddings (et) not only of the sen-
tence being classified, but also of the previous (and
following) tokens (faded parts of Fig. 2), up to
150 previous (and 150 following) tokens, 150 be-
ing the maximum sentence length in the dataset.4

This might allow the BILSTM chain to ‘remember’
key parts of the surrounding sentences (e.g., a pre-
vious clause ending with ‘shall not:’) when pro-
ducing the context-aware embeddings (states ht)
of the current sentence. The self-attention mecha-
nism still considers the states (ht) of the tokens of
the current sentence only, and the sentence repre-
sentation (h) is still computed as in Eq. 1.

H-BILSTM-ATT: The hierarchical BILSTM clas-
sifier, H-BILSTM-ATT, considers all the sentences
(or clauses) of an entire section. Each sentence
(or clause) is first turned into a sentence embed-
ding (h ∈ R600), as in BILSTM-ATT (Fig. 2). The
sequence of sentence embeddings is then fed to
a second BILSTM (Fig. 3), whose hidden states
(h(2)

t = [
−→
h (2)

t ;
←−
h (2)

t ]∈R600) are treated as context-
aware sentence embeddings. The latter are passed
on to a multinomial LR layer, producing a prob-
ability per class, for each sentence (or clause) of
the section. We hypothesized that H-BILSTM-ATT

would perform better, because it considers an en-
tire section at a time, and salient information about
a sentence or clause (e.g., that the opening clause
of a list contains a negation or modal) can be ‘con-
densed’ in its sentence embedding and interact
with the sentence embeddings of distant sentences
or clauses (e.g., a nested clause several clauses af-
ter the opening one) in the upper BILSTM (Fig. 3).

4Memory constraints did not allow including more to-
kens. We used a single NVIDIA 1080 GPU. All methods were
implemented using KERAS (https://keras.io/) with
a TENSORFLOW backend (https://www.tensorflow.
org/). We padded each sentence to the maximum length.
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BILSTM BILSTM-ATT X-BILSTM-ATT H-BILSTM-ATT
Gold Class P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC

None 0.95 0.91 0.93 0.98 0.97 0.90 0.93 0.99 0.96 0.90 0.93 0.98 0.98 0.96 0.97 0.99
Obligation 0.75 0.85 0.79 0.86 0.75 0.88 0.81 0.86 0.75 0.87 0.81 0.88 0.87 0.92 0.90 0.96
Prohibition 0.67 0.62 0.64 0.75 0.74 0.75 0.74 0.80 0.65 0.75 0.70 0.74 0.84 0.83 0.84 0.90

Obl. List Begin 0.70 0.86 0.77 0.81 0.71 0.85 0.77 0.83 0.72 0.75 0.74 0.80 0.90 0.89 0.89 0.93
Obl. List Item 0.53 0.66 0.59 0.64 0.48 0.70 0.57 0.60 0.49 0.78 0.60 0.66 0.85 0.94 0.89 0.94
Proh. List Item 0.59 0.35 0.43 0.50 0.61 0.55 0.59 0.62 0.83 0.50 0.62 0.67 0.80 0.84 0.82 0.92
Macro-average 0.70 0.70 0.70 0.74 0.73 0.78 0.74 0.78 0.73 0.76 0.73 0.79 0.87 0.90 0.89 0.94
Micro-average 0.90 0.88 0.88 0.94 0.90 0.88 0.89 0.96 0.90 0.88 0.89 0.94 0.95 0.95 0.95 0.98

Table 3: Precision, recall, F1, and AUC scores, with the best results in bold and gray background.

Figure 3: Upper part of the hierarchical BILSTM

(H-BILSTM-ATT). The sentence embeddings (SEi)
are generated by the encoder of Fig. 2.

4 Experimental Results

Hyper-parameters were tuned by grid-searching
the following sets, and selecting the values with
the best validation loss: LSTM hidden units {100,
200, 300}, batch size {8, 16, 32}, drop-out rate
{0.4, 0.5, 0.6}. The red dashed lines of Fig. 2–3
are drop-out layers.5 We used categorical cross-
entropy loss, Glorot initialization (Glorot and Ben-
gio, 2010), Adam (Kingma and Ba, 2015), learn-
ing rate 0.001, and early stopping on the valida-
tion loss. Table 3 reports the precision, recall, F1
score, area under the precision-recall curve (AUC)
per class, as well as micro- and macro-averages.

The self-attention mechanism (BILSTM-ATT)
leads to clear overall improvements (in macro and
micro F1 and AUC, Table 3) comparing to the
plain BILSTM, supporting the hypothesis that self-
attention allows the classifier to focus on indica-
tive tokens. Allowing the BILSTM to consider to-
kens of neighboring sentences (X-BILSTM-ATT)
does not lead to any clear overall improvements.

5We resample the drop-out mask at each time-step.

The hierarchical H-BILSTM-ATT clearly outper-
forms the other three methods, supporting the hy-
pothesis that considering entire sections and al-
lowing the sentence embeddings to interact in the
upper BILSTM (Fig. 3) is beneficial.

Notice that the three flat methods (BILSTM,
BILSTM-ATT, X-BILSTM-ATT) obtain particularly
lower F1 and AUC scores, compared to H-BILSTM-
ATT, in the classes that correspond to nested
clauses (obligation list item, prohibition list item).
This is due to the fact that the flat methods have
no (or only limited, in the case of X-BILSTM-ATT)
view of the previous sentences, which often indi-
cate if a nested clause is an obligation or prohibi-
tion (see, for example, examples 4–6 in Table 1).

H-BILSTM-ATT is also much faster to train than
BILSTM and BILSTM-ATT (Table 4), even though
it has more parameters, because it converges faster
(5-7 epochs vs. 12-15). X-BILSTM-ATT is particu-
larly slow, because its BILSTM processes the same
sentences multiple times, when they are classified
and when they are neighboring sentences.

Network Training Time Parameters
BILSTM 5h 30m 1,278M

BILSTM-ATT 8h 30m 1,279M
X-BILSTM-ATT 25h 40m 1,279M
H-BILSTM-ATT 2h 30m 1,837M

Table 4: Training times and parameters to learn.

5 Related Work

As already noted, we built upon the work of
O’Neill et al. (2017). The dataset of O’Neill et al.
contained financial legislation, not contracts, and
was an order of magnitude smaller (obligations,
prohibitions, permissions had 1,297 training, 622
test sentences in total, cf. Table 2), but also in-
cluded permissions, which we did not consider.

Waltl et al. (2017) classified statements from
German tenancy law into 22 classes (including
prohibition, permission, consequence), using ac-
tive learning with Naive Bayes, LR, MLP classi-
fiers, experimenting with 504 sentences.
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Kiyavitskaya et al. (2008) used grammars, word
lists, and heuristics to extract rights, obligations,
exceptions, and other constraints from US and Ital-
ian regulations.

Asooja et al. (2015) employed SVMs with n-
gram and manually crafted features to classify
paragraphs of money laundering regulations into
five classes (e.g., enforcement, monitoring, report-
ing), experimenting with 212 paragraphs.

In previous work (Chalkidis et al., 2017;
Chalkidis and Androutsopoulos, 2017) we focused
on extracting contract elements (e.g., contractor
names, legislation references, start and end dates,
amounts), a task which is similar to named en-
tity recognition. The best results were obtained
by stacked BILSTMs (Irsoy and Cardie, 2014)
or stacked BILSTM-CRF models (Ma and Hovy,
2016); hierarchical BILSTMs were not considered.
By contrast, in this paper we considered obliga-
tion and prohibition extraction, treating it as a sen-
tence (or clause) classification task, and showing
the benefits of employing a hierarchical BILSTM

model that considers both the sequence of words
in each sentence and the sequence of sentences.

Yang et al. (2016) proposed a hierarchical RNN

with self-attention to classify texts. A first bidi-
rectional RNN turns the words of each sentence to
a sentence embedding, and a second one turns the
sentence embeddings to a document embedding,
which is fed to an LR layer. Yang et al. use self-
attention in both RNNs, to assign attention scores
to words and sentences. We classify sentences (or
clauses), not entire texts, hence our second BIL-
STM does not produce a document embedding and
does not use self-attention. Also, Yang et al. ex-
perimented with reviews and community question
answering logs, whereas we considered legal texts.

Hierarchical RNNs have also been developed
for multilingual text classification (Pappas and
Popescu-Belis, 2017), language modeling (Lin
et al., 2015), and dialogue breakdown detection
(Xie and Ling, 2017).

6 Conclusions and Future Work

We presented the legal text analytics task of de-
tecting contractual obligations and prohibitions.
We showed that self-attention improves the perfor-
mance of a BILSTM classifier, the previous state
of the art in this task, by allowing the BILSTM

to focus on indicative tokens. We also intro-
duced a hierarchical BILSTM (also using atten-

tion), which converts each sentence to an em-
bedding, and then processes the sentence embed-
dings to classify each sentence. Apart from be-
ing faster to train, the hierarchical BILSTM outper-
forms the flat one, even when the latter considers
the surrounding sentences, because the hierarchi-
cal model has a broader view of the discourse.

Further performance improvements may be
possible by considering deeper self-attention
mechanisms (Pavlopoulos et al., 2017), stacking
BILSTMs (Irsoy and Cardie, 2014), or pre-training
the BILSTMs with auxiliary tasks (Ramachandran
et al., 2017). The hierarchical BILSTM with atten-
tion of this paper may also be useful in other sen-
tence, clause, or utterance classification tasks, for
example in dialogue turn classification (Xie and
Ling, 2017), detecting abusive user comments in
on-line discussions (Pavlopoulos et al., 2017), and
discourse segmentation (Hearst, 1997). We would
also like to investigate replacing its BILSTMs with
sequence-labeling CNNs (Bai et al., 2018), which
may lead to efficiency improvements.
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Abstract

We present a paper abstract writing sys-
tem based on an attentive neural sequence-
to-sequence model that can take a title as
input and automatically generate an ab-
stract. We design a novel Writing-editing
Network that can attend to both the ti-
tle and the previously generated abstract
drafts and then iteratively revise and pol-
ish the abstract. With two series of Turing
tests, where the human judges are asked
to distinguish the system-generated ab-
stracts from human-written ones, our sys-
tem passes Turing tests by junior domain
experts at a rate up to 30% and by non-
expert at a rate up to 80%.1

1 Introduction

Routine writing, such as writing scientific papers
or patents, is a very common exercise. It can be
traced back to the “Eight legged essay”, an aus-
tere writing style in the Ming-Qing dynasty.2 We
explore automated routine writing, with paper ab-
stract writing as a case study. Given a title, we
aim to automatically generate a paper abstract. We
hope our approach can serve as an assistive tech-
nology for human to write paper abstracts more ef-
ficiently and professionally, by generating an ini-
tial draft for humans further editing, correction
and enrichment.

A scientific paper abstract should always fo-
cus on the topics specified in the title. How-
ever, a typical recurrent neural network (RNN)

∗∗Qingyun Wang and Zhihao Zhou contributed equally to
this work.

1The datasets and programs are publicly available
for research purpose https://github.com/EagleW/
Writing-editing-Network

2https://en.wikipedia.org/wiki/Eight-legged essay

based approach easily loses focus. Given the ti-
tle “An effective method of using Web based infor-
mation for Relation Extraction” from Keong and
Su (2008), we compare the human written abstract
and system generated abstracts in Table 1. The
LSTM LM baseline generated abstract misses the
key term “Web” mentioned in the paper title. We
introduce a title attention (Bahdanau et al., 2015;
Luong et al., 2015) into a sequence-to-sequence
model (Sutskever et al., 2014; Cho et al., 2014) to
guide the generation process so the abstract is top-
ically relevant to the given title, as shown in the
“Seq2seq with attention” row of Table 1.

Previous work usually models natural language
generation as a one-way decision problem, where
models generate a sequence of tokens as output
and then moves on, never coming back to modify
or improve the output. However, human writers
usually start with a draft and keep polishing and
revising it. As C. J. Cherryh once said, “it is per-
fectly okay to write garbage - as long as you edit
brilliantly.” 3 We model abstract generation as a
conditioned, iterative text generation problem and
design a new Writing-editing Network with an
Attentive Revision Gate to iteratively examine,
improve, and edit the abstract with guidance from
the paper title as well as the previously generated
abstract. A result of the Writing-editing Network
is shown in Table 1, where we can see that the
initial draft contains more topically relevant and
richer concepts than the title, such as the term ‘IE’.
By adding this initial draft as feedback and guid-
ance, it eases the next generation iteration, allow-
ing the model to focus on a more limited learning
space, and generate more concise and coherent ab-
stracts.

3https://www.goodreads.com/quotes/398754-it-is-
perfectly-okay-to-write-garbage–as-long-as-you
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Figure 1: Writing-editing Network architecture overview.

Title An effective method of using Web based information for Relation Extraction (Keong and Su, 2008)
Human
written
abstract

We propose a method that incorporates paraphrase information from the Web to boost the performance of
a supervised relation extraction system. Contextual information is extracted from the Web using a semi-
supervised process, and summarized by skip-bigram overlap measures over the entire extract. This allows
the capture of local contextual information as well as more distant associations. We observe a statistically
significant boost in relation extraction performance.

LSTM LM This paper proposes a method for automatic extraction of salient information from an original text. Our
method shows promising results in which a noun clustering is employed. The relation is then be applied to
the relation extraction task.

Seq2seq
with atten-
tion (Initial
Draft)

In this paper we focus on the task of extracting the most commonly used Web pages in named entity recogni-
tion (IE) information from a large corpus of news articles. In particular, we propose a new kernel method
that can be applied to a large collection of Web pages by automatic detection of labeled and unlabeled
data. Our method is very simple and because the related method of using the data to be used as a guide as
a source of information for the topic detection and classification can be applied, but often fail at improving
the performance by combining relations and previous methods. In this method, the co-occurrence counts
and the occurrences of each relation are not statistically significant, but also that it is possible to contribute
to entity relations with a term in a variety of topics.

Writing-
editing
Networks
(Final
Draft)

In this paper we focus on the task of identifying the most commonly relevant features of Web documents. In
particular, we propose a generic, automated IE algorithm that can be applied to a large collection of Web
pages containing full large documents. This is a first step in helping a wide range of collaborative works for
relation extraction. We show that it is possible to eliminate a good number of errors in relation extraction
from a variety of documents, but that it is difficult to define a problem of term extraction.

Table 1: Human and system generated abstracts for the same title.

2 Approach

In this section, we describe our “Writing-editing
Network” (Figure 1). The writing network takes a
title as input and generates the first abstract draft.
The editing network takes both the title and pre-
vious draft as input to iteratively proof-read, im-
prove, and generate new versions.

2.1 Writing Network

Our Writing Network is based on an atten-
tive sequence-to-sequence model. We use a bi-
directional gated recurrent unit (GRU) (Cho et al.,
2014) as an encoder, which takes a title T =
{w1, . . . , wK} as input. For each token, wk, the
encoder produces a hidden state, hwk

.
We employ a GRU as our decoder to generate

the draft abstractX(0) = {x(0)1 , . . . , x
(0)
N }. To cap-

ture the correlation between the title, T , and the
abstract draft, X(0), we adopt a soft-alignment at-
tention mechanism (Bahdanau et al., 2015), which
enables the decoder to focus on the most relevant
words from the title. At the nth decoder step,
we apply the soft attention to the encoder hidden
states to obtain an attentive title context vector, τn:

τn =

K∑

k=1

αn,khwk

αn,k = softmax (f (sn−1, hwk
))

(1)

where sn−1 is the n− 1th hidden state, s0 = hwK

which is the last hidden state of the encoder, f is a
function that measures the relatedness of word wk
in the title and word x(0)n−1 in the output abstract.
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The decoder then generates the nth hidden state,
sn, which is given by:

sn = GRU(x
(0)
n−1, sn−1, τn)

p(x(0)n |x(0)1:n−1, w1:K) = g(x
(0)
n−1, sn, τn)

(2)

where the function g is a softmax classifier, which
is used to find the next word, x(0)n , by selecting the
word of maximum probability.

2.2 Editing Network

The concepts contained in the titles are usually
limited, so the learning space for the generator is
huge, which hinders the quality of the generated
abstract. Compared to the title, the generated ab-
stracts contain more topically relevant concepts,
and can provide better guidance. Therefore, we
design an Editing Network, which, besides the ti-
tle, also takes the previously generated abstract as
input and iteratively refines the generated abstract.
The Editing Network follows an architecture sim-
ilar to the Writing Network.

Given an initial draft, X(0), from the Writing
Network, we use a separate bi-directional GRU
encoder, to encode each x(0)n ∈ X(0) into a new
representation, h

x
(0)
n

. As in the Writing Network,
we use s0 = hwK as the initial decoder hidden
state of the Editing Network decoder, which shares
weights with the Writing Network decoder.

At the nth decoder step, we compute an atten-
tive draft context vector, ct, by applying the same
soft attention function from Eq. (1) to the encoded
draft representations, {h

x
(0)
1

, . . . , h
x
(0)
N

}, using de-

coder state sn−1.4 We also recompute the attentive
title context vector, τn, with the same soft atten-
tion, though these attentions do not share weights.
Intuitively, this attention mechanism allows the
model to proofread the previously generated ab-
stract and improve it by better capturing long-term
dependency and relevance to the title. We incor-
porate ct into the model through a novel Attentive
Revision Gate that adaptively attends to the title
and the previous draft at each generation step:

rn = σ (Wr,ccn +Wr,ττn + br) (3)

zn = σ (Wz,ccn +Wz,ττn + bz) (4)

ρn = tanh (Wρ,ccn + zn � (Wρ,ττn + bρ)) (5)

an = rn � cn + (1− rn)� ρn (6)

4The indices are changed since the generated sequence
lengths from the writing and editing networks may differ.

where all W and b are learned parameters. With
the attention vector, an, we compute the nth token
with the same decoder as in section 2.1, yielding
another draft X(1) = {x(1)1 , . . . , x

(1)
T }. We repeat

this process for d iterations. In our experiments,
we set d to 2 and found it to work best.

3 Experiments

3.1 Data and Hyperparameters

We select NLP as our test domain because we have
easy access to data and domain experts for human
judges. We collected a data set of 10,874 paper
title and abstract pairs5 from the ACL Anthology
Network6 (until 2016) for our experiments. We
randomly dividing them into training (80%), vali-
dation (10%), and testing (10%) sets. On average,
each title and abstract include 9 and 116 words, re-
spectively. Our model has 512 dimensional word
embeddings, 512 encoder hidden units, and 1,024
decoder hidden units.

3.2 Method Comparison

HUMAN
Method METEOR ROUGE-L PREFER-

ENCE
LSTM-LM 8.7 15.1 0
Seq2seq 13.5 19.2 22
ED(1) 13.3 20.3 30
ED(2) 14.0 19.8 48

Table 2: Method Comparison (%).

n 1 2 3 4 5 6
System 100 94.4 67.3 35.0 15.9 6.6
Human 98.2 78.5 42.2 17.9 7.7 4.1

Table 3: Plagiarism Check: Percentage (%) of n-
grams in test abstracts generated by system/human
which appeared in training data.

We include an LSTM Language Model (Sun-
dermeyer et al., 2012) (LSTM-LM) and a Seq2seq
with Attention (Seq2seq) model as our baselines
and compare them with the first (ED(1)) and
second revised draft (ED(2)) produced by the
Writing-editing Network.

Table 2 presents METEOR (Denkowski and
Lavie, 2014) and ROUGE-L (Lin, 2004) scores
for each method, where we can see score gains on

5https://github.com/EagleW/ACL_titles_
abstracts_dataset

6http://clair.eecs.umich.edu/aan/index.php
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# Tests # Choices Non-expert NLP Expert
per Test Non-CS CS Junior Senior

Different Titles
50 2 30% 15% 12% 0%
20 5 60% 20% 30% 20%
10 10 80% 30% 30% 20%

Same Title 50 2 54% 10% 4% 0%
20 5 75% 25% 5% 5%

Table 4: Turing Test Passing Rates.

both metrics from the Editing Mechanism. Addi-
tionally, 10 NLP researchers manually assess the
quality of each method. We randomly selected 50
titles and applied each model to generate an ab-
stract. We then asked human judges to choose
the best generated abstract for each title and com-
puted the overall percentage of each model be-
ing preferred by human, which we record as Hu-
man Preference. The criteria the human judges
adopt include topical relevance, logical coherence,
and conciseness. Table 2 shows that the human
judges strongly favor the abstracts from our ED(2)
method.

We also conduct a plagiarism check in Table 3,
which shows that 93.4% of 6-grams generated by
ED(2) did not appear in the training data, indicat-
ing that our model is not simply copying. The
6-grams borrowed by both our model and hu-
man include “word sense disambiguation ( wsd
)”, “support vector machines ( svm )”, “show that
our approach is feasible”, and “we present a ma-
chine learning approach”. However, human writ-
ing is still more creative. The uni-grams and
bi-grams that appear in human written test ab-
stracts but not in the training set include “an-
droid”, “ascii”, ‘p2p”, “embellish”, “supervision
bottleneck”, “medical image”, “online behaviors”,
and “1,000 languages”.

3.3 Impact of Editing Mechanism

n 1 2 3 4 5 6
METEOR 13.3 14.0 13.6 13.9 13.8 13.5
ROUGE-L 20.3 19.8 18.6 19.2 18.9 18.8

Table 5: Iteration comparison (%)

We trained and evaluated our editing approach
with 1-6 iterations and the experimental results
(Table 5) showed that the second iteration pro-
duced the best results. The reason may be as fol-
lows. The attentive revision gate incorporates the
knowledge from the paper title and the previous
generated abstract. As the editing process iterates,

the knowledge pool will diverge since in each it-
eration the generated abstract may introduce some
irrelevant information. Empirically the second it-
eration achieved a good trade-off between good
quality of generated abstract and relevance with
topics in the title.

3.4 Turing Test

We carried out two series of Turing tests, where
the human judges were asked to distinguish the
fake (system-generated) abstracts from the real
(human-written) ones. (1)Abstracts for different
titles. We asked the human judges to identify the
fake abstract from a set of N − 1 real ones (i.e.,
N choose 1 question). A test is passed when a hu-
man judge mistakenly chooses a real abstract. (2)
Abstracts for the same title. We asked the hu-
man judges to choose the real abstract from a set
ofN−1 fake ones. A test is passed when a human
judge mistakenly chooses a fake abstract.

As expected, Table 4 shows that people with
less domain knowledge are more easily deceived.
Specifically, non-CS human judges fail at more
than half of the 1-to-1 sets for the same titles,
which suggests that most of our system gener-
ated abstracts follow correct grammar and consis-
tent writing style. Domain experts fail on 1 or 2
sets, mostly because the human written abstracts
in those sets don’t seem very topically relevant.
Additionally, the more abstracts that we provided
to human judges, the easier it is to conceal the sys-
tem generated abstract amongst human generated
ones.

A human is still more intelligent than the ma-
chine on this task from many reasons: (1) Ma-
chines lack knowledge of the deep connections
among scientific knowledge elements and thus
produce some fluent but scientifically incorrect
concepts like “...a translation system to generate
a parallel corpus...” and “...automatic genera-
tion of English verbs...”. (2) Humans know better
about what terms are more important than others
in a title. For example, if a language name ap-
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pears in the title, it must appear in the abstract. We
have an automatic term labeling approach, but, un-
fortunately, its performance (75% F-score) is not
good enough to help the abstract generation. (3)
Human written abstracts are generally more spe-
cific, concise, and engaging, often containing spe-
cific lab names, author names (e.g., “Collins pro-
posed...”), system abbreviations, and terminolo-
gies (e.g., “Italian complex nominals (cns) of the
type n+p+n”). In contrast, our system occasion-
ally generates too general descriptions like “Topic
modeling is a research topic in Natural Language
Processing.” (4) Machines lack common sense
knowledge, so a system generated abstract may
mention three areas/steps, but only outline two of
them. (5) Machines lack logical coherence. A
system generated abstract may contain “The two
languages...” and not state which languages. (6)
We are not asking the system to perform scientific
experiments, and thus the system generated “ex-
perimental results” are often invalid, such as “Our
system ranked first out of the participating teams
in the field of providing such a distribution.”.

4 Related work

Deep neural networks are widely applied to text
generation tasks such as poetry creation (Greene
et al., 2010; Ghazvininejad et al., 2016; Zhang
et al., 2017), recipe generation (Kiddon et al.,
2016), abstractive summarization (Gu et al., 2016;
Wang and Ling, 2016; See et al., 2017), and biog-
raphy generation (Lebret et al., 2016; Liu et al.,
2018). We introduce a new task of generating
paper abstracts from the given titles. We de-
sign a Writing-editing Network which shares ideas
with Curriculum Learning (Bengio et al., 2009),
where training on a data point from coarse to fine-
grained can lead to better convergence (Krueger
and Dayan, 2009). Our model is different from
previous theme-rewriting (Polozov et al., 2015;
Koncel-Kedziorski et al., 2016) approach which
has been applied to math word problems but more
similar to the Feedback Network (Zamir et al.,
2017) by using previous generated outputs as feed-
back to guide subsequent generation. Moreover,
our Writing-editing Network treats previous drafts
as independent observations and does not prop-
agate errors to previous draft generation stages.
This property is vital for training feedback archi-
tectures for discrete data. Another similar ap-
proach is the deliberation network used for Ma-

chine Translation (Xia et al., 2017). Instead of
directly concatenating the output of the encoder
and writing network, we use the learnable Atten-
tive Revision Gate to control their integration.

5 Conclusions and Future Work

We propose a new paper abstract generation task,
present a novel Writing-editing Network architec-
ture based on an Editing Mechanism, and demon-
strate its effectiveness through both automatic and
human evaluations. In the future we plan to ex-
tend the scope to generate a full paper by taking
additional knowledge bases as input.
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Abstract

We explore recently introduced defini-
tion modeling technique that provided the
tool for evaluation of different distributed
vector representations of words through
modeling dictionary definitions of words.
In this work, we study the problem of
word ambiguities in definition modeling
and propose a possible solution by em-
ploying latent variable modeling and soft
attention mechanisms. Our quantitative
and qualitative evaluation and analysis of
the model shows that taking into account
words ambiguity and polysemy leads to
performance improvement.

1 Introduction

Continuous representations of words are used in
many natural language processing (NLP) applica-
tions. Using pre-trained high-quality word em-
beddings are most effective if not millions of
training examples are available, which is true for
most tasks in NLP (Kumar et al., 2016; Karpa-
thy and Fei-Fei, 2015). Recently, several unsu-
pervised methods were introduced to learn word
vectors from large corpora of texts (Mikolov et al.,
2013; Pennington et al., 2014; Joulin et al., 2016).
Learned vector representations have been shown
to have useful and interesting properties. For ex-
ample, Mikolov et al. (2013) showed that vec-
tor operations such as subtraction or addition re-
flect semantic relations between words. Despite
all these properties it is hard to precisely evalu-
ate embeddings because analogy relation or word
similarity tasks measure learned information indi-
rectly.

Quite recently Noraset et al. (2017) introduced
a more direct way for word embeddings evalu-
ation. Authors suggested considering definition

modeling as the evaluation task. In definition
modeling vector representations of words are used
for conditional generation of corresponding word
definitions. The primary motivation is that high-
quality word embedding should contain all useful
information to reconstruct the definition. The im-
portant drawback of Noraset et al. (2017) defini-
tion models is that they cannot take into account
words with several different meanings. These
problems are related to word disambiguation task,
which is a common problem in natural language
processing. Such examples of polysemantic words
as “bank“ or “spring“ whose meanings can only
be disambiguated using their contexts. In such
cases, proposed models tend to generate defini-
tions based on the most frequent meaning of the
corresponding word. Therefore, building models
that incorporate word sense disambiguation is an
important research direction in natural language
processing.

In this work, we study the problem of word
ambiguity in definition modeling task. We pro-
pose several models which can be possible so-
lutions to it. One of them is based on recently
proposed Adaptive Skip Gram model (Bartunov
et al., 2016), the generalized version of the orig-
inal SkipGram Word2Vec, which can differ word
meanings using word context. The second one
is the attention-based model that uses the context
of a word being defined to determine components
of embedding referring to relevant word meaning.
Our contributions are as follows: (1) we intro-
duce two models based on recurrent neural net-
work (RNN) language models, (2) we collect new
dataset of definitions, which is larger in number
of unique words than proposed in Noraset et al.
(2017) and also supplement it with examples of the
word usage (3) finally, in the experiment section
we show that our models outperform previously
proposed models and have the ability to generate
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definitions depending on the meaning of words.

2 Related Work

2.1 Constructing Embeddings Using
Dictionary Definitions

Several works utilize word definitions to learn em-
beddings. For example, Hill et al. (2016) use defi-
nitions to construct sentence embeddings. Authors
propose to train recurrent neural network produc-
ing an embedding of the dictionary definition that
is close to an embedding of the corresponding
word. The model is evaluated with the reverse
dictionary task. Bahdanau et al. (2017) suggest
using definitions to compute embeddings for out-
of-vocabulary words. In comparison to Hill et al.
(2016) work, dictionary reader network is trained
end-to-end for a specific task.

2.2 Definition Modeling
Definition modeling was introduced in Noraset
et al. (2017) work. The goal of the definition
model p(D|w∗) is to predict the probability of
words in the definition D = {w1, . . . , wT } given
the word being defined w∗. The joint probability
is decomposed into separate conditional probabil-
ities, each of which is modeled using the recurrent
neural network with soft-max activation, applied
to its logits.

p(D|w∗) =
T∏

t=1

p(wt|wi<t, w∗) (1)

Authors of definition modeling consider follow-
ing conditional models and their combinations:
Seed (S) - providing word being defined at the first
step of the RNN, Input (I) - concatenation of em-
bedding for word being defined with embedding
of word on corresponding time step of the RNN,
Gated (G), which is the modification of GRU cell.
Authors use a character-level convolutional neu-
ral network (CNN) to provide character-level in-
formation about the word being defined, this fea-
ture vector is denoted as (CH). One more type of
conditioning referred to as (HE), is hypernym re-
lations between words, extracted using Hearst-like
patterns.

3 Word Embeddings

Many natural language processing applications
treat words as atomic units and represent them
as continuous vectors for further use in machine

learning models. Therefore, learning high-quality
vector representations is the important task.

3.1 Skip-gram

One of the most popular and frequently used vec-
tor representations is Skip-gram model. The orig-
inal Skip-gram model consists of grouped word
prediction tasks. Each task is formulated as a pre-
diction of the word v given word w using their in-
put and output representations:

p(v|w, θ) = exp(inTwoutv)∑V
v′=1 exp(in

T
woutv′)

(2)

where θ and V stand for the set of input and out-
put word representations, and dictionary size re-
spectively. These individual prediction tasks are
grouped in a way to independently predict all ad-
jacent (with some sliding window) words y =
{y1, . . . yC} given the central word x:

p(y|x, θ) =
∏

j

p(yj |x, θ) (3)

The joint probability of the model is written as fol-
lows:

p(Y |X, θ) =
N∏

i=1

p(yi|xi, θ) (4)

where (X,Y ) = {xi, yi}Ni=1 are training pairs of
words and corresponding contexts and θ stands for
trainable parameters.

Also, optimization of the original Skip-gram
objective can be changed to a negative sampling
procedure as described in the original paper or hi-
erarchical soft-max prediction model (Mnih and
Hinton, 2009) can be used instead of (2) to deal
with computational costs of the denominator. Af-
ter training, the input representations are treated as
word vectors.

3.2 Adaptive Skip-gram

Skip-gram model maintains only one vector repre-
sentation per word that leads to mixing of mean-
ings for polysemantic words. Bartunov et al.
(2016) propose a solution to the described prob-
lem using latent variable modeling. They extend
Skip-gram to Adaptive Skip-gram (AdaGram) in
a way to automatically learn the required num-
ber of vector representations for each word using
Bayesian nonparametric approach. In comparison
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with Skip-gram AdaGram assumes several mean-
ings for each word and therefore keeps several
vectors representations for each word. They in-
troduce latent variable z that encodes the index of
meaning and extend (2) to p(v|z, w, θ). They use
hierarchical soft-max approach rather than nega-
tive sampling to overcome computing denomina-
tor.

p(v|z = k,w, θ) =
∏

n∈path(v)
σ(ch(n)inTwkoutn)

(5)
Here inwk stands for input representation of word
w with meaning index k and output representa-
tions are associated with nodes in a binary tree,
where leaves are all possible words in model vo-
cabulary with unique paths from the root to the
corresponding leaf. ch(n) is a function which re-
turns 1 or -1 to each node in the path(·) depending
on whether n is a left or a right child of the previ-
ous node in the path. Huffman tree is often used
for computational efficiency.

To automatically determine the number of
meanings for each word authors use the con-
structive definition of Dirichlet process via stick-
breaking representation (p(z = k|w, β)), which is
commonly used prior distribution on discrete la-
tent variables when the number of possible values
is unknown (e.g. infinite mixtures).

p(z = k|w, β) = βwk

k−1∏

r=1

(1− βwr)

p(βwk|α) = Beta(βwk|1, α)
(6)

This model assumes that an infinite number of
meanings for each word may exist. Providing that
we have a finite amount of data, it can be shown
that only several meanings for each word will have
non-zero prior probabilities.

Finally, the joint probability of all variables in
AdaGram model has the following form:

p(Y,Z, β|X,α, θ) =
V∏

w=1

∞∏

k=1

p(βwk|α)·

·
N∏

i=1

[p(zi|xi, β)
C∏

j=1

p(yij |zi, xi, θ)]
(7)

Model is trained by optimizing Evidence Lower
Bound using stochastic variational inference
(Hoffman et al., 2013) with fully factorized vari-
ational approximation of the posterior distribution
p(Z, β|X,Y, α, θ) ≈ q(Z)q(β).

One important property of the model is an abil-
ity to disambiguate words using context. More
formally, after training on data D = {xi, yi}Ni=1

we may compute the posterior probability of word
meaning given context and take the word vector
with the highest probability.:

p(z = k|x, y, θ) ∝

∝ p(y|x, z = k, θ)

∫
p(z = k|β, x)q(β)dβ

(8)

This knowledge about word meaning will be
further utilized in one of our models as
disambiguation(x|y).

4 Models

In this section, we describe our extension to orig-
inal definition model. The goal of the extended
definition model is to predict the probability of a
definition D = {w1, . . . , wT } given a word being
defined w∗ and its context C = {c1, . . . , cm} (e.g.
example of use of this word). As it was motivated
earlier, the context will provide proper information
about word meaning. The joint probability is also
decomposed in the conditional probabilities, each
of which is provided with the information about
context:

p(D|w∗, C) =
T∏

t=1

p(wt|wi<t, w∗, C) (9)

4.1 AdaGram based
Our first model is based on original Input (I) con-
ditioned on Adaptive Skip-gram vector represen-
tations. To determine which word embedding to
provide as Input (I) we disambiguate word being
defined using its context words C. More formally
our Input (I) conditioning is turning in:

ht = g([v∗; vt], ht−1)

v∗ = disambiguation(w∗|C) (10)

where g is the recurrent cell, [a; b] denotes vec-
tor concatenation, v∗ and vt are embedding of
word being defined w and embedding of word wt
respectively. We refer to this model as Input Adap-
tive (I-Adaptive).

4.2 Attention based
Adaptive Skip-gram model is very sensitive to
the choice of concentration parameter in Dirich-
let process. The improper setting will cause many
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similar vectors representations with smoothed
meanings due to theoretical guarantees on a num-
ber of learned components. To overcome this
problem and to get rid of careful tuning of this
hyper-parameter we introduce following model:

ht = g([a∗; vt], ht−1)

a∗ = v∗ �mask

mask = σ(W

∑m
i=1ANN(ci)

m
+ b)

(11)

where � is an element-wise product, σ is a
logistic sigmoid function and ANN is attention
neural network, which is a feed-forward neural
network. We motivate these updates by the fact,
that after learning Skip-gram model on a large cor-
pus, vector representation for each word will ab-
sorb information about every meaning of the word.
Using soft binary mask dependent on word context
we extract components of word embedding rele-
vant to corresponding meaning. We refer to this
model as Input Attention (I-Attention).

4.3 Attention SkipGram
For attention-based model, we use different em-
beddings for context words. Because of that, we
pre-train attention block containing embeddings,
attention neural network and linear layer weights
by optimizing a negative sampling loss function in
the same manner as the original Skip-gram model:

log σ(v′TwO
vwI )

+

k∑

i=1

Ewi∼Pn(w)[log σ(−v′Twi
vwI )]

(12)

where v′wO
, vwI and v′wi

are vector representa-
tion of ”positive” example, anchor word and nega-
tive example respectively. Vector vwI is computed
using embedding of wI and attention mechanism
proposed in previous section.

5 Experiments

5.1 Data
We collected new dataset of definitions using Ox-
fordDictionaries.com (2018) API. Each entry is a
triplet, containing the word, its definition and ex-
ample of the use of this word in the given meaning.
It is important to note that in our data set words can
have one or more meanings, depending on the cor-
responding entry in the Oxford Dictionary. Table
1 shows basic statistics of the new dataset.

Split train val test
#Words 33,128 8,867 8,850
#Entries 97,855 12,232 12,232
#Tokens 1,078,828 134,486 133,987

Avg length 11.03 10.99 10.95

Table 1: Statistics of new dataset

Figure 1: Perplexities of S+I Attention model
for the case of pre-training (solid lines) and for
the case when the model is trained from scratch
(dashed lines).

5.2 Pre-training
It is well-known that good language model can of-
ten improve metrics such as BLEU for a particu-
lar NLP task (Jozefowicz et al., 2016). According
to this, we decided to pre-train our models. For
this purpose, WikiText-103 dataset (Merity et al.,
2016) was chosen. During pre-training we set v∗

(eq. 10) to zero vector to make our models purely
unconditional. Embeddings for these language
models were initialized by Google Word2Vec vec-
tors1 and were fine-tuned. Figure 1 shows that
this procedure helps to decrease perplexity and
prevents over-fitting. Attention Skip-gram vectors
were also trained on the WikiText-103.

5.3 Results
Both our models are LSTM networks (Hochre-
iter and Schmidhuber, 1997) with an embedding
layer. The attention-based model has own em-
bedding layer, mapping context words to vector
representations. Firstly, we pre-train our mod-
els using the procedure, described above. Then,
we train them on the collected dataset maximiz-
ing log-likelihood objective using Adam (Kingma
and Ba, 2014). Also, we anneal learning rate by

1https://code.google.com/archive/p/word2vec/
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Word Context Definition
star she got star treatment a person who is very important

star bright star in the sky
a small circle of a celestial object
or planet that is seen in a circle

sentence sentence in prison an act of restraining someone or something
sentence write up the sentence a piece of text written to be printed

head the head of a man the upper part of a human body
head he will be the head of the office the chief part of an organization, institution, etc

reprint
they never reprinted the
famous treatise

a written or printed version of
a book or other publication

rape
the woman was raped on
her way home at night

the act of killing

invisible
he pushed the string through
an inconspicuous hole

not able to be seen

shake my faith has been shaken cause to be unable to think clearly

nickname
the nickname for the u.s.
constitution is ‘old ironsides ’

a name for a person or thing that is not genuine

Table 2: Examples of definitions generated by S + I-Attention model for the words and contexts from the
test set.

Model PPL BLEU
S+G+CH+HE (1) 45.62 11.62 ± 0.05
S+G+CH+HE (2) 46.12 -
S+G+CH+HE (3) 46.80 -
S + I-Adaptive (2) 46.08 11.53 ± 0.03
S + I-Adaptive (3) 46.93 -
S + I-Attention (2) 43.54 12.08 ± 0.02
S + I-Attention (3) 44.9 -

Table 3: Performance comparison between best
model proposed by Noraset et al. (2017) and our
models on the test set. Number in brackets means
number of LSTM layers. BLEU is averaged across
3 trials.

a factor of 10 if validation loss doesn’t decrease
per epochs. We use original Adaptive Skip-gram
vectors as inputs to S+I-Adaptive, which were ob-
tained from the official repository2. We compare
different models using perplexity and BLEU score
on the test set. BLEU score is computed only for
models with the lowest perplexity and only on the
test words that have multiple meanings. The re-
sults are presented in Table 3. We see that both
models that utilize knowledge about meaning of
the word have better performance than the com-
peting one. We generated definitions using S + I-
Attention model with simple temperature sampling

2https://github.com/sbos/AdaGram.jl

algorithm (τ = 0.1). Table 2 shows the examples.
The source code and dataset will be freely avail-
able 3.

6 Conclusion

In the paper, we proposed two definition models
which can work with polysemantic words. We
evaluate them using perplexity and measure the
definition generation accuracy with BLEU score.
Obtained results show that incorporating informa-
tion about word senses leads to improved met-
rics. Moreover, generated definitions show that
even implicit word context can help to differ word
meanings. In future work, we plan to explore in-
dividual components of word embedding and the
mask produced by our attention-based model to
get a deeper understanding of vectors representa-
tions of words.
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Abstract

The task of Question Answering is at the
very core of machine comprehension. In
this paper, we propose a Convolutional
Neural Network (CNN) model for text-
based multiple choice question answering
where questions are based on a particu-
lar article. Given an article and a mul-
tiple choice question, our model assigns
a score to each question-option tuple and
chooses the final option accordingly. We
test our model on Textbook Question An-
swering (TQA) and SciQ dataset. Our
model outperforms several LSTM-based
baseline models on the two datasets.

1 Introduction

Answering questions based on a particular text re-
quires a diverse skill set. It requires look-up abil-
ity, ability to deduce, ability to perform simple
mathematical operations (e.g. to answer questions
like how many times did the following word oc-
cur?), ability to merge information contained in
multiple sentences. This diverse skill set makes
question answering a challenging task.

Question Answering (QA) has seen a great
surge of more challenging datasets and novel ar-
chitectures in recent times. Question Answering
task may require the system to reason over few
sentences (Weston et al., 2015), table (Pasupat
and Liang, 2015), Wikipedia passage (Rajpurkar
et al., 2016; Yang et al., 2015), lesson (Kembhavi
et al., 2017). Increase in the size of the datasets
has allowed researchers to explore different neu-
ral network architectures (Chen et al., 2016; Cui
et al., 2016; Xiong et al., 2016; Trischler et al.,
2016) for this task. Given a question based on a
text, the model needs to attend to a specific portion
of the text in order to answer the question. Hence,

the use of attention mechanism (Bahdanau et al.,
2014) is common in these architectures.

Convolutional Neural Networks (CNN) have
been shown to be effective for various natural lan-
guage processing tasks such as sentiment analysis,
question classification etc. (Kim, 2014). However
for the task of question answering, Long Short
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) based methods are the most common.
In this paper we build a CNN based model for mul-
tiple choice question answering1. We show the ef-
fectiveness of the proposed model by comparing it
with several LSTM-based baselines.

The main contributions of this paper are (i) The
proposed CNN model performs comparatively or
better than LSTM-based baselines on two differ-
ent datasets. (Kembhavi et al., 2017; Welbl et al.,
2017) (ii) Our model takes question-option tuple
to generate a score for the concerned option. We
argue that this is a better strategy than consider-
ing questions and options separately for multiple
choice question answering. For example, consider
the question “The color of the ball is” with three
options: red, green and yellow. If the model gen-
erates a vector which is to be compared with the
three option embeddings, then this might lead to
error since the three option embeddings are close
to each other. (iii) We have devised a simple but
effective strategy to deal with questions having op-
tions like none of the above, two of the above, all
of the above, both (a) and (b) etc. which was not
done before. (iv) Instead of attending on words
present in the text, our model attends at sentence
level. This helps the model for answering look-up
questions since the necessary information required
to answer such questions will often be contained in
a single sentence.

1The code is available at https://github.com/
akshay107/CNN-QA
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2 Method

Given a question based on an article, usually a
small portion of article is needed to answer the
concerned question. Hence it is not fruitful to give
the entire article as input to the neural network.
To select the most relevant paragraph in the ar-
ticle, we take both the question and the options
into consideration instead of taking just the ques-
tion into account for the same. The rationale be-
hind this approach is to get the most relevant para-
graphs in cases where the question is very gen-
eral in nature. For example, consider that the ar-
ticle is about the topic carbon and the question is
“Which of the following statements is true about
carbon?”. In such a scenario, it is not possible to
choose the most relevant paragraph by just looking
at the question. We select the most relevant para-
graph by word2vec based query expansion (Kuzi
et al., 2016) followed by tf-idf score (Foundation,
2011).

2.1 Neural Network Architecture
We use word embeddings (Mikolov et al., 2013)
to encode the words present in question, option
and the most relevant paragraph. As a result, each
word is assigned a fixed d-dimensional represen-
tation. The proposed model architecture is shown
in Figure 1. Let q, oi denote the word embed-
dings of words present in the question and the
ith option respectively. Thus, q ∈ Rd×lq and
oi ∈ Rd×lo where lq and lo represent the number
of words in the question and option respectively.
The question-option tuple (q, oi) is embedded us-
ing Convolutional Neural Network (CNN) with a
convolution layer followed average pooling. The
convolution layer has three types of filters of sizes
fj×d ∀j = 1, 2, 3 with size of output channel of k.
Each filter type j produces a feature map of shape
(lq + lo − fj + 1) × k which is average pooled
to generate a k-dimensional vector. The three k-
dimensional vectors are concatenated to form 3k-
dimensional vector. Note that Kim (2014) used
max pooling but we use average pooling to ensure
different embedding for different question-option
tuples. Hence,

hi = CNN([q; oi]) ∀i = 1, 2, .., nq (1)

where nq is the number of options, hi is the out-
put of CNN and [q; oi] denotes the concatenation
of q and oi i.e. [q; oi] ∈ Rd×(lq+l0). The sentences

in the most relevant paragraph are embedded us-
ing the same CNN. Let sj denote the word em-
beddings of words present in the jth sentence i.e.
sj ∈ Rd×ls where ls is the number of words in the
sentence. Then,

dj = CNN(sj) ∀j = 1, 2, .., nsents (2)

where nsents is the number of sentences in
the most relevant paragraph and dj is the out-
put of CNN. The rationale behind using the same
CNN for embedding question-option tuple and
sentences in the most relevant paragraph is to
ensure similar embeddings for similar question-
option tuple and sentences. Next, we use hi to
attend on the sentence embeddings. Formally,

aij =
hi · dj
||hi||.||dj ||

(3)

rij =
exp(aij)

nsents∑
j=1

exp(aij)

(4)

mi =

nsents∑

j=1

rijdj (5)

where ||.|| signifies the l2 norm, exp(x) = ex

and hi · dj is the dot product between the two vec-
tors. Since aij is the cosine similarity between hi
and dj , the attention weights rij give more weight-
ing to those sentences which are more relevant
to the question. The attended vector mi can be
thought of as the evidence in favor of the ith op-
tion. Hence, to give a score to the ith option, we
take the cosine similarity between hi and mi i.e.

scorei =
hi ·mi

||hi||.||mi||
(6)

Finally, the scores are normalized using softmax
to get the final probability distribution.

pi =
exp(scorei)

nq∑
i=1

exp(scorei)

(7)

where pi denotes the probability for the ith option.

2.2 Dealing with forbidden options
We refer to options like none of the above, two
of the above, all of the above, both (a) and (b) as
forbidden options. During training, the questions

273



CNN

h1

(q, o1)

CNN

h2

(q, o2)

CNN

hnq

(q, onq)

CNN

d1

(s1)

CNN

dnsents

(snsents)

Attention Layer

Score Calculation Final ProbabilityDistribution

m1 m2 mnq

Figure 1: Architecture of our proposed model. Attention layer attends on sentence embeddings dj’s
using question-option tuple embeddings hi’s. Score Calculation layer calculates the cosine similarity
between mi and hi which is passed through softmax to get the final probability distribution.

having a forbidden option as the correct option
were not considered. Furthermore, if a question
had a forbidden option, that particular question-
option tuple was not taken into consideration. Let
S = [scorei ∀i | ith option not in forbidden op-
tions] and |S| = k. During prediction, the ques-
tions having one of the forbidden options as an op-
tion are dealt with as follows:

1. Questions with none of the above/ all of
the above option: If the max(S) − min(S) <
threshold then the final option is the concerned
forbidden option. Else, the final option is
argmax(pi).

2. Questions with two of the above option: If
the S(k)−S(k−1) < thresholdwhere S(n) denotes
the nth order statistic, then the final option is the
concerned forbidden option. Else, the final option
is argmax(pi).

3. Questions with both (a) and (b) type
option: For these type of questions, let the
corresponding scores for the two options be
scorei1 and scorei2 . If the |scorei1 − scorei2 | <
threshold then the final option is the concerned
forbidden option. Else, the final option is
argmax(pi).

4. Questions with any of the above option:
Very few questions had this option. In this case,
we always choose the concerned forbidden option.

We tried different threshold values ranging
from 0.0 to 1.0. Finally, the threshold was set to
a value gave the highest accuracy on the training
set for these kind of questions.

2.3 Training Details

We tried two different CNN models, one having
fj’s equal to 3,4,5 and other having fj’s equal to
2,3,4. We refer to two models as CNN3,4,5 and
CNN2,3,4 respectively. The values of hyperpa-
rameters used are: d = 300, k = 100. The other
hyperparamters vary from dataset to dataset. Since
the number of options vary from question to ques-
tion, our model generates the probability distribu-
tion over the set of available options. Similarly,
the number of sentences in the most relevant para-
graph can vary from question to question, so we
set aij = −∞ whenever dj was a zero vector.
Cross entropy loss function was minimized during
training.

3 Results and Discussion

The accuracy of our proposed model on validation
set of TQA and SciQ dataset (Kembhavi et al.,
2017; Welbl et al., 2017) is given in Table 1 and
Table 2. GRUbl refers to the model where CNN
is replaced by Gated Recurrent Unit (GRU) (Cho
et al., 2014) to embed question-option tuples and
the sentences. The size of GRU cell was 100.

For SciQ dataset, we used the associated
passage provided with the question. AS
Reader (Kadlec et al., 2016) which models the
question and the paragraph using GRU followed
by attention mechanism got 74.1% accuracy on the
SciQ test set. However, for a question, they used a
different corpus to extract the text passage. Hence
it is not judicious to compare the two models. As
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Model True-False
(Correct/Total)

Multiple Choice
(Correct/Total)

GRUbl 536/994 (53.9%) 529/1530 (34.6%)
CNN3,4,5 531/994 (52.4%) 531/1530 (34.7%)
CNN2,3,4 537/994 (54.0%) 543/1530 (35.5%)

Table 1: Accuracy for true-false and multiple
choice questions on validation set of TQA dataset.

can be seen from the Tables 1 and 2, CNN2,3,4

gives the best performance on the validation set
of both the datasets so we evaluate it on the test
sets. Note that GRUbl highly overfits on the SciQ
dataset which shows that CNN-based models work
better for those datasets where long-term depen-
dency is not a major concern. This rationale is also
supported by the fact that CNN2,3,4 performed
better than CNN3,4,5 on the two datasets.

Model Accuracy
GRUbl 68.2%
CNN3,4,5 87.1%
CNN2,3,4 87.8%
CNN2,3,4 84.7% (test-set)

Table 2: Accuracy of the models on SciQ dataset.
The first three accuarcies are on validation set. The
last accuracy is of CNN2,3,4 model on the test set.

Baselines for TQA dataset: Three baselines
models are mentioned in Kembhavi (2017) . These
baseline models rely on word-level attention and
encoding question and options separately. The
baseline models are random model, Text-Only
model and BIDAF Model (Seo et al., 2016). Text-
Only model is a variant of Memory network (We-
ston et al., 2014) where the paragraph, question
and options are embedded separately using LSTM
followed by attention mechanism. In BIDAF
Model, character and word level embedding is
used to encode the question and the text followed
by bidirectional attention mechanism. This model
predicts the subtext within the text containing the
answer. Hence, the predicted subtext is compared
with each of the options to select the final option.

Note that the result of the baseline models given
in Kembhavi (2017) were on test set but the au-
thors had used a different data split than the pub-
licly released split. As per the suggestion of the
authors, we evaluate CNN2,3,4 model by combin-

ing validation and test set. The comparison with
the baseline models is given in Table 3.

Model True-False Multiple Choice
Random∗ 50.0 22.7
Text-Only∗ 50.2 32.9
BIDAF∗ 50.4 32.2
CNN2,3,4 53.7 35.8

Table 3: Accuracy of different models for
true-false and multiple choice questions. Results
marked with (∗) are taken from Kembhavi (2017)
and are on test set obtained using a different data
split. Result of our proposed model is on publicly
released validation and test set combined.

As can be seen from Table 3, CNN2,3,4 model
shows significant improvement over the baseline
models. We argue that our proposed model out-
performs the Text-Only model because of three
reasons (i) sentence level attention, (ii) question-
option tuple as input, and (iii) ability to tackle for-
bidden options. Sentence level attention leads to
better attention weights, especially in cases where
a single sentence suffices to answer the question.
If question is given as input to the model, then the
model has to extract the embedding of the answer
whereas giving question-option tuple as input sim-
plifies the task to comparison between the two em-
beddings.

SciQ dataset didn’t have any questions with for-
bidden options. However, in the validation set
of TQA, 433 out of 1530 multiple choice ques-
tions had forbidden options. Using the proposed
threshold strategy for tackling forbidden options,
CNN2,3,4 gets 188 out of 433 questions cor-
rect. Without using this strategy and giving every
question-option tuple as input, CNN2,3,4 gets 109
out of 433 questions correct.

4 Conclusions and Future Work

In this paper, we proposed a CNN based model for
multiple choice question answering and showed its
effectiveness in comparison with several LSTM-
based baselines. We also proposed a strategy for
dealing with forbidden options. Using question-
option tuple as input gave significant advantage to
our model. However, there is a lot of scope for
future work. Our proposed model doesn’t work
well in cases where complex deductive reasoning
is needed to answer the question. For example,
suppose the question is ”How much percent of par-
ent isotope remains after two half-lives?” and the
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lesson is on carbon dating which contains the def-
inition of half-life. Answering this question us-
ing the definition requires understanding the def-
inition and transforming the question into a nu-
merical problem. Our proposed model lacks such
skills and will have near random performance for
such questions.
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Abstract

Story comprehension requires a deep se-
mantic understanding of the narrative,
making it a challenging task. Inspired by
previous studies on ROC Story Cloze Test,
we propose a novel method, tracking var-
ious semantic aspects with external neural
memory chains while encouraging each
to focus on a particular semantic aspect.
Evaluated on the task of story ending pre-
diction, our model demonstrates superior
performance to a collection of competitive
baselines, setting a new state of the art. 1

1 Introduction

Story narrative comprehension has been a long-
standing challenge in artificial intelligence (Wino-
grad, 1972; Turner, 1994; Schubert and Hwang,
2000). The difficulties of this task arise from the
necessity for understanding not only narratives,
but also commonsense and normative social be-
haviour (Charniak, 1972). Of particular interest
in this paper is the work by Mostafazadeh et al.
(2016) on understanding commonsense stories in
the form of a Story Cloze Test: given a short story,
we must predict the most coherent sentential end-
ing from two options (e.g. see Figure 1).

Many attempts have been made to solve
this problem, based either on linear classifiers
with handcrafted features (Schwartz et al., 2017;
Chaturvedi et al., 2017), or representation learning
via deep learning models (Mihaylov and Frank,
2017; Bugert et al., 2017; Mostafazadeh et al.,
2017). Another widely used component of com-
petitive systems is language model-based features,
which require training on large corpora in the story
domain.

1Code available at http://github.com/liufly/
narrative-modeling.

Context: Sam loved his old belt. He matched it with
everything. Unfortunately he gained too much weight.
It became too small.
Coherent Ending: Sam went on a diet.
Incoherent Ending: Sam was happy.

Figure 1: Story Cloze Test example.

The current state-of-the-art approach of
Chaturvedi et al. (2017) is based on understanding
the context from three perspectives: (1) event
sequence, (2) sentiment trajectory, and (3) topic
consistency. Chaturvedi et al. (2017) adopt exter-
nal tools to recognise relevant aspect-triggering
words, and manually design features to incorpo-
rate them into the classifier. While identifying
triggers has been made easy by the use of various
linguistic resources, crafting such features is
time consuming and requires domain-specific
knowledge along with repeated experimentation.

Inspired by the argument for tracking the dy-
namics of events, sentiment and topic, we pro-
pose to address the issues identified above with
multiple external memory chains, each responsi-
ble for a single aspect. Building on Recurrent En-
tity Networks (EntNets), a superior framework
to LSTMs demonstrated by Henaff et al. (2017) for
reasoning-focused question answering and cloze-
style reading comprehension, we introduce a novel
multi-task learning objective, encouraging each
chain to focus on a particular aspect. While still
making use of external linguistic resources, we do
not extract or design features from them but rather
utilise such tools to generate labels. The generated
labels are then used to guide training so that each
chain focuses on tracking a particular aspect. At
test time, our model is free of feature engineering
such that, once trained, it can be easily deployed to
unseen data without preprocessing. Moreover, our
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approach also differs in the lack of a ROC Stories
language model component, eliminating the need
for large, domain-specific training corpora.

Evaluated on the task of Story Cloze Test, our
model outperforms a collection of competitive
baselines, achieving state-of-the-art performance
under more modest data requirements.

2 Methodology

In the story cloze test, given a story of length
L, consisting of a sequence of context sentences
c = {c1, c2, . . . , cL}, we are interested in predict-
ing the coherent ending to the story out of two end-
ing options o1 and o2. Following previous studies
(Schwartz et al., 2017), we frame this problem as a
binary classification task. Assuming o1 and o2 are
the logical and inconsistent endings respectively
with their associated labels being y1 and y2, we
assign y1 = 1 and y2 = 0. At test time, given
a pair of possible endings, the system returns the
one with the higher score as the prediction. In this
section, we first describe the model architecture
and then detail how we identify aspect-triggering
words in text and incorporate them in training.

2.1 Proposed Model

First, to take neighbouring contexts into account,
we process context sentences and ending options
at the word level with a bi-directional gated recur-
rent unit (“Bi-GRU”: Chung et al. (2014)):

−→
h i =−−→

GRU(wi,
−→
h i−1) where wi is the embedding of

the i-th word in the story or ending option. The
backward hidden representation

←−
h i is computed

analogously but with a different set of GRU pa-
rameters. We simply take the sum hi =

−→
h i +

←−
h i

as the representation at time i. An ending option,
denoted o, is represented by taking the sum of the
final states of the same Bi-GRU over the ending
option word sequence.

This representation is then taken as input to
a Recurrent Entity Network (“EntNet”: Henaff
et al. (2017)), capable of tracking the state of
the world with external memory. Developed in
the context of machine reading comprehension,
EntNet maintains a number of “memory chains”
— one for each entity — and dynamically up-
dates the representations of them as it progresses
through a story. Here, we borrow the concept of
“entity” and use each chain to track a unique as-
pect. An illustration of EntNet is provided in
Figure 2.

hi

φ

key kj

σL

C

�
update
gate
gji

m̃j
i

+
memory mj

i−1 mj
i

Figure 2: Illustration of EntNet with a single
memory chain at time i. φ and σ represent Equa-
tions 1 and 2, while circled nodes L, C, � and
+ depict the location, content terms, Hadamard
product, and addition, resp.

Memory update candidate. At every time step
i, the internal memory update candidate

−→̃
mj

i for
the j-th memory chain is computed as:

−→̃
mj

i = φ(
−→
U−→mj

i−1 +
−→
V kj +

−→
Whi) (1)

where kj is the embedding for the j-th entity
(key),

−→
U ,
−→
V and

−→
W are trainable parameters, and

φ is the parametric ReLU (He et al., 2015).

Memory update. The update of each memory
chain is controlled by a gating mechanism:

−→g ji = σ(hi · kj + hi · −→mj
i−1) (2)

−→̊
mj

i = −→mj
i−1 +−→g ji �

−→̃
mj

i (3)

where � denotes Hadamard product (resulting
in the unnormalised memory representation

−→̊
mj

i ),
and σ is the sigmoid function. The gate −→g ji con-
trols how much the memory chain should be up-
dated, a decision factoring in two elements: (1) the
“location” term, quantifying how related the cur-
rent input hi (the output of the Bi-GRU at time i)
is to the key kj of the entity being tracked; and (2)
the “content” term, measuring the similarity be-
tween the input and the current state −→mj

i−1 of the
entity tracked by the j-th memory chain.

Normalisation. We normalise each memory
representation:−→mj

i =
−→̊
mj

i/‖
−→̊
mj

i‖where ‖−→̊mj
i‖ de-

notes the Euclidean norm of
−→̊
mj

i . In doing so, we
allow the model to forget in the sense that, as −→mj

i

is constrained to be lying on the surface of the unit
sphere, adding new information carried by

−→̃
mj

i and
then performing normalisation inevitably causes
forgetting in that the cosine distance between the
original and updated memory decreases.
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Bi-directionality. In contrast to EntNet, we
apply the above steps in both directions, scanning
a story both forward and backward, with arrows
denoting the processing direction.←−mj

i is computed
analogously to −→mj

i but with a different set of pa-
rameters, and mj

i = −→mj
i +←−mj

i . We further define
gji to be the average of the gate values of both di-
rections at time i for the j-th chain:

gji = (−→g ji +←−g ji )/2 (4)

which will be used for semantic supervision.

Final classifier. The final prediction ŷ to an end-
ing option given its context story is performed by
incorporating the last states of all memory chains
in the form of a weighted sum u:

pj = softmax((kj)>Watto) (5)

u =
∑

j

pjmj
T (6)

where T denotes the total number of words in a
story and Watt is a trainable weight matrix. We
then transform u to get the final prediction:

ŷ = σ(Rφ(Hu + o)) (7)

where R and H are trainable weight matrices.

2.2 Semantically Motivated Memory Chains
In order to encourage each chain to focus on a
particular aspect, we supervise the activation of
each update gate (Equation 2) with binary labels.
Intuitively, for the sentiment chain, a sentiment-
bearing word (e.g. amazing) receives a label of 1,
allowing the model to open the gate and therefore
change the internal state relevant to this aspect,
while a neutral one (e.g. school) should not trig-
ger the activation with an assigned label of 0. To
achieve this, we use three memory chains to in-
dependently track each of: (1) event sequence, (2)
sentiment trajectory, and (3) topical consistency.
To supervise the memory update gates of these
chains, we design three sequences of binary labels:
lj = {lj1, lj2, . . . , ljT } for j ∈ [1, 3] representing
event, sentiment, and topic, and lji ∈ {0, 1}. The
label at time i for the j-th aspect is only assigned
a value of 1 if the word is a trigger for that particu-
lar aspect: lji = 1; otherwise lji = 0. During train-
ing, we utilise such sequences of binary labels to
supervise the memory update gate activations of
each chain. Specifically, each chain is encouraged

Ricky fell while hiking in the woods

lEvent 0 1 0 1 0 0 1
lSentiment 0 1 0 0 0 0 0
lTopic 1 1 0 1 0 0 1

Table 1: An example of the linguistically moti-
vated memory chain supervision binary labels.

to open its gate only when it sees a trigger bearing
information semantically sensitive to that particu-
lar aspect. Note that at test time, we do not apply
such supervision. This effectively becomes a bi-
nary tagging task for each memory chain indepen-
dently and results in individual memory chains be-
ing sensitive to only a specific set of triggers bear-
ing one of the three types of signals.

While largely inspired by Chaturvedi et al.
(2017), our approach differs in how we extract
and use such features. Also note that, while still
making use of external linguistic resources to de-
tect trigger words, our approach lets the mem-
ory chains decide how such words should in-
fluence the final prediction, as opposed to the
handcrafted conditional probability features of
Chaturvedi et al. (2017).

To identify the trigger words, we use external
linguistic tools, and mark trigger words for each
aspect with a label of 1. An example is presented
in Table 1, noting that the same word can act as
trigger for multiple aspects.

Event sequence. We parse each sentence into
its FrameNet representation with SEMAFOR (Das
et al., 2010), and identify each frame target (word
or phrase tokens evoking a frame).

Sentiment trajectory. Following Chaturvedi
et al. (2017), we utilise a pre-compiled list of sen-
timent words (Liu et al., 2005). To take nega-
tion into account, we parse each sentence with
the Stanford Core NLP dependency parser
(Manning et al., 2014; Chen and Manning, 2014)
and include negation words as trigger words.

Topical consistency. We process each sentence
with the Stanford Core NLP POS tagger and
identify nouns and verbs, following Chaturvedi
et al. (2017).

2.3 Training Loss

In addition to the cross entropy loss of the final
prediction of right/wrong endings, we also take
into account the memory update gate supervision
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of each chain by adding the second term. More for-
mally, the model is trained to minimise the loss:

L = XEntropy(y, ŷ) + α
∑

i,j

XEntropy(lji , g
j
i )

where ŷ and gji are defined in Equations 7 and 4 re-
spectively, y is the gold label for the current ending
option o, and lji is the semantic supervision binary
label at time i for the j-th memory chain. In our
experiments, we empirically set α to 0.5 based on
development data.

3 Experiments

3.1 Experimental Setup

Dataset. To test the effectiveness of our model,
we employ the Story Cloze Test dataset of
Mostafazadeh et al. (2016). The development and
test set each consist of 1,871 4-sentence stories,
each with a pair of ending options. Consistent with
previous studies, we split the development set into
a training and validation set (for early stopping),
resulting in 1,683 and 188 in each set, resp. Note
that while most current approaches make use of
the much larger training set, comprised of 100K 5-
sentence ROC stories (with coherent endings only,
also released as part of the dataset) to train a lan-
guage model, we make no use of this data.

Model configuration. We initialise our model
with word2vec embeddings (300-D, pre-trained
on 100B Google News articles, not updated during
training: Mikolov et al. (2013a,b)). In addition to
the three supervised chains, we also add a “free”
chain, unconstrained to any semantic aspect.

Training is carried out over 200 epochs with
the FTRL optimiser (McMahan et al., 2013) and a
batch size of 128 and learning rate of 0.1. We use
the following hyper-parameters for weight matri-
ces in both directions: R ∈ R300×1, H, U, V, W
are all matrices of size R300×300, and hidden size
of the Bi-GRU is 300. Dropout is applied to the
output of φ in the final classifier (Equation 7) with
a rate of 0.2. Moreover, we employ the technique
introduced by Gal and Ghahramani (2016) where
the same dropout mask is applied at every step to
the input wi to the Bi-GRU and the input hi to the
memory chains with rates of 0.5 and 0.2 respec-
tively. Lastly, to curb overfitting, we regularise the
last layer (Equation 7) with an L2 penalty on its
weights: λ‖R‖ where λ = 0.001.

Model Acc. SD

DSSM 58.5 —
TBMIHAYLOV 72.8 —
MSAP 75.2 —
HCM 77.6 —
EntNet † 77.6 ±0.5
Our model† 78.5 ±0.5

Table 2: Performance on the Story Cloze test set.
Bold = best performance, † = ave. accuracy over 5
runs, SD = standard deviation, “—” = not reported.

Evaluation. Following previous studies, we
evaluate the performance in terms of coherent end-
ing prediction accuracy: #correct

#total . Here, we report
the average accuracy over 5 runs with different
random seeds. Echoing Melis et al. (2018), we also
observe some variance in model performance even
if training is carried out with the same random
seed, which is largely due to the non-deterministic
ordering of floating-point operations in our envi-
ronment (Tensorflow (Abadi et al., 2015) with
a single GPU). Therefore, to account for the ran-
domness, we further train our model 5 times for
each random seed and select the model with the
best validation performance.

We benchmark against a collection of strong
baselines, including the top-3 systems of the 2017
LSDSem workshop shared task (Mostafazadeh
et al., 2017): MSAP (Schwartz et al., 2017), HCM
(Chaturvedi et al., 2017)2, and TBMIHAYLOV
(Mihaylov and Frank, 2017). The first two pri-
marily rely on a simple logistic regression clas-
sifier, both taking linguistic and probability fea-
tures from a ROC Stories domain-specific neu-
ral language model. TBMIHAYLOV is LSTM-
based; we also include DSSM (Mostafazadeh et al.,
2016). We additionally implement a bi-directional
EntNet (Henaff et al., 2017) with the same
hyper-parameter settings as our model and no se-
mantic supervision.3

3.2 Results and Discussion

The experimental results are shown in Table 2.

State-of-the-art results. Our model outper-
forms a collection of strong baselines, setting a
new state of the art. Note that this is achieved with-

2We take the performance reported in a subsequent paper,
3.2% better than the original submission to the shared task.

3EntNet is also subject to the same model selection cri-
terion described above.
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Event Key Sentiment Key Topic Key Free Key
Event Word Sentiment Word Topic Word

Figure 3: t-SNE scatter plot of aspect-triggering
words (output representations hi by Bi-GRU,
500 randomly sampled from each aspect) and the
learned keys. EntNet (left) vs. our model (right).
Best viewed in colour.

out any external linguistic resources at test time or
domain-specific language model-based probabil-
ity features, highlighting the effectiveness of the
proposed model.

EntNet vs. our model. We see clear improve-
ments of the proposed method over EntNet,
an absolute gain of 0.9% in accuracy. This vali-
dates the hypothesis that encouraging each mem-
ory chain to focus on a unique, well-defined aspect
is beneficial.

Discussion. To better understand the benefits of
the proposed method, we visualise the learned
word representations (output representation of the
Bi-GRU, hi) and keys between EntNet and our
model in Figure 3. With EntNet, while senti-
ment words form a loose cluster, words bearing
event and topic signal are placed in close prox-
imity and are largely indistinguishable. With our
model, on the other hand, the degree of separation
is much clearer. The intersection of a small por-
tion of the event and topic groups is largely due to
the fact that both aspects include verbs. Another
interesting perspective is the location of the au-
tomatically learned keys (displayed as diamonds):
while all the keys with EntNet end up overlap-
ping, indicating little difference among them, the
keys learned by our method demonstrate seman-
tic diversity, with each placed within its respective
cluster. Note that the free key is learned to com-
plement the event key, a difficult challenge given
the two disjoint clusters.

Ablation study. We further perform a ablation
study to analyse the utility of each component
in Table 3. The uni-directional variant, with its
performance down to 77.8, is inferior to its bi-

Model Acc. SD

Our model 78.5 ±0.5
—bi-directionality 77.8 ±0.7
—all semantic supervision 77.6 ±0.5

—event sequence 78.7 ±0.2
—sentiment trajectory 75.9 ±0.4
—topical consistency 77.3 ±0.4
—free chain 77.0 ±0.4

Table 3: Ablation study. Average accuracy over
5 runs on the Story Cloze test set (all subject to
the same model selection criterion as our model).
Bold: best performance. SD: standard deviation.

directional cousin. Removing all semantic super-
vision (resulting in 4 free memory chains) is
also damaging to the accuracy (dropping to 77.6).
Among the different types of semantic super-
vision, we see various degrees of performance
degradation, with removing sentiment trajectory
being the most detrimental, reflecting its value
to the task. Interestingly, we observe improve-
ment when removing event sequence supervision
from consideration. We suspect that this is mainly
due to the noise introduced by the rather inaccu-
rate FrameNet representation output of SEMAFOR
(F1 = 61.4% in frame identification as reported in
Das et al. (2010)). While it is possible that replac-
ing SEMAFOR with the SemLM approach (with
the extended frame definition to include explicit
discourse markers, e.g. but) in Peng and Roth
(2016) and Chaturvedi et al. (2017) may poten-
tially reduce the amount of noise, we leave this
exercise for future work.

4 Conclusion

In this paper, we have proposed a novel model
for tracking various semantic aspects with exter-
nal memory chains. While requiring less domain-
specific training data, our model achieves state-
of-the-art performance on the task of ROC Story
Cloze ending prediction, beating a collection of
strong baselines.
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Abstract

Effectively using full syntactic parsing in-
formation in Neural Networks (NNs) to
solve relational tasks, e.g., question sim-
ilarity, is still an open problem. In this pa-
per, we propose to inject structural repre-
sentations in NNs by (i) learning an SVM
model using Tree Kernels (TKs) on rel-
atively few pairs of questions (few thou-
sands) as gold standard (GS) training data
is typically scarce, (ii) predicting labels on
a very large corpus of question pairs, and
(iii) pre-training NNs on such large cor-
pus. The results on Quora and SemEval
question similarity datasets show that NNs
trained with our approach can learn more
accurate models, especially after fine tun-
ing on GS.

1 Introduction

Recent years have seen an exponential growth and
use of web forums, where users can exchange
and find information just asking questions in nat-
ural language. Clearly, the possibility of reusing
previously asked questions makes forums much
more useful. Thus, many tasks have been pro-
posed to build automatic systems for detecting
duplicate questions. These were both organized
in academia, e.g., SemEval (Nakov et al., 2016,
2017), or companies, e.g., Quora 1. An interest-
ing outcome of the SemEval challenge was that
syntactic information is essential to achieve high
accuracy in question reranking tasks. Indeed, the
top-systems were built using Support Vector Ma-
chines (SVMs) trained with Tree Kernels (TKs),
which were applied to a syntactic representation
of question text (Filice et al., 2016, 2017; Barrón-
Cedeño et al., 2016).

1https://www.kaggle.com/c/quora-question-pairs

In contrast, NNs-based models struggled to get
good accuracy as (i) large training sets are typi-
cally not available 2, and (ii) effectively exploit-
ing full-syntactic parse information in NNs is still
an open issue. Indeed, despite Das et al. (2016)
showed that NNs are very effective to manage lex-
ical variability, no neural model encoding syntac-
tic information has shown a clear improvement.
Indeed, also NNs directly exploiting syntactic in-
formation, such as the Recursive Neural Networks
by Socher et al. (2013) or the Tree-LSTM by Tai
et al. (2015), have been shown to be outperformed
by well-trained sequential models (Li et al., 2015).

Finally, such tree-based approaches depend on
sentence structure, thus are difficult to optimize
and parallelize. This is a shame as NNs are very
flexible in general and enable an easy system de-
ployment in real applications, while TK models
require syntactic parsing and longer testing time.

In this paper, we propose an approach that aims
at injecting syntactic information in NNs, still
keeping them simple. It consists of the follow-
ing steps: (i) train a TK-based model on a few
thousands training examples; (ii) apply such clas-
sifier to a much larger set of unlabeled training ex-
amples to generate automatic annotation; (iii) pre-
train NNs on the automatic data; and (iv) fine-tune
NNs on the smaller GS data.

Our experiments on two different datasets, i.e.,
Quora and Qatar Living (QL) from SemEval,
show that (i) when NNs are pre-trained on the pre-
dicted data, they achieve accuracy higher than the
one of TK models and (ii) NNs can be further
boosted by fine-tuning them on the available GS
data. This suggests that the TK properties are cap-
tured by NNs, which can exploit syntactic infor-
mation even more effectively, thanks to their well-
known generalization ability.

2SQuAD by Rajpurkar et al. (2016) is an exception, also
possible because dealing with a simpler factoid QA task
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In contrast to other semi-supervised ap-
proaches, e.g., self-training, we show that the im-
provement of our approach is obtained only when
a very different classifier, i.e., TK-based, is used
to label a large portion of the data. Indeed, us-
ing the same NNs in a self-training fashion (or
another NN in a co-training approach) to label
the semi-supervised data does not provide any im-
provement. Similarly, when SVMs using standard
similarity lexical features are applied to label data,
no improvement is observed in NNs.

One evident consideration is the fact that TKs-
based models mainly exploit syntactic information
to classify data. Although, assessing that NNs
specifically learn such syntax should require fur-
ther investigation, our results show that only the
transfer from TKs produces improvement: this is
a significant evidence that makes it worth to fur-
ther investigate the main claim of our paper. In any
case, our approach increases the accuracy of NNs,
when small datasets are available to learn high-
level semantic task such as question similarity.
It consists in (i) using heavier syntactic/semantic
models, e.g., based on TKs, to produce training
data; and (ii) exploit the latter to learn a neural
model, which can then be fine-tuned on the small
available GS data.

2 Tasks and Baseline Models

We introduce our question similarity tasks along
with two of the most competitive models for their
solutions.

2.1 Question Matching and Ranking

Question similarity in forums can be set in dif-
ferent ways, e.g., detecting if two questions are
semantically similar or ranking a set of retrieved
questions in terms of their similarity with the orig-
inal question. We describe the two methods below:

The Quora task regards detecting if two ques-
tions are duplicate or not, or, in other words, if
they have the same intent. The associated dataset
(Wang et al., 2017) contains over 404, 348 pairs
of questions, posted by users on the Quora web-
site, labelled as duplicate pair or not. For exam-
ple, How do you start a bakery? and How can
one start a bakery business? are duplicated while
What are natural numbers? and What is a least
natural number? are not. The ground-truth labels
contain some amount of noise.

In the QL task at SemEval-2016 (Nakov et al.,

2016) users were provided with a new (origi-
nal) question qo and a set of related questions
(q1, q2, ...qn) from the QL forum3 retrieved by a
search engine, i.e., Google. The goal is to rank
question candidates, qi, by their similarity with re-
spect to qo. qi were manually annotated as Perfect-
Match, Relevant or Irrelevant, depending on their
similarity with qo. PerfectMatch and Relevant are
considered as relevant. A question is composed of
a subject, a body and a unique identifier.

2.2 Support Vector machines

A top-performing model in the SemEval challenge
is built with SVMs, which learn a classification
function, f : Q × Q → {0, 1}, on the relevant
vs. irrelevant questions belonging to the question
set, Q. The classifier score is used to rerank a set
of candidate questions qi provided in the dataset
with respect to an original question qo. Three
main representations were proposed: (i) vectors of
similarity features derived between two questions;
(ii) a TK function applied to the syntactic structure
of question pairs; or (iii) a combination of both.

Feature Vectors (FV) are built for question pairs,
(q1, q2), using a set of text similarity features
that capture the relations between two questions.
More specifically, we compute 20 similarities
sim(q1, q2) using word n-grams (n = [1, . . . , 4]),
after stopword removal, greedy string tiling (Wise,
1996), longest common subsequences (Allison
and Dix, 1986), Jaccard coefficient (Jaccard,
1901), word containment (Lyon et al., 2001), and
cosine similarity.

Tree Kernels (TKs) measure the similarity
between the syntactic structures of two ques-
tions. Following (Filice et al., 2016), we build
two macro-trees, one for each question in
the pair, containing the syntactic trees of the
sentences composing a question. In addition,
we link two macro-trees by connecting the
phrases, e.g., NP, VP, PP, etc., when there is
a lexical match between the phrases of two
questions. We apply the following kernel to two
pairs of question trees: K(〈q1, q2〉, 〈q′1, q′2〉) =
TK(t(q1, q2), t(q

′
1, q
′
2))+TK(t(q2, q1), t(q

′
2, q
′
1)),

where t(x, y) extracts the syntactic tree from the
text x, enriching it with relational tags (REL)
derived by matching the lexical between x and y.

3http://www.qatarliving.com/forum
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3 Injecting Structures in NNs

We inject TK knowledge in two well-known and
state-of-the-art networks for question similarity,
enriching them with relational information.

3.1 NNs for question similarity
We implemented the Convolutional NN (CNN)
model proposed by (Severyn and Moschitti, 2016).
This learns f , using two separate sentence en-
coders fq1 : Q → Rn and fq2 : Q → Rn, which
map each question into a fixed size dense vector
of dimension n. The resulting vectors are concate-
nated and passed to a Multi Layer Perceptron that
performs the final classification. Each question is
encoded into a fixed size vector using an embed-
ding layer, a convolution operation and a global
max pooling function. The embedding layer trans-
forms the input question, i.e., a sequence of token,
Xq = [xq1 , ..., xqi , ..., xqn ], into a sentence ma-
trix, Sq ∈ Rm×n, by concatenating the word em-
beddings wi corresponding to the tokens xqi in the
input sentence.

Additionally, we implemented a Bidirectional
(BiLSTM), using the standard LSTM by Hochre-
iter and Schmidhuber (1997). An LSTM iterates
over the sentence one word at the time by creat-
ing a new word representation hi by composing
the representation of the previews word and the
current word vector hi = LSTM(wi, hi−1). A
BiLSTM iterates over the sentence in both direc-
tions and the final representation is a concatena-
tion of the hidden representations, hN , obtained
after processing the whole sentence. We apply two
sentence models (with different weights), one for
each question, then we concatenate the two fixed-
size representations and fed them to a Multi-Layer
Perceptron.

3.2 Relational Information
Severyn and Moschitti (2016) showed that rela-
tional information encoded in terms of overlap-
ping words between two pairs of text can highly
improve accuracy. Thus, for both networks above,
we mark each word with a binary feature indicat-
ing if a word from a question appears in the other
pair question. This feature is encoded with a fixed
size vector (in the same way it is done for words).

3.3 Learning NNs with structure
To inject structured information in the network,
we use a weak supervision technique: (i) an SVM
with TK is trained on the GS data; (ii) this model

classifies an additional unlabelled dataset, creat-
ing automatic data; and (iii) a neural network is
trained on the latter data.

The pre-trained network can be fine-tuned on
the GS data, using a smaller learning rate γ.
This prevents catastrophic forgetting (Goodfellow
et al., 2013), which may occur with a larger learn-
ing rate.

4 Experiments
We experiment with two datasets comparing mod-
els trained on gold and automatic data and their
combination, before and after fine tuning.

4.1 Data
Quora dataset contains 384, 358 pairs in the
training set and 10, 000 pairs both in the dev. and
test sets. The latter two contain the same number
of positive and negative examples.
QL dataset contains 3, 869 question pairs di-
vided in 2, 669, 500 and 700 pairs in the train-
ing, dev. and test sets. We created 93k4 unlabelled
pairs from the QL dump, retrieving 10 candidates
with Lucene for 9, 300 query questions.

4.2 NN setup
We pre-initialize our word embeddings with skip-
gram embeddings of dimensionality 50 jointly
trained on the English Wikipedia dump (Mikolov
et al., 2013) and the jacana corpus5. The input
sentences are encoded with fixed-sized vectors us-
ing a CNN with the following parameters: a win-
dow of size 5, an output of 100 dimensions, fol-
lowed by a global max pooling. We use a single
non-linear hidden layer, whose size is equal to the
size of the sentence embeddings, i.e., 100. The
word overlap embeddings is set to 5 dimensions.
The activation function for both convolution and
hidden layers is ReLU. During training the model
optimizes the binary cross-entropy loss. We used
SGD with Adam update rule, setting the learning
rate to γ to 10−4 and 10−5 for the pre-training and
fine tuning phases, respectively.

4.3 Results on Quora
Table 1 reports our different models, FV, TK,
CNN and LSTM described in the previous section,
where the suffix, -10k or -5k, indicates the amount
of GS data used to train them, and the name in

4Note that we will release the 400k automatically labelled
pairs from Quora as well as the new 93k pairs of QL along
with their automatic labels for research purposes.

5Embeddings are available in the repository: https://
github.com/aseveryn/deep-qa
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Model Automatic data GS data DEV TEST

FV-10k – 10k 0.7046 0.7023
TK-10k – 10k 0.7405 0.7337
CNN-10k – 10k 0.7646 0.7569
LSTM-10k – 10k 0.7521 0.7450

CNN(CNN-10k) 50k – 0.7666 0.7619
CNN(CNN-10k)* 50k 10k 0.7601 0.7598
CNN(FV-10k) 50k – 0.6960 0.6931
CNN(FV-10k)* 50k 10k 0.7681 0.7565

CNN(TK-10k) 50k – 0.7446 0.7370
CNN(TK-10k)* 50k 10k 0.7748 0.7652
LSTM(TK-10k) 50k – 0.7478 0.7371
LSTM(TK-10k)* 50k 10k 0.7706 0.7505

TK-5k – 5k 0.6859 0.6774
CNN-5k – 5k 0.7532 0.7450
CNN(TK-5k) 50k – 0.7239 0.7208
CNN(TK-5k)* 50k 5k 0.7574 0.7493

CNN(TK-10k) 375k – 0.7524 0.7471
CNN(TK-10k)* 375k 10k 0.7796 0.7728

Voting(TK+CNN) – 10k 0.7838 0.7792

Table 1: Accuracy on the Quora dataset.

parenthesis indicates the model used for gener-
ating automatic data, e.g., CNN(TK-10k) means
that a CNN has been pre-trained with the data la-
belled by a TK model trained on 10k GS data. The
amount of automatic data for pre-training is in the
second column, while the amount of GS data for
training or fine tuning (indicated by ∗) is in the
third column. Finally, the results on the dev. and
test sets are in the fourth and fifth columns.

We note that: first, NNs trained on 10k of GS
data obtain higher accuracy than FV and TK on
both dev. and test sets (see the first four lines);

Second, CNNs pre-trained with the data gen-
erated by FV or in a self-training setting, i.e.,
CNN(CNN-10k), and also fine-tuned do not im-
prove6 on the baseline model, i.e., CNN-10K, (see
the second part of the table).

Third, when CNNs and LSTMs are trained on
the data labelled by the TK model, match the TK
model accuracy (third part of the table). Most im-
portantly, when they are fine-tuned on GS data,
they obtain better results than the original mod-
els trained on the same amount of data, e.g., 1%
accuracy over CNN-10k.

Next, the fourth part of the table shows that the
improvement given by our method is still present
when training TK (and fine tuning the NNs) on

6The improvement of 0.5 is not statistically significant.

less GS data, i.e., only 5k.
Additionally, the fifth section of the table shows

a high improvement by training NNs on all avail-
able Quora data annotated by TK-10k (trained on
just 10k). This suggests that NNs require more
data to learn complex relational syntactic patterns
expressed by TKs. However, the plot in Figure
1 shows that the improvement reaches a plateau
around 100k examples.

Finally, in the last row of the table, we report
the result of a voting approach using a combi-
nation of the normalized scores of TK-10k and
CNN-10k. The accuracy is almost the same than
CNN(TK-10k)*. This shows that NNs completely
learn the combination of a TK model, mainly ex-
ploiting syntax, and a CNN, only using lexical in-
formation. Note that the voting model is heavy to
deploy as it uses syntactic parsing and the kernel
algorithm, which has a time complexity quadratic
in the number of support vectors.

4.4 Results on Qatar Living

Table 2 reports the results when applying our tech-
nique to a smaller and different dataset such as
QL. Here, CNNs have lower performance than TK
models as 2,669 pairs are not enough to train their
parameters, and the text is also noisy, i.e., there
are a lot of spelling errors. Despite this problem,
the results show that CNNs can approximate the
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Figure 1: Impact of the pre-training data.

TK models well, when using a large set of au-
tomatic data. For example, the CNN trained on
93k automatically annotated examples and then
fine tuned exhibits 0.4% accuracy improvement on
the dev. set and almost 3% on the test set over
TK models. On the other hand, using too much
automatically labeled data may hurt the perfor-
mance on the test set. This may be due to the fact
the quality of information contained in the gold
labeled data deteriorates. In other words, using
the right amount of weekly-supervision is an im-
portant hyper-parameter that needs to be carefully
chosen.

5 Related Work

Determining question similarity is one of the main
challenges in building systems that answer real
user questions (Agichtein et al., 2015, 2016) in
community QA, thus different approaches have
been proposed. Jeon et al. (2005) used a language
model based on word translation table to com-
pute the probability of generating a query ques-
tion, given a target/related question. Zhou et al.
(2011) showed the effectiveness of phrase-based
translation models on Yahoo! Answers. Cao et al.
(2009); Duan et al. (2008) proposed a similarity
between two questions based on a language model
that exploits the category structure of Yahoo! An-
swers. Wang et al. (2009) proposed a model to find
semantically related questions by computing sim-
ilarity between syntactic trees representing ques-
tions. Ji et al. (2012) and Zhang et al. (2014)
used latent semantic topics that generate ques-
tion/answer pairs.

Regarding the use of automatically labelled
data, Blum and Mitchell (1998) applied semi-
supervised approaches, such as self-training and
co-training to non-neural models. The main point

Model Automatic Data Dev Test

CNN 0.7000 0.7514
TK 0.7340 0.7686

CNN(TK) 50k 0.5580 0.5428
CNN(TK)* 50k 0.7160 0.7814
CNN(TK) 93k 0.7000 0.6957
CNN(TK)* 93k 0.7380 0.7614

Table 2: Accuracy on QL using all available GS
data.

of our paper is the use standard weakly-supervised
methods to inject syntactic information in NNs.

Hu et al. (2016) tried to combine symbolic rep-
resentations with NNs by transferring structured
information of logic rules into the weights of NNs.
Our work is rather different as we inject syntactic,
and not logic, information in NNs.

The work most similar to our is the one by
Croce et al. (2017), who use Nystrom methods to
compact the TK representation in embedding vec-
tors and use the latter to train a feed forward NNs.
In contrast, we present a simpler approach, where
NNs learn syntactic properties directly from data.

To our knowledge, ours is the first work trying
to use NNs to learn structural information from
data labelled by TK-based models. Finally, no sys-
tems of the SemEval challenges used NNs trained
on syntactic information.

6 Conclusion

In this work, we have trained TK-based models,
which make use of structural information, on rel-
atively small data and applied them to new data
to produce a much larger automatically labeled
dataset. Our experiments show that NNs trained
on the automatic data improve their accuracy. We
may speculate that NNs learn relational structural
information as (i) TK models mainly use syntac-
tic structures to label data and (ii) other advanced
models based on similarity feature vectors do not
produce any improvement. Indeed, the latter only
exploit lexical similarity measures, which are typ-
ically also generated by NNs. However, even if
our conjecture were wrong, the bottom line would
be that, thanks to our approach, we can have NN
models comparable to TK-based approaches, by
also avoiding to use syntactic parsing and expen-
sive TK processing at deployment time.

289



References
Eugene Agichtein, David Carmel, Dan Pelleg, Yuval

Pinter, and Donna Harman. 2015. Overview of the
TREC 2015 LiveQA Track. In TREC.

Eugene Agichtein, David Carmel, Dan Pelleg, Yuval
Pinter, and Donna K. Harman. 2016. Overview of
the TREC 2016 LiveQA Track. In TREC.

Lloyd Allison and Trevor Dix. 1986. A bit-string
longest-common-subsequence algorithm. Informa-
tion Processing Letters, 23(6):305–310.

Alberto Barrón-Cedeño, Daniele Bonadiman, Giovanni
Da San Martino, Shafiq Joty, Alessandro Moschitti,
Fahad A Al Obaidli, Salvatore Romeo, Kateryna Ty-
moshenko, and Antonio Uva. 2016. ConvKN at
SemEval-2016 Task 3: Answer and question selec-
tion for question answering on Arabic and English
fora. Proceedings of SemEval, pages 896–903.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory, pages 92–100. ACM.

Xin Cao, Gao Cong, Bin Cui, Christian Søndergaard
Jensen, and Ce Zhang. 2009. The use of categoriza-
tion information in language models for question re-
trieval. In Proceedings of the 18th ACM conference
on Information and knowledge management, pages
265–274. ACM.

Danilo Croce, Simone Filice, Giuseppe Castellucci,
and Roberto Basili. 2017. Deep learning in seman-
tic kernel spaces. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
345–354.

Arpita Das, Harish Yenala, Manoj Chinnakotla, and
Manish Shrivastava. 2016. Together we stand:
Siamese networks for similar question retrieval. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 378–387, Berlin, Germany. As-
sociation for Computational Linguistics.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong
Yu. 2008. Searching questions by identifying ques-
tion topic and question focus. In Proceedings of
ACL-08: HLT, pages 156–164, Columbus, Ohio.
Association for Computational Linguistics.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-
2016 Task 3: Learning Semantic Relations between
Questions and Answers. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1116–1123. Associa-
tion for Computational Linguistics.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2017. KeLP at SemEval-2017 Task 3:
Learning Pairwise Patterns in Community Question

Answering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 326–333. Association for Computational Lin-
guistics.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An em-
pirical investigation of catastrophic forgetting in
gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep neu-
ral networks with logic rules. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2410–2420. Association for Computational Linguis-
tics.

Paul Jaccard. 1901. Étude comparative de la distribu-
tion florale dans une portion des Alpes et des Jura.
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Abstract

We offer a simple and effective method to
seek a better balance between model con-
fidence and length preference for Neural
Machine Translation (NMT). Unlike the
popular length normalization and cover-
age models, our model does not require
training nor reranking the limited n-best
outputs. Moreover, it is robust to large
beam sizes, which is not well studied in
previous work. On the Chinese-English
and English-German translation tasks, our
approach yields +0.4 ∼ 1.5 BLEU im-
provements over the state-of-the-art base-
lines.

1 Introduction

In the past few years, Neural Machine Trans-
lation (NMT) has achieved state-of-the-art per-
formance in many translation tasks. It model-
s the translation problem using neural networks
with no assumption of the hidden structures be-
tween two languages, and learns the model param-
eters from bilingual texts in an end-to-end fash-
ion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014). In such system-
s, target words are generated over a sequence of
time steps. The model score is simply defined as
the sum of the log-scale word probabilities:

log P(y|x) =
|y|∑

j=1

log P(yj |y<j , x) (1)

where x and y are the source and target sentences,
and P(yj |y<j , x) is the probability of generating
the j-th word yj given the previously-generated
words y<j and the source sentence x.

However, the straightforward implementation
of this model suffers from many problems, the
most obvious one being the bias that the system
tends to choose shorter translations because the

log-probability is added over time steps. The situ-
ation is worse when we use beam search where the
shorter translations have more chances to beat the
longer ones. It is in general to normalize the mod-
el score by translation length (say length normal-
ization) to eliminate this system bias (Wu et al.,
2016).

Though widely used, length normalization is
not a perfect solution. NMT systems stil-
l have under-translation and over-translation prob-
lem even with a normalized model. It is due to the
lack of the coverage model that indicates the de-
gree a source word is translated. As an extreme
case, a source word might be translated for sever-
al times, which results in many duplicated target
words. Several research groups have proposed so-
lutions to this bad case (Tu et al., 2016; Mi et al.,
2016). E.g., Tu et al. (2016) developed a coverage-
based model to measure the fractional count that
a source word is translated during decoding. It
can be jointly learned with the NMT model. Al-
ternatively, one can rerank the n-best outputs by
coverage-sensitive models, but this method just af-
fects the final output list which has a very limited
scope (Wu et al., 2016).

In this paper we present a simple and effective
approach by introducing a coverage-based feature
into NMT. Unlike previous studies, we do not re-
sort to developing extra models nor reranking the
limited n-best translations. Instead, we develop a
coverage score and apply it to each decoding step.
Our approach has several benefits,
• Our approach does not require to train a huge

neural network and is easy to implement.
• Our approach works on beam search for each

target position and thus can access more
translation hypotheses.
• Our approach works consistently well un-

der different sized beam search and sentence
lengths contrary to what is observed in other
systems (Koehn and Knowles, 2017).
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dōu
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max(0.7,β)=0.8
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attention → coverage (i = 1)

attention → coverage (i = 2)

Figure 1: The coverage score for a running example (Chinese pinyin-English and β = 0.8).

We test our approach on the NIST Chinese-
English and WMT English-German translation
tasks, and it outperforms several state-of-the-art
baselines by 0.4∼1.5 BLEU points.

2 The Coverage Score

Given a word sequence, a coverage vector indi-
cates whether the word of each position is trans-
lated. This is trivial for statistical machine trans-
lation (Koehn, 2009) because there is no overlap
between the translation units of a hypothesis, i.e.,
we have a 0-1 coverage vector.

However, it is not the case for NMT where the
coverage is modeled in a soft way. In NMT, no ex-
plicit translation units or rules are used. The atten-
tion mechanism is used instead to model the corre-
spondence between a source position and a target
position (Bahdanau et al., 2015). For a given tar-
get position j, the attention-based NMT computes
attention score aij for each source position i. aij
can be regarded as the measure of the correspon-
dent strength between i and j, and is normalized
over all source positions (i.e.,

∑|x|
i aij = 1) 1.

Here, we present a coverage score (CS) to de-
scribe to what extent the source words are trans-
lated. In principle, the coverage score should be
high if the translation covers most words in source
sentence, and low if it covers only a few of them.
Given a source position i, we define its cover-
age as the sum of the past attention probabili-
ties ci =

∑|y|
j aij (Wu et al., 2016; Tu et al.,

2016). Then, the coverage score of the sentence
pair (x, y) is defined as the sum of the truncated
coverage over all positions (See Figure 1 for an

1As the discussion of the attention mechanism is out of
the scope of this work, we refer the reader to Bahdanau et al.
(2015); Luong et al. (2015) for more details.

illustration):

c(x, y) =
|x|∑

i

logmax(

|y|∑

j

aij , β) (2)

where β is a parameter that can be tuned on a de-
velopment set. This model has two properties:

• Non-linearity Eq. (2) is a log-linear mod-
el. It is desirable because this model does
not benefit too much from the received atten-
tion when the coverage of a source word is
high. This can prevent the cases that the sys-
tem puts too much attention on a few word-
s while others only receive a little attention
to have relatively high scores. Beyond this,
the log-scale scoring fits into the NMT mod-
el where word probabilities are represented in
the logarithm manner (See Eq. (1)).

• Truncation At the early stage of decoding,
the coverage of the most source words is
close to 0. This may result in a negative infin-
ity value after the logarithm function, and dis-
card hypotheses with sharp attention distribu-
tions, which is not necessarily bad. The trun-
cation with the lowest value β can ensure that
the coverage score has a reasonable value.
Here β is similar to model warm-up, which
makes the model easy to run in the first few
decoding steps. Note that our way of trun-
cation is different from Wu et al. (2016)’s,
where they clip the coverage into [0, 1] and
ignore the fact that a source word may be
translated into multiple target words and its
coverage should be of a value larger than 1.

For decoding, we incorporate the coverage s-
core into beam search via linear combination with
the NMT model score as below,
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s(x, y) = (1− α) · log P(y|x) + α · c(x, y) (3)

where y is a partial translation generated during
decoding, log P(y|x) is the model score, and α is
the coefficient for linear interpolation.

In standard implementation of NMT systems,
once a hypothesis is finished, it is removed from
the beam and the beam shrinks accordingly. Here
we choose a different decoding strategy. We keep
the finished hypotheses in the beam until the de-
coding completes, which means that we compare
the finished hypotheses with partial translations at
each step. This method helps because it can dy-
namically determine whether a finished hypothesis
is kept in beam through the entire decoding pro-
cess, and thus reduce search errors. It enables the
decoder to throw away finished hypotheses if they
have very low coverage but are of high likelihood
values.

3 Experiments

3.1 Setup

We evaluated our approach on Chinese-English
and German-English translation tasks. We used
1.8M sentence Chinese-English bitext provided
within NIST12 OpenMT2 and 4.5M sentence
German-English bitext provided within WMT16.
For Chinese-English translation, we chose the
evaluation data of NIST MT06 as the devel-
opment set, and MT08 as the test set. Al-
l Chinese sentences were word segmented using
the tool provided within NiuTrans (Xiao et al.,
2012). For German-English translation, we chose
newstest2013 as the development set and new-
stest2014 as the test set.

Our baseline systems were based on the open-
source implementation of the NMT model pre-
sented in Luong et al. (2017). The model was con-
sisted of a 4-layer bi-directional LSTM encoder
and a 4-layer LSTM decoder. The size of the em-
bedding and hidden layers was set to 1024. We
applied the additive attention model on top of the
multi-layer LSTMs (Bahdanau et al., 2015). For
training, we used the Adam optimizer (Kingma
and Ba, 2015) where the learning rate and batch
size were set to 0.001 and 128. We selected the top

2LDC2000T46, LDC2000T47, LDC2000T50, LD-
C2003E14, LDC2005T10, LDC2002E18, LDC2007T09,
LDC2004T08

Entry Zh-En En-De
dev test dev test

b=
10

base 37.55 30.91 23.72 23.36
LN 38.85 32.32 23.96 22.93
CP 38.68 31.84 23.92 23.27

CP† 35.93 29.98 23.67 23.53
LN+CP 39.07 32.47 23.98 23.26

CS 39.13 32.24 24.13 23.62
CS† 38.76 32.18 24.18 23.30

LN+CS 39.59 32.73 24.24 23.32
LN+CP+CS 39.62 32.75 24.27 23.30

b=
10

0

base 35.17 28.48 23.54 23.50
LN 38.60 31.97 24.04 23.14
CP 37.64 30.82 23.77 23.65

CP† 34.77 27.45 23.69 23.63
LN+CP 38.93 32.39 23.95 23.60

CS 39.60 32.71 24.01 23.84
CS† 37.79 31.57 23.99 23.75

LN+CS 39.88 33.20 24.22 23.60
LN+CP+CS 39.90 33.23 24.24 23.65

b=
50

0

base 23.40 17.95 23.15 23.24
LN 37.60 30.81 23.95 23.16
CP 34.81 28.82 23.43 23.46

CP† 32.23 25.09 23.65 23.61
LN+CP 37.88 31.46 23.77 23.64

CS 39.50 32.77 23.96 23.85
CS† 35.89 29.92 23.75 23.70

LN+CS 39.77 32.89 24.17 23.57
LN+CP+CS 39.73 32.85 24.17 23.69

Table 1: BLEU results of NMT systems. base
= base system, LN = length normalization, CP =
coverage penalty, and CS = our coverage score.

30k entries for both source and target vocabular-
ies. For the English-German task, BPE (Sennrich
et al., 2016) was used for better performance.

For comparison, we re-implemented the length
normalization (LN) and coverage penalty (CP)
methods (Wu et al., 2016). We used grid search
to tune all hyperparameters on the development
set as Wu et al. (2016). Specifically, weights for
both CP and our CS are evaluated in interval [0, 1]
with step 0.1, while the weight for LN is in in-
terval [0.5, 1.5]. We found that the settings deter-
mined with beam size 10 can be reliably applied to
larger beam sizes in the preliminary experiments
and thus we tuned all systems with beam size 10.
For Chinese-English translation, we used a weight
of 1.0 for both LN and CP, and set α = 0.6 and
β = 0.4. For English-German translation, we set
the weights of LN and CP to 1.5 and 0.3, and set
α = 0.3 and β = 0.2. More details can be found
in the Appendix.

3.2 Results

Table 1 shows the BLEU scores of the system-
s under different beam sizes (10, 100, and 500).
We see, first of all, that our method outperforms
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Figure 2: BLEU against beam size.
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Figure 3: BLEU against sentence length.

four of the baselines, and the improvement is the
largest when the beam size is 500. For a clear pre-
sentation, we plotted the BLEU curves by varying
beam size. Figure 2 shows that our method has a
consistent improvement as the beam size becomes
larger, while others start to decline when the beam
size is around 50, which indicates that integrating
our coverage score into decoding is beneficial to
prune out undesirable hypotheses when we search
in a larger hypothesis space. We also see that the
model gives even better results (+0.5 BLEU) after
combining all these methods, which implies that
our method doesn’t overlap with the others. More
interestingly, it is observed that the improvement
on the En-De task is smaller than that on the Zh-En
task. A possible reason is that there are relatively
good word correspondences between English and
German, and it is not so difficult for the base mod-
el to learn word deletions and insertions in En-De
translation. Hence, the baseline system generates
translations with proper lengths and does not ben-
efit too much from the coverage model.

An interesting phenomenon in Table 1 is that us-
ing large beam size 100 rather than standard beam
size (around 10) could give considerable improve-
ments, e.g., 0.5 BLEU for Zh-En and 0.2 for En-
De, yet the extremely large beam size 500 does not
help much. This might result from the fact that
our method is applied to each decoding step, thus
helps model to search in a larger space and select
better hypotheses, while a much larger beam size
does not provide more benefits because the mod-
el already generates sufficiently good translations
with a small beam size.

We also compared CP with our method by ap-

Entry Zh-En En-De
Len Diff LR Len Diff LR

b=50 base 22.71 3.68 0.86 19.90 2.02 0.94
CS 25.19 1.82 0.94 20.09 1.88 0.95

b=500 base 15.88 10.12 0.61 19.53 2.32 0.92
CS 25.20 1.86 0.94 20.04 1.91 0.94

Table 2: Length statistics. Len = average length
of translations, Diff = average length difference
between translations and shortest references, LR =
translation length ratio.

β = 0.0 β = 0.2 β = 0.4 β = 0.6
α = 0.1 36.2 / 23.7 37.8 / 24.0 37.8 / 24.0 37.7 / 23.9
α = 0.3 30.8 / 18.9 38.2 / 24.1 38.2 / 24.0 37.8 / 23.9
α = 0.6 22.5 / 13.4 37.6 / 23.8 39.1 / 23.9 38.6 / 23.8
α = 0.9 13.0 / 7.03 26.6 / 17.2 35.1 / 21.6 35.4 / 21.7

Table 3: BLEU against α and β (zh-en/en-de)

plying CP to each decoding step (Line CP†) and
our method only to reranking (Line CS†) in Table
1. We noted that model performance dropped in
most cases when CP was applied to each decod-
ing step, and our method was helpful in reranking
and obtained even better results as well when it is
employed by beam search. This implies that the
way of truncation is essential to enable the effec-
tive utilization of coverage inside beam search to
achieve more significant improvements.

Then, Figure 3 shows that our method has a rel-
atively better ability to handle longer sentences. It
obtains a significant improvement over the base-
lines when we translate sentences of more than
50 words. This is expectable because the cover-
age provides rich information from the past, which
helps to address the long term dependency issue.

Another interesting question is whether the N-
MT systems can generate translations with ap-
propriate lengths. To seek its answer, we stud-
ied the length difference between the MT output
and the shortest reference. Table 2 shows that our
method helps on both tasks. It generates transla-
tions whose lengths are closer to those of their ref-
erences, which agrees with the BLEU results in
Table 1. This is reasonable because our method
encourages the hypotheses with higher coverage
scores and thus higher recall. It means that our
method can help the model to preserve the mean-
ing of source words, which alleviates the under-
translation problem.

Sensitivity analysis on α and β in Table 3 shows
that the two tasks have different optimal choices
of these values, which might be due to the natural
need of length preference for different languages.
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4 Related Work

The length preference and coverage problems
have been discussed for years since the rise of s-
tatistical machine translation (Koehn, 2009). In
NMT, several good methods have been develope-
d. The simplest of these is length normaliza-
tion which penalizes short translations in decoding
(Wu et al., 2016). More sophisticated methods fo-
cus on modeling the coverage problem with extra
sub-modules in NMT and require a training pro-
cess (Tu et al., 2016; Mi et al., 2016).

Perhaps the most related work to this paper is
Wu et al. (2016). In their work, the coverage
problem can be interpreted in a probability sto-
ry. However, it fails to account for the cases that
one source word is translated into multiple target
words and is thus of a total attention score > 1.
To address this issue, we remove the probabili-
ty constraint and make the coverage score inter-
pretable for different cases. Another difference
lies in that our coverage model is applied to every
beam search step, while Wu et al. (2016)’s model
affects only a small number of translation outputs.

Previous work have pointed out that BLEU s-
cores of NMT systems drop as beam size in-
creases (Britz et al., 2017; Tu et al., 2017; Koehn
and Knowles, 2017), and the existing length nor-
malization and coverage models can alleviate this
problem to some extent. In this work we show
that our method can do this much better. Almost
no BLEU drop is observed even when beam size
is set to 500.

5 Conclusion

We have described a coverage score and integrated
it into a state-of-the-art NMT system. Our method
is easy to implement and does not need training
for additional models. Also, it performs well in
searching with large beam sizes. On Chinese-
English and English-German translation tasks, it
outperforms several baselines significantly.
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Abstract

Traditional Neural machine translation
(NMT) involves a fixed training procedure
where each sentence is sampled once
during each epoch. In reality, some
sentences are well-learned during the
initial few epochs; however, using this
approach, the well-learned sentences
would continue to be trained along with
those sentences that were not well learned
for 10-30 epochs, which results in a
wastage of time. Here, we propose an
efficient method to dynamically sample
the sentences in order to accelerate the
NMT training. In this approach, a weight
is assigned to each sentence based on the
measured difference between the training
costs of two iterations. Further, in each
epoch, a certain percentage of sentences
are dynamically sampled according to
their weights. Empirical results based
on the NIST Chinese-to-English and the
WMT English-to-German tasks show that
the proposed method can significantly
accelerate the NMT training and improve
the NMT performance.

1 Introduction

Recently neural machine translation (NMT)
has been prominently used to perform various
translation tasks (Luong and Manning, 2015;
Bojar et al., 2017). However, NMT is much
more time-consuming than traditional phrase-
based statistical machine translation (PBSMT) due
to its deep neural network structure. To improve
the efficiency of NMT training, most of the studies
focus on reducing the number of parameters in
the model (See et al., 2016; Crego et al., 2016;
Hubara et al., 2016) and implementing parallelism

in the data or in the model (Wu et al., 2016;
Kalchbrenner et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017).

Although these technologies have been adopted,
deep networks have to be improved to achieve
state-of-the-art performance in order to handle
very large datasets and several training iterations.
Therefore, some researchers have proposed to
accelerate the NMT training by resampling a
smaller subset of the data that makes a relatively
high contribution, to improve the training
efficiency of NMT. Specifically, Kocmi and
Bojar (2017) empirically investigated curriculum
learning based on the sentence length and word
rank. Wang et al. (2017a) proposed a static
sentence-selection method for domain adaptation
using the internal sentence embedding of NMT.
They also proposed a sentence weighting method
with dynamic weight adjustment (Wang et al.,
2017b). Wees et al. (2017) used domain-based
cross-entropy as a criterion to gradually fine-tune
the NMT training in a dynamical manner. All of
these criteria (Wang et al., 2017a,b; Wees et al.,
2017) are calculated before performing the NMT
training based on the domain information and are
fixed while performing the complete procedure.
Zhang et al. (2017) adopted the sentence-level
training cost as a dynamic criterion to gradually
fine-tune the NMT training. This approach was
developed based on the idea that the training cost
is a useful measure to determine the translation
quality of a sentence. However, some of the
sentences that can be potentially improved by
training may be deleted using this method. In
addition, all of the above works primarily focused
on NMT translation performance, instead of
training efficiency.

In this study, we propose a method of dynamic
sentence sampling (DSS) to improve the NMT
training efficiency. First, the differences between
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the training costs of two iterations, which is
a measure of whether the translation quality
of a sentence can be potentially improved, is
measured to be the criterion. We further proposed
two sentence resampling strategies, i.e., weighted
sampling and review mechanism to help NMT
focus on the not well-learned sentences as well
as remember the knowledge from the well-learned
sentences.

The remainder of this paper is organized as
follows. In Section 2, we introduce the dynamic
sentence sampling method. Experiments are
described and analyzed in Section 3. We discussed
some other effects of the proposed methods in
Section 4. We conclude our paper in the last
section.

2 Dynamic Sentence Sampling (DSS)

2.1 NMT Background

An attention-based NMT system uses a
bidirectional RNN as an encoder and a decoder
that emulates the search through a source sentence
during the decoding process (Bahdanau et al.,
2015; Luong et al., 2015). The training objective
function to be minimized can be formulated as:

J =
∑

〈x,y〉∈D
− logP (y|x,θ), (1)

where 〈x, y〉 is the parallel sentence pair
from the training corpus D, P (y|x) is the
translation probability, and θ is the neural network
parameters.

2.2 Criteria

The key to perform sentence sampling is to
measure the criteria. As we know, the NMT
system continually alters throughout the training
procedure. However, most of the criteria described
in the introduction remain constant during the
NMT training process. Zhang et al. (2017)
adopted the sentence-level training cost to be a
dynamic criterion; further, the training cost of a
sentence pair 〈x, y〉 during the ith iteration can be
calculated as:

costi〈x,y〉 = − logP (y|x,θ). (2)

Directly adopting training cost as the criterion
to select the top-ranked sentences that represent
the largest training costs has two drawbacks:
1) The translation qualities of sentences with

small training costs may be further improved
during the succeeding epochs. 2) If the training
corpus become smaller after each iteration, the
knowledge associated with the removed sentences
may be lost over the course of the NMT process.

Therefore, we adopt the ratio of differences
(dif ) between training costs of two training
iterations to be the criterion,

dif i〈x,y〉 =
costi−1〈x,y〉 − costi〈x,y〉

costi−1〈x,y〉
. (3)

It should be noted that some of dif〈x,y〉 are
negative. That is, the costs of some sentence pairs
even increase after one epoch training. Therefore,
the difference is normalized into [0, 1] as the final
criterion:

criterioni〈x,y〉 =
dif i〈x,y〉 −min(dif i)

max(dif i)−min(dif i) .
(4)

This criterion indicates the likelihood of a
sentence to be further improved in the next
iteration; low values indicate that the training cost
of a sentence is unlikely to change and that it
would not significantly contribute to the NMT
training even if the sentence was trained further.

2.3 Dynamic Sampling
As we know, the NMT performance improves
significantly during the initial several epochs and
less significantly thereafter. This is partially
because that some of the sentences have been
learned sufficiently (i.e., low criterioni〈x,y〉
values). However, they are kept further training
with the ones which have not been learned enough
(i.e., high criterioni〈x,y〉 values). Therefore, in
this approach, these sentences are deleted for the
subsequent iterations. To ensure that knowledge
from the deleted sentences is retained, we propose
two mechanisms for dynamic sampling, which are
described in the succeeding sections.

2.3.1 Weighted Sampling (WS)
We assign a normalized weight to each sentence
according to the criterion that can be given as:

weighti〈x,y〉 =
criterioni〈x,y〉∑

〈x,y〉∈D criterion
i
〈x,y〉

. (5)

Further, weighted sampling without any
replacement was used to select a small subset,
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such as 80%1 of the entire corpus, as the corpus
Di+1
ws to perform the subsequent iteration. The

updated objective function using weighted
sampling Jws can be formulated as follows:

Jws =
∑

〈x,y〉∈Dws
− logP (y|x,θ). (6)

Thus only 80% of the entire corpus is
used to perform the NMT training during each
iteration (for the first two iteration, all of
the sentences should be sampled). Because
the criterion continually changes, the sentence
selection procedure also changes during the NMT
training. Those that are not selected in an epoch
still have a chance to be selected in the subsequent
epoch2.

2.3.2 Review Mechanism (RM)
We further propose an alternate sentence sampling
mechanism. After performing an iteration during
training, 80% of the top-ranked sentences are
selected to act as the training data for the
subsequent iteration. Each sentence that is not
selected is classified into the low-criterion group
Dlow and does not have a chance to be sampled
again. In this case, the Dlow will become larger
and larger, and Dhigh will becomes smaller and
smaller. To prevent the loss of the knowledge
that was obtained from the Dlow group during
NMT, a small percentage λ, such as 10%, of the
Dlow group is sampled as the knowledge to be
reviewed. The updated NMT objective function
is formalized as follows,

Jrm =
∑

〈x,y〉∈Dhigh

− logP (y|x,θ) +
∑

〈x,y〉∈λDlow

− logP (y|x,θ). (7)

3 Experiments

3.1 Datasets

The proposed methods were applied to perform
1) the NIST Chinese (ZH) to English (EN)
translation task that contained a training dataset
of 1.42 million bilingual sentence pairs from LDC

1Zhang et al. (2017) adopted 80% as the selection
threshold and we follow their settings for fair comparison.
Due to limited space, we will empirically investigate the
effect of the thresholds as our future work.

2For those 20% sentences who are not selected, their
criterioni+1

〈x,y〉 = criterioni〈x,y〉.

corpora3. The NIST02 and NIST03-08 datasets
were used as the development and test datasets,
respectively. 2) the WMT English to German (DE)
translation task for which 4.43 million bilingual
sentence pairs from the WMT-14 dataset4 was
used as the training data. The newstest2012
and newstest2013-2015 datasets were used as
development and test datasets, respectively.

3.2 Baselines and Settings

Beside the PBSMT (Koehn et al., 2007) and
vanilla NMT, three typical existing approaches
described in the introduction were empirically
compared: 1) Curriculum learning using the
source sentence length as the criterion (Kocmi
and Bojar, 2017). 2) Gradual fine-tuning using
language model-based cross-entropy (Wees et al.,
2017)5. 3) NMT boosting method by eliminating
20% of the training data with the lowest training
cost after performing every iteration (Zhang et al.,
2017).

For the proposed DSS method, we adopted one
epoch as one iteration for the EN-DE task and
three epochs as one iteration for the ZH-EN task,
because the corpus size of the EN-DE task is
approximately three times larger than that of the
ZH-EN task.

3.3 NMT Systems

The proposed method was implemented in
Nematus (Sennrich et al., 2017) with the following
default settings: the word embedding dimension
was 620, the size of each hidden layer was 1,000,
the batch size was 80, the maximum sequence
length was 50, and the beam size for the decoding
was 10. A 30K-word vocabulary was created and
data was shuffled before each epoch. Training
was conducted on a single Tesla P100 GPU using
default dropout and the ADADELTA optimizer
(Zeiler, 2012) with default learning rate 0.0001.
All of the systems were trained for 500K batches
which took approximately 7 days.

3LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

4https://nlp.stanford.edu/projects/
nmt/data/wmt14.en-de/

5Wees et al. (2017) also proposed a weighted sampling
method; however, its performance was worse than that of the
gradual fine-tuning. The method originally adopted by Wees
et al. was based on the cross-entropy differences between
two domains. Because no domain information is available
for this task; the development data was used as the in-domain
data by that method. In the method proposed in this study,
the development data is not required.
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Figure 1: Learning curves. Left: NIST ZH-to-EN; Right EN-to-DE.

Table 1: Results from the NIST ZH-to-EN translation task.

Methods Dev (NIST02) NIST03 NIST04 NIST05 NIST06 NIST08 Test (all)
PBSMT 33.15 31.02 33.78 30.33 29.62 23.53 29.66
Vanilla NMT 38.48 37.53 39.95 35.24 33.86 27.23 35.08
Random Sampling 38.35 36.45 40.01 34.27 33.70 26.37 34.62
Kocmi and Bojar (2017) 38.51 37.60 39.87 35.43 33.76 27.37 35.19
Wees et al. (2017) 39.16 38.09 40.30 35.59 34.14 27.46 35.62
Zhang et al. (2017) 39.08 38.27 40.37 35.32 33.57 27.87 35.57
DSS-WS 39.54+ 39.23++ 40.84+ 35.98+ 34.91++ 28.42+ 36.85++
DSS-RM 39.89++ 39.90++ 40.60 35.77+ 35.45++ 29.30++ 37.33++

Table 2: Results from the WMT EN-to-DE translation task.

Methods Dev (newstest2012) newstest2013 newstest2014 newstest2015 Test (all)
PBSMT 14.89 16.75 15.19 16.84 16.35
Vanilla NMT 17.55 20.92 19.16 20.01 20.06
Random Sampling 17.39 20.32 18.36 20.30 19.61
Kocmi and Bojar (2017) 17.63 20.63 19.21 20.47 20.18
Wees et al. (2017) 17.69 20.81 19.21 20.24 20.19
Zhang et al. (2017) 17.67 20.80 19.37 20.42 20.30
DSS-WS 17.99 21.11 19.89+ 21.20+ 20.96+
DSS-RM 18.34+ 21.76++ 20.04++ 21.02+ 21.22++

Note: The translation performance was measured using the case-insensitive BLEU (Papineni et al., 2002) scores. Marks after
the scores indicate that the proposed methods significantly (Koehn, 2004) outperformed the existing optimal baselines in bold
(“++”denotes better at a significance level of α = 0.01, whereas “+”denotes better at a significance level of α = 0.05.).

3.4 Results and Analyses

3.4.1 Training Efficiency
The learning curve is depicted in Figure 1.

1) The BLEU score (ZH-EN as example)
of vanilla NMT increased from 0 to 35 using
approximately 200K training batches. Further, the
BLEU increased from 35 to 38 using around 200K
additional training batches. This is consistent
with our hypothesis that the improvement in NMT
shows decreasing significance as the training
progresses.

2) For the baselines, the method developed
by Kocmi and Bojar (2017) did not provide
significant improvement in speed. The method
proposed by Wees et al. (2017) and Zhang et al.
(2017) slightly accelerated the NMT training.

3) The proposed DSS methods significantly
accelerated the NMT training. The BLEU
score (ZH-EN as example) reached 35 after
using approximately 140K training batches;
further, the BLEU score reached 38 after
using approximately additional 120K training
batches. This may be caused due to the fact
that the amount of well-learned became larger
and larger as the training kept going. If
these sentences were continually trained, the
performance would not increase significantly. In
comparison, DSS methods eliminated these well-
learned sentences; therefore, the performance kept
improving significantly until all of the sentences
become well-learned.

4) The performances of Kocmi and Bojar
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(2017) and Zhang et al. (2017) decreased
significantly after reaching the highest BLEU.
This is consistent with the hypothesis that
NMT may forget the learned knowledge by
directly removing corresponding sentences. In
comparison, the performances of the proposed
DSS methods did not decrease significantly,
because the removed sentences still have chances
to be sampled.

3.4.2 Translation Performance
For fair comparison, we evaluated the best
performed (on dev data) model during 500K
training batches on the test data. The results are
shown in Tables 1 and 2.

1) The methods proposed by Wees et al.
(2017) and Zhang et al. (2017) slightly improved
performances. On Test(all), the proposed
DSS methods significantly improved the BLEU
score by approximately 1.2∼2.2 as compared
to the vanilla NMT and by 0.9∼1.7 to the
best performing baselines. As the well-learned
sentences increases during NMT training, it did
not only slow down NMT training, but also
prevent NMT from learning knowledge from the
sentences which were not well learned and cause
the improvement stagnate.

2) Within the DSS methods, the review
mechanism appears to be a slightly better
mechanism than weighted sampling. This
indicates that the review mechanism retained the
learned knowledge in a better manner than the
learned knowledge of the weighted sampling.

4 Discussions

During the response period, the comments and
suggestions of reviewers inspired us a lot. Due
to the limited time and space, we briefly discussed
these suggestions in this paper. We will show the
empirical results in our future work.

4.1 Effect on Extreme Large Data
For the large corpus, we have tested the WMT EN-
FR task, which containing approximately 12M
sentences. The NMT trained from large-scale
corpus still gained slight BLEU improvement after
several-epoch training. After 6 epochs training
(1M batches), the proposed dynamic sentence
sampling method outperformed the baseline by
approximately 0.6 BLEU.

For the web-scale corpora which may be
converged within one epoch, in our opinion, if

a sentence pair is not well-learned enough, it is
necessary to learn it once more. To accelerate
this judging processing, we can adopt the sentence
similarities between the untrained sentence with
small-sized trained sentences as the criteria for
sentence sampling.

4.2 Effect on Long-time Training

Similarly, for the WMT EN-DE and NIST ZH-
EN, if we keep training for more than 1M batches
which takes 2-3 weeks, the BLEU would increase
by 1.0-1.5 and differences between baseline and
the proposed method would slightly decrease by
0.5-0.7 BLEU. Because 7-10 days is a reasonable
time for NMT training, we reported 500K batches
training results in this paper.

4.3 Effect on Noisy Data

We added 20% noisy data, which is wrongly
aligned, to the NIST ZH-EN corpus. Empirical
result shows that the training cost of these
noise data did not decrease significantly and
even increase sometimes during the training
processing. After the first-time time dynamic
sampling training by the proposed method, the
noise data ratio decreased from 20% to 13%. After
the second-time dynamic sampling training, the
noise data ratio decreased from 13% to 7%. This
indicates that the proposed method can also detect
the noisy data.

5 Conclusion

In this study, the sentences for which training
costs of two iterations do not show any significant
variation are defined as well-learned sentences.
Using a dynamic sentence sampling method,
these well-learned sentences are assigned a
lower probability of being sampled during
the subsequent epoch. The empirical results
illustrated that the proposed method can
significantly accelerate the NMT training
and improve the NMT performances.
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Abstract

Neural machine translation (NMT) mod-
els are typically trained with fixed-size in-
put and output vocabularies, which creates
an important bottleneck on their accuracy
and generalization capability. As a solu-
tion, various studies proposed segmenting
words into sub-word units and performing
translation at the sub-lexical level. How-
ever, statistical word segmentation meth-
ods have recently shown to be prone to
morphological errors, which can lead to
inaccurate translations. In this paper, we
propose to overcome this problem by re-
placing the source-language embedding
layer of NMT with a bi-directional recur-
rent neural network that generates compo-
sitional representations of the input at any
desired level of granularity. We test our
approach in a low-resource setting with
five languages from different morpholog-
ical typologies, and under different com-
position assumptions. By training NMT to
compose word representations from char-
acter trigrams, our approach consistently
outperforms (from 1.71 to 2.48 BLEU
points) NMT learning embeddings of sta-
tistically generated sub-word units.

1 Introduction

An important problem in neural machine trans-
lation (NMT) is translating infrequent or unseen
words. The reasons are twofold: the necessity of
observing many examples of a word until its in-
put representation (embedding) becomes reliable,
and the computational requirement of limiting the
input and output vocabularies to few tens of thou-
sands of words. These requirements eventually
lead to coverage issues when dealing with low-

resource and/or morphologically-rich languages,
due to their high lexical sparseness. To cope
with this well-known problem, several approaches
have been proposed redefining the model vocabu-
lary in terms of interior orthographic units com-
pounding the words, ranging from character n-
grams (Ling et al., 2015b; Costa-jussà and Fonol-
losa, 2016; Lee et al., 2017; Luong and Manning,
2016) to statistically-learned sub-word units (Sen-
nrich et al., 2016; Wu et al., 2016; Ataman et al.,
2017). While the former provide an ideal open
vocabulary solution, they mostly failed to achieve
competitive results. This might be related to the
semantic ambiguity caused by solely relying on
input representations based on character n-grams
which are generally learned by disregarding any
morphological information. In fact, the second
approach is now prominent and has established a
pre-processing step for constructing a vocabulary
of sub-word units before training the NMT model.
However, several studies have shown that seg-
menting words into sub-word units without pre-
serving morpheme boundaries can lead to loss of
semantic and syntactic information and, thus, in-
accurate translations (Niehues et al., 2016; Ata-
man et al., 2017; Pinnis et al., 2017; Huck et al.,
2017; Tamchyna et al., 2017).

In this paper, we propose to improve the quality
of input (source language) representations of rare
words in NMT by augmenting its embedding layer
with a bi-directional recurrent neural network (bi-
RNN), which can learn compositional input repre-
sentations at different levels of granularity. Com-
positional word embeddings have recently been
applied in language modeling and obtained suc-
cessful results (Vania and Lopez, 2017). The ap-
parent advantage of our approach is that by feed-
ing NMT with simple character n-grams, our bi-
RNN can potentially learn the morphology neces-
sary to create word-level representations of the in-
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put language directly at training time, thus, avoid-
ing the burden of a separate and sub-optimal word
segmentation step. We compare our approach
against conventional embedding-based represen-
tations learned from statistical word segmenta-
tion in a public evaluation benchmark, which pro-
vides low-resource training conditions by pair-
ing English with five morphologically-rich lan-
guages: Arabic, Czech, German, Italian and Turk-
ish, where each language represents a distinct
morphological typology and language family. The
experimental results show that our compositional
input representations lead to significantly and con-
sistently better translation quality in all language
directions.

2 Neural Machine Translation

In this paper, we use the NMT model of Bahdanau
et al. (2014). The model essentially estimates the
conditional probability of translating a source se-
quence x = (x1, x2, . . . xm) into a target sequence
y = (y1, y2, . . . yl), using the decomposition

p(y|x) =
l∏

i=1

p(yj |yi−1, .., y0, xm−1, .., x1) (1)

The model is trained by maximizing the log-
likelihood of a parallel training set via stochastic
gradient descent (Bottou, 2010) and the backprop-
agation through time (Werbos, 1990) algorithms.

The inputs of the network are one-hot vectors,
which are binary vectors with a single bit set to
1 to identify a specific word in the vocabulary.
Each one-hot vector is then mapped to an embed-
ding, a distributed representation of the word in
a lower dimension but a more dense continuous
space. From this input, a representation of the
whole input sequence is learned using a bi-RNN,
the encoder, which maps x into m dense sentence
vectors corresponding to its hidden states. Next,
another RNN, the decoder, predicts each target to-
ken yi by sampling from a distribution computed
from the previous target token yi−1, the previous
decoder hidden state, and the context vector. The
latter is a linear combination of the encoder hidden
states, whose weights are dynamically computed
by a feed-forward neural network called attention
model (Bahdanau et al., 2014). The probability of
generating each target word yj is normalized via a
softmax function.

Both the source and target vocabulary sizes play
an important role in terms of defining the complex-

ity of the model. In a standard architecture, like
ours, the source and target embedding matrices ac-
tually account for the vast majority of the network
parameters. The vocabulary size also plays an
important role when translating from and to low-
resource and morphologically-rich languages, due
to the sparseness of the lexical distribution. There-
fore, a conventional approach has now become
to compose both the source and target vocabular-
ies of sub-word units generated through statistical
segmentation methods (Sennrich et al., 2016; Wu
et al., 2016; Ataman et al., 2017), and perform-
ing NMT by directly learning embeddings of sub-
word units. A popular one of these is the Byte-Pair
Encoding (BPE) method (Gage, 1994; Sennrich
et al., 2016), which finds the optimal description
of a corpus vocabulary by iteratively merging the
most frequent character sequences. A more recent
approach is the Linguistically-Motivated Vocabu-
lary Reduction (LMVR) method (Ataman et al.,
2017), which similarly generates a new vocabu-
lary by segmenting words into sub-lexical units
based on their likeliness of being morphemes and
their morphological categories. A drawback of
these methods is that, as pre-processing steps to
NMT, they are not optimized for the translation
task. Moreover, they can suffer from morphologi-
cal errors at different levels, which can lead to loss
of semantic or syntactic information.

3 Learning Compositional Input
Representations via bi-RNNs

In this paper, we propose to perform NMT
from input representations learned by composing
smaller symbols, such as character n-grams (Ling
et al., 2015a), that can easily fit in the model vo-
cabulary. This composition is essentially a func-
tion which can establish a mapping between com-
binations of ortographic units and lexical meaning,
that is learned using the bilingual context so that it
can produce representations that are optimized for
machine translation.

In our model (Figure 1), the one-hot vectors, af-
ter being fed into the embedding layer, are pro-
cessed by an additional composition layer, which
computes the final input representations passed to
the encoder to generate translations. For learn-
ing the composition function, we employ a bi-
RNN. Hence, by encoding each interior unit in-
side the word, we hope to capture important cues
about their functional role, i.e. semantic or syn-
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Figure 1: Translation of
the Italian sentence tor-
nai a casa (I came home)
with a word-level repre-
sentation composed from
character trigrams.

tactic contribution to the word. We implement
the network using gated recurrent units (GRUs)
(Cho et al., 2014), which have shown compara-
ble performance to long-short-term-memory units
(Hochreiter and Schmidhuber, 1997), whereas
they provide much faster computation. As a min-
imal set of input symbols required to cope with
contextual ambiguities, we opt to use intersecting
sequences of character trigrams, as recently sug-
gested by Vania and Lopez (2017).

Given a bi-RNN with a forward (f ) and back-
ward (b) layer, the input representation w of a to-
ken of t characters is computed from the hidden
states hft and h0

b , i.e. the final outputs of the for-
ward and backward RNNs, as follows:

w = Wfh
t
f +Wbh

0
b + b (2)

where Wf and Wb are weight matrices asso-
ciated to each RNN and b is a bias vector (Ling
et al., 2015a). These parameters are jointly learned
together with the internal parameters of the GRUs
and the input token embedding matrix while train-
ing the NMT model. For an input ofm tokens, our
implementation increases the computational com-
plexity of the network by O(Ktmaxm), where K
is the bi-RNN cost and tmax is the maximum num-
ber of symbols per word. However, since compu-
tation of each input representation is independent,
a parallelised implementation could cut the over-
head down to O(Ktmax).

4 Experiments

We test our approach along with statistical word
segmentation based open vocabulary NMT meth-
ods in an evaluation benchmark simulating a low-
resource translation setting pairing English (En)
with five languages from different language fam-
ilies and morphological typologies: Arabic (Ar),
Czech (Cs), German (De), Italian (It) and Turk-

ish (TR). The characteristics of each language are
given in Table 1, whereas Table 2 presents the sta-
tistical properties of the training data. We train our
NMT models using the TED Talks corpora (Cet-
tolo et al., 2012) and test them on the official data
sets of IWSLT1 (Mauro et al., 2017).

Language Morphological Morphological
Typology Complexity

Turkish Agglutinative High
Arabic Templatic High
Czech Fusional, High

Agglutinative
German Fusional Medium
Italian Fusional Low

Table 1: The languages evaluated in our study and
their morphological characteristics.

Language # tokens # types
Pair Src Tgt Src Tgt

Tr - En 2,7M 2,0M 171K 53K
Ar - En 3,9M 4,9M 220K 120K
Cs - En 2,0M 2,3M 118K 50K
De - En 4,0M 4,3M 144K 69K
It - En 3,5M 3,8M 95K 63K

Table 2: Sizes of the training sets and vocabularies
in the TED Talks benchmark. Development and
test sets are on average 50K to 100K tokens. (M:
Million, K: Thousand.)

The simple NMT model constitutes the baseline
in our study and performs translation directly at
the level of sub-word units, which can be of four
different types: characters, character trigrams,
BPE sub-word units, and LMVR sub-word units.

1The International Workshop on Spoken Language Trans-
lation with shared tasks organized between 2003-2017.
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The compositional model, on the other hand, per-
forms NMT with input representations composed
from sub-lexical vocabulary units. In our study,
we evaluate representations composed from char-
acter trigrams, BPE, and LMVR units. In order
to choose the segmentation method to apply on
the English side (the output of NMT decoder), we
compare BPE and LMVR sub-word units by car-
rying out an evaluation on the official data sets
of Morpho Challenge 20102(Kurimo et al., 2010).
The results of this evaluation, as given in Table
3, suggest that LMVR seems to provide a seg-
mentation that is more consistent with morpheme
boundaries, which motivates us to use sub-word
tokens generated by LMVR for the target side.
This choice aids us in evaluating the morpholog-
ical knowledge contained in input representations
in terms of the translation accuracy in NMT.

The compositional bi-RNN layer is imple-
mented in Theano (Team et al., 2016) and inte-
grated into the Nematus NMT toolkit (Sennrich
et al., 2017). In our experiments, we use a compo-
sitional bi-RNN with 256 hidden units, an NMT
model with a one-layer bi-directional GRU en-
coder and one-layer GRU decoder of 512 hidden
units, and an embedding dimension of 256 for
both models. We use a highly restricted dictio-
nary size of 30,000 for both source and target lan-
guages, and train the segmentation models (BPE
and LMVR) to generate sub-word vocabularies of
the same size. We train the NMT models using
the Adagrad (Duchi et al., 2011) optimizer with a
mini-batch size of 50, a learning rate of 0.01, and a
dropout rate of 0.1 (in all layers and embeddings).
In order to prevent over-fitting, we stop training if
the perplexity on the validation does not decrease
for 5 epochs, and use the best model to translate
the test set. The model outputs are evaluated using
the (case-sensitive) BLEU (Papineni et al., 2002)
metric and the Multeval (Clark et al., 2011) sig-
nificance test.

2Shared Task on Unsupervised Morphological Analysis,
http://morpho.aalto.fi/events/morphochallenge.

Method Precision Recall F1 Score
BPE 52.87 24.44 33.43

LMVR 70.22 55.66 62.10

Table 3: The performance of different segmenta-
tion models trained on the English portion of our
benchmark in the Morpho Challenge shared task.

5 Results

The performance of NMT models in translating
each language using different vocabulary units and
encoder input representations can be seen in Ta-
ble 4. With the simple model, LMVR based units
achieve the best accuracy in translating all lan-
guages, with improvements over BPE by 0.85 to
1.09 BLEU points in languages with high morpho-
logical complexity (Arabic, Czech and Turkish)
and 0.32 to 0.53 BLEU points in languages with
low to medium complexity (Italian and German).
This confirms our previous results in (Ataman and
Federico, 2018). Moreover, simple models using
character trigrams as vocabulary units reach much
higher translation accuracy compared to models
using characters, indicating their superior perfor-
mance in handling contextual ambiguity. In the
Italian to English translation direction, the per-
formance of simple models using character tri-
grams and BPE sub-word units as input represen-
tations are almost comparable, showing that char-
acter trigrams can even be sufficient as the stand-
alone vocabulary units in languages with low lex-
ical sparseness. These findings suggest that each
type of sub-word unit used in the simple model is
specifically convenient for a given morphological
typology.

Using our compositional model improves the
quality of input representations for each type of
vocabulary unit, nevertheless, the best perfor-
mance is obtained by using character trigrams
as input symbols and words as input representa-
tions. The higher quality of these input repre-
sentations compared to those obtained from sub-
word units generated with LMVR suggest that our
compositional model can learn morphology better
than LMVR, which was found to provide compa-
rable performance to morphological analyzers in
Turkish to English NMT (Ataman et al., 2017).
Moreover, sample outputs from both models show
that the compositional model is also able to bet-
ter capture syntactic information of input sen-
tences. Figure 5 illustrates two example transla-
tions from Italian and Turkish. In Italian, the sim-
ple model fails to understand the common sub-
ject of different verbs in the sentence due to the
repetition of the same inflective suffix after seg-
mentation. In Turkish, the genitive case ”yer-
lerin fotoğraflarının” (the photographs of places)
and the complex predicate ”birleştirilmesiyle mey-
dana geldi” (is composed of ) are both incorrectly
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Model Vocabulary Input BLEU
Units Representations Tr-En Ar-En Cs-En De-En It-En

Simple Characters Characters 12.29 8.95 13.42 21.32 22.88
Char Trigrams Char Trigrams 16.13 11.91 20.87 25.01 26.68

Subwords (BPE) Subwords (BPE) 16.79 11.14 21.99 26.61 27.02
Subwords (LMVR) Subwords (LMVR) 17.82 12.23 22.84 27.18 27.34

Composi- Char Trigrams Subwords (BPE) 15.40 11.50 21.67 27.05 27.80
tional Char Trigrams Subwords (LMVR) 16.63 13.29 23.07 26.86 26.84

Char Trigrams Words 19.53 14.22 25.16 29.09 29.82
Subwords (BPE) Words 12.64 11.51 23.13 27.10 27.96

Subwords (LMVR) Words 18.90 13.55 24.31 28.07 28.83

Table 4: Experiment results. Best scores for each translation direction are in bold font. All improvements
over the baseline (simple model with BPE) are statistically significant (p-value < 0.05).

Input e comunque, em@@ ig@@ riamo , circol@@ iamo e mescol@@ iamo cosı̀ tanto che
(Simple Model) non esiste più l’ isolamento necessario affinché avvenga un’ evoluzione .
NMT Output and anyway , we repair, and we mix so much that

(Simple Model) there ’s no longer the isolation that we need to happen to make an evolution .
Input e comunque, emigriamo, circoliamo e mescoliamo cosı̀ tanto che

(Compositional Model) non esiste più l’ isolamento necessario affinché avvenga un’ evoluzione.
NMT Output and anyway , we migrate , circle and mix so much that

(Compositional Model) there ’s no longer the isolation necessary to become evolutionary .
Reference and by the way , we immigrate and circulate and intermix so much that

you can ’t any longer have the isolation that is necessary for evolution to take place .

Input ama aslında bu resim tamamen , farklı yerlerin fotoğraf@@ larının
(Simple Model) birleştir@@ il@@ mesiyle meydana geldi .
NMT Output but in fact , this picture came up with a completely

(Simple Model) different place of photographs .
Input ama aslında bu resim tamamen , farklı yerlerin fotoğraflarının

(Compositional Model) birleştirilmesiyle meydana geldi .
NMT Output but in fact , this picture came from collecting pictures of

(Compositional Model) different places .
Reference but this image is actually entirely composed of photographs from different locations .

Table 5: Example translations with different approaches in Italian (above) and Turkish (below).

translated by the simple model. On the other
hand, the compositional model is able to cap-
ture the correct sentence semantics and syntax in
either case. These findings suggest that main-
taining translation at the lexical level apparently
aids the attention mechanism and provides more
semantically and syntactically consistent transla-
tions. The overall improvements obtained with
this model over the best performing simple model
are 1.99 BLEU points in Arabic, 2.32 BLEU
points in Czech, 1.91 BLEU points in German,
2.48 BLEU points in Italian and 1.71 BLEU points
in Turkish to English translation directions. As ev-
ident from the significant and consistent improve-
ments across all languages, our approach provides
a more promising and generic solution to the data
sparseness problem in NMT.

6 Conclusion

In this paper, we addressed the problem of trans-
lating infrequent words in NMT and proposed to
solve it by replacing the conventional sub-word
embeddings with input representations composi-
tionally learned from character n-grams using a bi-
RNN. Our approach showed significant and con-
sistent improvements over a variety of languages,
making it a competitive solution for NMT of low-
resource and morphologically-rich languages. In
the future, we plan to optimize our implementa-
tion and to test its scalability on larger data sets.
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Abstract

Every person speaks or writes their own
flavor of their native language, influenced
by a number of factors: the content they
tend to talk about, their gender, their
social status, or their geographical ori-
gin. When attempting to perform Ma-
chine Translation (MT), these variations
have a significant effect on how the sys-
tem should perform translation, but this
is not captured well by standard one-size-
fits-all models. In this paper, we propose a
simple and parameter-efficient adaptation
technique that only requires adapting the
bias of the output softmax to each partic-
ular user of the MT system, either directly
or through a factored approximation. Ex-
periments on TED talks in three languages
demonstrate improvements in translation
accuracy, and better reflection of speaker
traits in the target text.

1 Introduction

The production of language varies depending on
the speaker or author, be it to reflect personal
traits (e.g. job, gender, role, dialect) or the top-
ics that tend to be discussed (e.g. technology, law,
religion). Current Neural Machine Translation
(NMT) systems do not incorporate any explicit in-
formation about the speaker, and this forces the
model to learn these traits implicitly. This is a
difficult and indirect way to capture inter-personal
variations, and in some cases it is impossible with-
out external context (Table 1, Mirkin et al. (2015)).

Recent work has incorporated side information
about the author such as personality (Mirkin et al.,
2015), gender (Rabinovich et al., 2017) or polite-
ness (Sennrich et al., 2016a), but these methods
can only handle phenomena where there are ex-

Source Translation

I went home [Man]: Je suis rentré à la maison
[Woman]: Je suis rentrée à la maison

I do drug testing [Doctor]: Je teste des médicaments
[Police]: Je dépiste des drogues

Table 1: Examples where speaker information in-
fluences English-French translation.

plicit labels for the traits. Our work investigates
how we can efficiently model speaker-related vari-
ations to improve NMT models.

In particular, we are interested in improving our
NMT system given few training examples for any
particular speaker. We propose to approach this
task as a domain adaptation problem with an ex-
tremely large number of domains and little data for
each domain, a setting where we may expect tradi-
tional approaches to domain adaptation that adjust
all model parameters to be sub-optimal (§2). Our
proposed solution involves modeling the speaker-
specific variations as an additional bias vector in
the softmax layer, where we either learn this bias
directly, or through a factored model that treats
each user as a mixture of a few prototypical bias
vectors (§3).

We construct a new dataset of Speaker Anno-
tated TED talks (SATED, §4) to validate our ap-
proach. Adaptation experiments (§5) show that
explicitly incorporating speaker information into
the model improves translation quality and accu-
racy with respect to speaker traits.1

2 Problem Formulation and Baselines

In the rest of this paper, we refer to the person
producing the source sentence (speaker, author,

1Data/code publicly available at
http://www.cs.cmu.edu/∼pmichel1/
sated/ and https://github.com/neulab/
extreme-adaptation-for-personalized-translation
respectively.
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etc. . . ) generically as the speaker. We denote as S
the set of all speakers.

The usual objective of NMT is to find parame-
ters θ of the conditional distribution p(y | x; θ) to
maximize the empirical likelihood. We argue that
personal variations in language warrant decom-
posing the empirical distribution into |S| speaker
specific domains Ds and learning a different set of
parameters θs for each. This setting exhibits spe-
cific traits that set it apart from common domain
adaptation settings:

1. The number of speakers is very large. Our
particular setting deals with |S| ≈ 1800 but
our approaches should be able to accommo-
date orders of magnitude more speakers.

2. There is very little data (even monolin-
gual, let alone bilingual or parallel) for each
speaker, compared to millions of sentences
usually used in NMT.

3. As a consequence of 1, we can assume that
many speakers share similar characteristics
such as gender, social status, and as such may
have similar associated domains.2

2.1 Baseline NMT model
All of our experiments are based on a standard
neural sequence to sequence model. We use one
layer LSTMs as the encoder and decoder and the
concat attention mechanism described in Luong
and Manning (2015). We share the parameters
in the embedding and softmax matrix of the de-
coder as proposed in Press and Wolf (2017). All
the layers have dimension 512 except for the atten-
tion layer (dimension 256). To make our baseline
competitive, we apply several regularization tech-
niques such as dropout (Srivastava et al., 2014) in
the output layer and within the LSTM (using the
variant presented in Gal and Ghahramani, 2016).
We also drop words in the target sentence with
probability 0.1 according to Iyyer et al. (2015)
and implement label smoothing as proposed in
Szegedy et al. (2016) with coefficient 0.1. Ap-
pendix A provides a more thorough description of
the baseline model.

2.2 Baseline adaptation strategy
As mentioned in §2, our goal is to learn a sep-
arate conditional distribution p(y | x, s) and

2Note that the speakers are still unique, and many might
use very specific words (e.g. the name of their company or of
a specific medical procedure that they are an expert on).

parametrization θs to improve translation for
speaker s. The usual way of adapting from gen-
eral domain parameters θ to θs is to retrain the
full model on the domain specific data (Luong and
Manning, 2015). Naively applying this approach
in the context of personalizing a model for each
speaker however has two main drawbacks:

Parameter cost Maintaining a set of model pa-
rameters for each speaker is expensive. For ex-
ample, the model in §2.1 has ≈47M parameters
when the vocabulary size is 40k, as is the case in
our experiments in §5. Assuming each parame-
ter is stored as a 32bit float, every speaker-specific
model costs ≈188MB. In a production environ-
ment with thousands to billions of speakers, this
is impractical.

Overfitting Training each speaker model with
very little data is a challenge, necessitating care-
ful and heavy regularization (Miceli Barone et al.,
2017) and an early stopping procedure.

2.3 Domain Token
A more efficient domain adaptation technique is
the domain token idea used in Sennrich et al.
(2016a); Chu et al. (2017): introduce an additional
token marking the domain in the source and/or the
target sentence. In experiments, we add a token
indicating the speaker at the start of the target sen-
tence for each speaker. We refer to this method as
the spk token method in the following.

Note that in this case there is now only an em-
bedding vector (of dimension 512 in our experi-
ments) for each speaker. However, the resulting
domain embedding are non-trivial to interpret (i.e.
it is not clear what they tell us about the domain or
speaker itself).

3 Speaker-specific Vocabulary Bias

In NMT models, the final choice of which word
to use in the next step t of translation is generally
performed by the following softmax equation

pt = softmax(ET ot + bT ) (1)

where ot is predicted in a context-sensitive man-
ner by the NMT system and ET and bT are the
weight matrix and bias vector parameters respec-
tively. Importantly, bT governs the overall likeli-
hood that the NMT model will choose particular
vocabulary. In this section, we describe our pro-
posed methods for making this bias term speaker-
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Figure 1: Graphical representation of our differ-
ent adaptation models for the softmax layer. From
top to bottom is the base softmax, the full bias
softmax and the fact bias softmax

specific, which provides an efficient way to allow
for speaker-specific vocabulary choice.3

3.1 Full speaker bias
We first propose to learn speaker-specific param-
eters for the bias term in the output softmax only.
This means changing Eq. 1 to

pt = softmax(ET ot + bT + bs) (2)

for speaker s. This only requires learning and stor-
ing a vector equal to the size of the vocabulary,
which is a mere 0.09% of the parameters in the full
model in our experiments. In effect, this greatly
reducing the parameter cost and concerns of over-
fitting cited in §2.2. This model is also easy to
interpret as each coordinate of the bias vector cor-
responds to a log-probability on the target vocab-
ulary. We refer to this variant as full bias.

3.2 Factored speaker bias
The biases for a set of speakers S on a vocabulary
V can be represented as a matrix:

B ∈ R|S|×|V| (3)

where each row of B is one speaker bias bs. In
this formulation, the |S| rows are still linearly in-
dependent, meaning that B is high rank. In prac-
tical terms, this means that we cannot share infor-
mation among users about how their vocabulary

3Notably, while this limits the model to only handling
word choice and does not explicitly allow it to model syn-
tactic variations, favoring certain words over others can indi-
rectly favor certain phenomena (e.g. favoring passive speech
by increasing the probability of auxiliaries).

en-fr en-es en-de

#talks 1,887 1,922 1,670
#train 177,743 182,582 156,134
#dev 3,774 3,844 3,340
#test 3,774 3,844 3,340
avg. sent/talk 94,2 95.0 93,5
std dev 57,6 57.8 60,3

Table 2: Dataset statistics

selection co-varies, which is likely sub-ideal given
that speakers share common characteristics.

Thus, we propose another parametrization of
the speaker bias, fact bias, where the B matrix
is factored according to:

B =SB̃

S ∈R|S|×r,
B̃ ∈Rr×|V|

(4)

where S is a matrix of speaker vectors of low di-
mension r and B̃ is a matrix of r speaker inde-
pendent biases. Here, the bias for each speaker
is a mixture of r “centroid” biases B̃ with r
speaker “weights”. This reduces the total number
of parameters allocated to speaker adaptation from
|S||V| to r(|S| + |V|). In our experiments, this
corresponds to using between 99.38 and 99.45%
fewer parameters than the full bias model de-
pending on the language pair, with r parameters
per speaker. In this work, we will use r = 10.

We provide a graphical summary of our pro-
posed approaches in figure 1.

4 Speaker Annotated TED Talks Dataset

In order to evaluate the effectiveness of our
proposed methods, we construct a new dataset,
Speaker Annotated TED (SATED) based on TED
talks,4 with three language pairs, English-French
(en-fr), English-German (en-de) and English-
Spanish (en-es) and speaker annotation.

The dataset consists of transcripts directly col-
lected from https://www.ted.com/talks, and
contains roughly 271K sentences in each language
distributed among 2324 talks. We pre-process the
data by removing sentences that don’t have any
translation or are longer than 60 words, lower-
casing, and tokenizing (using the Moses tokenizer
(Koehn et al., 2007)).

4https://www.ted.com
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Some talks are partially or not translated in
some of the languages (in particular there are
fewer translations in German than in French or
Spanish), we therefore remove any talk with less
than 10 translated sentences in each language pair.

The data is then partitioned into training, vali-
dation and test sets. We split the corpus such that
the test and validation split each contain 2 sentence
pairs from each talk, thus ensuring that all talks are
present in every split. Each sentence pair is anno-
tated with the name of the talk and the speaker.
Table 2 lists statistics on the three language pairs.

This data is made available under the Creative
Commons license, Attribution-Non Commercial-
No Derivatives (or the CC BY-NC-ND 4.0
International, https://creativecommons.org/
licenses/by-nc-nd/4.0/legalcode), all credit
for the content goes to the TED organization and
the respective authors of the talks. The data it-
self can be found at http://www.cs.cmu.edu/
∼pmichel1/sated/.

5 Experiments

We run a set of experiments to validate the abil-
ity of our proposed approach to model speaker-
induced variations in translation.

5.1 Experimental setup

We test three models base (a baseline ignoring
speaker labels), full bias and fact bias. Dur-
ing training, we limit our vocabulary to the 40,000
most frequent words. Additionally, we discard any
word appearing less than 2 times. Any word that
doesn’t satisfy those conditions is replaced with an
UNK token.5

All our models are implemented with the DyNet
(Neubig et al., 2017) framework, and unless speci-
fied we use the default settings therein. We refer to
appendix B for a detailed explanation of the train-
ing process. We translate the test set using beam
search with beam size 5.

5.2 Does explicitly modeling speaker-related
variation improve translation quality?

Table 3 shows final test scores for each model with
statistical significance measured with paired boot-

5Recent NMT systems also commonly use sub-word
units (Sennrich et al., 2016b). This may influence on
the result, either negatively (less direct control over high-
frequency words) or positively (more capacity to adapt to
high-frequency words). We leave a careful examination of
these effects for future work.

en-fr en-es en-de
base 38.05 39.89 26.46
spk token 38.85 40.04 26.52
full bias 38.54 40.30 27.20
fact bias 39.01 39.88 26.94

Table 3: Test BLEU. Scores significantly (p <
0.05) better than the baseline are written in bold

strap resampling (Koehn, 2004). As shown in the
table, both proposed methods give significant im-
provements in BLEU score, with the biggest gains
in English to French (+0.99) and smaller gains in
German and Spanish (+0.74 and +0.40 respec-
tively). Reducing the number of parameters with
fact bias gives slightly better (en-fr) or worse
(en-de) BLEU score, but in those cases the results
are still significantly better than the baseline.

However, BLEU is not a perfect evaluation met-
ric. In particular, we are interested in evaluating
how much of the personal traits of each speaker
our models capture. To gain more insight into this
aspect of the MT results, we devise a simple ex-
periment. For every language pair, we train a clas-
sifier (continuous bag-of-n-grams; details in Ap-
pendix C) to predict the author of each sentence
on the target language part of the training set. We
then evaluate the classifier on the ground truth and
the outputs from our 3 models (base, full bias
and fact bias).

The results are reported in Figure 2. As can
be seen from the figure, it is easier to predict the
author of a sentence from the output of speaker-
specific models than from the baseline. This
demonstrates that explicitly incorporating infor-
mation about the author of a sentence allows for
better transfer of personal traits during transla-
tions, although the difference from the ground
truth demonstrates that this problem is still far
from solved. Appendix D shows qualitative ex-
amples of our model improving over the baseline.

5.3 Further experiments on the Europarl
corpus

One of the quirks of the TED talks is that the
speaker annotation correlates with the topic of
their talk to a high degree. Although the topics that
a speaker talks about can be considered as a man-
ifestation of speaker traits, we also perform a con-
trol experiment on a different dataset to verify that
our model is indeed learning more than just topical
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Figure 2: Speaker classification accuracy of our
continuous bag-of-n-grams model.

information. Specifically, we train our models on
a speaker annotated version of the Europarl corpus
(Rabinovich et al., 2017), on the en-de language
pair6.

We use roughly the same training procedure
as the one described in §5.1, with a random
train/dev/test split since none is provided in the
original dataset. Note that in this case, the num-
ber of speakers is much lower (747) whereas the
total size of the dataset is bigger (≈300k).

We report the results in table 4. Although
the difference is less salient than in the case
of SATED, our factored bias model still per-
forms significantly better than the baseline (+0.83
BLEU). This suggests that even outside the con-
text of TED talks, our proposed method is capable
of improvements over a speaker-agnostic model.

6 Related work

Domain adaptation techniques for MT often rely
on data selection (Moore and Lewis, 2010; Li
et al., 2010; Chen et al., 2017; Wang et al., 2017),
tuning (Luong and Manning, 2015; Miceli Barone
et al., 2017), or adding domain tags to NMT input
(Chu et al., 2017). There are also methods that
fine-tune parameters of the model on each sen-
tence in the test set (Li et al., 2016), and meth-
ods that adapt based on human post-edits (Turchi
et al., 2017), although these follow our baseline
adaptation strategy of tuning all parameters. There
are also partial update methods for transfer learn-
ing, albeit for the very different task of transfer
between language pairs (Zoph et al., 2016).

Pioneering work by Mima et al. (1997) in-
troduced ways to incorporate information about
speaker role, rank, gender, and dialog domain for

6available here: https://www.kaggle.com/ellarabi/
europarl-annotated-for-speaker-gender-and-age/
version/1

en-de
base 26.04
spk token 26.49
full bias 26.44
fact bias 26.87

Table 4: Test BLEU on the Europarl corpus.
Scores significantly (p < 0.05) better than the
baseline are written in bold

rule based MT systems. In the context of data-
driven systems, previous work has treated spe-
cific traits such as politeness or gender as a “do-
main” in domain adaptation models and applied
adaptation techniques such as adding a “polite-
ness tag” to moderate politeness (Sennrich et al.,
2016a), or doing data selection to create gender-
specific corpora for training (Rabinovich et al.,
2017). The aforementioned methods differ from
ours in that they require explicit signal (gender,
politeness. . . ) for which labeling (manual or au-
tomatic) is needed, and also handle a limited num-
ber of “domains” (≈ 2), where our method only
requires annotation of the speaker, and must scale
to a much larger number of “domains” (≈ 1, 800).

7 Conclusion

In this paper, we have explained and motivated
the challenge of modeling the speaker explicitly
in NMT systems, then proposed two models to do
so in a parameter-efficient way. We cast this prob-
lem as an extreme form of domain adaptation and
showed that, even when adapting a small propor-
tion of parameters (the softmax bias, < 0.1% of
all parameters), allowed the model to better reflect
personal linguistic variations through translation.

We further showed that the number of parame-
ters specific to any person could be reduced to as
low as 10 while still retaining better scores than
a baseline for some language pairs, making it vi-
able in a real world application with potentially
millions of different users.
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Abstract

We explore strategies for incorporat-
ing target syntax into Neural Ma-
chine Translation. We specifically
focus on syntax in ensembles con-
taining multiple sentence representa-
tions. We formulate beam search over
such ensembles using WFSTs, and de-
scribe a delayed SGD update train-
ing procedure that is especially effec-
tive for long representations like lin-
earized syntax. Our approach gives
state-of-the-art performance on a dif-
ficult Japanese-English task.

1 Introduction

Ensembles of multiple NMT models consis-
tently and significantly improve over single
models (Garmash and Monz, 2016). Previous
work has observed that NMT models trained
to generate target syntax can exhibit improved
sentence structure (Aharoni and Goldberg,
2017; Eriguchi et al., 2017) relative to those
trained on plain-text, while plain-text mod-
els produce shorter sequences and so may en-
code lexical information more easily (Nadejde
et al., 2017). We hypothesize that an NMT
ensemble would be strengthened if its compo-
nent models were complementary in this way.

However, ensembling often requires compo-
nent models to make predictions relating to
the same output sequence position at each
time step. Models producing different sen-
tence representations are necessarily synchro-
nized to enable this. We propose an approach
to decoding ensembles of models generating
different representations, focusing on models
generating syntax.

As part of our investigation we suggest
strategies for practical NMT with very long
target sequences. These long sequences
may arise through the use of linearized con-
stituency trees and can be much longer than
their plain byte pair encoded (BPE) equiv-
alent representations (Table 1). Long se-
quences make training more difficult (Bah-
danau et al., 2015), which we address with
an adjusted training procedure for the Trans-
former architecture (Vaswani et al., 2017), us-
ing delayed SGD updates which accumulate
gradients over multiple batches. We also sug-
gest a syntax representation which results in
much shorter sequences.

1.1 Related Work

Nadejde et al. (2017) perform NMT with
syntax annotation in the form of Combina-
tory Categorial Grammar (CCG) supertags.
Aharoni and Goldberg (2017) translate from
source BPE into target linearized parse trees,
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but omit POS tags to reduce sequence length.
They demonstrate improved target language
reordering when producing syntax. Eriguchi
et al. (2017) combine recurrent neural net-
work grammar (RNNG) models (Dyer et al.,
2016) with attention-based models to produce
well-formed dependency trees. Wu et al.
(2017) similarly produce both words and arc-
standard algorithm actions (Nivre, 2004).

Previous approaches to ensembling diverse
models focus on model inputs. Hokamp
(2017) shows improvements in the quality es-
timation task using ensembles of NMT mod-
els with multiple input representations which
share an output representation. Garmash and
Monz (2016) show translation improvements
with multi-source-language NMT ensembles.

2 Ensembles of Syntax Models

We wish to ensemble using models which
generate linearized constituency trees but
these representations can be very long and
difficult to model. We therefore propose
a derivation-based representation which is
much more compact than a linearized parse
tree (examples in Table 1). Our linearized
derivation representation ((4) in Table 1) con-
sists of the derivation’s right-hand side tokens
with an end-of-rule marker, </R> , marking
the last non-terminal in each rule. The original
tree can be directly reproduced from the se-
quence, so that structure information is main-
tained. We map words to subwords as de-
scribed in Section 3.

2.1 Delayed SGD Update Training for
Long Sequences

We suggest a training strategy for the Trans-
former model (Vaswani et al., 2017) which
gives improved performance for long se-
quences, like syntax representations, without

requiring additional GPU memory. The Ten-
sor2Tensor framework (Vaswani et al., 2018)
defines batch size as the number of tokens per
batch, so batches will contain fewer sequences
if their average length increases. During NMT
training, by default, the gradients used to up-
date model parameters are calculated over in-
dividual batches. A possible consequence is
that batches containing fewer sequences per
update may have ‘noisier’ estimated gradients
than batches with more sequences.

Previous research has used very large
batches to improve training convergence
while requiring fewer model updates (Smith
et al., 2017; Neishi et al., 2017). However,
with such large batches the model size may
exceed available GPU memory. Training on
multiple GPUs is one way to increase the
amount of data used to estimate gradients, but
it requires significant resources. Our strategy
avoids this problem by using delayed SGD up-
dates. We accumulate gradients over a fixed
number of batches before using the accumu-
lated gradients to update the model1. This lets
us effectively use very large batch sizes with-
out requiring multiple GPUs.

2.2 Ensembling Representations

Table 1 shows several different representa-
tions of the same hypothesis. To formulate
an ensembling decoder over pairs of these
representations, we assume we have a trans-
ducer T that maps from one representation to
the other representation. The complexity of
the transduction depends on the representa-
tions. Mapping from word to BPE represen-
tations is straightforward, and mapping from
(linearized) syntax to plain-text simply deletes
non-terminals. LetP be the paths in T leading
from the start state to any final state. A path

1https://github.com/fstahlberg/
tensor2tensor

320



Representation Sample Mean length
(1) Plain-text No complications occurred 27.5
(2) Linearized tree (ROOT (S (NP (DT No ) (NNS complications ) ) (VP (VBD occurred ) ) ) ) 120.0
(3) Derivation ROOT→S ; S→NP VP ; NP→DT NNS ; DT→No ; NNS→complications

; VP→VBD ; VBD→occurred
-

(4) Linearized
derivation

S</R> NP VP</R> DT NNS</R> No complications VBD</R>
occurred

73.8

(5) POS/plain-text DT No NNS complications VBD occurred 53.3

Table 1: Examples for proposed representations. Lengths are for the first 1M WAT English
training sentences with BPE subwords (Sennrich et al., 2016).

Figure 1: Transducer mapping internal to external representations. A partial hypothesis might
be o(xy2) in the external representation and i(xy1y2) in the internal representation.

p ∈ P maps an internal representation i(p) to
an external representation o(p).

The ensembling decoder produces exter-
nal representations. Two NMT systems are
trained, one for each representation, giving
models Pi and Po. An ideal equal-weight en-
sembling of Pi and Po yields

p∗ = argmax
p∈P

Pi(i(p)) Po(o(p)) (1)

with o(p∗) as the external representation of the
translation.

In practice, beam decoding is performed in
the external representation, i.e. over projec-
tions of paths in P 2. Let h = h1 . . . hj be a
partial hypothesis in the output representation.
The set of partial paths yielding h are:

M(h) = (2)

{(x, y)|xyz ∈ P, o(x) = h<j , o(xy) = h}
2See the tokenization wrappers in https://

github.com/ucam-smt/sgnmt

Here z is the path suffix. The ensembled score
of h is then:

P (hj |h<j) =Po(hj |h<j)× (3)

max
(x,y)∈M(h)

Pi(i(y)|i(x))

The max performed for each partial hypothe-
sis h is itself approximated by a beam search.
This leads to an outer beam search over exter-
nal representations with inner beam searches
for the best matching internal representations.
As search proceeds, each model score is up-
dated separately with its appropriate represen-
tation. Symbols in the internal representation
are consumed as needed to stay synchronized
with the external representation, as illustrated
in Figure 1; epsilons are consumed with a
probability of 1.
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Reference low - energy electron microscope ( LEEM ) and photoelectron microscope ( PEEM ) were
attracted attention as new surface electron microscope .

Plain BPE low energy electron microscope ( LEEM ) and photoelectron microscope ( PEEM ) are noticed
as new surface electron microscope .

Linearized
derivation

low-energy electron microscopy ( LEEM ) and photoelectron microscopy ( PEEM ) are attract-
ing attention as new surface electron microscopes .

Table 2: Sample generated translations from individual models

3 Experiments

We first explore the effect of our delayed SGD
update training scheme on single models, con-
trasting updates every batch with accumulated
updates every 8 batches. To compare target
representations we train Transformer models
with target representations (1), (2), (4) and (5)
shown in Table 1, using delayed SGD updates
every 8 batches. We decode with individ-
ual models and two-model ensembles, com-
paring results for single-representation and
multi-representation ensembles. Each multi-
representation ensemble consists of the plain
BPE model and one other individual model.

All Transformer architectures are Ten-
sor2Tensor’s base Transformer model
(Vaswani et al., 2018) with a batch size of
4096. In all cases we decode using SGNMT
(Stahlberg et al., 2017) with beam size 4,
using the average of the final 20 checkpoints.
For comparison with earlier target syntax
work, we also train two RNN attention-based
seq2seq models (Bahdanau et al., 2015) with
normal SGD to produce plain BPE sequences
and linearized derivations. For these models
we use embedding size 400, a single BiLSTM
layer of size 750, and batch size 80.

We report all experiments for Japanese-
English, using the first 1M training sen-
tences of the Japanese-English ASPEC data
(Nakazawa et al., 2016). All models use plain
BPE Japanese source sentences. English con-
stituency trees are obtained using CKYlark
(Oda et al., 2015), with words replaced by
BPE subwords. We train separate Japanese

(lowercased) and English (cased) BPE vocab-
ularies on the plain-text, with 30K merges
each. Non-terminals are included as separate
tokens. The linearized derivation uses addi-
tional tokens for non-terminals with </R> .

3.1 Results and Discussion

Our first results in Table 3 show that large
batch training can significantly improve the
performance of single Transformers, partic-
ularly when trained to produce longer se-
quences. Accumulating the gradient over 8
batches of size 4096 gives a 3 BLEU improve-
ment for the linear derivation model. It has
been suggested that decaying the learning rate
can have a similar effect to large batch train-
ing (Smith et al., 2017), but reducing the ini-
tial learning rate by a factor of 8 alone did not
give the same improvements.

Representation Batches /
update

Learning
rate

Test
BLEU

Plain BPE
1 0.025 27.5
1 0.2 27.2
8 0.2 28.9

Linearized
derivation

1 0.025 25.6
1 0.2 25.6
8 0.2 28.7

Table 3: Single Transformers trained to con-
vergence on 1M WAT Ja-En, batch size 4096

Our plain BPE baseline (Table 4) outper-
forms the current best system on WAT Ja-En,
an 8-model ensemble (Morishita et al., 2017).
Our syntax models achieve similar results de-
spite producing much longer sequences. Table
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Architecture Representation Dev
BLEU

Test
BLEU

Seq2seq
(8-model
ensemble)

Best WAT17 result
(Morishita et al.,
2017)

- 28.4

Seq2seq Plain BPE 21.6 21.2
Linearized derivation 21.9 21.2

Transformer

Plain BPE 28.0 28.9
Linearized tree 28.2 28.4
Linearized derivation 28.5 28.7
POS/BPE 28.5 29.1

Table 4: Single models on Ja-En. Previous
evaluation result included for comparison.

External
representation

Internal
representation

Test
BLEU

Plain BPE Plain BPE 29.2
Linearized derivation Linearized derivation 28.8
Linearized tree Plain BPE 28.9
Plain BPE Linearized derivation 28.8
Linearized derivation Plain BPE 29.4†

POS/BPE Plain BPE 29.3†

Plain BPE POS/BPE 29.4†

Table 5: Ja-En Transformer ensembles: †
marks significant improvement on plain BPE
baseline shown in Table 4 (p < 0.05 using
bootstrap resampling (Koehn et al., 2007)).

3 indicates that large batch training is instru-
mental in this.

We find that RNN-based syntax models can
equal plain BPE models as in Aharoni and
Goldberg (2017); Eriguchi et al. (2017) use
syntax for a 1 BLEU improvement on this
dataset, but over a much lower baseline. Our
plain BPE Transformer outperforms all syn-
tax models except POS/BPE. More compact
syntax representations perform better, with
POS/BPE outperforming linearized deriva-
tions, which outperform linearized trees.

Ensembles of two identical models trained
with different seeds only slightly improve
over the single model (Table 5). However, an
ensemble of models producing plain BPE and
linearized derivations improves by 0.5 BLEU
over the plain BPE baseline.

By ensembling syntax and plain-text we
hope to benefit from their complementary
strengths. To highlight these, we examine hy-
potheses generated by the plain BPE and lin-
earized derivation models. We find that the
syntax model is often more grammatical, even
when the plain BPE model may share more
vocabulary with the reference (Table 2).

In ensembling plain-text with a syntax ex-
ternal representation we observed that in a
small proportion of cases non-terminals were
over-generated, due to the mismatch in tar-
get sequence lengths. Our solution was to pe-
nalise scores of non-terminals under the syn-
tax model by a constant factor.

It is also possible to constrain decoding
of linearized trees and derivations to well-
formed outputs. However, we found that this
gives little improvement in BLEU over uncon-
strained decoding although it remains an inter-
esting line of research.

4 Conclusions

We report strong performance with individual
models that meets or improves over the re-
cent best WAT Ja-En ensemble results. We
train these models using a delayed SGD up-
date training procedure that is especially ef-
fective for the long representations that arise
from including target language syntactic in-
formation in the output. We further improve
on the individual results via a decoding strat-
egy allowing ensembling of models produc-
ing different output representations, such as
subword units and syntax. We propose these
techniques as practical approaches to includ-
ing target syntax in NMT.
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Abstract

We empirically investigate learning from
partial feedback in neural machine transla-
tion (NMT), when partial feedback is col-
lected by asking users to highlight a cor-
rect chunk of a translation. We propose a
simple and effective way of utilizing such
feedback in NMT training. We demon-
strate how the common machine trans-
lation problem of domain mismatch be-
tween training and deployment can be re-
duced solely based on chunk-level user
feedback. We conduct a series of sim-
ulation experiments to test the effective-
ness of the proposed method. Our re-
sults show that chunk-level feedback out-
performs sentence based feedback by up to
2.61% BLEU absolute.

1 Introduction

In recent years, machine translation (MT) quality
improved rapidly, especially because of advances
in neural machine translation (NMT). Most of re-
maining MT errors arguably come from domain,
style, or terminology mismatch between the data
on which the MT was trained on and data which
it has to translate. It is hard to alleviate this mis-
match since usually only limited amounts of rele-
vant training data are available. Yet MT systems
deployed on-line in e.g. e-commerce websites or
social networks can benefit from user feedback for
overcoming this mismatch. Whereas MT users are
usually not bilingual, they likely have a good com-
mand of the target language and are able to spot
severe MT errors in a given translated sentence,
sometimes with the help of e.g. an accompanying
image, video, or simply prior knowledge.

A common approach to get user feedback for
MT is explicit ratings of translations on an n-point

Likert scale. The main problem of such methods
is that users are not qualified enough to provide re-
liable feedback for the whole sentence. Since dif-
ferent users do not adhere to a single set of guide-
lines, their ratings may be influenced by various
factors, such as user expectations, user knowledge,
or user satisfaction with the platform. In (Kreutzer
et al., 2018), the authors investigate the reliability
and validity of real user ratings by re-evaluating
five-star ratings by three independent human anno-
tators, however the inter-annotator agreement be-
tween experts was relatively low and no correla-
tion to the averaged user rating was found.

Instead of providing a rating, a user might be
asked to correct the generated translation, in a
process called post-editing. Using corrected sen-
tences for training an NMT system brings larger
improvements, but this method requires significant
effort and expertise from the user.

Alternatively, feedback can be collected by ask-
ing users to mark correct parts (chunks) of the
translation (Marie and Max, 2015). It can be seen
as the middle ground between quick sentence level
rating and more expensive post-editing. We hy-
pothesize that collecting feedback in this form im-
plicitly forces guidelines on the user, making it
less susceptible to various user-dependent factors.
We expect marking of correct chunks in a trans-
lation to be simple enough for non-experts to do
quickly and precisely and also be more intuitive
than providing a numerical rating.

In this paper, we investigate the empirical hy-
pothesis that NMT is able to learn from the good
chunks of a noisy sentence and describe a sim-
ple way of utilizing such chunk-level feedback in
NMT training. To the best of our knowledge, no
dataset with human feedback recorded in this form
is available, therefore we experiment with user
feedback that was artificially created from paral-
lel data.
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The rest of this paper is structured as follows.
In Section 2 we review related work. We describe
our partial feedback approach in Section 3. Next
we present our experimental results in Section 4,
followed by the conclusion in Section 5.

2 Related work

Integrating user ratings in NMT has been stud-
ied in (Kreutzer et al., 2017), who view this as
a bandit structured prediction task. They demon-
strate how the user feedback can be integrated into
NMT training and perform a series of experiments
using GLEU (Wu et al., 2016) to simulate user
feedback. Nguyen et al. (2017) have also studied
this problem and adapted an actor-critic approach
(Mnih et al., 2016) which has shown to be robust
to skewed, high variance feedback from real users.

(Lam et al., 2018) extended the work of
(Nguyen et al., 2017) by asking users to provide
feedback for partial hypotheses to iteratively gen-
erate the translation, their goal is to minimize the
required human involvement. They performed
simulated experiments using chrF (Popovic, 2015)
as simulated feedback.

In all previous works feedback needs to be gen-
erated on-line during the training process, however
in this paper we focus on the case where there
might be a significant time lag between genera-
tion of translation and acquiring of the feedback.
Lawrence et al. (2017) have proposed a method to
leverage user feedback that is available only for
logged translated data for a phrase-based statisti-
cal machine translation system.

(Kreutzer et al., 2018) have experimented with
sentence level star ratings collected from real users
of an e-commerce site for logged translation data,
but found the feedback to be too noisy to gain im-
provements. They also proposed using implicit
word level task feedback based on query match-
ing in an e-commerce application to improve both
translation quality and task specific metrics.

Marie and Max (2015) have proposed an in-
teractive framework which iteratively improves
translation generated by the phrase-based system
by asking users to select correct parts. Domingo et
al. (2016) extended this idea to also include word
deletions and substitutions with the goal of reduc-
ing human effort in translation.

Grangier and Auli (2017) have studied the task
of paraphrasing an already generated translation
by excluding words that the user has marked as

incorrect. They modify NMT model to also ac-
cept the marked target sentence as input and train
it to produce similar sentences that do not contain
marked words.

(Chen et al., 2017; Wang et al., 2017) have pro-
posed sentence level weighting method for domain
adaptation in NMT.

3 Method

In this work we use the encoder-decoder NMT ar-
chitecture with attention, proposed by (Bahdanau
et al., 2014; Sutskever et al., 2014). NMT model
is trained to maximize the conditional likelihood
of a target sentence eI1 : e1, . . . , eI given a source
sentence fJ1 : f1, . . . , fJ from a parallel dataset
D:

L =
∑

fJ1 ,e
I
1∈D

I∑

i=1

log p(ei|ei−11 , fJ1 ). (1)

Training objective (1) is appropriate when the tar-
get sentence eI1 comes from real data. However,
we would like to benefit from model-generated
sentences ẽI1 by introducing partial feedback.

We assume that partial feedback for a sentence
ẽI1 is given as a sequence of binary values wI1 :
w1, . . . , wI , such that wi = 1 if the word ẽi is
marked as correct, wi = 0 if it is unrated or incor-
rect. We propose a simple modification to the loss
in Equation (1):

LPF =
∑

fJ1 ,ẽ
I
1,w

I
1∈D

I∑

i=1

wi log p(ẽi|ẽi−11 , fJ1 ) (2)

Considering the definition of the binary partial
feedback, the model would be trained to predict
correct target words, while ignoring unrated and
incorrect ones. However, incorrect words are still
used as inputs to the model and influence the pre-
diction context of correct words.

While partial feedback is gathered in a binary
form (selected/not selected), word weights wi can
take any real value, depending on the weight as-
signment scheme.

Our training objective can be seen as a general-
ization of sentence level weighting method (Chen
et al., 2017; Wang et al., 2017). The special case
of sentence level weight can be expressed as wi =
w,∀i , where w is the weight for sentence ẽI1.
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We differentiate between two practical methods
of obtaining the partial feedback data. First, gath-
ering the feedback from humans, by presenting
them with translations and asking to highlight cor-
rect words. This method is expected to produce
high quality feedback, but is relatively expensive
and, to the best of our knowledge, no such dataset
is publicly available.

Another method is to generate partial feedback
automatically using heuristics or statistical mod-
els. This type of feedback would be cheap to ob-
tain, but is unlikely to be of high quality.

In this paper, to show the effectiveness of high
quality chunk feedback, we generate artificial
feedback by comparing model predictions to refer-
ence translations using heuristic methods. This ap-
proach is cheap, produces high quality feedback,
but is not practically useful, because it requires ac-
cess to reference human translation.

We have experimented with several methods of
extracting artificial feedback. A simple match-
ing method assigns wi = 1 if predicted word ẽi
is present in reference translation at any position,
and wi = 0 otherwise. A slightly more sophisti-
cated method is to find the longest common sub-
string (LCS) between the predicted and reference
translations and set the weights for words which
belong to the LCS to 1, and to 0 otherwise. In
our experiments we have found the latter method
to perform slightly better.

4 Experiments

In this section, we conduct a series of experiments
to study how well an NMT system is able to learn
only from partial user feedback when this feed-
back is given for in-domain translations, whereas
the baseline system is trained on out-of-domain
data.

4.1 Datasets

We report results on two datasets: WMT 2017
German to English news translation task (Bojar
et al., 2017) and an in-house English to Spanish
dataset in the e-commerce domain. On all data we
apply byte-pair encoding (Sennrich et al., 2016)
with 40,000 merge operations learned separately
for each language.

For each dataset we separate the larger out-
of-domain and smaller in-domain training data.
For De-En we use 1.8M sentence pairs randomly
sampled from available parallel corpora as out-

of-domain data and 800K sentence pairs sampled
from back-translated monolingual and unused par-
allel corpora as in-domain data. For En-Es we
have 2.7M out-of-domain and 1.5M in-domain
sentence pairs. We evaluate our models on new-
stest2016 (2999 sentence pairs) for the De-En task
and an in-house test set of 1000 sentence pairs for
the En-Es task using case-insensitive BLEU (Pap-
ineni et al., 2002) and TER (Snover et al., 2006).

We have implemented our NMT model using
TensorFlow (Abadi et al., 2015) library. Our en-
coder is a bidirectional LSTM with a layer size of
512; our decoder is an LSTM with 2 layers of the
same size. We also use embedding size of 512 and
MLP attention layer. We train our networks using
SGD with a learning rate schedule that starts grad-
ually decaying to 0.01 after the initial 4 epochs. As
regularization we use dropout on the RNN inputs
with dropping probability of 0.2.

4.2 Results

We pre-train baseline NMT models on parallel
out-of-domain data for 15 epochs. We then use the
pre-trained model to generate translations from the
source side of parallel in-domain corpus. Using
heuristics described in Section 3 and the reference
target side of the in-domain corpus we generate ar-
tificial partial feedback to simulate real user input.
Then we continue training with a small learning
rate for another 10 epochs on in-domain data with
or without user feedback.

In Table 1, we show the effect of different types
of feedback on translation performance. First, we
see that even using no feedback slightly improves
the model due to self-training on automatically
translated in-domain data.

Introducing sentence level feedback improves
De-En and En-Es models by at most 0.2% and
0.6% absolute BLEU, respectively. Sentence level
feedback is artificially generated from parallel cor-
pora using heuristics, similar to the ones described
in Section 3, but wi,∀i are set to the same sen-
tence weight w. For example, we have tried using
sentence BLEU (sBLEU) and a binary rule, which
outputs 1 if more than 33% of predicted words
were marked as correct, and 0 otherwise (binary).
We have also experimented with other heuristics,
but did not achieve better results.

Finally, chunk-based feedback approach based
on LCS improves on top of sentence level feed-
back by another 0.7% and 2.6% BLEU for De-
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De-En En-Es
BLEU TER BLEU TER

[%] [%] [%] [%]
Baseline 30.6 49.6 32.7 52.6
+self-training 31.4 48.1 35.6 49.1
+sent-sBLEU 31.4 48.1 36.0 48.4
+sent-binary 31.6 47.8 36.2 47.6
+chunk-match 32.2 47.0 37.9 45.4
+chunk-lcs 32.3 46.5 38.8 44.5

Table 1: Chunk-level feedback compared to
sentence-level feedback. Self-training is equiva-
lent to having no feedback or setting allwi = 1, ∀i
in the training objective in Eq. (2). sent-sBLEU
and sent-binary are sentence-level methods with
sentence BLEU and binary weighting rules, de-
fined as in Section 4.2. chunk-match and chunk-
lcs-level feedback refers to assigning wi using
simple matching or LCS method described in Sec-
tion 3.

En and En-Es, respectively. We also note a sig-
nificant improvement of 1.3% and 3.1% in TER.
Chunk-based approach based on simple matching
also outperforms sentence level methods, but not
by as much as lcs-based, which suggests that this
method benefits more from consecutive segments,
rather than single correct words.

We believe that the success of the partial feed-
back approach can be explained by the fact that of-
ten a sentence can be split into chunks which can
be translated independently of the context. Re-
inforcement of the correct translation of such a
chunk in one training example seems to positively
affect translations of such chunks in other, differ-
ent sentences. By focusing on the good and mask-
ing out erroneous chunks, partial feedback acts as
a precise noise reduction method.

We have also trained the models using fine-
tuning (Luong and Manning, 2015) on the ref-
erence target in-domain data, which further im-
proved translation by 2% and 3.8% BLEU on
De-En and En-Es compared to using chunk-based
feedback. We note that by using partial feedback
we are able to recover between 30% and 45% of
improvements that come from in-domain adapta-
tion.

4.3 Robustness

The proposed artificially generated partial feed-
back is very precise as it does not introduce any

De-En En-Es
# BLEU TER BLEU TER

[%] [%] [%] [%]
1 Chunk-level

feedback 32.3 46.5 38.8 44.5
Under selection ratio:
2 25% 32.2 47.0 38.9 45.0
3 50% 31.9 47.4 38.1 45.6
4 75% 31.4 47.9 36.7 46.7
Incorrect selection ratio:
5 10% 32.0 47.2 38.1 44.9
6 25% 31.5 47.9 37.2 46.9
7 50% 30.9 48.8 35.6 50.0
8 #2 + #5 31.6 47.7 38.1 45.5

Table 2: Impact of user errors on the translation
performance. Under selection ratio% indicates
on average what percentage of words in a correct
chunk have not been selected in user simulation,
but all selected words are correct. Incorrect se-
lection ratio% indicates what percentage of words
are incorrectly selected, here the total number of
marked words is the same as in chunk-level feed-
back. In the last row, 10% of marked words are
actually incorrect and the total number of marked
words is 25% less compared to system in row 1.

type of noise in marking of good chunks. For
example, on the En-Es dataset artificial methods
mark 40% of all words as correct. However, a user
might not mark all the correct words in a sentence,
but select only a few.

Furthermore, artificially generated partial feed-
back does not contain noise, given that the refer-
ence translation is adequate. However, users may
make mistakes in selection. We differentiate two
types of errors that a user can make: under selec-
tion, when a correct word was not marked; and
incorrect selection, when an incorrect word was
marked as correct.

To anticipate the impact of these mistakes we
experiment with deliberately impairing the feed-
back in Table 2. We see that randomly dropping
25% of the selection has very little effect on the
model, while dropping 50% and more decreases
the translation performance significantly, yet still
performing at the same level or better than self-
training system.

When selection contains noise, the impact al-
ready becomes noticeable at 10%. Increasing the
amount of noise up to 25% decreases the perfor-
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mance by 1.6% BLEU in En-Es task. At 50%
noise level, which is similar to random selection,
there is no improvement from using feedback at
all. While we expect users to provide mostly
clean feedback, this result indicates the necessity
of cleaning user feedback data, e.g. by aggregat-
ing feedback from multiple users.

We have also experimented with replacing uns-
elected words by random noise and saw only small
decrease in translation performance, which sug-
gests that our approach is able to benefit from very
poor translations, as long as the selected chunk is
correct.

4.4 Example

An example where the NMT system with chunk-
based feedback yields a better translation in com-
parison to other systems is the German sentence
“Die Krise ist vorüber.” (“The crisis is over.“).
The German word “vorüber” is rare and ambigu-
ous, especially after the BPE-based splitting. The
system with self-training translates the sentence as
“The crisis is above all.”, whereas the system with
chunk-based feedback exactly matches the refer-
ence translation. We have analyzed the feedback
training set: in that data, out of nine occurrences
of the word “vorüber” with the reference transla-
tion “over”, the baseline system got it right three
times, getting rewards for the chunks “is over ...”,
“is over”, “is over .”

5 Conclusion and future work

In this work, we have proposed a simple way to
integrate partial chunk-based feedback into NMT
training. We have experimented with artificially
created partial feedback and shown that using par-
tial feedback results in significant improvements
of MT quality in terms of BLEU and TER. We
have shown that chunk-level feedback can be used
more effectively than sentence-level feedback. We
have studied the robustness of our approach and
observed that our model is robust against a moder-
ate amount of noise.

We argue that collecting partial feedback by
asking users to highlight correct parts of a transla-
tion is more intuitive for users than sentence level
ratings and leads to less variation and errors.

In the future, we plan to investigate how to in-
tegrate negative partial user feedback, as well as
automatic feedback generation methods which do
not rely on existing parallel data.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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Abstract

A sentence can be translated into more
than one correct sentences. However, most
of the existing neural machine translation
models only use one of the correct trans-
lations as the targets, and the other cor-
rect sentences are punished as the incor-
rect sentences in the training stage. Since
most of the correct translations for one
sentence share the similar bag-of-words,
it is possible to distinguish the correct
translations from the incorrect ones by
the bag-of-words. In this paper, we pro-
pose an approach that uses both the sen-
tences and the bag-of-words as targets in
the training stage, in order to encourage
the model to generate the potentially cor-
rect sentences that are not appeared in the
training set. We evaluate our model on
a Chinese-English translation dataset, and
experiments show our model outperforms
the strong baselines by the BLEU score of
4.55.1

1 Introduction

Neural Machine Translation (NMT) has achieve
success in generating coherent and reasonable
translations. Most of the existing neural machine
translation systems are based on the sequence-
to-sequence model (Sutskever et al., 2014). The
sequence-to-sequence model (Seq2Seq) regards
the translation problem as the mapping from the
source sequences to the target sequences. The en-
coder of Seq2Seq compresses the source sentences
into the latent representation, and the decoder of
Seq2Seq generates the target sentences from the
source representations. The cross-entropy loss,

1The code is available at https://github.com/
lancopku/bag-of-words

Source: 今年前两月广东高新技术产品出
口37.6亿美元。
Reference: Export of high - tech products
in guangdong in first two months this year
reached 3.76 billion us dollars .
Translation 1: Guangdong ’s export of new
high technology products amounts to us $3.76
billion in first two months of this year .
Translation 2: Export of high - tech products
has frequently been in the spotlight , making a
significant contribution to the growth of foreign
trade in guangdong .

Table 1: An example of two generated transla-
tions. Although Translation 1 is much more rea-
sonable, it is punished more severely than Trans-
lation 2 by Seq2Seq.

which measures the distance of the generated dis-
tribution and the target distribution, is minimized
in the training stage, so that the generated sen-
tences are as similar as the target sentences.

Due to the limitation of the training set, most
of the existing neural machine translation models
only have one reference sentences as the targets.
However, a sentence can be translated into more
than one correct sentences, which have different
syntax structures and expressions but share the
same meaning. The correct translations that are
not appeared in the training set will be punished
as the incorrect translation by Seq2Seq, which is
a potential harm to the model. Table 1 shows an
example of two generated translations from Chi-
nese to English. Translation 1 is apparently more
proper as the translation of the source sentence
than Translation 2, but it is punished even more
severely than Translation 2 by Seq2Seq.

Because most of the correct translations for one
source sentence share the similar bag-of-words, it
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is possible to distinguish the correct translations
from the incorrect ones by the bag-of-words in
most cases. In this paper, we propose an approach
that uses both sentences and bag-of-words as the
targets. In this way, the generated sentences which
cover more words in the bag-of-words (e.g. Trans-
lation 1 in Table 1) are encouraged, while the in-
correct sentences (e.g. Translation 2) are pun-
ished more severely. We perform experiments on
a popular Chinese-English translation dataset. Ex-
periments show our model outperforms the strong
baselines by the BLEU score of 4.55.

2 Bag-of-Words as Target

In this section, we describe the proposed approach
in detail.

2.1 Notation

Given a translation dataset that consists of N data
samples, the i-th data sample (xi, yi) contains a
source sentence xi, and a target sentence yi. The
bag-of-words of yi is denoted as bi. The source
sentence xi, the target sentence yi, and the bag-of-
words bi are all sequences of words:

xi = {xi1, xi2, ..., xiLi
}

yi = {yi1, yi2, ..., yiMi
}

bi = {bi1, bi2, ..., biKi
}

where Li,Mi, andKi denote the number of words
in xi, yi, and bi, respectively.

The target of our model is to generate both the
target sequence yi and the corresponding bag-of-
words bi. For the purpose of simplicity, (x,y, b)
is used to denote each data pair in the rest of this
section.

2.2 Bag-of-Words Generation

We regard the bag-of-words generation as the
multi-label classification problem. We first per-
form the encoding and decoding to obtain the
scores of words at each position of the generated
sentence. Then, we sum the scores of all positions
as the sentence-level score. Finally, the sentence-
level score is used for multi-label classification,
which identifies whether the word appears in the
translation.

In our model, the encoder is a bi-directional
Long Short-term Memory Network (BiL-
STM), which produces the representation

…

……

Words

Decoder

Encoder

Bag-of-words
𝒑𝒃

𝒔𝒕𝒔𝒕−𝟏 𝒔𝒕+𝟏
… …

this year reached

今年 前 美元 。

Figure 1: The overview of our model. The en-
coder inputs the source sentence, and the decoder
outputs the word distribution at each position. The
distribution of all position is summed up to a
sentence-level score, which can be used to gen-
erate the bag-of-words.

h = {h1, h2, ..., hL} from the source text x:

~ht = ~f(xt,~ht−1) (1)

~ht = ~f(xt, ~ht+1) (2)

ht = ~ht + ~ht (3)

where ~f and ~f are the forward and the backward
functions of LSTM for one time step, ~ht and ~ht
are the forward and the backward hidden outputs
respectively, xt is the input at the t-th time step,
and L is the number of words in sequence x.

The decoder consists of a uni-directional
LSTM, with an attention, and a word generator.
The LSTM generates the hidden output qt:

qt = f(yt−1, qt−1) (4)

where f is the function of LSTM for one time step,
and yt−1 is the last generated words at t-th time
step. The attention mechanism (Luong and Man-
ning, 2015) is used to capture the source informa-
tion:

vt =
N∑

i=1

αtihi (5)
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αti =
eg(qt,hi)

∑N
j=1 e

g(qt,hj)
(6)

g(qt, hi) = tanh (qTt Wthi) (7)

where Wt is a trainable parameter matrix. Then,
the word generator is used to compute the proba-
bility of each output word at t-th time step:

pwt = softmax(st) (8)

st =Wgvt + bg (9)

where Wg and bg are parameters of the generator.
To get a sentence-level score for the generated

sentence, we generate a sequence of word-level
score vectors st at all positions with the output
layer of decoder, and then we sum up the word-
level score vectors to obtain a sentence-level score
vector. Each value in the vector represents the
sentence-level score of the corresponding word,
and the index of the value is the index of the word
in the dictionary. After normalizing the sentence-
level score with sigmoid function, we get the prob-
ability for each word, which represents how possi-
ble the word appears in the generated sentence re-
gardless of the position in the sentence. Compared
with the word-level probability pwt , the sentence-
level probability pb of each word is independent of
the position in the sentence.

More specifically, the sentence-level probability
of the generated bag-of-words pb can be written as:

pb = sigmoid(

M∑

t=1

st) (10)

where M is the number of words in the target sen-
tence.

2.3 Targets and Loss Function
We have two targets at the training stage: the ref-
erence translation (appears in the training set) and
the bag-of-words. The bag-of-words is used as the
approximate representation of the correct transla-
tions that do not appear in the training set. For the
targets, we have two parts of loss functions:

l1 = −
M∑

t=1

yt log pwt(yt) (11)

l2 = −
K∑

i=1

bi log pb(bi) (12)

The total loss function can be written as:

l = l1 + λil2 (13)

where λi is the coefficient to balance two loss
functions at i-th epoch. Since the bag-of-words
generation module is built on the top of the word
generation, we assign a small weight for the bag-
of-words training at the initial time, and gradually
increase the weight until a certain value λ:

λi = min(λ, k + αi) (14)

In our experiments, we set the λ = 1.0, k = 0.1,
and α = 0.1, based on the performance on the
validation set.

3 Experiments

This section introduces the details of our experi-
ments, including datasets, setups, baseline models
as well as results.

3.1 Datasets
We evaluated our proposed model on the NIST
translation task for Chinese-English translation
and provided the analysis on the same task. We
trained our model on 1.25M sentence pairs ex-
tracted from LDC corpora 2, with 27.9M Chinese
words and 34.5M English words. We validated
our model on the dataset for the NIST 2002 trans-
lation task and tested our model on that for the
NIST 2003, 2004, 2005, 2006, 2008 translation
tasks. We used the most frequent 50,000 words
for both the Chinese vocabulary and the English
vocabulary. The evaluation metric is BLEU (Pap-
ineni et al., 2002).

3.2 Setting
We implement the models using PyTorch, and the
experiments are conducted on an NVIDIA 1080Ti
GPU. Both the size of word embedding and hid-
den size are 512, and the batch size is 64. We
use Adam optimizer (Kingma and Ba, 2014) to
train the model with the default setting β1 = 0.9,
β2 = 0.999 and ε = 1 × 10−8, and we initialize
the learning rate to 0.0003.

Based on the performance on the development
sets, we use a 3-layer LSTM as the encoder and a
2-layer LSTM as the decoder. We clip the gradi-
ents (Pascanu et al., 2013) to the maximum norm

2The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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Model MT-02 MT-03 MT-04 MT-05 MT-06 MT-08 All
Moses (Su et al., 2016) 33.19 32.43 34.14 31.47 30.81 23.85 31.04
RNNSearch (Su et al., 2016) 34.68 33.08 35.32 31.42 31.61 23.58 31.76
Lattice (Su et al., 2016) 35.94 34.32 36.50 32.40 32.77 24.84 32.95
CPR (Zhang et al., 2017) 33.84 31.18 33.26 30.67 29.63 22.38 29.72
POSTREG (Zhang et al., 2017) 34.37 31.42 34.18 30.99 29.90 22.87 30.20
PKI (Zhang et al., 2017) 36.10 33.64 36.48 33.08 32.90 24.63 32.51
Bi-Tree-LSTM (Chen et al., 2017) 36.57 35.64 36.63 34.35 30.57 - -
Mixed RNN (Li et al., 2017) 37.70 34.90 38.60 35.50 35.60 - -
Seq2Seq+Attn (our implementation) 34.71 33.15 35.26 32.36 32.45 23.96 31.96
+Bag-of-Words (this paper) 39.77 38.91 40.02 36.82 35.93 27.61 36.51

Table 2: Results of our model and the baselines (directly reported in the referred articles) on the Chinese-
English translation. “-” means that the studies did not test the models on the corresponding datasets.

of 10.0. Dropout is used with the dropout rate set
to 0.2. Following Xiong et al. (2017), we use beam
search with a beam width of 10 to generate transla-
tion for the evaluation and test, and we normalize
the log-likelihood scores by sentence length.

3.3 Baselines

We compare our model with several NMT sys-
tems, and the results are directly reported in their
articles.

• Moses is an open source phrase-based trans-
lation system with default configurations and
a 4-gram language model trained on the train-
ing data for the target language.

• RNNSearch (Bahdanau et al., 2014) is a
bidirectional GRU based model with the at-
tention mechanism. The results of Moses,
and RNNSearch come from Su et al. (2016).

• Lattice (Su et al., 2016) is a Seq2Seq model
which encodes the sentences with multiple
tokenizations.

• Bi-Tree-LSTM (Chen et al., 2017) is a tree-
structured model which models source-side
syntax.

• Mixed RNN (Li et al., 2017) extends
RNNSearch with a mixed RNN as the en-
coder.

• CPR (Wu et al., 2016) extends RNNSearch
with a coverage penalty.

• POSTREG (Ganchev et al., 2010) extends
RNNSearch with posterior regularization

with a constrained posterior set. The results
of CPR, and POSTREG come from Zhang
et al. (2017).

• PKI (Zhang et al., 2017) extends RNNSearch
with posterior regularization to integrate
prior knowledge.

3.4 Results

Table 2 shows the overall results of the sys-
tems on the Chinese-English translation task. We
compare our model with our implementation of
Seq2Seq+Attention model. For fair comparison,
the experimental setting of Seq2Seq+Attention is
the same as BAT, so that we can regard it as our
proposed model removing the bag-of-words tar-
get. The results show that our model achieves the
BLEU score of 36.51 on the total test sets, which
outperforms the Seq2Seq baseline by the BLEU of
4.55.

In order to further evaluate the performance of
our model, we compare our model with the recent
NMT systems which have been evaluated on the
same training set and the test sets as ours. Their
results are directly reported in the referred arti-
cles. As shown in Table 2, our model achieves
high BLEU scores on all of the NIST Machine
Translation test sets, which demonstrates the ef-
ficiency of our model.

We also give two translation examples of our
model. As shown in Table 3, The translations
of Seq2Seq+Attn omit some words, such as “of ”,
“committee”, and “protection”, and contain some
redundant words, like “human chromosome” and
“<unk>”. Compared with Seq2Seq, the transla-
tions of our model is more informative and ade-

335



Source: 人类共有二十三对染色体。
Reference: Humans have a total of 23 pairs of
chromosomes .
Seq2Seq+Attn: Humans have 23 pairs chro-
mosomes in human chromosome .
+Bag-of-Words: There are 23 pairs of chro-
mosomes in mankind .
Source: 一名奥林匹克筹备委员会官员
说:「这项倡议代表筹委会对环保的敏感
性。」

Reference: An official from the olympics or-
ganization committee said : “ this proposal rep-
resents the committee ’s sensitivity to environ-
mental protection . ”
Seq2Seq+Attn: An official of the olympic
preparatory committee said : “ this proposal
represents the <unk> of environmental sensi-
tivity . ”
+Bag-of-Words: An official of the olympic
preparatory committee said : “ this proposal
represents the sensitivity of the preparatory
committee on environmental protection . ”

Table 3: Two translation examples of our model,
compared with the Seq2Seq+Attn baseline.

quate, with a better coverage of the bag-of-words
of the references.

4 Related Work

The studies of encoder-decoder framework
(Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014) for this task launched
the Neural Machine Translation. To improve the
focus on the information in the encoder, Bahdanau
et al. (2014) proposed the attention mechanism,
which greatly improved the performance of the
Seq2Seq model on NMT. Most of the existing
NMT systems are based on the Seq2Seq model
and the attention mechanism. Some of them have
variant architectures to capture more information
from the inputs (Su et al., 2016; Xiong et al.,
2017; Tu et al., 2016), and some improve the
attention mechanism (Luong et al., 2015; Meng
et al., 2016; Mi et al., 2016; Jean et al., 2015;
Feng et al., 2016; Calixto et al., 2017), which also
enhanced the performance of the NMT model.

There are also some effective neural networks
other RNN. Gehring et al. (2017) turned the
RNN-based model into CNN-based model, which

greatly improves the computation speed. Vaswani
et al. (2017) only used attention mechanism to
build the model and showed outstanding perfor-
mance. Also, some researches incorporated ex-
ternal knowledge and also achieved obvious im-
provement (Li et al., 2017; Chen et al., 2017).

There is also a study (Zhao et al., 2017) shares a
similar name with this work, i.e. bag-of-word loss,
our work has significant difference with this study.
First, the methods are very different. The previous
work uses the bag-of-word to constraint the latent
variable, and the latent variable is the output of
the encoder. However, we use the bag-of-word to
supervise the distribution of the generated words,
which is the output of the decoder. Compared with
the previous work, our method directly supervises
the predicted distribution to improve the whole
model, including the encoder, the decoder and the
output layer. On the contrary, the previous work
only supervises the output of the encoder, and only
the encoder is trained. Second, the motivations are
quite different. The bag-of-word loss in the previ-
ous work is an assistant component, while the bag
of word in this paper is a direct target. For exam-
ple, in the paper you mentioned, the bag-of-word
loss is a component of variational autoencoder to
tackle the vanishing latent variable problem. In
our paper, the bag of word is the representation of
the unseen correct translations to tackle the data
sparseness problem.

5 Conclusions and Future Work

We propose a method that regard both the refer-
ence translation (appears in the training set) and
the bag-of-words as the targets of Seq2Seq at the
training stage. Experimental results show that our
model obtains better performance than the strong
baseline models on a popular Chinese-English
translation dataset. In the future, we will explore
how to apply our method to other language pairs,
especially the morphologically richer languages
than English, and the low-resources languages.
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Abstract

To achieve high translation performance,
neural machine translation models usually
rely on the beam search algorithm for de-
coding sentences. The beam search finds
good candidate translations by consider-
ing multiple hypotheses of translations si-
multaneously. However, as the algorithm
searches in a monotonic left-to-right order,
a hypothesis can not be revisited once it
is discarded. We found such monotonicity
forces the algorithm to sacrifice some de-
coding paths to explore new paths. As a
result, the overall quality of the hypothe-
ses selected by the algorithm is lower than
expected. To mitigate this problem, we re-
lax the monotonic constraint of the beam
search by maintaining all found hypothe-
ses in a single priority queue and using
a universal score function for hypothesis
selection. The proposed algorithm allows
discarded hypotheses to be recovered in a
later step. Despite its simplicity, we show
that the proposed decoding algorithm en-
hances the quality of selected hypotheses
and improve the translations even for high-
performance models in English-Japanese
translation task.

1 Introduction

Machine translation models composed of end-
to-end neural networks (Sutskever et al., 2014;
Bahdanau et al., 2014; Shazeer et al., 2017;
Gehring et al., 2017) are starting to become main-
stream. Essentially, neural machine translation
(NMT) models define a probabilistic distribution
p(yt|y1, ..., yt−1, X) to generate translations. Dur-
ing translation phase, new words are sampled from
this distribution.

As the search space of possible outputs is in-
credibly large, we can only afford to explore a
limited number of search paths. In practice, NMT
models use the beam search algorithm to generate
output sequences in a limited time budget (Graves,
2012; Sutskever et al., 2014). Beam search limits
the search space by considering only a fixed num-
ber of hypotheses (i.e., partial translations) in each
step, and predicting next output words only for the
selected hypotheses. The fixed number B is re-
ferred to as beam size. Beam search keeps decod-
ing until B finished translations that end with an
end-of-sequence token “〈/s〉” are found.

Comparing to the greedy search that only con-
siders the best hypothesis in each step, beam
search can find a good candidate translation that
suffers in a middle step. Generally, using beam
search can improve the quality of outputs over the
greedy search. However, we found that the hard
restriction of hypothesis selection imposed by the
beam search affects the quality of the decoding
paths negatively.

We can think the decoding process of an NMT
model as solving a pathfinding problem, where we
search for an optimal path starts from “〈s〉” and
ends at “〈/s〉”. For any pathfinding algorithm, a
certain amount of exploration is crucial for making
sure that the algorithm is following a right path.
For beam search, since the beam size is fixed, it
must give up some currently searching paths in or-
der to explore new paths. The problem has a sim-
ilar flavor as the exploration-exploitation dilemma
in reinforcement learning. As the beam search de-
codes in left-to-right order monotonically, a dis-
carded decoding path can not be recovered later.

As the decoding algorithm is essentially driven
by a language model, an output with high proba-
bility (local score) is not guaranteed to have high
scores for future predictions. Beam search can be
trapped by such a high-confidence output. This is-
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Figure 1: An intuitive comparison between beam search and single-queue decoding (SQD) with a beam
size of 2. In each step, two selected hypotheses (solid boxes) and one immediately discarded hypothesis
(dashed boxes) are shown in the figure. In the top right of selected hypotheses, the step numbers when
they are selected are marked. The hypothesis “an apple tree” is discarded in step 3 in both algorithms.
Comparing to beam search, SQD is able to recover this hypothesis in step 4 when other hypotheses have
worse scores.

sue is more severe for language pairs that are not
well aligned. One solution is to predict the ex-
pected future scores, which is considerably diffi-
cult. Another workaround for this problem is to
enable the algorithm to revisit a previous hypothe-
sis when the quality of current ones degrades.

In this work, we extend the beam search to in-
troduce more flexibility. We manage all found hy-
potheses in a single priority queue so that they can
be selected later when necessary. Based on a uni-
versal score function, the hypotheses with highest
scores are selected to be expanded. The proposed
algorithm is referred to as single-queue decoding
(SQD) in this paper.

As the priority queue can contain massive hy-
potheses, we design two auxiliary score functions
to help the algorithm select proper candidates. Ex-
periments show that the proposed algorithm is
able to improve the quality of selected hypotheses
and thus results in better performance in English-
Japanese translation task.

2 Related Work

To improve the quality of the score function in
beam search, Wiseman and Rush (2016) propose
to run beam search in the forward pass of train-
ing, then apply a new objective function to ensure
the gold output does not fall outside the beam. An
alternative approach is to correct the scores with
reinforcement learning (Li et al., 2017). Diverse
decoding (Li et al., 2016; Li and Jurafsky, 2016)
modifies the score function for increase the diver-
sity of hypotheses. In contrast, this work focuses
on removing the constraint of beam search rather
than improving the score function.

Hu et al. (2015) also describes a priority queue
integrated with the standard beam search but has
a different mechanism and purpose. The prior-
ity queue in their work contains top-1 hypothe-
ses from different hypothesis stacks. In each step,
only one hypothesis from the queue is allowed to
be considered. Their purpose is to use the priority
queue to speed up beam search at the cost of slight
performance loss, which is different to this work.

As the proposed algorithm is a best-first search-
ing algorithm, which has a flavor similar to A∗

search (Hart et al., 1968). Typical implementa-
tions of A∗ search also use a priority queue (heap)
to maintain visited paths.

3 Deficiency of Beam Search

Since the beam size is fixed, when the algorithm
attempts to explore multiple new decoding paths
for a hypothesis, it has to discard some existing
decoding paths. However, the new decoding paths
may lead to bad hypotheses in the near future.
As past hypotheses can not be revisited again, the
beam search has to decode the hypotheses with de-
graded qualities continually. This phenomenon is
illustrated in Fig. 1 (a), where the graph depicts the
decoding process of a sentence. The correct output
is supposed to be “an apple tree is there” or “there
is an apple tree”. In step 3, as the algorithm ex-
plores two new hypotheses in the bottom branch,
the hypothesis “an apple tree” is discarded. In the
next step, it realized that the hypothesis “there is
a” leads to a wrong path. However, as the algo-
rithm can not return to a discarded hypothesis, the
beam search has to keep searching in the hopeless
path. In this case, the candidate “an apple tree is
there” can never be reached.
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Algorithm 1 Single-queue decoding

Initialize:
B ← beam size
H ← empty hypothesis queue
T ← max steps

for t← 1 to T do
S ← pop best B unfinished hyps from H
S′ ← expand S to get B ×K new hyps
Evaluate scores of hyps in S′ with Eq. 1
Push S′ into H
if #(finished hyps in H) ≥ B then

break
ŷ ← best finished hyp in H
output ŷ

4 Single-Queue Decoding

In this section, we introduce an extended decod-
ing algorithm of the beam search, which main-
tains a single priority queue that contains all vis-
ited hypotheses. In contrast to the standard beam
search, which only considers hypotheses with the
same length in each step, the proposed algorithm
selected arbitrary hypotheses from the queue that
may differ in length. Therefore, a hypothesis dis-
carded in one step can be recovered in a later step.

An intuitive illustration of the proposed algo-
rithm can be found in Fig. 1 (b). In step 4, the pro-
posed algorithm is able to recover the hypothesis
“an apple tree” from the queue which is discarded
a previous step.

The pseudo code of the single-queue decod-
ing algorithm is given in Alg. 1. Let B be the
beam size. The algorithm will keep decoding un-
til finding B finished translation candidates. The
proposed decoding algorithm relies on a universal
score function score(y) to evaluate a hypothesis
y. In each step, the hypotheses with highest scores
are removed from the queue to predict next words
for them. New expanded hypotheses are pushed
back into the queue after scoring.

In hypothesis expansion, we collect B×K (but
not B × |V |) hypotheses that have highest local
scores (word probability). This simple filtering is
essential to avoid spending to much time comput-
ing the score function. In practice, we set K = B.

4.1 Universal Score Function

In the proposed algorithm, a score function is re-
quired to fairly evaluate hypotheses with different

lengths, which has the following form:

score(y) =
1

|y|λ
log p(y|X)+αPG(y)+β LMP(y).

(1)
The first part of the equation is the log probabil-

ity with length-normalization, where λ is a hyper-
parameter that is similar to the definition of length
penalty in Wu et al. (2016). We found simply uti-
lizing this score function will sometimes cause the
algorithm decode for infinite steps. To help the
algorithm select proper candidates from the large
queue, we designed two auxiliary penalties.

Progress Penalty: The second part of Eq. 1 is a
progress penalty, which encourages the algorithm
to select longer hypotheses:

PG(y) =

{
0 if y finished
|y|γ
|X|γ otherwise

(2)

where γ are is weight that control the strength of
this function. The progress penalty encourages the
algorithm to select longer hypotheses.

Length Matching Penalty: The last part of
Eq. 1 is a length matching penalty. It filters out
the hypotheses that tend to produce a final transla-
tion much shorter or longer than expected.

To achieve this, we predict two Gaussian distri-
butions. One distribution plx predicts the expected
length of a correct translation. Another Gaussian
ply predicts the expected final length if decoding a
particular hypothesis. The parameters of the dis-
tributions (µx, σx and µy, σy) are predicted by an
additional simple neural network, which is trained
separately from the NMT model. Then we com-
pute the cross-entropy of the two Gaussians to
measure whether the expected length of transla-
tion tends to match the correct length as:

H(plx, p
l
y) =

1

2
log(2πσy

2) +
σx

2 + (µy − µx)2
2σy2

.

(3)

We penalize a hypothesis if the cross entropy
exceeds a threshold τ as:

LMP(y) =

{
0 if y finished
I(H(plx, p

l
y) > τ) otherwise

(4)

where I(·) is an indicator function.
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5 Experiments

5.1 Experimental Settings

We evaluate the proposed decoding algorithm
mainly with an off-the-shelf NMT model (Bah-
danau et al., 2014), which has a bi-directional
LSTM encoder and a single-layer LSTM decoder.
The embeddings and LSTM layers have a size
of 1000. We evaluate the algorithms on AS-
PEC English-Japanese translation task (Nakazawa
et al., 2016). The vocabulary contains 80k words
for English side and 40k words for the Japanese
side. We report BLEU score based on a standard
post-processing procedure 1.

All NMT models in this work are trained with
Nesterov’s accelerated gradient (Nesterov, 1983)
with an initial learning rate of 0.25. The learn-
ing rate is decreased by a factor of 10 if no im-
provement is observed in 20k iterations. The train-
ing ends after the learning rate is annealed for
three times. The models are trained on 4 GPUs;
each GPU computes the gradient of a mini-batch.
The gradients are averaged and distributed to each
GPU using the nccl framework.

The hyperparameters of the decoding algo-
rithms are tuned by Bayesian optimization (Snoek
et al., 2012) on a small validation set composed of
500 sentences. We utilize the “bayes opt” pack-
age for Bayesian optimization. We use the default
acquisition function “ucb” with a κ value of 5. We
first explore 50 initial points, then optimize for an-
other 50 iterations.

We allow the decoding algorithms to run for a
maximum of 150 steps. If the algorithm fails to
find a finished translation in the limited steps, an
empty translation is outputted.

5.2 Main Results

The main evaluation results are shown in Table
1, which uses a beam size of 5 as such a small
beam size is more useful in a production system.
The results show that the proposed single-queue
decoding (SQD) algorithm significantly improves
the quality of translations. With the length match-
ing penalty (LMP), SQD outperforms the beam
search with length-normalization by 1.14 BLEU
on the test set. Without the progress penalty (PG),
the scores are much worse.

Since SQD computes B hypotheses in batch
mode at each step just like beam search, the com-

1We use Kytea to re-tokenize results in evaluation.

BLEU(%)
#step

time
(ms)valid test

vanilla beam search 29.61 32.87 30.3 199
w/ length-normalization 37.16 34.29 30.3 208

SQD w/o PG 38.09 34.62 36.1 238
SQD w/ PG 38.50 35.03 33.8 225

SQD w/ PG, LMP 38.93 35.43 35.0 260

Table 1: Evaluation results using a baseline model
with a beam size of 5

Test BLEU(%)
BS=3 BS=5 BS=8 BS=12

beam search w/ LN 37.69 37.93 38.26 38.38
SQD w/ PG 38.18 38.68 38.98 39.02

SQD w/ PG, LMP 38.37 38.73 38.89 38.98

Table 2: Evaluation results using a large NMT
model with different beam sizes (BS). The scores
of the beam search with length-normalization
(LN) are reported as the baselines.

putational cost inside the loop of Alg. 1 remains
the same. The factor affecting the decoding time
is the actual number of time steps. To clarify that
SQD does not improve the performance by signif-
icantly increasing the number of steps, we also re-
port the average number of steps and the decoding
time for translating one sentence. We can see that
it is effective applying length matching penaltiy.
However, it slows down the algorithm as extra
computation is required.

5.3 Experiments with a Large NMT Model

In order to see whether the performance gain can
be generalized to deeper models, we train a large
NMT model with two layers of LSTM decoders.
We apply residual connection (He et al., 2016)
to the decoder states. Before the softmax layer,
an additional fully-connected layer with 600 hid-
den units is applied. For the attention mechanism,
we use a variant of the key-value attention (Miller
et al., 2016), where the keys are computed by
a linear transformation of the encoder states, the
queries of the attention are the sum of the feedback
word embeddings and the LSTM states of the first
decoder. Dropout (Srivastava et al., 2014) is ap-
plied everywhere after non-recurrent layers with a
dropping rate of 0.2. To further enhance the model
performance, we use byte pair encoding (Sennrich
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et al., 2016) with a coding size of 40k to segment
the sentences of the training data into subwords.
The experiment results are shown in Table 2.

By applying various techniques, the NMT
model achieves high single-model BLEU scores.
The results indicate that SQD is still effective with
a high-performance NMT model. The proposed
algorithm is more effective with a small beam size.
For this model, the contribution of length match-
ing penalty is only beneficial when the beam size
is smaller than 8, which may be a side-effect of
applying byte pair encoding (BPE). As it is more
difficult to correctly predict the number of output
tokens in sub-word level.

6 Discussion

The proposed algorithm requires a block of GPU
memory for storing the states of LSTM decoders
for all stored hypotheses in the priority queue. The
increased memory usage does not cause a problem
unless a large beam size is used.

Although all hypotheses are expected to be
evaluated fairly, we found only averagely 2 dis-
carded hypotheses are recovered when decoding
each sentence. The reason is that longer hypothe-
ses tend to have higher local scores in general,
which makes it difficult for the algorithm to select
a short hypothesis. As a future work, a better score
function is required to fully exploit the flexibility
of the proposed algorithm.

7 Conclusion

In this paper, we present a novel decoding algo-
rithm that removes the constraint imposed by the
monotonicity of beam search, so that a discarded
hypothesis can be revisited in a later step.

The proposed algorithm maintains all reusable
hypotheses in a single priority queue. In each step,
the algorithm selects hypotheses from the queue
with highest scores evaluated by a universal score
function. We design two auxiliary scores to help
selecting proper hypotheses from a large queue.

Acknowledgments

This work is supported by JSPS KAKENHI Grant
Number 16H05872.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly

learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann Dauphin. 2017. Convo-
lutional sequence to sequence learning. CoRR,
abs/1705.03122.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. CoRR, abs/1211.3711.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael.
1968. Correction to ”a formal basis for the heuris-
tic determination of minimum cost paths”. SIGART
Newsletter, 37:28–29.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Xiaoguang Hu, Wei Li, Xiang Lan, Hua Wu, and
Haifeng Wang. 2015. Improved beam search with
constrained softmax for nmt. Proceedings of MT
Summit XV, page 297.

Jiwei Li and Daniel Jurafsky. 2016. Mutual informa-
tion and diverse decoding improve neural machine
translation. CoRR, abs/1601.00372.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Learn-
ing to decode for future success. arXiv preprint
arXiv:1701.06549.

Jiwei Li, Will Monroe, and Daniel Jurafsky. 2016. A
simple, fast diverse decoding algorithm for neural
generation. CoRR, abs/1611.08562.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In EMNLP.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. Aspec: Asian
scientific paper excerpt corpus. In LREC.

Yurii Nesterov. 1983. A method for unconstrained con-
vex minimization problem with the rate of conver-
gence o (1/k2). In Doklady an SSSR, volume 269,
pages 543–547.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In NIPS.

343



Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In EMNLP.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

344



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 345–350
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Leveraging distributed representations and lexico-syntactic fixedness for
token-level prediction of the idiomaticity of English verb–noun

combinations

Milton King and Paul Cook
Faculty of Computer Science, University of New Brunswick

Fredericton, NB E3B 5A3 Canada
milton.king@unb.ca, paul.cook@unb.ca

Abstract

Verb–noun combinations (VNCs) — e.g.,
blow the whistle, hit the roof, and see stars
— are a common type of English idiom
that are ambiguous with literal usages. In
this paper we propose and evaluate models
for classifying VNC usages as idiomatic or
literal, based on a variety of approaches to
forming distributed representations. Our
results show that a model based on aver-
aging word embeddings performs on par
with, or better than, a previously-proposed
approach based on skip-thoughts. Id-
iomatic usages of VNCs are known to ex-
hibit lexico-syntactic fixedness. We fur-
ther incorporate this information into our
models, demonstrating that this rich lin-
guistic knowledge is complementary to the
information carried by distributed repre-
sentations.

1 Introduction

Multiword expressions (MWEs) are combinations
of multiple words that exhibit some degree of id-
iomaticity (Baldwin and Kim, 2010). Verb–noun
combinations (VNCs), consisting of a verb with a
noun in its direct object position, are a common
type of semantically-idiomatic MWE in English
and cross-lingually (Fazly et al., 2009). Many
VNCs are ambiguous between MWEs and literal
combinations, as in the following examples of see
stars, in which 1 is an idiomatic usage (i.e., an
MWE), while 2 is a literal combination.1

1. Hereford United were seeing stars at Gilling-
ham after letting in 2 early goals

2. Look into the night sky to see the stars
1These examples, and idiomaticity judgements, are taken

from the VNC-Tokens dataset (Cook et al., 2008).

MWE identification is the task of automati-
cally determining which word combinations at
the token-level form MWEs (Baldwin and Kim,
2010), and must be able to make such distinctions.
This is particularly important for applications such
as machine translation (Sag et al., 2002), where
the appropriate meaning of word combinations in
context must be preserved for accurate translation.

In this paper, following prior work (e.g., Salton
et al., 2016), we frame token-level identification of
VNCs as a supervised binary classification prob-
lem, i.e., idiomatic vs. literal. We consider a
range of approaches to forming distributed rep-
resentations of the context in which a VNC oc-
curs, including word embeddings (Mikolov et al.,
2013), word embeddings tailored to representing
sentences (Kenter et al., 2016), and skip-thoughts
sentence embeddings (Kiros et al., 2015). We
then train a support vector machine (SVM) on
these representations to classify unseen VNC in-
stances. Surprisingly, we find that an approach
based on representing sentences as the average of
their word embeddings performs comparably to,
or better than, the skip-thoughts based approach
previously proposed by Salton et al. (2016).

VNCs exhibit lexico-syntactic fixedness. For
example, the idiomatic interpretation in example
1 above is typically only accessible when the verb
see has active voice, the determiner is null, and the
noun star is in plural form, as in see stars or seeing
stars. Usages with a determiner (as in example 2),
a singular noun (e.g., see a star), or passive voice
(e.g., stars were seen) typically only have the lit-
eral interpretation.

In this paper we further incorporate knowl-
edge of the lexico-syntactic fixedness of VNCs
— automatically acquired from corpora using the
method of Fazly et al. (2009) — into our various
embedding-based approaches. Our experimental
results show that this leads to substantial improve-
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ments, indicating that this rich linguistic knowl-
edge is complementary to that available in dis-
tributed representations.

2 Related work

Much research on MWE identification has fo-
cused on specific kinds of MWEs (e.g., Patrick
and Fletcher, 2005; Uchiyama et al., 2005), in-
cluding English VNCs (e.g., Fazly et al., 2009;
Salton et al., 2016), although some recent work
has considered the identification of a broad range
of kinds of MWEs (e.g., Schneider et al., 2014;
Brooke et al., 2014; Savary et al., 2017).

Work on MWE identification has leveraged rich
linguistic knowledge of the constructions under
consideration (e.g., Fazly et al., 2009; Fothergill
and Baldwin, 2012), treated literal and idiomatic
as two senses of an expression and applied ap-
proaches similar to word-sense disambiguation
(e.g., Birke and Sarkar, 2006; Hashimoto and
Kawahara, 2008), incorporated topic models (e.g.,
Li et al., 2010), and made use of distributed repre-
sentations of words (Gharbieh et al., 2016).

In the most closely related work to ours, Salton
et al. (2016) represent token instances of VNCs by
embedding the sentence that they occur in using
skip-thoughts (Kiros et al., 2015) — an encoder–
decoder model that can be viewed as a sentence-
level counterpart to the word2vec (Mikolov et al.,
2013) skip-gram model. During training the target
sentence is encoded using a recurrent neural net-
work, and is used to predict the previous and next
sentences. Salton et al. then use these sentence
embeddings, representing VNC token instances,
as features in a supervised classifier. We treat this
skip-thoughts based approach as a strong baseline
to compare against.

Fazly et al. (2009) formed a set of eleven lexico-
syntactic patterns for VNC instances capturing the
voice of the verb (active or passive), determiner
(e.g., a, the), and number of the noun (singular or
plural). They then determine the canonical form,
C(v, n), for a given VNC as follows:2

C(v, n) = {ptk ∈ P |z(v, n, ptk) > Tz} (1)

where P is the set of patterns, Tz is a predeter-
mined threshold, which is set to 1, and z(v, n, ptk)
is calculated as follows:

z(v, n, ptk) =
f(v, n, ptk)− f

s
(2)

2In a small number of cases a VNC is found to have a
small number of canonical forms, as opposed to just one.

where f(·) is the frequency of a VNC occurring in
a given pattern in a corpus,3 and f and s are the
mean and standard deviations for all patterns for
the given VNC, respectively.

Fazly et al. (2009) showed that idiomatic usages
of a VNC tend to occur in that expression’s canon-
ical form, while literal usages do not. This ap-
proach provides a strong, linguistically-informed,
unsupervised baseline, referred to as CForm, for
predicting whether VNC instances are idiomatic
or literal. In this paper we incorporate knowl-
edge of canonical forms into embedding-based ap-
proaches to VNC token classification, and show
that this linguistic knowledge can be leveraged to
improve such approaches.

3 Models

We describe the models used to represent VNC
token instances below. For each model, a linear
SVM classifier is trained on these representations.

3.1 Word2vec

We trained word2vec’s skip-gram model (Mikolov
et al., 2013) on a snapshot of Wikipedia from
September 2015, which consists of approximately
2.6 billion tokens. We used a window size of ±8
and 300 dimensions. We ignore all words that oc-
cur less than fifteen times in the training corpus,
and did not set a maximum vocabulary size. We
perform negative sampling and set the number of
training epochs to five. We used batch processing
with approximately 10k words in each batch.

To embed a given a sentence containing a VNC
token instance, we average the word embeddings
for each word in the sentence, including stop-
words.4 Prior to averaging, we normalize each
embedding to have unit length.

3.2 Siamese CBOW

The Siamese CBOW model (Kenter et al., 2016)
learns word embeddings that are better able to
represent a sentence through averaging than con-
ventional word embeddings such as skip-gram or
CBOW. We use a Siamese CBOW model that
was pretrained on a snapshot of Wikipedia from
November 2012 using randomly initialized word

3Fazly et al. (2009) used the British National Corpus
(Burnard, 2000).

4Preliminary experiments showed that models performed
better when stopword removal was not applied.
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embeddings.5 Similarly to the word2vec model,
to embed a given sentence containing a VNC in-
stance, we average the word embeddings for each
word in the sentence.

3.3 Skip-thoughts
We use a publicly-available skip-thoughts model,
that was pre-trained on a corpus of books.6 We
represent a given sentence containing a VNC in-
stance using the skip-thoughts encoder. Note that
this approach is our re-implementation of the skip-
thoughts based method of Salton et al. (2016), and
we use it as a strong baseline for comparison.

4 Data and evaluation

In this section, we discuss the dataset used in our
experiments, and the evaluation of our models.

4.1 Dataset
We use the VNC-Tokens dataset (Cook et al.,
2008) — the same dataset used by Fazly et al.
(2009) and Salton et al. (2016) — to train and eval-
uate our models. This dataset consists of sentences
containing VNC usages drawn from the British
National Corpus (Burnard, 2000),7 along with a
label indicating whether the VNC is an idiomatic
or literal usage (or whether this cannot be deter-
mined, in which case it is labelled “unknown”).

VNC-Tokens is divided into DEV and TEST sets
that each include fourteen VNC types and a to-
tal of roughly six hundred instances of these types
annotated as literal or idiomatic. Following Salton
et al. (2016), we use DEV and TEST, and ignore all
token instances annotated as “unknown”.

Fazly et al. (2009) and Salton et al. (2016) struc-
tured their experiments differently. Fazly et al. re-
port results over DEV and TEST separately. In this
setup TEST consists of expressions that were not
seen during model development (done on DEV).
Salton et al., on the other hand, merge DEV and
TEST, and create new training and testing sets,
such that each expression is present in the training
and testing data, and the ratio of idiomatic to lit-
eral usages of each expression in the training data
is roughly equal to that in the testing data.

We borrowed ideas from both of these ap-
proaches in structuring our experiments. We retain

5https://bitbucket.org/TomKenter/
siamese-cbow

6https://github.com/ryankiros/
skip-thoughts

7http://www.natcorp.ox.ac.uk

Model
Penalty cost

0.01 0.1 1 10 100
Word2vec 0.619 0.654 0.818 0.830 0.807
Siamese CBOW 0.619 0.621 0.665 0.729 0.763
Skip-thoughts 0.661 0.784 0.803 0.800 0.798

Table 1: Accuracy on DEV while tuning the
penalty cost for the SVM for each model. The
highest accuracy for each model is shown in bold-
face.

the type-level division of Fazly et al. (2009) into
DEV and TEST. We then divide each of these into
training and testing sets, using the same ratios of
idiomatic to literal usages for each expression as
Salton et al. (2016). This allows us to develop and
tune a model on DEV, and then determine whether,
when retrained on instances of unseen VNCs in
(the training portion of) TEST, that model is able
to generalize to new VNCs without further tuning
to the specific expressions in TEST.

4.2 Evaluation

The proportion of idiomatic usages in the testing
portions of both DEV and TEST is 63%. We there-
fore use accuracy to evaluate our models following
Fazly et al. (2009) because the classes are roughly
balanced. We randomly divide both DEV and TEST

into training and testing portions ten times, follow-
ing Salton et al. (2016). For each of the ten runs,
we compute the accuracy for each expression, and
then compute the average accuracy over the ex-
pressions. We then report the average accuracy
over the ten runs.

5 Experimental results

In this section we first consider the effect of tun-
ing the cost parameter of the SVM for each model
on DEV, and then report results on DEV and TEST

using the tuned models.

5.1 Parameter tuning

We tune the SVM for each model on DEV by car-
rying out a linear search for the penalty cost from
0.01–100, increasing by a factor of ten each time.
Results for this parameter tuning are shown in
Table 1. These results highlight the importance
of choosing an appropriate setting for the penalty
cost. For example, the accuracy of the word2vec
model ranges from 0.619–0.830 depending on the
cost setting. In subsequent experiments, for each
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Model
DEV TEST

−CF +CF −CF +CF
CForm - 0.721 - 0.749
Word2vec 0.830 0.854 0.804 0.852
Siamese CBOW 0.763 0.774 0.717 0.779
Skip-thoughts 0.803 0.827 0.786 0.842

Table 2: Accuracy on DEV and TEST for each
model, without (−CF) and with (+CF) the canon-
ical form feature. The highest accuracy for each
setting on each dataset is shown in boldface.

model, we use the penalty cost that achieves the
highest accuracy in Table 1.

5.2 DEV and TEST results

In Table 2 we report results on DEV and TEST for
each model, as well as the unsupervised CForm
model of Fazly et al. (2009), which simply labels a
VNC as idiomatic if it occurs in its canonical form,
and as literal otherwise. We further consider each
model (other than CForm) in two setups. −CF
corresponds to the models as described in Sec-
tion 3. +CF further incorporates lexico-syntactic
knowledge of canonical forms into each model
by concatenating the embedding representing each
VNC token instance with a one-dimensional vec-
tor which is one if the VNC occurs in its canonical
form, and zero otherwise.

We first consider results for the −CF setup.
On both DEV and TEST, the accuracy achieved
by each supervised model is higher than that
of the unsupervised CForm approach, except for
Siamese CBOW on TEST. The word2vec model
achieves the highest accuracy on DEV and TEST

of 0.830 and 0.804, respectively. The difference
between the word2vec model and the next-best
model, skip-thoughts, is significant using a boot-
strap test (Berg-Kirkpatrick et al., 2012) with 10k
repetitions for DEV (p = 0.006), but not for TEST

(p = 0.051). Nevertheless, it is remarkable that
the relatively simple approach to averaging word
embeddings used by word2vec performs as well
as, or better than, the much more complex skip-
thoughts model used by Salton et al. (2016).8

8The word2vec and skip-thoughts models were trained on
different corpora, which could contribute to the differences
in results for these models. We therefore carried out an ad-
ditional experiment in which we trained word2vec on Book-
Corpus, the corpus on which skip-thoughts was trained. This
new word2vec model achieved accuracies of 0.825 and 0.809,
on DEV and TEST, respectively, which are also higher accu-

Turning to the +CF setup, we observe that, for
both DEV and TEST, each model achieves higher
accuracy than in the −CF setup.9 All of these
differences are significant using a bootstrap test
(p < 0.002 in each case). In addition, each method
outperforms the unsupervised CForm approach on
both DEV and TEST. These findings demonstrate
that the linguistically-motivated, lexico-syntactic
knowledge encoded by the canonical form fea-
ture is complementary to the information from
a wide range of types of distributed representa-
tions. In the +CF setup, the word2vec model
again achieves the highest accuracy on both DEV

and TEST of 0.854 and 0.852, respectively.10 The
difference between the word2vec model and the
next-best model, again skip-thoughts, is signifi-
cant for both DEV and TEST using a bootstrap test
(p < 0.05 in each case).

To better understand the impact of the canonical
form feature when combined with the word2vec
model, we compute the average precision, recall,
and F1 score for each MWE for both the positive
(idiomatic) and negative (literal) classes, for each
run on TEST.11 For a given run, we then compute
the average precision, recall, and F1 score across
all MWEs, and then the average over all ten runs.
We do this using CForm, and the word2vec model
with and without the canonical form feature. Re-
sults are shown in Table 3. In line with the findings
of Fazly et al. (2009), CForm achieves higher pre-
cision and recall on idiomatic usages than literal
ones. In particular, the relatively low recall for the
literal class indicates that many literal usages oc-
cur in a canonical form. Comparing the word2vec
model with and without the canonical form fea-
ture, we see that, when this feature is used, there
is a relatively larger increase in precision and re-
call (and F1 score) for the literal class, than for the
idiomatic class. This indicates that, although the

racies than those obtained by the skip-thoughts model.
9In order to determine that this improvement is due to the

information about canonical forms carried by the additional
feature in the +CF setup, and not due to the increase in num-
ber of dimensions, we performed additional experiments in
which we concatenated the embedding representations with
a random binary feature, and with a randomly chosen value
between 0 and 1. For each model, neither of these approaches
outperformed that model using the +CF setup.

10In the +CF setup, the word2vec model using embed-
dings that were trained on the same corpus as skip-thoughts
achieved accuracies of 0.846 and 0.851, on DEV and TEST,
respectively. These are again higher accuracies than the cor-
responding setup for the skip-thoughts model.

11We carried out the same analysis on DEV. The findings
were similar.

348



Model
Idiomatic Literal

Ave. F
P R F P R F

CForm 0.766 0.901 0.794 0.668 0.587 0.576 0.685
Word2vec −CF 0.815 0.879 0.830 0.627 0.542 0.556 0.693
Word2vec +CF 0.830 0.892 0.848 0.758 0.676 0.691 0.770

Table 3: Precision (P), recall (R), and F1 score (F), for the idiomatic and literal classes, as well as average
F1 score (Ave. F), for TEST.

canonical form feature itself performs relatively
poorly on literal usages, it provides information
that enables the word2vec model to better identify
literal usages.

6 Conclusions

Determining whether a usage of a VNC is id-
iomatic or literal is important for applications such
as machine translation, where it is vital to preserve
the meanings of word combinations. In this paper
we proposed two approaches to the task of clas-
sifying VNC token instances as idiomatic or lit-
eral based on word2vec embeddings and Siamese
CBOW. We compared these approaches against
a linguistically-informed unsupervised baseline,
and a model based on skip-thoughts previously ap-
plied to this task (Salton et al., 2016). Our exper-
imental results show that a comparatively simple
approach based on averaging word embeddings
performs at least as well as, or better than, the ap-
proach based on skip-thoughts. We further pro-
posed methods to combine linguistic knowledge
of the lexico-syntactic fixedness of VNCs — so-
called “canonical forms”, which can be automat-
ically acquired from corpora via statistical meth-
ods — with the embedding based approaches. Our
findings indicate that this rich linguistic knowl-
edge is complementary to that available in dis-
tributed representations.

Alternative approaches to embedding sentences
containing VNC instances could also be consid-
ered, for example, FastSent (Hill et al., 2016).
However, all of the models we used represent the
context of a VNC by the sentence in which it oc-
curs. In future work we therefore also intend to
consider approaches such as context2vec (Mela-
mud et al., 2016) which explicitly encode the con-
text in which a token occurs. Finally, one known
challenge of VNC token classification is to de-
velop models that are able to generalize to VNC
types that were not seen during training (Gharbieh
et al., 2016). In future work we plan to explore

this experimental setup.
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Abstract

The methods proposed recently for spe-
cializing word embeddings according to
a particular perspective generally rely on
external knowledge. In this article, we
propose Pseudofit, a new method for spe-
cializing word embeddings according to
semantic similarity without any external
knowledge. Pseudofit exploits the no-
tion of pseudo-sense for building several
representations for each word and uses
these representations for making the ini-
tial embeddings more generic. We illus-
trate the interest of Pseudofit for acquir-
ing synonyms and study several variants of
Pseudofit according to this perspective.

1 Introduction

The interest aroused by word embeddings in Nat-
ural Language Processing, especially for neural
models, has led to propose methods for creating
them from texts (Mikolov et al., 2013; Penning-
ton et al., 2014) but also for specializing them
according to a particular viewpoint. This view-
point generally comes in the form of set of lexical
relations. For instance, Kiela et al. (2015) spe-
cialize word embeddings towards semantic sim-
ilarity or relatedness by relying either on syn-
onyms or free lexical associations. Methods such
as Retrofitting (Faruqui et al., 2015), Counter-
fitting (Mrkšić et al., 2016) or PARAGRAM (Wi-
eting et al., 2015) fall within the same framework.

The specialization of word embeddings can also
come from the way they are built. For instance,
Levy and Goldberg (2014) bring word embed-
dings towards similarity rather than relatedness
by using dependency-based distributional contexts
rather than linear bag-of-word contexts. Finally,
some methods aim at improving word embeddings

but without a clearly defined orientation, such as
the All-but-the-Top method (Mu, 2018), which fo-
cuses on dimensionality reduction, or (Vulić et al.,
2017), which exploits morphological relations.

In this article, we propose Pseudofit, a method
that improves word embeddings without external
knowledge and focuses on semantic similarity and
synonym extraction. The principle of Pseudofit
is to exploit the notion of pseudo-sense coming
from word sense disambiguation for building rep-
resentations accounting for distributional variabil-
ity and to create better word embeddings by bring-
ing these representations closer together. We show
the interest of Pseudofit and its variants through
both intrinsic and extrinsic evaluations.

2 Method

The distributional representation of a word varies
from one corpus to another. Without even tak-
ing into account the plurality of meanings of a
word, this variability also exists inside any corpus
C, even if it is quite homogeneous: the distribu-
tional representations of a word built from each
half of C, C1 and C2, are not identical. However,
from the more general viewpoint of its meaning,
they should be identical, or at least very close, and
their differences be considered as incidental. Fol-
lowing this perspective, a representation resulting
from the convergence of the representations built
from C1 and C2 should be more generic and show
better semantic similarity properties.

The method we propose, Pseudofit, formalizes
this approach through the notion of pseudo-sense.
This notion is related to the notion of pseudo-word
introduced in the field of word sense disambigua-
tion by Gale et al. (1992) and Schütze (1992). A
pseudo-word is an artificial word resulting from
the clustering of two or more different words, each
of them being considered as one pseudo-sense of
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the pseudo-word. Pseudofit adopts the opposite
viewpoint. For each wordw, more precisely nouns
in our case, it splits arbitrarily its occurrences into
two sets: the occurrences of one set are labeled
as pseudo-sense w1 while the occurrences of the
other set are labeled as pseudo-sense w2. A distri-
butional representation is built for w, w1 and w2

under the same conditions, with a neural model
in our case. The second stage of Pseudofit adapts
a posteriori the representation of w according to
the convergence of the representations of w1 and
w2. This adaptation is performed by exploiting
the similarity relations between w, w1 and w2 in
the context of a word embedding specialization
method. By considering simultaneouslyw,w1 and
w2, Pseudofit benefits from both the variations be-
tween the representations of w1 and w2 and the
quality of the representation of w, since it is built
from the whole C while the two others are built
from half of it.

2.1 Building of Word Embeddings

The first stage of Pseudofit consists in building a
distributional representation of each word w and
its two pseudo-senses w1 and w2. The starting
point of this process is the generation of a set
of distributional contexts for each occurrence of
w. Classically, this generation is based on a lin-
ear fixed-size window centered on the considered
occurrence. The specificity of Pseudofit is that
contexts are generated both for the target word
and one of its pseudo-sense. The pseudo-sense
changes from one occurrence of w to the follow-
ing, leading to the same frequency for w1 and w2.
The generation of such contexts with a window of
3 words (before and after the target word police-
man) is illustrated here for the following sentence:

A policeman1 was arrested by another policeman2.
TARGET CONTEXTS

policeman {a, be, arrest (2), by (2), another}
policeman1 {a, be, arrest, by}
policeman2 {another, by, arrest}

This sentence, which is voluntarily artificial,
shows how three different contexts are built for a
word in a corpus: one context (first line) is built
from all the occurrences of the target word; a sec-
ond one (second line) is built from half of the oc-
currences of the target word, representing its first
pseudo-sense, while the third context (last line) is
built from the other half of the occurrences of the
target word, representing its second pseudo-sense.

The generated contexts are then used for building
word embeddings. More precisely, we adopt the
variant of the Skip-gram model (Mikolov et al.,
2013) proposed by Levy and Goldberg (2014),
which can take as input arbitrary contexts.

2.2 Convergence of Word Representations
The second stage of Pseudofit brings the repre-
sentations of each target word w and its pseudo-
senses w1 and w2 closer together. This conver-
gence aims at producing a more general represen-
tation of w by erasing the differences between the
representations of w, w1 and w2, which are as-
sumed to be incidental since these representations
refer by nature to the same object.

The implementation of this convergence pro-
cess relies on the PARAGRAM algorithm, which
takes as inputs word embeddings and a set of bi-
nary lexical relations accounting for semantic sim-
ilarity. PARAGRAM gradually modifies the input
embeddings for bringing closer together the vec-
tors of the words that are part of similarity rela-
tions. This adaptation is controlled by a kind of
regularization that tends to preserve the input em-
beddings. This twofold objective consists more
formally in minimizing the following objective
function by stochastic gradient descent:

(1)

∑

(x1,x2) ∈Li

max (0, δ + x1t1 − x1x2) +

max (0, δ+x2t2−x1x2)+λ
∑

xi ∈V (Li)

∥∥∥xinit
i −xi

∥∥∥
2

where the first sum expresses the convergence of
the vectors according to the similarity relations
while the second sum, modulated by the λ param-
eter, corresponds to the regularization term.

The specificity of PARAGRAM, compared to
methods such as Retrofitting, lies in its adapta-
tion term. While it logically tends to bring closer
together the vectors of the words that are part of
similarity relations (attracting term x1x2), it also
pushes them away from the vectors of the words
that are not part these relations (repelling terms
x1t1 and x2t2). More precisely, the relations are
split into a set of mini-batches Li. For each word
(vector xi) of a relation, a word (vector tj) out-
side the relation is selected among the words of
the mini-batch of the current relation in such a way
that tj is the closest word to xi according to the
Cosine measure, which represents the most dis-
criminative option. δ is the margin between the
attracting and repelling terms.
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INITIAL Pseudofit Retrofit. Counter-fit.

SimLex-999 49.5 51.2 49.6 49.5
MEN 78.3 79.9 77.4 77.2
MTurk 771 65.6 68.0 65.0 64.9

Table 1: Intrinsic evaluation of Pseudofit (×100)

The application of PARAGRAM to the embed-
dings resulting from the first stage of Pseudofit ex-
ploits the fact that a word and its pseudo-words are
supposed to be similar. Hence, for each word w,
three similarity relations are defined and used by
PARAGRAM for adapting the initial embeddings:
(w, w1), (w, w2) et (w1, w2). Finally, only the rep-
resentations of words w are exploited since they
are built from a corpus that is twice as large as the
corpus used for pseudo-words.

3 Experiments

3.1 Experimental Setup
For implementing Pseudofit, we randomly select
at the level of sentences a 1 billion word sub-
part of the Annotated English Gigaword corpus
(Napoles et al., 2012). This corpus is made of
news articles in English processed by the Stan-
ford CoreNLP toolkit (Manning et al., 2014). We
use this corpus under its lemmatized form. The
building of the embeddings are performed with
word2vecf, the adaptation of word2vec from (Levy
and Goldberg, 2014), with the best parameter val-
ues from (Baroni et al., 2014): minimal count=5,
vector size=300, window size=5, 10 negative ex-
amples and 10−5 for the subsampling probability
of the most frequent words. For PARAGRAM, we
adopt most of the parameter values from (Vulić
et al., 2017): δ = 0.6 and λ = 10−9, with the
AdaGrad optimizer (Duchi et al., 2011) and 50
epochs1. Retrofitting and Counter-fitting are used
with the parameter values specified respectively in
(Faruqui et al., 2015) and (Mrkšić et al., 2016).

3.2 Evaluation of Pseudofit
Our first evaluation of Pseudofit at word level is a
classical intrinsic evaluation consisting in measur-
ing for a set of word pairs the Spearman’s rank cor-
relation between human judgments and the simi-
larity of these words computed from their embed-
dings by the Cosine measure. This evaluation is
performed for the nouns of three large enough ref-
erence datasets: SimLex-999 (Hill et al., 2015),

1We used the implementation of PARAGRAM provided by
https://github.com/nmrksic/attract-repel.

method Rprec. MAP P@1 P@2 P@5

INITIAL 13.0 15.2 18.3 13.1 7.7
Pseudofit +2.5 +3.3 +3.0 +2.5 +1.8

Retrofitting −0.5 −0.6 −0.6 −0.2† −0.3
Counter-fitting −0.6 −0.8 −0.6 −0.5 −0.4

Table 2: Evaluation of Pseudofit for synonym ex-
traction (differences / INITIAL, ×100)

MEN (Bruni et al., 2014) and MTurk-771 (Ha-
lawi et al., 2012). Table 1 clearly shows that
Pseudofit significantly2 improves the initial em-
beddings for the three datasets. By contrast, it also
shows that replacing PARAGRAM with Retrofitting
or Counter-fitting, two other reference methods for
specializing embeddings, does not lead to compa-
rable improvements and can even degrade results.

Our second evaluation, which is our main focus,
is a more extrinsic task consisting in extracting
synonyms3. This extraction is performed by rank-
ing a set of candidate synonyms for each target
word according to the similarity, computed here
by the Cosine measure, of their embeddings. We
evaluate the relevance of this ranking as in Infor-
mation Retrieval with R-precision (Rprec.), MAP
(Mean Average Precision) and precisions at var-
ious ranks (P@r). Our reference is made up of
the synonyms of WordNet (Miller, 1990) while
both our target words and candidate synonyms are
made up of the nouns with more than ten occur-
rences in each half of our corpus, which represents
20,813 nouns.

Table 2 gives the result of this second evalua-
tion for 11,481 nouns with synonyms in WordNet
among our 20,813 targets. As in the first evalua-
tion, Pseudofit significantly4 outperforms the ini-
tial embeddings. Moreover, replacing PARAGRAM

with Retrofitting or Counter-fitting leads to a sys-
tematic decrease of results, which emphasizes the
importance of the repelling term of PARAGRAM.
This term probably prevents the representation of a
word from being changed too much by its pseudo-
senses, which are interesting variants in terms of
representations but were built from half of the cor-
pus only.

2The statistical significance of differences are judged ac-
cording to a two-tailed Steiger’s test with p-value < 0.01 with
the R package cocor (Diedenhofen and Musch, 2015).

3The TOEFL test, which is close to our task, is considered
sometimes as extrinsic and sometimes as intrinsic.

4The significance of differences are judged according to a
paired Wilcoxon test with the following notation: nothing if
p <= 0.01, † if 0.01 < p ≤ 0.05 and ‡ if p > 0.05.
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method Rprec. MAP P@1 P@2 P@5

INITIALhigh 15.4 17.7 22.6 16.4 9.7
INITIALlow 9.4 11.5 11.8 8.1 4.7

Pseudofithigh +0.7 +1.1 +0.3‡ +0.8 0.9
Pseudofitlow +5.3 +6.7 +7.0 +5.2 +3.1

Table 3: Evaluation of Pseudofit for synonym ex-
traction according to the frequency (high or low)
of the target words (differences / INITIAL, ×100)

Figure 1: Gain brought by Pseudofit for MAP ac-
cording to the ambiguity of the target word

Finally, we performed a finer analysis of these
results according to the frequency and the degree
of ambiguity of the target words. Concerning fre-
quency, Table 3 shows that Pseudofit is particu-
larly efficient for the lower half of the target words
in terms of frequency, with a large increase of 5.3
points for R-precision, 6.7 points for MAP, 7.0
points for P@1 and 5.2 points for P@2 while the
largest increase for the higher half of the target
words is equal to 1.1 points for MAP.

One possible explanation of this gap between
high and low frequency words is linked to the de-
gree of ambiguity of words: high frequency words
are more likely to be polysemous and Pseudofit
does not take into account the polysemy of words.
Figure 1 tends to confirm this hypothesis by show-
ing that the improvement brought by Pseudofit for
a word is inversely proportional to its ambiguity as
estimated by its number of senses in WordNet5.

3.3 Variants of Pseudofit

We defined and tested several variants of Pseud-
ofit. The first one, Pseudofit max, focuses on the
strategy for selecting {tj} in PARAGRAM. The re-
sults of Table 1, as those of (Mrkšić et al., 2017),
are obtained with a setting where half of {tj} are
selected randomly. In Pseudofit max, all {tj} are

5Words with at most 10 senses cover 98.9% of the nouns
of our evaluation.

Variant Rprec. MAP P@1 P@2 P@5

Pseudofit 15.5 18.5 21.3 15.6 9.5

max +0.2‡ +0.3 +0.3† +0.2† +0.1
3 pseudo-senses +0.2‡ +0.2 +0.4† +0.2‡ +0.0‡

context +0.4† +0.3‡ +0.5† +0.2‡ +0.0‡

fus-average +0.2† +0.3 +0.4 +0.2† +0.1
fus-add +0.0‡ +0.0 +0.2‡ +0.1‡ +0.1†

fus-max-pool +0.2‡ +0.3 +0.4 +0.2 +0.2

max+fus-max-pool +0.4 +0.5 +0.5 +0.4 +0.2

Table 4: Evaluation of Pseudofit’s variants (differ-
ences / Pseudofit, ×100)

selected according to their similarity with {xi}.
The second variant, Pseudofit 3 pseudo-senses,

aims at determining if increasing the number of
pseudo-senses, from two to three at first, can have
a positive impact on results.

The third variant, Pseudofit context, tests the
interest of defining pseudo-senses for the words
of distributional contexts. In this configuration,
pseudo-senses are defined for all nouns, verbs and
adjectives with more than 21 occurrences in the
corpus, which corresponds to a minimal frequency
of 10 in each half of the corpus.

Finally, similarly to the second variant, the
last variant, Pseudofit fus-*, adds a supplemen-
tary representation of the target word. However,
this representation is not an additional pseudo-
sense but an aggregation of its already existing
pseudo-senses, which can be viewed as another
global representation of the target word. Three
aggregation methods are considered: Pseudofit
fus-addition performs an elementwise addition of
the embeddings of pseudo-senses, Pseudofit fus-
average computes their mean while Pseudofit fus-
max-pooling takes their maximal value.

Each presented variant outperforms the base
version of Pseudofit but Table 4 also shows that
not all variants are of equal interest. From
the viewpoint of both the absolute level of their
results and the significance of their difference
with Pseudofit, Pseudofit max and Pseudofit fus-
max-pooling are clearly the most interesting vari-
ants. Their combination, Pseudofit max+fus-
max-pooling, leads to our best results and sig-
nificantly outperforms Pseudofit for all measures.
Among the Pseudofit fus-* variants, Pseudofit fus-
max-pooling and Pseudofit fus-average are close
to each other and clearly exceeds Pseudofit fus-
addition. The results of Pseudofit 3 pseudo-senses
show that using more than two pseudo-senses by
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word faces the problem of having too few oc-
currences for each pseudo-sense. The same fre-
quency effect, at the level of contexts, probably
explains the very limited impact of the introduc-
tion of pseudo-senses in contexts in the case of
Pseudofit context.

3.4 Sentence Similarity

Our final evaluation, which is fully extrinsic, ex-
amines the impact of Pseudofit on the identifi-
cation of semantic similarity between sentences.
More precisely, we adopt the STS Benchmark
dataset on semantic textual similarity (Cer et al.,
2017). The overall principle of this task is similar
to the word similarity task of our first evaluation
but at the level of sentences: the similarity of a
set of sentence pairs is computed by the system to
evaluate and compared with a correlation measure,
the Pearson correlation coefficient, against a gold
standard produced by human annotators.

This framework is interesting for the evaluation
of Pseudofit because the computation of the sim-
ilarity of a pair of sentences can be achieved by
unsupervised approaches based on word embed-
dings in a very competitive way, as demonstrated
by (Hill et al., 2016). More precisely, the ap-
proach we adopt is a classical baseline that com-
poses the embeddings of the plain words of each
sentence to compare by elementwise addition and
computes the Cosine measure between the two re-
sulting vectors. For building the representation of
a sentence, we compare the use of our initial em-
beddings with that of the embeddings produced by
Pseudofit max+fus-max-pooling, the best variant
of Pseudofit. For this experiment, pseudo-senses
are distinguished not only for nouns but more gen-
erally for all nouns, verbs and adjectives with more
than 21 occurrences in the corpus.

Table 5 shows the result of this evaluation for
the 1,379 sentence pairs of the test part of the
STS Benchmark dataset. As for the two previ-
ous evaluations, the use of the embeddings mod-
ified by Pseudofit leads to a significant improve-
ment of results6 compared to the initial embed-
dings, which demonstrates that the improvement
at word level can be transposed at a larger scale.
Table 5 also shows four reference results from
(Cer et al., 2017): the lowest and the best baselines
based on averaged word embeddings (Skip-gram

6With the same evaluation of statistical significance as for
word similarity.

method ρ× 100

INITIAL 63.2
Pseudofit max+fus-max-pooling 66.0

(Cer et al., 2017)

Best baseline (averaged embeddings) 56.5
Lowest baseline (averaged embeddings) 40.6
Best unsupervised system 75.8
Lowest unsupervised system 59.2

Table 5: Evaluation of Pseudofit for identifying
sentence similarity

and GloVe respectively), which are very close to
our approach, and the best (Conneau et al., 2017)
and the lowest (Duma and Menzel, 2017) unsuper-
vised systems. Although our goal is not to com-
pete with the best systems, it is interesting to note
that our results are in line with the state of the art
since they significantly outperform the two base-
lines and the lowest unsupervised system as well
as other unsupervised systems mentioned in (Cer
et al., 2017).

4 Conclusion and Perspectives

In this article, we presented Pseudofit, a method
that specializes word embeddings towards seman-
tic similarity without external knowledge by ex-
ploiting the variability of distributional contexts.
This method can be described as hybrid since it
operates both before and after the building of word
embeddings. A set of intrinsic and extrinsic eval-
uations demonstrates the interest of the word em-
beddings produced by Pseudofit and its variants,
with a particular emphasis on the extraction of
synonyms.

In the presented work, the principles underlying
Pseudofit, in particular the generation and conver-
gence of different representations of a word, were
tested only within the same corpus. In conjunction
with the work about word meta-embeddings (Yin
and Schütze, 2016), it would be interesting to ap-
ply these principles to representations built from
several corpora, like (Mrkšić et al., 2017) for dif-
ferent languages.
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Abstract

Methods for unsupervised hypernym de-
tection may broadly be categorized accord-
ing to two paradigms: pattern-based and
distributional methods. In this paper, we
study the performance of both approaches
on several hypernymy tasks and find that
simple pattern-based methods consistently
outperform distributional methods on com-
mon benchmark datasets. Our results show
that pattern-based models provide impor-
tant contextual constraints which are not
yet captured in distributional methods.

1 Introduction

Hierarchical relationships play a central role in
knowledge representation and reasoning. Hyper-
nym detection, i.e., the modeling of word-level hier-
archies, has long been an important task in natural
language processing. Starting with Hearst (1992),
pattern-based methods have been one of the most
influential approaches to this problem. Their key
idea is to exploit certain lexico-syntactic patterns to
detect is-a relations in text. For instance, patterns
like “NPy such as NPx”, or “NPx and other NPy”
often indicate hypernymy relations of the form x
is-a y. Such patterns may be predefined, or they
may be learned automatically (Snow et al., 2004;
Shwartz et al., 2016). However, a well-known prob-
lem of Hearst-like patterns is their extreme sparsity:
words must co-occur in exactly the right configura-
tion, or else no relation can be detected.

To alleviate the sparsity issue, the focus in hy-
pernymy detection has recently shifted to distri-
butional representations, wherein words are repre-
sented as vectors based on their distribution across
large corpora. Such methods offer rich represen-
tations of lexical meaning, alleviating the sparsity
problem, but require specialized similarity mea-

sures to distinguish different lexical relationships.
The most successful measures to date are generally
inspired by the Distributional Inclusion Hypothe-
sis (DIH) (Zhitomirsky-Geffet and Dagan, 2005),
which states roughly that contexts in which a nar-
row term x may appear (“cat”) should be a subset
of the contexts in which a broader term y (“ani-
mal”) may appear. Intuitively, the DIH states that
we should be able to replace any occurrence of
“cat” with “animal” and still have a valid utterance.
An important insight from work on distributional
methods is that the definition of context is often
critical to the success of a system (Shwartz et al.,
2017). Some distributional representations, like
positional or dependency-based contexts, may even
capture crude Hearst pattern-like features (Levy
et al., 2015; Roller and Erk, 2016).

While both approaches for hypernym detec-
tion rely on co-occurrences within certain con-
texts, they differ in their context selection strategy:
pattern-based methods use predefined manually-
curated patterns to generate high-precision extrac-
tions while DIH methods rely on unconstrained
word co-occurrences in large corpora.

Here, we revisit the idea of using pattern-based
methods for hypernym detection. We evaluate sev-
eral pattern-based models on modern, large corpora
and compare them to methods based on the DIH.
We find that simple pattern-based methods con-
sistently outperform specialized DIH methods on
several difficult hypernymy tasks, including detec-
tion, direction prediction, and graded entailment
ranking. Moreover, we find that taking low-rank
embeddings of pattern-based models substantially
improves performance by remedying the sparsity
issue. Overall, our results show that Hearst pat-
terns provide high-quality and robust predictions
on large corpora by capturing important contextual
constraints, which are not yet modeled in distribu-
tional methods.
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2 Models

In the following, we discuss pattern-based and
distributional methods to detect hypernymy rela-
tions. We explicitly consider only relatively simple
pattern-based approaches that allow us to directly
compare their performance to DIH-based methods.

2.1 Pattern-based Hypernym Detection
First, let P = {(x, y)}n

i=1 denote the set of hyper-
nymy relations that have been extracted via Hearst
patterns from a text corpus T . Furthermore let
w(x, y) denote the count of how often (x, y) has
been extracted and let W =

∑
(x,y)∈P w(x, y) de-

note the total number extractions. In the first, most
direct application of Hearst patterns, we then sim-
ply use the counts w(x, y) or, equivalently, the ex-
traction probability

p(x, y) =
w(x, y)

W
(1)

to predict hypernymy relations from T .
However, simple extraction probabilities as in

Equation (1) are skewed by the occurrence proba-
bilities of their constituent words. For instance, it is
more likely that we extract (France, country) over
(France, republic), just because the word coun-
try is more likely to occur than republic. This
skew in word distributions is well-known for nat-
ural language and also translates to Hearst pat-
terns (see also Figure 1). For this reason, we also
consider predicting hypernymy relations based on
the Pointwise Mutual Information of Hearst pat-
terns: First, let p−(x) =

∑
(x,y)∈P w(x, y)/W

and p+(x) =
∑

(y,x)∈P w(y, x)/W denote the
probability that x occurs as a hyponym and hy-
pernym, respectively. We then define the Positive
Pointwise Mutual Information for (x, y) as

ppmi(x, y) = max
(

0, log
p(x, y)

p−(x)p+(y)

)
. (2)

While Equation (2) can correct for different word
occurrence probabilities, it cannot handle missing
data. However, sparsity is one of the main issues
when using Hearst patterns, as a necessarily incom-
plete set of extraction rules will lead inevitably to
missing extractions. For this purpose, we also study
low-rank embeddings of the PPMI matrix, which al-
low us to make predictions for unseen pairs. In par-
ticular, let m = |{x : (x, y) ∈ P ∨ (y, x) ∈ P}|
denote the number of unique terms in P . Further-
more, let X ∈ Rm×m be the PPMI matrix with
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Figure 1: Frequency distribution of words appear-
ing in Hearst patterns.

entries Mxy = ppmi(x, y) and let M = UΣV ⊤

be its Singular Value Decomposition (SVD). We
can then predict hypernymy relations based on the
truncated SVD of M via

spmi(x, y) = u⊤
x Σrvy (3)

where ux, vy denote the x-th and y-th row of U
and V , respectively, and where Σr is the diagonal
matrix of truncated singular values (in which all
but the r largest singular values are set to zero).

Equation (3) can be interpreted as a smoothed
version of the observed PPMI matrix. Due to the
truncation of singular values, Equation (3) com-
putes a low-rank embedding of M where similar
words (in terms of their Hearst patterns) have simi-
lar representations. Since Equation (3) is defined
for all pairs (x, y), it allows us to make hyper-
nymy predictions based on the similarity of words.
We also consider factorizing a matrix that is con-
structed from occurrence probabilities as in Equa-
tion (1), denoted by sp(x, y). This approach is then
closely related to the method of Cederberg and
Widdows (2003), which has been proposed to im-
prove precision and recall for hypernymy detection
from Hearst patterns.

2.2 Distributional Hypernym Detection

Most unsupervised distributional approaches for
hypernymy detection are based on variants of the
Distributional Inclusion Hypothesis (Weeds et al.,
2004; Kotlerman et al., 2010; Santus et al., 2014;
Lenci and Benotto, 2012; Shwartz et al., 2017).
Here, we compare to two methods with strong em-
pirical results. As with most DIH measures, they
are only defined for large, sparse, positively-valued
distributional spaces. First, we consider WeedsPrec
(Weeds et al., 2004) which captures the features of
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x which are included in the set of a broader term’s
features, y:

WeedsPrec(x,y) =

∑n
i=1 xi ∗ ✶yi>0∑n

i=1 xi

Second, we consider invCL (Lenci and Benotto,
2012) which introduces a notion of distributional
exclusion by also measuring the degree to which
the broader term contains contexts not used by the
narrower term. In particular, let

CL(x,y) =

∑n
i=1 min(xi, yi)∑n

i=1 xi

denote the degree of inclusion of x in y as proposed
by Clarke (2009). To measure both the inclusion
of x in y and the non-inclusion of y in x, invCL is
then defined as

invCL(x,y) =
√

CL(x,y) ∗ (1 − CL(y,x))

Although most unsupervised distributional ap-
proaches are based on the DIH, we also con-
sider the distributional SLQS model based on on
an alternative informativeness hypothesis (Santus
et al., 2014; Shwartz et al., 2017). Intuitively, the
SLQS model presupposes that general words ap-
pear mostly in uninformative contexts, as measured
by entropy. Specifically, SLQS depends on the me-
dian entropy of a term’s top N contexts, defined
as

Ex = medianN
i=1 [H(ci)] ,

where H(ci) is the Shannon entropy of context ci

across all terms, and N is chosen in hyperparameter
selection. Finally, SLQS is defined using the ratio
between the two terms:

SLQS(x, y) = 1 − Ex

Ey
.

Since the SLQS model only compares the rela-
tive generality of two terms, but does not make
judgment about the terms’ relatedness, we report
SLQS-cos, which multiplies the SLQS measure by
cosine similarity of x and y (Santus et al., 2014).

For completeness, we also include cosine simi-
larity as a baseline in our evaluation.

3 Evaluation

To evaluate the relative performance of pattern-
based and distributional models, we apply them to
several challenging hypernymy tasks.

Pattern

X which is a (example|class|kind|. . . ) of Y
X (and|or) (any|some) other Y
X which is called Y
X is JJS (most)? Y
X a special case of Y
X is an Y that
X is a !(member|part|given) Y
!(features|properties) Y such as X1, X2, . . .
(Unlike|like) (most|all|any|other) Y, X
Y including X1, X2, . . .

Table 1: Hearst patterns used in this study. Patterns
are lemmatized, but listed as inflected for clarity.

3.1 Tasks

Detection: In hypernymy detection, the task is
to classify whether pairs of words are in a hyper-
nymy relation. For this task, we evaluate all mod-
els on five benchmark datasets: First, we employ
the noun-noun subset of BLESS, which contains
hypernymy annotations for 200 concrete, mostly
unambiguous nouns. Negative pairs contain a mix-
ture of co-hyponymy, meronymy, and random pairs.
This version contains 14,542 total pairs with 1,337
positive examples. Second, we evaluate on LEDS

(Baroni et al., 2012), which consists of 2,770 noun
pairs balanced between positive hypernymy exam-
ples, and randomly shuffled negative pairs. We
also consider EVAL (Santus et al., 2015), contain-
ing 7,378 pairs in a mixture of hypernymy, syn-
onymy, antonymy, meronymy, and adjectival rela-
tions. EVAL is notable for its absence of random
pairs. The largest dataset is SHWARTZ (Shwartz
et al., 2016), which was collected from a mixture
of WordNet, DBPedia, and other resources. We
limit ourselves to a 52,578 pair subset excluding
multiword expressions. Finally, we evaluate on
WBLESS (Weeds et al., 2014), a 1,668 pair subset
of BLESS, with negative pairs being selected from
co-hyponymy, random, and hyponymy relations.
Previous work has used different metrics for evalu-
ating on BLESS (Lenci and Benotto, 2012; Levy
et al., 2015; Roller and Erk, 2016). We chose to
evaluate the global ranking using Average Preci-
sion. This allowed us to use the same metric on
all detection benchmarks, and is consistent with
evaluations in Shwartz et al. (2017).

Direction: In direction prediction, the task is
to identify which term is broader in a given pair
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of words. For this task, we evaluate all models
on three datasets described by Kiela et al. (2015):
On BLESS, the task is to predict the direction
for all 1337 positive pairs in the dataset. Pairs
are only counted correct if the hypernymy direc-
tion scores higher than the reverse direction, i.e.
score(x, y) > score(y, x). We reserve 10% of the
data for validation, and test on the remaining 90%.
On WBLESS, we follow prior work (Nguyen et al.,
2017; Vulić and Mrkšić, 2017) and perform 1000
random iterations in which 2% of the data is used
as a validation set to learn a classification threshold,
and test on the remainder of the data. We report
average accuracy across all iterations. Finally, we
evaluate on BIBLESS (Kiela et al., 2015), a variant
of WBLESS with hypernymy and hyponymy pairs
explicitly annotated for their direction. Since this
task requires three-way classification (hypernymy,
hyponymy, and other), we perform two-stage clas-
sification. First, a threshold is tuned using 2% of
the data, identifying whether a pair exhibits hy-
pernymy in either direction. Second, the relative
comparison of scores determines which direction is
predicted. As with WBLESS, we report the average
accuracy over 1000 iterations.

Graded Entailment: In graded entailment, the
task is to quantify the degree to which a hyper-
nymy relation holds. For this task, we follow
prior work (Nickel and Kiela, 2017; Vulić and
Mrkšić, 2017) and use the noun part of HYPER-
LEX (Vulić et al., 2017), consisting of 2,163 noun
pairs which are annotated to what degree x is-a y
holds on a scale of [0, 6]. For all models, we report
Spearman’s rank correlation ρ. We handle out-of-
vocabulary (OOV) words by assigning the median
of the scores (computed across the training set) to
pairs with OOV words.

3.2 Experimental Setup

Pattern-based models: We extract Hearst patterns
from the concatenation of Gigaword and Wikipedia,
and prepare our corpus by tokenizing, lemmatiz-
ing, and POS tagging using CoreNLP 3.8.0. The
full set of Hearst patterns is provided in Table 1.
Our selected patterns match prototypical Hearst pat-
terns, like “animals such as cats,” but also include
broader patterns like “New Year is the most impor-
tant holiday.” Leading and following noun phrases
are allowed to match limited modifiers (compound
nouns, adjectives, etc.), in which case we also gen-
erate a hit for the head of the noun phrase. Dur-

ing postprocessing, we remove pairs which were
not extracted by at least two distinct patterns. We
also remove any pair (y, x) if p(y, x) < p(x, y).
The final corpus contains roughly 4.5M matched
pairs, 431K unique pairs, and 243K unique terms.
For SVD-based models, we select the rank from
r ∈ {5, 10, 15, 20, 25, 50, 100, 150, 200, 250,
300, 500, 1000} on the validation set. The other
pattern-based models do not have any hyperparam-
eters.

Distributional models: For the distributional
baselines, we employ the large, sparse distribu-
tional space of Shwartz et al. (2017), which is com-
puted from UkWaC and Wikipedia, and is known to
have strong performance on several of the detection
tasks. The corpus was POS tagged and dependency
parsed. Distributional contexts were constructed
from adjacent words in dependency parses (Padó
and Lapata, 2007; Levy and Goldberg, 2014). Tar-
gets and contexts which appeared fewer than 100
times in the corpus were filtered, and the result-
ing co-occurrence matrix was PPMI transformed.1

The resulting space contains representations for
218K words over 732K context dimensions. For
the SLQS model, we selected the number of con-
texts N from the same set of options as the SVD
rank in pattern-based models.

3.3 Results

Table 2 shows the results from all three experimen-
tal settings. In nearly all cases, we find that pattern-
based approaches substantially outperform all three
distributional models. Particularly strong improve-
ments can be observed on BLESS (0.76 average
precision vs 0.19) and WBLESS (0.96 vs. 0.69) for
the detection tasks and on all directionality tasks.
For directionality prediction on BLESS, the SVD
models surpass even the state-of-the-art supervised
model of Vulić and Mrkšić (2017). Moreover, both
SVD models perform generally better than their
sparse counterparts on all tasks and datasets except
on HYPERLEX. We performed a posthoc analy-
sis of the validation sets comparing the ppmi and
spmi models, and found that the truncated SVD im-
proved recall via its matrix completion properties.
We also found that the spmi model downweighted

1In addition, we also experimented with further distri-
butional spaces and weighting schemes from Shwartz et al.
(2017). We also experimented with distributional spaces using
the same corpora and preprocessing as the Hearst patterns (i.e.,
Wikipedia and Gigaword). We found that the reported setting
generally performed best, and omit others for brevity.
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Detection (AP) Direction (Acc.) Graded (ρs)

BLESS EVAL LEDS SHWARTZ WBLESS BLESS WBLESS BIBLESS HYPERLEX

Cosine .12 .29 .71 .31 .53 .00 .54 .52 .14
WeedsPrec .19 .39 .87 .43 .68 .63 .59 .45 .43
invCL .18 .37 .89 .38 .66 .64 .60 .47 .43
SLQS .15 .35 .60 .38 .69 .75 .67 .51 .16

p(x, y) .49 .38 .71 .29 .74 .46 .69 .62 .62
ppmi(x, y) .45 .36 .70 .28 .72 .46 .68 .61 .60
sp(x, y) .66 .45 .81 .41 .91 .96 .84 .80 .51
spmi(x, y) .76 .48 .84 .44 .96 .96 .87 .85 .53

Table 2: Experimental results comparing distributional and pattern-based methods in all settings.

many high-scoring outlier pairs composed of rare
terms.

When comparing the p(x, y) and ppmi models
to distributional models, we observe mixed results.
The SHWARTZ dataset is difficult for sparse models
due to its very long tail of low frequency words
that are hard to cover using Hearst patterns. On
EVAL, Hearst-pattern based methods get penalized
by OOV words, due to the large number of verbs
and adjectives in the dataset, which are not captured
by our patterns. However, in 7 of the 9 datasets, at
least one of the sparse models outperforms all dis-
tributional measures, showing that Hearst patterns
can provide strong performance on large corpora.

4 Conclusion

We studied the relative performance of Hearst
pattern-based methods and DIH-based methods
for hypernym detection. Our results show that
the pattern-based methods substantially outper-
form DIH-based methods on several challenging
benchmarks. We find that embedding methods
alleviate sparsity concerns of pattern-based ap-
proaches and substantially improve coverage. We
conclude that Hearst patterns provide important
contexts for the detection of hypernymy relations
that are not yet captured in DIH models. Our
code is available at https://github.com/
facebookresearch/hypernymysuite.
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Abstract

Recent BIO-tagging-based neural seman-
tic role labeling models are very high per-
forming, but assume gold predicates as
part of the input and cannot incorporate
span-level features. We propose an end-
to-end approach for jointly predicting all
predicates, arguments spans, and the rela-
tions between them. The model makes in-
dependent decisions about what relation-
ship, if any, holds between every possi-
ble word-span pair, and learns contextu-
alized span representations that provide
rich, shared input features for each deci-
sion. Experiments demonstrate that this
approach sets a new state of the art on
PropBank SRL without gold predicates.1

1 Introduction

Semantic role labeling (SRL) captures predicate-
argument relations, such as “who did what to
whom.” Recent high-performing SRL models (He
et al., 2017; Marcheggiani et al., 2017; Tan et al.,
2018) are BIO-taggers, labeling argument spans
for a single predicate at a time (as shown in Fig-
ure 1). They are typically only evaluated with gold
predicates, and must be pipelined with error-prone
predicate identification models for deployment.

We propose an end-to-end approach for predict-
ing all the predicates and their argument spans in
one forward pass. Our model builds on a recent
coreference resolution model (Lee et al., 2017),
by making central use of learned, contextualized
span representations. We use these representations
to predict SRL graphs directly over text spans.
Each edge is identified by independently predict-
ing which role, if any, holds between every possi-
ble pair of text spans, while using aggressive beam

1Code and models: https://github.com/luheng/lsgn

Many  tourists  visit  Disney  to  meet  their  favorite  cartoon  characters

ARG0 ARG1

ARG0 ARG1

B-ARG0 B-VI-ARG0 B-ARG1 B-AM-
PRP

[predicate]
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Figure 1: A comparison of our span-graph struc-
ture (top) versus BIO-based SRL (bottom).

pruning for efficiency. The final graph is simply
the union of predicted SRL roles (edges) and their
associated text spans (nodes).

Our span-graph formulation overcomes a key
limitation of semi-markov and BIO-based mod-
els (Kong et al., 2016; Zhou and Xu, 2015; Yang
and Mitchell, 2017; He et al., 2017; Tan et al.,
2018): it can model overlapping spans across
different predicates in the same output structure
(see Figure 1). The span representations also
generalize the token-level representations in BIO-
based models, letting the model dynamically de-
cide which spans and roles to include, without
using previously standard syntactic features (Pun-
yakanok et al., 2008; FitzGerald et al., 2015).

To the best of our knowledge, this is the first
span-based SRL model that does not assume that
predicates are given. In this more realistic set-
ting, where the predicate must be predicted, our
model achieves state-of-the-art performance on
PropBank. It also reinforces the strong perfor-
mance of similar span embedding methods for
coreference (Lee et al., 2017), suggesting that this
style of models could be used for other span-span
relation tasks, such as syntactic parsing (Stern
et al., 2017), relation extraction (Miwa and Bansal,
2016), and QA-SRL (FitzGerald et al., 2018).
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2 Model

We consider the space of possible predicates to
be all the tokens in the input sentence, and the
space of arguments to be all continuous spans. Our
model decides what relation exists between each
predicate-argument pair (including no relation).

Formally, given a sequence X = w1, . . . , wn,
we wish to predict a set of labeled predicate-
argument relations Y ⊆ P × A × L, where P =
{w1, . . . , wn} is the set of all tokens (predicates),
A = {(wi, . . . , wj) | 1 ≤ i ≤ j ≤ n} contains
all the spans (arguments), and L is the space of
semantic role labels, including a null label ε indi-
cating no relation. The final SRL output would be
all the non-empty relations {(p, a, l) ∈ Y | l 6= ε}.

We then define a set of random variables, where
each random variable yp,a corresponds to a predi-
cate p ∈ P and an argument a ∈ A, taking value
from the discrete label space L. The random vari-
ables yp,a are conditionally independent of each
other given the input X:

P (Y | X) =
∏

p∈P,a∈A
P (yp,a | X) (1)

P (yp,a = l | X) =
exp(φ(p, a, l))∑

l′∈L
exp(φ(p, a, l′))

(2)

Where φ(p, a, l) is a scoring function for a pos-
sible (predicate, argument, label) combination. φ
is decomposed into two unary scores on the pred-
icate and the argument (defined in Section 3), as
well as a label-specific score for the relation:

φ(p, a, l) = Φa(a) + Φp(p) + Φ
(l)
rel (a, p) (3)

The score for the null label is set to a constant:
φ(p, a, ε) = 0, similar to logistic regression.

Learning For each input X , we minimize the
negative log likelihood of the gold structure Y ∗:

J (X) =− logP (Y ∗ | X) (4)

Beam pruning As our model deals with O(n2)
possible argument spans and O(n) possible pred-
icates, it needs to consider O(n3|L|) possible re-
lations, which is computationally impractical. To
overcome this issue, we define two beams Ba and
Bp for storing the candidate arguments and pred-
icates, respectively. The candidates in each beam
are ranked by their unary score (Φa or Φp). The
sizes of the beams are limited by λan and λpn. El-
ements that fall out of the beam do not participate

in computing the edge factors Φ
(l)
rel , reducing the

overall number of relational factors evaluated by
the model to O(n2|L|). We also limit the max-
imum width of spans to a fixed number W (e.g.
W = 30), further reducing the number of com-
puted unary factors to O(n).

3 Neural Architecture

Our model builds contextualized representations
for argument spans a and predicate words p based
on BiLSTM outputs (Figure 2) and uses feed-
forward networks to compute the factor scores in
φ(p, a, l) described in Section 2 (Figure 3).

Word-level contexts The bottom layer con-
sists of pre-trained word embeddings con-
catenated with character-based representations,
i.e. for each token wi, we have xi =
[WORDEMB(wi); CHARCNN(wi)]. We then con-
textualize each xi using an m-layered bidirec-
tional LSTM with highway connections (Zhang
et al., 2016), which we denote as x̄i.

Argument and predicate representation We
build contextualized representations for all can-
didate arguments a ∈ A and predicates p ∈
P . The argument representation contains the fol-
lowing: end points from the BiLSTM outputs
(x̄START(a), x̄END(a)), a soft head word xh(a), and
embedded span width features f(a), similar to Lee
et al. (2017). The predicate representation is sim-
ply the BiLSTM output at the position INDEX(p).

g(a) =[x̄START(a); x̄END(a); xh(a); f(a)] (5)

g(p) =x̄INDEX(p) (6)

The soft head representation xh(a) is an attention
mechanism over word inputs x in the argument
span, where the weights e(a) are computed via a
linear layer over the BiLSTM outputs x̄.

xh(a) = xSTART(a):END(a)e(s)ᵀ (7)

e(a) = SOFTMAX(wᵀ
e x̄START(a):END(a)) (8)

xSTART(a):END(a) is a shorthand for stacking a list
of vectors xt, where START(a) ≤ t ≤ END(a).

Scoring The scoring functions Φ are imple-
mented with feed-forward networks based on the
predicate and argument representations g:

Φa(a) =wᵀ
a MLPa(g(a)) (9)

Φp(p) =wᵀ
pMLPp(g(p)) (10)

Φ
(l)
rel (a, p) =w

(l)ᵀ
r MLPr([g(a); g(p)]) (11)
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Figure 2: Building the argument span representations g(a) from BiLSTM outputs. For clarity, we only
show one BiLSTM layer and a small subset of the arguments.

Many tourists meet
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meet,ARG0)
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meet,ARG1)
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P (yp,a = l | X)

Combined
score φ(p, a, l)

Label score Φ
(l)
rel

Unary scores Φa,Φp

Span
representation (g)

Figure 3: The span-pair classifier takes in predi-
cate and argument representations as inputs, and
computes a softmax over the label space L.

4 Experiments

We experiment on the CoNLL 2005 (Carreras and
Màrquez, 2005) and CoNLL 2012 (OntoNotes 5.0,
(Pradhan et al., 2013)) benchmarks, using two
SRL setups: end-to-end and gold predicates. In
the end-to-end setup, a system takes a tokenized
sentence as input, and predicts all the predicates
and their arguments. Systems are evaluated on the
micro-averaged F1 for correctly predicting (pred-
icate, argument span, label) tuples. For compari-
son with previous systems, we also report results
with gold predicates, in which the complete set of
predicates in the input sentence is given as well.
Other experimental setups and hyperparameteres
are listed in Appendix A.1.

ELMo embeddings To further improve perfor-
mance, we also add ELMo word representations
(Peters et al., 2018) to the BiLSTM input (in the
+ELMo rows). Since the contextualized represen-
tations ELMo provides can be applied to most pre-
vious neural systems, the improvement is orthog-
onal to our contribution. In Table 1 and 2, we
organize all the results into two categories: the
comparable single model systems, and the mod-

els augmented with ELMo or ensembling (in the
PoE rows).

End-to-end results As shown in Table 1,2 our
joint model outperforms the previous best pipeline
system (He et al., 2017) by an F1 difference of
anywhere between 1.3 and 6.0 in every setting.
The improvement is larger on the Brown test set,
which is out-of-domain, and the CoNLL 2012 test
set, which contains nominal predicates. On all
datasets, our model is able to predict over 40% of
the sentences completely correctly.

Results with gold predicates To compare with
additional previous systems, we also conduct ex-
periments with gold predicates by constraining
our predicate beam to be gold predicates only.
As shown in Table 2, our model significantly
out-performs He et al. (2017), but falls short of
Tan et al. (2018), a very recent attention-based
(Vaswani et al., 2017) BIO-tagging model that was
developed concurrently with our work. By adding
the contextualized ELMo representations, we are
able to out-perform all previous systems, includ-
ing Peters et al. (2018), which applies ELMo to
the SRL model introduced in He et al. (2017).

5 Analysis

Our model’s architecture differs significantly from
previous BIO systems in terms of both input and
decision space. To better understand our model’s
strengths and weaknesses, we perform three anal-
yses following Lee et al. (2017) and He et al.
(2017), studying (1) the effectiveness of beam

2For the end-to-end setting on CoNLL 2012, we used a
subset of the train/dev data from previous work due to noise
in the dataset; the dev result is not directly comparable. See
Appendix A.2 for detailed explanation.
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CoNLL 05 In-domain (WSJ) Out-of-domain (Brown) CoNLL 2012 (OntoNotes)

End-to-End Dev. F1 P R F1 P R F1 Dev. F1 P R F1

Ours+ELMo 85.3 84.8 87.2 86.0 73.9 78.4 76.1 83.0 81.9 84.0 82.9
He et al. (2017)PoE 81.5 82.0 83.4 82.7 69.7 70.5 70.1 77.2 80.2 76.6 78.4

Ours 81.6 81.2 83.9 82.5 69.7 71.9 70.8 79.4 79.4 80.1 79.8
He et al. (2017) 80.3 80.2 82.3 81.2 67.6 69.6 68.5 75.5 78.6 75.1 76.8

Table 1: End-to-end SRL results for CoNLL 2005 and CoNLL 2012, compared to previous systems.
CoNLL 05 contains two test sets: WSJ (in-domain) and Brown (out-of-domain).

WSJ Brown OntoNotes

Ours+ELMo 87.4 80.4 85.5
Peters et al. (2018)+ELMo - - 84.6
Tan et al. (2018)PoE 86.1 74.8 83.9
He et al. (2017)PoE 84.6 73.6 83.4
FitzGerald et al. (2015)PoE 80.3 72.2 80.1

Ours 83.9 73.7 82.1
Tan et al. (2018) 84.8 74.1 82.7
He et al. (2017) 83.1 72.1 81.7
Yang and Mitchell (2017) 81.9 72.0 -
Zhou and Xu (2015) 82.8 69.4 81.1

Table 2: Experiment results with gold predicates.

pruning, (2) the ability to capture long-range de-
pendencies, (3) agreement with syntactic spans,
and (4) the ability to predict globally consistent
SRL structures. The analyses are performed on
the development sets without using ELMo embed-
dings. 3

Effectiveness of beam pruning Figure 4 shows
the predicate and argument spans kept in the beam,
sorted with their unary scores. Our model effi-
ciently prunes unlikely argument spans and pred-
icates, significantly reduces the number of edges
it needs to consider. Figure 5 shows the recall of
predicate words on the CoNLL 2012 development
set. By retaining λp = 0.4 predicates per word,
we are able to keep over 99.7% argument-bearing
predicates. Compared to having a part-of-speech
tagger (POS:X in Figure 5), our joint beam prun-
ing allowing the model to have a soft trade-off be-
tween efficiency and recall.4

Long-distance dependencies Figure 6 shows
the performance breakdown by binned distance
between arguments to the given predicates. Our
model is better at accurately predicting arguments
that are farther away from the predicates, even

3For comparability with prior work, analyses (2)-(4) are
performed on the CoNLL 05 dev set with gold predicates.

4The predicate ID accuracy of our model is not compa-
rable with that reported in He et al. (2017), since our model
does not predict non-argument-bearing predicates.

Arg. Beam Φa Pred. Beam Φp

by ambulance 2.5 says 0.1
her mother ... ambulance 2.2 transported 0.0
her mother 2.2 ambulance -8.3
Priscilla 1.9 been -11.3
should 1.8
transported by ambulance -0.3
Priscilla says .... ambulance -2.2
ambulance -3.2

Priscilla says her mother should have been transported by ambulance

ARG0 ARG1

ARG1 ARG0

by ambulance 2.5
her mother… ambulance 2.2

her mother 2.2
Priscilla 1.9
should 1.8

transported by ambulance -0.3
Priscilla says … ambulance -2.2

ambulance -3.2

says 0.1
transported 0.0
ambulance -0.8

been -11.3

Argument Beam Bc Predicate Beam Bp

Predicted SRL Relations

AM-MOD

Figure 4: Top: The candidate arguments and pred-
icates in the argument beam Ba and predicate
beam Bp after pruning, along with their unary
scores. Bottom: Predicted SRL relations with two
identified predicates and their arguments.

compared to an ensemble model (He et al., 2017)
that has a higher overall F1. This is very likely
due to architectural differences; in a BIO tagger,
predicate information passes through many LSTM
timesteps before reaching a long-distance argu-
ment, whereas our architecture enables direct con-
nections between all predicates-arguments pairs.

Agreement with syntax As mentioned in He
et al. (2017), their BIO-based SRL system has
good agreement with gold syntactic span bound-
aries (94.3%) but falls short of previous syntax-
based systems (Punyakanok et al., 2004). By
directly modeling span information, our model
achieves comparable syntactic agreement (95.0%)
to Punyakanok et al. (2004) without explicitly
modeling syntax.

Global consistency On the other hand, our
model suffers from global consistency issues. For
example, on the CoNLL 2005 test set, our model
has lower complete-predicate accuracy (62.6%)
than the BIO systems (He et al., 2017; Tan et al.,
2018) (64.3%-66.4%). Table 3 shows its viola-
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increase the number of predicates kept per word.
POS:X shows the gold predicate recall from using
certain pos-tags identified by the NLTK part-of-
speech tagger (Bird, 2006).
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Figure 6: F1 by surface distance between pred-
icates and arguments, showing degrading perfor-
mance on long-range arguments.

tions of global structural constraints5 compared to
previous systems. Our model made more con-
straint violations compared to previous systems.
For example, our model predicts duplicate core
arguments6 (shown in the U column in Table 3)
more often than previous work. This is due to the
fact that our model uses independent classifiers to
label each predicate-argument pair, making it diffi-
cult for them to implicitly track the decisions made
for several arguments with the same predicate.

The Ours+decode row in Table 3 shows SRL
performance after enforcing the U-constraint us-
ing dynamic programming (Täckström et al.,
2015) at decoding time. Constrained decoding at
test time is effective at eliminating all the core-role
inconsistencies (shown in the U-column), but did
not bring significant gain on the end result (shown

5Punyakanok et al. (2008) described a list of global con-
straints for SRL systems, e.g., there can be at most one core
argument of each type for each predicate.

6Arguments with labels ARG0,ARG1,. . . ,ARG5 and AA.

SRL-Violations

Model/Oracle SRL F1 Syn % U C R

Gold 100.0 98.7 24 0 61

Ours+decode 82.4 95.1 0 8 104
Ours 82.3 95.0 69 7 105
He (PoE) 82.7 94.3 37 3 68
He 81.6 94.0 48 4 73
Punyakanok 77.4 95.3 0 0 0

Table 3: Comparison on the CoNLL 05 devel-
opment set against previous systems in terms
of unlabeled agreement with gold constituency
(Syn%) and each type of SRL-constraints viola-
tions (Unique core roles, Continuation roles and
Reference roles).

in SRL F1), which only evaluates the piece-wise
predicate-argument structures.

6 Conclusion and Future Work

We proposed a new SRL model that is able to
jointly predict all predicates and argument spans,
generalized from a recent coreference system (Lee
et al., 2017). Compared to previous BIO systems,
our new model supports joint predicate identifi-
cation and is able to incorporate span-level fea-
tures. Empirically, the model does better at long-
range dependencies and agreement with syntactic
boundaries, but is weaker at global consistency,
due to our strong independence assumption.

In the future, we could incorporate higher-order
inference methods (Lee et al., 2018) to relax this
assumption. It would also be interesting to com-
bine our span-based architecture with the self-
attention layers (Tan et al., 2018; Strubell et al.,
2018) for more effective contextualization.
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Abstract

In NMT, words are sometimes dropped
from the source or generated repeatedly in
the translation. We explore novel strate-
gies to address the coverage problem that
change only the attention transformation.
Our approach allocates fertilities to source
words, used to bound the attention each
word can receive. We experiment with
various sparse and constrained attention
transformations and propose a new one,
constrained sparsemax, shown to be differ-
entiable and sparse. Empirical evaluation
is provided in three languages pairs.

1 Introduction

Neural machine translation (NMT) emerged in
the last few years as a very successful paradigm
(Sutskever et al., 2014; Bahdanau et al., 2014;
Gehring et al., 2017; Vaswani et al., 2017). While
NMT is generally more fluent than previous sta-
tistical systems, adequacy is still a major con-
cern (Koehn and Knowles, 2017): common mis-
takes include dropping source words and repeating
words in the generated translation.

Previous work has attempted to mitigate this
problem in various ways. Wu et al. (2016) incor-
porate coverage and length penalties during beam
search—a simple yet limited solution, since it only
affects the scores of translation hypotheses that are
already in the beam. Other approaches involve ar-
chitectural changes: providing coverage vectors
to track the attention history (Mi et al., 2016; Tu
et al., 2016), using gating architectures and adap-
tive attention to control the amount of source con-
text provided (Tu et al., 2017a; Li and Zhu, 2017),
or adding a reconstruction loss (Tu et al., 2017b).
Feng et al. (2016) also use the notion of fertility

∗Work done during an internship at Unbabel.

implicitly in their proposed model. Their fertility
conditioned decoder uses a coverage vector and an
extract gate which are incorporated in the decod-
ing recurrent unit, increasing the number of pa-
rameters.

In this paper, we propose a different solution
that does not change the overall architecture, but
only the attention transformation. Namely, we
replace the traditional softmax by other recently
proposed transformations that either promote at-
tention sparsity (Martins and Astudillo, 2016) or
upper bound the amount of attention a word can
receive (Martins and Kreutzer, 2017). The bounds
are determined by the fertility values of the source
words. While these transformations have given
encouraging results in various NLP problems, they
have never been applied to NMT, to the best of
our knowledge. Furthermore, we combine these
two ideas and propose a novel attention transfor-
mation, constrained sparsemax, which produces
both sparse and bounded attention weights, yield-
ing a compact and interpretable set of alignments.
While being in-between soft and hard alignments
(Figure 2), the constrained sparsemax transforma-
tion is end-to-end differentiable, hence amenable
for training with gradient backpropagation.

To sum up, our contributions are as follows:1

• We formulate constrained sparsemax and de-
rive efficient linear and sublinear-time algo-
rithms for running forward and backward prop-
agation. This transformation has two levels of
sparsity: over time steps, and over the attended
words at each step.

• We provide a detailed empirical comparison
of various attention transformations, includ-
ing softmax (Bahdanau et al., 2014), sparse-
1Our software code is available at the OpenNMT fork

www.github.com/Unbabel/OpenNMT-py/tree/dev
and the running scripts at www.github.com/Unbabel/
sparse constrained attention.
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max (Martins and Astudillo, 2016), constrained
softmax (Martins and Kreutzer, 2017), and our
newly proposed constrained sparsemax. We
provide error analysis including two new met-
rics targeted at detecting coverage problems.

2 Preliminaries

Our underlying model architecture is a standard at-
tentional encoder-decoder (Bahdanau et al., 2014).
Let x := x1:J and y := y1:T denote the source and
target sentences, respectively. We use a Bi-LSTM
encoder to represent the source words as a matrix
H := [h1, . . . ,hJ ] ∈ R2D×J . The conditional
probability of the target sentence is given as

p(y | x) :=
∏T
t=1 p(yt | y1:(t−1), x), (1)

where p(yt | y1:(t−1), x) is computed by a softmax
output layer that receives a decoder state st as in-
put. This state is updated by an auto-regressive
LSTM, st = RNN(embed(yt−1), st−1, ct), where
ct is an input context vector. This vector is com-
puted as ct := Hαt, where αt is a probability
distribution that represents the attention over the
source words, commonly obtained as

αt = softmax(zt), (2)

where zt ∈ RJ is a vector of scores. We follow
Luong et al. (2015) and define zt,j := s>t−1Whj
as a bilinear transformation of encoder and de-
coder states, whereW is a model parameter.2

3 Sparse and Constrained Attention

In this work, we consider alternatives to Eq. 2.
Since the softmax is strictly positive, it forces all
words in the source to receive some probability
mass in the resulting attention distribution, which
can be wasteful. Moreover, it may happen that
the decoder attends repeatedly to the same source
words across time steps, causing repetitions in the
generated translation, as Tu et al. (2016) observed.

With this in mind, we replace Eq. 2 by αt =
ρ(zt,ut), where ρ is a transformation that may de-
pend both on the scores zt ∈ RJ and on upper
bounds ut ∈ RJ that limit the amount of atten-
tion that each word can receive. We consider three
alternatives to softmax, described next.

2This is the default implementation in the OpenNMT
package. In preliminary experiments, feedforward attention
(Bahdanau et al., 2014) did not show improvements.

Sparsemax. The sparsemax transformation
(Martins and Astudillo, 2016) is defined as:

sparsemax(z) := argmin
α∈∆J

‖α− z‖2, (3)

where ∆J := {α ∈ RJ | α ≥ 0,
∑

j αj = 1}. In
words, it is the Euclidean projection of the scores
z onto the probability simplex. These projections
tend to hit the boundary of the simplex, yielding a
sparse probability distribution. This allows the de-
coder to attend only to a few words in the source,
assigning zero probability mass to all other words.
Martins and Astudillo (2016) have shown that the
sparsemax can be evaluated in O(J) time (same
asymptotic cost as softmax) and gradient back-
propagation takes sublinear time (faster than soft-
max), by exploiting the sparsity of the solution.

Constrained softmax. The constrained softmax
transformation was recently proposed by Martins
and Kreutzer (2017) in the context of easy-first se-
quence tagging, being defined as follows:

csoftmax(z;u) := argmin
α∈∆J

KL(α‖ softmax(z))

s.t. α ≤ u, (4)

where u is a vector of upper bounds, and
KL(.‖.) is the Kullback-Leibler divergence. In
other words, it returns the distribution closest
to softmax(z) whose attention probabilities are
bounded by u. Martins and Kreutzer (2017) have
shown that this transformation can be evaluated in
O(J log J) time and its gradients backpropagated
in O(J) time.

To use this transformation in the attention
mechanism, we make use of the idea of fertil-
ity (Brown et al., 1993). Namely, let βt−1 :=∑t−1

τ=1ατ denote the cumulative attention that
each source word has received up to time step t,
and let f := (fj)

J
j=1 be a vector containing fertil-

ity upper bounds for each source word. The atten-
tion at step t is computed as

αt = csoftmax(zt,f − βt−1). (5)

Intuitively, each source word j gets a credit of fj
units of attention, which are consumed along the
decoding process. If all the credit is exhausted,
it receives zero attention from then on. Unlike
the sparsemax transformation, which places sparse
attention over the source words, the constrained
softmax leads to sparsity over time steps.
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Figure 1: Illustration of the different attention transformations for a toy example with three source
words. We show the attention values on the probability simplex. In the first row we assume scores
z = (1.2, 0.8,−0.2), and in the second and third rows z = (0.7, 0.9, 0.1) and z = (−0.2, 0.2, 0.9),
respectively. For constrained softmax/sparsemax, we set unit fertilities to every word; for each row the
upper bounds (represented as green dashed lines) are set as the difference between these fertilities and
the cumulative attention each word has received. The last row illustrates the cumulative attention for the
three words after all rounds.

Constrained sparsemax. In this work, we pro-
pose a novel transformation which shares the two
properties above: it provides both sparse and
bounded probabilities. It is defined as:

csparsemax(z;u) := argmin
α∈∆J

‖α− z‖2

s.t. α ≤ u. (6)

The following result, whose detailed proof we in-
clude as supplementary material (Appendix A), is
key for enabling the use of the constrained sparse-
max transformation in neural networks.

Proposition 1 Let α? = csparsemax(z;u) be the
solution of Eq. 6, and define the sets A = {j ∈
[J ] | 0 < α?j < uj}, AL = {j ∈ [J ] | α?j = 0},
and AR = {j ∈ [J ] | α?j = uj}. Then:

• Forward propagation. α? can be com-
puted in O(J) time with the algorithm of
Pardalos and Kovoor (1990) (Alg. 1 in Ap-
pendix A). The solution takes the form α?j =
max{0,min{uj , zj − τ}}, where τ is a nor-
malization constant.

• Gradient backpropagation. Backpropagation
takes sublinear time O(|A| + |AR|). Let L(θ)

be a loss function, dα = ∇αL(θ) be the out-
put gradient, and dz = ∇zL(θ) and du =
∇uL(θ) be the input gradients. Then, we have:

dzj = 1(j ∈ A)(dαj −m) (7)

duj = 1(j ∈ AR)(dαj −m), (8)

where m = 1
|A|
∑

j∈A dαj .

4 Fertility Bounds

We experiment with three ways of setting the fer-
tility of the source words: CONSTANT, GUIDED,
and PREDICTED. With CONSTANT, we set the
fertilities of all source words to a fixed integer
value f . With GUIDED, we train a word aligner
based on IBM Model 2 (we used fast align
in our experiments, Dyer et al. (2013)) and, for
each word in the vocabulary, we set the fertilities
to the maximal observed value in the training data
(or 1 if no alignment was observed). With the PRE-
DICTED strategy, we train a separate fertility pre-
dictor model using a bi-LSTM tagger.3 At training
time, we provide as supervision the fertility esti-
mated by fast align. Since our model works

3A similar strategy was recently used by Gu et al. (2018)
as a component of their non-autoregressive NMT model.
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Figure 2: Attention maps for softmax and
csparsemax for two DE-EN sentence pairs (white
means zero attention). Repeated words are high-
lighted. The reference translations are “This is
Moore’s law over the last hundred years” and “I
am going to go ahead and select government.”

with fertility upper bounds and the word aligner
may miss some word pairs, we found it beneficial
to add a constant to this number (1 in our experi-
ments). At test time, we use the expected fertilities
according to our model.

Sink token. We append an additional <SINK>
token to the end of the source sentence, to which
we assign unbounded fertility (fJ+1 = ∞). The
token is akin to the null alignment in IBM mod-
els. The reason we add this token is the following:
without the sink token, the length of the generated
target sentence can never exceed

∑
j fj words if

we use constrained softmax/sparsemax. At train-
ing time this may be problematic, since the target
length is fixed and the problems in Eqs. 4–6 can
become infeasible. By adding the sink token we
guarantee

∑
j fj =∞, eliminating the problem.

Exhaustion strategies. To avoid missing source
words, we implemented a simple strategy to en-
courage more attention to words with larger credit:
we redefine the pre-attention word scores as z′t =
zt + cut, where c is a constant (c = 0.2 in our
experiments). This increases the score of words
which have not yet exhausted their fertility (we
may regard it as a “soft” lower bound in Eqs. 4–6).

5 Experiments

We evaluated our attention transformations on
three language pairs. We focused on small
datasets, as they are the most affected by cover-
age mistakes. We use the IWSLT 2014 corpus
for DE-EN, the KFTT corpus for JA-EN (Neu-
big, 2011), and the WMT 2016 dataset for RO-
EN. The training sets have 153,326, 329,882, and
560,767 parallel sentences, respectively. Our rea-
son to prefer smaller datasets is that this regime
is what brings more adequacy issues and demands
more structural biases, hence it is a good test bed
for our methods. We tokenized the data using the
Moses scripts and preprocessed it with subword
units (Sennrich et al., 2016) with a joint vocab-
ulary and 32k merge operations. Our implemen-
tation was done on a fork of the OpenNMT-py
toolkit (Klein et al., 2017) with the default param-
eters 4. We used a validation set to tune hyperpa-
rameters introduced by our model. Even though
our attention implementations are CPU-based us-
ing NumPy (unlike the rest of the computation
which is done on the GPU), we did not observe
any noticeable slowdown using multiple devices.

As baselines, we use softmax attention, as well
as two recently proposed coverage models:
• COVPENALTY (Wu et al., 2016, §7). At test

time, the hypotheses in the beam are rescored
with a global score that includes a length and a
coverage penalty.5 We tuned α and β with grid
search on {0.2k}5k=0, as in Wu et al. (2016).

• COVVECTOR (Tu et al., 2016). At training and
test time, coverage vectors β and additional pa-
rameters v are used to condition the next atten-
tion step. We adapted this to our bilinear atten-
tion by defining zt,j = s>t−1(Whj + vβt−1,j).

We also experimented combining the strategies
above with the sparsemax transformation.

As evaluation metrics, we report tokenized
BLEU, METEOR (Denkowski and Lavie (2014),
as well as two new metrics that we describe next
to account for over and under-translation.6

4We used a 2-layer LSTM, embedding and hidden size
of 500, dropout 0.3, and the SGD optimizer for 13 epochs.

5Since our sparse attention can become 0 for some
words, we extended the original coverage penalty by
adding another parameter ε, set to 0.1: cp(x; y) :=

β
∑J

j=1 logmax{ε,min{1,∑|y|t=1 αjt}}.
6Both evaluation metrics are included in our software

package at www.github.com/Unbabel/
sparse constrained attention.
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De-En Ja-En Ro-En
BLEU METEOR REP DROP BLEU METEOR REP DROP BLEU METEOR REP DROP

softmax 29.51 31.43 3.37 5.89 20.36 23.83 13.48 23.30 29.67 32.05 2.45 5.59
softmax + COVPENALTY 29.69 31.53 3.47 5.74 20.70 24.12 14.12 22.79 29.81 32.15 2.48 5.49
softmax + COVVECTOR 29.63 31.54 2.93 5.65 21.53 24.50 11.07 22.18 30.08 32.22 2.42 5.47
sparsemax 29.73 31.54 3.18 5.90 21.28 24.25 13.09 22.40 29.97 32.12 2.19 5.60
sparsemax + COVPENALTY 29.83 31.60 3.24 5.79 21.64 24.49 13.36 21.91 30.07 32.20 2.20 5.47
sparsemax + COVVECTOR 29.22 31.18 3.13 6.15 21.35 24.74 10.11 21.25 29.30 31.84 2.18 5.87
csoftmax (c = 0.2) 29.39 31.33 3.29 5.86 20.71 24.00 12.38 22.73 29.39 31.83 2.37 5.64
csparsemax (c = 0.2) 29.85 31.76 2.67 5.23 21.31 24.51 11.40 21.59 29.77 32.10 1.98 5.44

Table 1: BLEU, METEOR, REP and DROP scores on the test sets for different attention transformations.

BLEU METEOR
CONSTANT, f = 2 29.66 31.60
CONSTANT, f = 3 29.64 31.56
GUIDED, 29.56 31.45
PREDICTED, c = 0 29.78 31.60
PREDICTED, c = 0.2 29.85 31.76

Table 2: Impact of various fertility strategies for
the csparsemax attention model (DE-EN).

REP-score: a new metric to count repetitions.
Formally, given an n-gram s ∈ V n, let t(s) and
r(s) be the its frequency in the model translation
and reference. We first compute a sentence-level
score

σ(t, r) = λ1
∑

s∈V n, t(s)≥2 max{0, t(s)− r(s)}
+ λ2

∑
w∈V max{0, t(ww)− r(ww)}.

The REP-score is then given by summing σ(t, r)
over sentences, normalizing by the number of
words on the reference corpus, and multiplying by
100. We used n = 2, λ1 = 1 and λ2 = 2.

DROP-score: a new metric that accounts for
possibly dropped words. To compute it, we
first compute two sets of word alignments: from
source to reference translation, and from source
to the predicted translation. In our experiments,
the alignments were obtained with fast align
(Dyer et al., 2013), trained on the training partition
of the data. Then, the DROP-score computes the
percentage of source words that aligned with some
word from the reference translation, but not with
any word from the predicted translation.

Table 1 shows the results. We can see that on
average, the sparse models (csparsemax as well
as sparsemax combined with coverage models)
have higher scores on both BLEU and METEOR.
Generally, they also obtain better REP and DROP
scores than csoftmax and softmax, which suggests
that sparse attention alleviates the problem of cov-
erage to some extent.

To compare different fertility strategies, we ran
experiments on the DE-EN for the csparsemax
transformation (Table 2). We see that the PRE-
DICTED strategy outperforms the others both in
terms of BLEU and METEOR, albeit slightly.

Figure 2 shows examples of sentences for which
the csparsemax fixed repetitions, along with the
corresponding attention maps. We see that in the
case of softmax repetitions, the decoder attends
repeatedly to the same portion of the source sen-
tence (the expression “letzten hundert” in the first
sentence and “regierung” in the second sentence).
Not only did csparsemax avoid repetitions, but
it also yielded a sparse set of alignments, as ex-
pected. Appendix B provides more examples of
translations from all models in discussion.

6 Conclusions

We proposed a new approach to address the cover-
age problem in NMT, by replacing the softmax at-
tentional transformation by sparse and constrained
alternatives: sparsemax, constrained softmax, and
the newly proposed constrained sparsemax. For
the latter, we derived efficient forward and back-
ward propagation algorithms. By incorporating a
model for fertility prediction, our attention trans-
formations led to sparse alignments, avoiding re-
peated words in the translation.
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Abstract

This work aims to investigate alterna-
tive neural machine translation (NMT)
approaches and thus proposes a neural
hidden Markov model (HMM) consist-
ing of neural network-based alignment
and lexicon models. The neural models
make use of encoder and decoder compo-
nents, but drop the attention component.
The training is end-to-end and the stand-
alone decoder is able to provide compa-
rable performance with the state-of-the-art
attention-based models on three different
translation tasks.

1 Introduction

Attention-based neural translation models (Bah-
danau et al., 2015; Luong et al., 2015) attend
to specific positions on the source side to gen-
erate translation. Using the attention component
provides significant improvements over the pure
encoder-decoder sequence-to-sequence approach
(Sutskever et al., 2014) that uses no such attention
mechanism. In this work, we aim to compare the
performance of attention-based models to another
baseline, namely, neural hidden Markov models.

The neural HMM has been successfully applied
in the literature on top of conventional phrase-
based systems (Wang et al., 2017). In this work,
our purpose is to explore its application in stan-
dalone decoding, i.e. the model is used to gener-
ate and score candidates without assistance from a
phrase-based system. Because translation is done
standalone using only neural models, we still re-
fer to this as NMT. In addition, while Wang et al.
(2017) applied feedforward networks to model
alignment and translation, the recurrent structures
proposed in this work surpass the feedforward
variants by up to 1.3% in BLEU.

By comparing neural HMM and attention-based
NMT, we shed light on the role of the attention
component. To this end, we use an alignment-
based model that has a recurrent bidirectional en-
coder and a recurrent decoder, but use no atten-
tion component. We replace the attention mecha-
nism by a first-order HMM alignment model. At-
tention levels are deterministic normalized simi-
larity scores part of the architecture design of an
otherwise fully supervised classifier. HMM-style
alignments on the other hand are discrete ran-
dom variables and (unlike attention levels) must be
marginalized. Once alignments are marginalized,
which is tractable for a first-order HMM, parame-
ters can be estimated to attain a local optimum of
log-likelihood of observations as usual.

2 Motivation

In attention-based approaches, the alignment dis-
tribution is used to select the positions in the
source sentence that the decoder attends to dur-
ing translation. Thus the alignment model can be
considered as an implicit part of the translation
model. On the other hand, separating the align-
ment model from the lexicon model has its own
advantages: First of all, this leads to more flexi-
bility in modeling and training: The models can
not only be trained separately, but they can also
have different model types, such as neural mod-
els, count-based models, etc. Second, the separa-
tion avoids propagating errors from one model to
another. In attention-based systems, the transla-
tion score is based on the alignment distribution,
in which errors can be propagated from the align-
ment part to the translation part. Third, probabilis-
tic treatment to alignments in NMT typically im-
plies an extended degree of interpretability (e.g.
one can inspect posteriors) and control over the
model (e.g. one can impose priors over alignments
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and lexical distributions).

3 Neural Hidden Markov Model

Given a source sentence fJ1 = f1...fj ...fJ and a
target sentence eI1 = e1...ei...eI , where j = bi is
the source position aligned to the target position
i, we model translation using an alignment model
and a lexicon model:

p(eI1|fJ1 ) =
∑

bI1

p(eI1, b
I
1|fJ1 ) (1)

:=
∑

bI1

I∏

i=1

p(ei|bi1, ei−10 , fJ1 )︸ ︷︷ ︸
lexicon model

· p(bi|bi−11 , ei−10 , fJ1 )︸ ︷︷ ︸
alignment model

(2)

Instead of predicting the absolute source
position bi, we use an alignment model
p(∆i|bi−11 , ei−10 , fJ1 ) that predicts the jump
∆i = bi − bi−1.

Wang et al. (2017) applied feedforward neu-
ral networks for modeling the lexicon and align-
ment probabilities. In this work, we would like
to model these distributions using recurrent neu-
ral networks (RNN). RNNs have been shown to
outperform feedforward variants in language and
translation modeling. This is mainly due to that
RNN can handle arbitrary input lengths and thus
include unbounded context information. Unfortu-
nately, the recurrent hidden layer cannot be eas-
ily applied for the neural hidden Markov model,
since it will significantly complicate the compu-
tation of forward-backward messages when run-
ning Baum-Welch. Nevertheless, we can apply
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) structure for source and tar-
get words embedding. With this technique we can
take the essence of LSTM RNN and do not break
any sequential generative model assumptions.

Our models are close in structure to the model
proposed in Luong et al. (2015), where we have
a component that encodes the source sentence,
and another that encodes the target sentence. As
shown in Figure 1, we use a source side bidi-
rectional LSTM embedding hj =

−→
h j +

←−
h j ,

where
−→
h j = LSTM(W, fj ,

−→
h j−1) and

←−
h j =

LSTM(V, fj ,
←−
h j+1), as well as a target side

LSTM embedding si−1 = LSTM(U, ei−1, si−2).
hj ,
−→
h j ,
←−
h j and si−1, si−2 are vectors, W , V

and U are weight matrices. Before the non-linear
hidden layers, there is a projection layer which

f1

· · ·
fj−1 fj fj+1

· · ·
fJ e1

· · ·
ei−2 ei−1

−→s i−1· · ·

· · · · · ·

· · · · · ·
· · · · · ·

−→
h j

←−
h j

⊕⊕⊕

p(ei|hj, si−1, ei−1)

Figure 1: The architecture of our neural networks
with LSTM RNN on source and target side.

concatenates hj , si−1 and ei−1. Then the neural
network-based lexicon model is given by

p(ei|bi1, ei−10 , fJ1 ) := p(ei|hj , si−1, ei−1) (3)

and the neural network-based alignment model

p(bi|bi−11 , ei−10 , fJ1 ) := p(∆i|hj′ , si−1, ei−1) (4)

where j′ = bi−1.
The training criterion is the logarithm of sen-

tence posterior probabilities over training sentence
pairs (Fr, Er), r = 1, ..., R:

arg max
θ

{∑

r

log pθ(Er|Fr)
}

(5)

The derivative for a single sentence pair (F,E) =
(fJ1 , e

I
1) is:

∂

∂θ
log pθ(E|F )

=
∑

j′,j

∑

i

pi(j
′, j|fJ1 , eI1; θ)

· ∂
∂θ

log p(j, ei|j′, ei−10 , fJ1 ; θ)

(6)

with HMM posterior weights pi(j′, j|fJ1 , eI1; θ),
which can be computed using the forward-
backward algorithm.

The entire training procedure can be summa-
rized as backpropagation in an EM framework:

1. compute:
• the posterior HMM weights
• the local gradients (backpropagation)

2. update neural network weights
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4 Decoding

In the decoding stage we still calculate the sum
over alignments and apply a target-synchronous
beam search for the target string.

The auxiliary quantity for each unknown partial
string ei0 is specified as Q(i, j; ei0). During search,
the partial hypothesis is extended from ei−10 to ei0:

Q(i, j; ei0)

=
∑

j′

[
p(j, ei|j′, ei−10 , fJ1 ) ·Q(i− 1, j′; ei−10 )

]

(7)

The decoder is shown in Algorithm 1. In the in-
nermost loop (line 11-13), alignments are hypoth-
esized and used to calculate the auxiliary quantity
Q(i, j; ei0). Then for each source position j, the
lexical distribution over the full target vocabulary
is computed (line 14). The distributions are ac-
cumulated (Q(i; ei0) =

∑
j Q(i, j; ei0), line 16),

then sorted (line 18) and the best candidate trans-
lations (arg maxei Q(i; ei0)) lying within the beam
are used to expand the partial hypotheses (line
19-23). cache is a two-dimensional list of size
J × |Vsrc| (source vocabulary size), which is used
to cache the current quantities.

Whenever a partial hypothesis in the beam
ends with the sentence end symbol (<EOF>), the
counter will be increased by 1 (line 26-28). The
translation is terminated if the counter reaches the
beam size or hypothesis sentence length reaches
three times the source sentence length (line 6). If
a hypothesis stops but its score is worse than other
hypotheses, it is eliminated from the beam, but it
still contests non-terminated hypotheses. During
comparison the scores are normalized by hypothe-
sis sentence length. Note that we have no explicit
coverage constraints. This means that a source po-
sition can be revisited many times, whereby creat-
ing one-to-many alignment cases. This also allows
unaligned source words.

In the neural HMM decoder, word alignments
are estimated and scored according to the dis-
tribution calculated by the neural network align-
ment model, leading alignment decisions to be-
come part of the beam search. The search space
consists of both alignment and translation deci-
sions. In contrast, the search space in attention-
based decoding consists only of translation deci-
sions.

The decoding complexity is O(J2 · I) (J =
source sentence length, I = target sentence length)

Algorithm 1 Neural HMM Decoder

1: function TRANSLATE(fJ1 , beam size)
2: count = 0
3: i = 1
4: hyps = {e0}
5: new hyps = {}
6: while count < beam size and i < 3 · J do
7: for hyp in hyps do
8: sum dist = [0] ∗ |V |src
9: for j from 1 to J do

10: sum = 0
11: for j′ from 1 to J do
12: sum = sum + SCORES(hyp, j′)

·palign(fj′ , j − j′)
13: end for
14: cache[j] = sum · lex dist(fj)
15: #Element wise addition
16: sum dist = sum dist⊕ cache[j]
17: end for
18: dist = SORT(sum dist, beam size)
19: for word in dist[:beam size] do
20: new hyp = EXTEND(hyp, word)
21: SETSCORES(new hyp, cache)
22: new hyps.INSERT(new hyp)
23: end for
24: end for
25: PRUNE(new hyps, beam size)
26: for <EOF> in new hyps do
27: count = count + 1
28: end for
29: hyps = new hyps
30: i = i+ 1
31: end while
32: return GETBEST(hyps)
33: end function

compared to O(J · I) for attention-based models.
These are theoretical complexities of decoding on
a CPU only considering source and target sentence
lengths. In practice, the size of the neural net-
work must also be taken into account, and there
are some optimized matrix multiplications for de-
coding on a GPU. In general, the decoding speed
of our model is about 3 times slower than that of a
standard attention model (1.07 sentences per sec-
ond vs. 3.00 sentences per second) on a single
GPU. This is still an initial decoder and we did
not spend much time on accelerating its decoding
yet. The optimization of our decoder would be a
promising future work.
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5 Experiments

The experiments are conducted on the WMT 2017
German↔English and Chinese→English transla-
tion tasks, which consist of 5M and 23M paral-
lel sentence pairs respectively. Translation quality
is measured with the case sensitive BLEU (Pap-
ineni et al., 2002) and TER (Snover et al., 2006)
metric on newstests 2017, which contain 3004
(German↔English) and 2001 (Chinese→English)
sentence pairs.

For German and English preprocessing, we use
the Moses tokenizer with hyphen splitting, and
perform truecasing with Moses scripts (Koehn
et al., 2007). For German↔English subword seg-
mentation (Sennrich et al., 2016), we use 20K
joint BPE operations. For the Chinese data, we
segment it using the Jieba1 segmenter. We then
learn a BPE model on the segmented Chinese,
also using 20K merge operations. During train-
ing, sentences with a length greater than 50 sub-
words are filtered out.

5.1 Attention-Based System
The attention-based systems are trained with Sock-
eye (Hieber et al., 2017), which implement an
attentional encoder-decoder with small modifica-
tions to the model in Bahdanau et al. (2015). The
encoder and decoder word embeddings are of size
620. The encoder consists of a bidirectional layer
with 1000 LSTMs with peephole connections to
encode the source side. We use Adam (Kingma
and Ba, 2015) as optimizer with a learning rate
of 0.001, and a batch size of 50. The network
is trained with 30% dropout for up to 500K it-
erations and evaluated every 10K iterations on the
development set with BLEU. Decoding is done us-
ing beam search with a beam size of 12. In the end
the four best models are averaged as described in

1https://github.com/fxsjy/jieba

the beginning of Junczys-Dowmunt et al. (2016).

5.2 Neural Hidden Markov Model
The entire neural hidden Markov model is imple-
mented in TensorFlow (Abadi et al., 2016). The
feedforward models have three hidden layers of
sizes 1000, 1000 and 500 respectively, with a 5-
word source window and a 3-gram target history.
200 nodes are used for word embeddings.

The output layer of the neural lexicon model
consists of around 25K nodes for all subword
units, while the neural alignment model has a
small output layer with 201 nodes, which reflects
that the aligned position can jump within the scope
from −100 to 100.

Apart from the basic projection layer, we also
applied LSTM layers for the source and target
words embedding. The embedding layers have
350 nodes and the size of the projection layer
is 800 (400 + 200 + 200, Figure 1). We use
Adam as optimizer with a learning rate of 0.001.
Neural lexicon and alignment models are trained
with 30% dropout and the norm of the gradient is
clipped with a threshold 1 (Pascanu et al., 2014).
In decoding we use a beam size of 12 and the
element-wise average of all weights of the four
best models also results in better performance.

5.3 Results
We compare the neural HMM approach (Subsec-
tion 5.2) with the state-of-the-art attention-based
approach (Subsection 5.1) on different translation
tasks. The results are presented in Table 1. Com-
pare to the model presented in Wang et al. (2017),
switching to LSTM models has a clear advantage,
which improves the FFNN-based system by up
to 1.3% BLEU and 1.8% TER. It seems that the
HMM model benefits from richer features, such
as LSTM states, which are very similar to what an
attention mechanism would require. We actually

WMT 2017
# free German→English English→German Chinese→English

parameters BLEU[%] TER[%] BLEU[%] TER[%] BLEU[%] TER[%]

FFNN-based neural HMM 1 33M 28.3 51.4 23.4 58.8 19.3 64.8
LSTM-based neural HMM 2 52M 29.6 50.5 24.6 57.0 20.2 63.7
Attention-based neural network 3 77M 29.5 50.8 24.7 57.4 20.2 63.8

Table 1: Experimental results on WMT 2017 German↔English and Chinese→English test sets.
All models are trained without synthetic data. Single model is used for decoding.
1 (Wang et al., 2017) but applied in decoding instead of rescoring
2 This work
3 (Bahdanau et al., 2015) with small modifications (Section 5.1)
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Figure 2: Attention weight and alignment matrices visualized in heat map form. Generated by the
attention NMT baseline, GIZA++ and the neural hidden Markov model.

expected it to do with less, the reason being that
alignment distributions get refined a posteriori and
so they do not have to be as strong a priori. We can
also observe that the performance of our approach
is comparable with the state-of-the-art attention-
based system with 25M more parameters on all
three tasks.

5.4 Alignment Analysis
We show an example from the German→English
newstest 2017 in Figure 2, along with the atten-
tion and alignment matrices. We can observe that
the neural network-based HMM could generate a
more clear alignment path compared to the atten-
tion weights. In this example, it can exactly esti-
mate the alignment positions for words wanted
and of.

6 Discussion

We described a novel formulation for a neural
network-based machine translation system, which
applied neural networks to the conventional hid-
den Markov model. The training is end-to-end, the
model is monolithic and can be used as a stand-
alone decoder. This results in a more modern
and efficient way to use HMM in machine trans-
lation and enables neural networks to benefit from
HMMs.

Experiments show that replacing attention with
alignment does not improve the translation perfor-
mance of NMT significantly. One possible reason
is that alignment may fail to capture relevant con-
texts as attention does. While alignment aims to
identify translation equivalents between two lan-

guages, attention is designed to find relevant con-
text for predicting the next target word. Source
words with high attention weights are not neces-
sarily translation equivalents of the target word.
Although using alignment does not lead to signif-
icant improvements in terms of BLEU over atten-
tion, we think alignment-based NMT models are
still useful for automatic post editing and develop-
ing coverage-based models. These might be inter-
esting future directions to explore.
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Abstract

Gender prediction has typically focused on
lexical and social network features, yield-
ing good performance, but making systems
highly language-, topic-, and platform-
dependent. Cross-lingual embeddings cir-
cumvent some of these limitations, but cap-
ture gender-specific style less. We propose
an alternative: bleaching text, i.e., trans-
forming lexical strings into more abstract
features. This study provides evidence
that such features allow for better transfer
across languages. Moreover, we present a
first study on the ability of humans to per-
form cross-lingual gender prediction. We
find that human predictive power proves
similar to that of our bleached models, and
both perform better than lexical models.

1 Introduction

Author profiling is the task of discovering latent
user attributes disclosed through text, such as gen-
der, age, personality, income, location and occu-
pation (Rao et al., 2010; Burger et al., 2011; Feng
et al., 2012; Jurgens, 2013; Bamman et al., 2014;
Plank and Hovy, 2015; Flekova et al., 2016). It is
of interest to several applications including person-
alized machine translation, forensics, and market-
ing (Mirkin et al., 2015; Rangel et al., 2015).

Early approaches to gender prediction (Kop-
pel et al., 2002; Schler et al., 2006, e.g.) are in-
spired by pioneering work on authorship attribu-
tion (Mosteller and Wallace, 1964). Such stylo-
metric models typically rely on carefully hand-
selected sets of content-independent features to
capture style beyond topic. Recently, open vocab-
ulary approaches (Schwartz et al., 2013), where
the entire linguistic production of an author is
used, yielded substantial performance gains in on-

line user-attribute prediction (Nguyen et al., 2014;
Preoţiuc-Pietro et al., 2015; Emmery et al., 2017).
Indeed, the best performing gender prediction mod-
els exploit chiefly lexical information (Rangel et al.,
2017; Basile et al., 2017).

Relying heavily on the lexicon though has its
limitations, as it results in models with limited
portability. Moreover, performance might be overly
optimistic due to topic bias (Sarawgi et al., 2011).
Recent work on cross-lingual author profiling has
proposed the use of solely language-independent
features (Ljubešić et al., 2017), e.g., specific tex-
tual elements (percentage of emojis, URLs, etc)
and users’ meta-data/network (number of followers,
etc), but this information is not always available.

We propose a novel approach where the actual
text is still used, but bleached out and transformed
into more abstract, and potentially better transfer-
able features. One could view this as a method in
between the open vocabulary strategy and the sty-
lometric approach. It has the advantage of fading
out content in favor of more shallow patterns still
based on the original text, without introducing ad-
ditional processing such as part-of-speech tagging.
In particular, we investigate to what extent gender
prediction can rely on generic non-lexical features
(RQ1), and how predictive such models are when
transferred to other languages (RQ2). We also
glean insights from human judgments, and inves-
tigate how well people can perform cross-lingual
gender prediction (RQ3). We focus on gender pre-
diction for Twitter, motivated by data availability.

Contributions In this work i) we are the first to
study cross-lingual gender prediction without re-
lying on users’ meta-data; ii) we propose a novel
simple abstract feature representation which is sur-
prisingly effective; and iii) we gauge human ability
to perform cross-lingual gender detection, an angle
of analysis which has not been studied thus far.
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Original a bag of Doritos for lunch!
Frequency 4 2 4 0 4 1 0
Length 01 03 02 07 03 06 04
PunctC W W W W W W!
PunctA W W W W W WP JJJJ
Shape L LL LL ULL LL LLX XX
Vowels V CVC VC CVCVCVC CVC CVCCCO OOOO

Table 1: Abstract features example transformation.

2 Profiling with Abstract Features

Can we recover the gender of an author from
bleached text, i.e., transformed text were the raw
lexical strings are converted into abstract features?
We investigate this question by building a series of
predictive models to infer the gender of a Twitter
user, in absence of additional user-specific meta-
data. Our approach can be seen as taking advantage
of elements from a data-driven open-vocabulary
approach, while trying to capture gender-specific
style in text beyond topic.

To represent utterances in a more language ag-
nostic way, we propose to simply transform the text
into alternative textual representations, which devi-
ate from the lexical form to allow for abstraction.
We propose the following transformations, exem-
plified in Table 1. They are mostly motivated by
intuition and inspired by prior work, like the use of
shape features from NER and parsing (Petrov and
Klein, 2007; Schnabel and Schütze, 2014; Plank
et al., 2016; Limsopatham and Collier, 2016):

• Frequency Each word is presented as its
binned frequency in the training data; bins
are sized by orders of magnitude.

• Length Number of characters (prefixed by 0
to avoid collision with the next transforma-
tion).

• PunctC Merges all consecutive alphanumeric
characters to one ‘W’ and leaves all other char-
acters as they are (C for conservative).

• PunctA Generalization of PunctC (A for ag-
gressive), converting different types of punc-
tuation to classes: emoticons1 to ‘E’ and emo-
jis2 to ‘J’, other punctuation to ‘P’.

• Shape Transforms uppercase characters to
‘U’, lowercase characters to ‘L’, digits to ‘D’
and all other characters to ‘X’. Repetitions

1Using the NLTK tokenizer http://www.nltk.org/
_modules/nltk/tokenize/casual.html

2https://pypi.python.org/pypi/emoji/

of transformed characters are condensed to a
maximum of 2 for greater generalization.

• Vowel-Consonant To approximate vowels,
while being able to generalize over (Indo-
European) languages, we convert any of the
‘aeiou’ characters to ‘V’, other alphabetic char-
acter to ‘C’, and all other characters to ‘O’.

• AllAbs A combination (concatenation) of all
previously described features.

3 Experiments

In order to test whether abstract features are ef-
fective and transfer across languages, we set up
experiments for gender prediction comparing lex-
icalized and bleached models for both in- and
cross-language experiments. We compare them
to a model using multilingual embeddings (Ruder,
2017). Finally, we elicit human judgments both
within language and across language. The latter is
to check whether a person with no prior knowledge
of (the lexicon of) a given language can predict
the gender of a user, and how that compares to an
in-language setup and the machine. If humans can
predict gender cross-lingually, they are likely to
rely on aspects beyond lexical information.

Data We obtain data from the TWISTY cor-
pus (Verhoeven et al., 2016), a multi-lingual col-
lection of Twitter users, for the languages with
500+ users, namely Dutch, French, Portuguese,
and Spanish. We complement them with English,
using data from a predecessor of TWISTY (Plank
and Hovy, 2015). All datasets contain manually
annotated gender information. To simplify interpre-
tation for the cross-language experiments, we bal-
ance gender in all datasets by downsampling to the
minority class. The datasets’ final sizes are given
in Table 2. We use 200 tweets per user, as done
by previous work (Verhoeven et al., 2016). We
leave the data untokenized to exclude any language-
dependent processing, because original tokeniza-
tion could preserve some signal. Apart from map-
ping usernames to ‘USER’ and urls to ‘URL’ we
do not perform any further data pre-processing.

3.1 Lexical vs Bleached Models
We use the scikit-learn (Pedregosa et al.,
2011) implementation of a linear SVM with de-
fault parameters (e.g., L2 regularization). We use
10-fold cross validation for all in-language experi-
ments. For the cross-lingual experiments, we train
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IN-LANGUAGE CROSS-LANGUAGE
TEST USERS LEXICAL ABSTRACT LEX AVG LEX ALL EMBEDS ABS AVG ABS ALL

EN 850 69.3 66.1 51.8 50.5 61.6 55.3 59.8
NL 894 81.3 71.8 52.3 50.0 56.8 59.5 69.2
FR 1,008 80.8 68.3 53.4 53.8 50.0 58.7 65.4
PT 3,066 86.0 68.1 55.3 63.8 59.5 59.3 58.9
ES 8,112 85.3 69.8 55.6 63.5 71.3 56.6 66.0

Table 2: Number of users per language and results for gender prediction (accuracy). IN-LANGUAGE:
10-fold cross-validation. CROSS-LANGUAGE: Testing on all test data in two setups: averages over single
source models (AVG) or training a single model on all languages except the target (ALL). Comparison of
lexical n-gram models (LEX), bleached models (ABS) and multilingual embeddings model (EMBEDS).

on all available source language data and test on all
target language data.

For the lexicalized experiments, we adopt the
features from the best performing system at the lat-
est PAN evaluation campaign3 (Basile et al., 2017)
(word 1-2 grams and character 3-6 grams).

For the multilingual embeddings model we use
the mean embedding representation from the sys-
tem of (Plank, 2017) and add max, std and cover-
age features. We create multilingual embeddings
by projecting monolingual embeddings to a single
multilingual space for all five languages using a
recently proposed SVD-based projection method
with a pseudo-dictionary (Smith et al., 2017).
The monolingual embeddings are trained on large
amounts of in-house Twitter data (as much data as
we had access to, i.e., ranging from 30M tweets
for French to 1,500M tweets in Dutch, with a word
type coverage between 63 and 77%). This results in
an embedding space with a vocabulary size of 16M
word types. All code is available at https://
github.com/bplank/bleaching-text.

For the bleached experiments, we ran models
with each feature set separately. In this paper, we
report results for the model where all features are
combined, as it proved to be the most robust across
languages. We tuned the n-gram size of this model
through in-language cross-validation, finding that
n = 5 performs best.

When testing across languages, we report accu-
racy for two setups: average accuracy over each
single-language model (AVG), and accuracy ob-
tained when training on the concatenation of all
languages but the target one (ALL). The latter set-
ting is also used for the embeddings model. We
report accuracy for all experiments.

3http://pan.webis.de

Test→ EN NL FR PT ES

Tr
ai

n

EN 52.8 48.0 51.6 50.4
NL 51.1 50.3 50.0 50.2
FR 55.2 50.0 58.3 57.1
PT 50.2 56.4 59.6 64.8
ES 50.8 50.1 55.6 61.2

Avg 51.8 52.3 53.4 55.3 55.6

Table 3: Pair-wise results for lexicalized models.

Results and Analysis Table 2 shows results for
both the cross-language and in-language experi-
ments in the lexical and abstract-feature setting.

Within language, the lexical features unsurpris-
ingly work the best, achieving an average accuracy
of 80.5% over all languages. The abstract features
lose some information and score on average 11.8%
lower, still beating the majority baseline (50%)
by a large margin (68.7%). If we go across lan-
guage, the lexical approaches break down (overall
to 53.7% for LEX AVG/56.3% for ALL), except for
Portuguese and Spanish, thanks to their similarities
(see Table 3 for pair-wise results). The closely-
related-language effect is also observed when train-
ing on all languages, as scores go up when the
classifier has access to the related language. The
same holds for the multilingual embeddings model.
On average it reaches an accuracy of 59.8%.

The closeness effect for Portuguese and Spanish
can also be observed in language-to-language ex-
periments, where scores for ES7→PT and PT 7→ES
are the highest. Results for the lexical models are
generally lower on English, which might be due to
smaller amounts of data (see first column in Table 2
providing number of users per language).

The abstract features fare surprisingly well and
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Male Female

1 W W W W "W" USER E W W W
2 W W W W ? 3 5 1 5 2
3 2 5 0 5 2 W W W W
4 5 4 4 5 4 E W W W W
5 W W, W W W? LL LL LL LL LX
6 4 4 2 1 4 LL LL LL LL LUU
7 PP W W W W W W W W *-*
8 5 5 2 2 5 W W W W JJJ
9 02 02 05 02 06 W W W W &W;W

10 5 0 5 5 2 J W W W W

Table 4: Ten most predictive features of the ABS

model across all five languages. Features are
ranked by how often they were in the top-ranked
features for each language. Those prefixed with 0
(line 9) are length features. The prefix is used to
avoid clashes with the frequency features.

work a lot better across languages. The perfor-
mance is on average 6% higher across all languages
(57.9% for AVG, 63.9% for ALL) in comparison
to their lexicalized counterparts, where ABS ALL

results in the overall best model. For Spanish, the
multilingual embedding model clearly outperforms
ABS. However, the approach requires large Twitter-
specific embeddings.4

For our ABS model, if we investigate predictive
features over all languages, cf. Table 4, we can see
that the use of an emoji (like ) and shape-based
features are predictive of female users. Quotes,
question marks and length features, for example,
appear to be more predictive of male users.

3.2 Human Evaluation

We experimented with three different conditions,
one within language and two across language. For
the latter, we set up an experiment where native
speakers of Dutch were presented with tweets writ-
ten in Portuguese and were asked to guess the
poster’s gender. In the other experiment, we asked
speakers of French to identify the gender of the
writer when reading Dutch tweets. In both cases,
the participants declared to have no prior knowl-
edge of the target language. For the in-language
experiment, we asked Dutch speakers to identify
the gender of a user writing Dutch tweets. The

4We tested the approach with more generic (from
Wikipedia) but smaller (in terms of vocabulary size) Poly-
glot embeddings resulting in inferior multilingual embeddings
for our task.

Human Mach. LEX Mach. ABS

tweets/user: 20 20 200 20 200

NL7→NL 70.5 69.0 81.0 49.5 72.0
NL7→PT 58.7 49.5 50.5 57.0 61.5
FR7→NL 60.3 50.0 50.0 50.5 62.0

Table 5: Accuracy human versus machine.

Dutch speakers who participated in the two exper-
iments are distinct individuals. Participants were
informed of the experiment’s goal. Their identity
is anonymized in the data.

We selected a random sample of 200 users from
the Dutch and Portuguese data, preserving a 50/50
gender distribution. Each user was represented by
twenty tweets. The answer key (F/M) order was
randomized. For each of the three experiments we
had six judges, balanced for gender, and obtained
three annotations per target user.

Results and Analysis Inter-annotator agreement
for the tasks was measured via Fleiss kappa (n =
3, N = 200), and was higher for the in-language
experiment (K = 0.40) than for the cross-language
tasks (NL 7→PT: K = 0.25; FR 7→NL: K = 0.28).
Table 5 shows accuracy against the gold labels,
comparing humans (average accuracy over three
annotators) to lexical and bleached models on the
exact same subset of 200 users. Systems were
tested under two different conditions regarding the
number of tweets per user for the target language:
machine and human saw the exact same twenty
tweets, or the full set of tweets (200) per user, as
done during training (Section 3.1).

First of all, our results indicate that in-language
performance of humans is 70.5%, which is quite in
line with the findings of Flekova et al. (2016), who
report an accuracy of 75% on English. Within lan-
guage, lexicalized models are superior to humans if
exposed to enough information (200 tweets setup).
One explanation for this might lie in an observation
by Flekova et al. (2016), according to which peo-
ple tend to rely too much on stereotypical lexical
indicators when assigning gender to the poster of
a tweet, while machines model less evident pat-
terns. Lexicalized models are also superior to the
bleached ones, as already seen on the full datasets
(Table 2).

We can also observe that the amount of infor-
mation available to represent a user influences sys-
tem’s performance. Training on 200 tweets per
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user, but testing on 20 tweets only, decreases per-
formance by 12 percentage points. This is likely
due to the fact that inputs are sparser, especially
since the bleached model is trained on 5-grams.5

The bleached model, when given 200 tweets per
user, yields a performance that is slightly higher
than human accuracy.

In the cross-language setting, the picture is very
different. Here, human performance is superior
to the lexicalized models, independently of the
amount of tweets per user at testing time. This
seems to indicate that if humans cannot rely on the
lexicon, they might be exploiting some other signal
when guessing the gender of a user who tweets in
a language unknown to them. Interestingly, the
bleached models, which rely on non-lexical fea-
tures, not only outperform the lexicalized ones in
the cross-language experiments, but also neatly
match the human scores.

4 Related Work

Most existing work on gender prediction exploits
shallow lexical information based on the linguis-
tic production of the users. Few studies investi-
gate deeper syntactic information (Koppel et al.,
2002; Feng et al., 2012) or non-linguistic input, e.g.,
language-independent clues such as visual (Alow-
ibdi et al., 2013) or network information (Jurgens,
2013; Plank and Hovy, 2015; Ljubešić et al., 2017).
A related angle is cross-genre profiling. In both
settings lexical models have limited portability due
to their bias towards the language/genre they have
been trained on (Rangel et al., 2016; Busger op
Vollenbroek et al., 2016; Medvedeva et al., 2017).

Lexical bias has been shown to affect in-
language human gender prediction, too. Flekova
et al. (2016) found that people tend to rely too much
on stereotypical lexical indicators, while Nguyen
et al. (2014) show that more than 10% of the Twit-
ter users do actually not employ words that the
crowd associates with their biological sex. Our fea-
tures abstract away from such lexical cues while
retaining predictive signal.

5 Conclusions

Bleaching text into abstract features is surprisingly
effective for predicting gender, though lexical infor-

5We experimented with training on 20 tweets rather than
200, and with different n-gram sizes (e.g., 1–4). Despite
slightly better results, we decided to use the trained models as
they were to employ the same settings across all experiments
(200 tweets per users, n = 5), with no further tuning.

mation is still more useful within language (RQ1).
However, models based on lexical clues fail when
transferred to other languages, or require large
amounts of unlabeled data from a similar domain
as our experiments with the multilingual embed-
ding model indicate. Instead, our bleached models
clearly capture some signal beyond the lexicon,
and perform well in a cross-lingual setting (RQ2).
We are well aware that we are testing our cross-
language bleached models in the context of closely
related languages. While some features (such as
PunctA, or Frequency) might carry over to geneti-
cally more distant languages, other features (such
as Vowels and Shape) would probably be meaning-
less. Future work on this will require a sensible
setting from a language typology perspective for
choosing and testing adequate features.

In our novel study on human proficiency for
cross-lingual gender prediction, we discovered that
people are also abstracting away from the lexicon.
Indeed, we observe that they are able to detect gen-
der by looking at tweets in a language they do not
know (RQ3) with an accuracy of 60% on average.
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Abstract

Recent embedding-based methods in
bilingual lexicon induction show good
results, but do not take advantage of
orthographic features, such as edit dis-
tance, which can be helpful for pairs of
related languages. This work extends
embedding-based methods to incorporate
these features, resulting in significant
accuracy gains for related languages.

1 Introduction

Over the past few years, new methods for bilingual
lexicon induction have been proposed that are ap-
plicable to low-resource language pairs, for which
very little sentence-aligned parallel data is avail-
able. Parallel data can be very expensive to create,
so methods that require less of it or that can utilize
more readily available data are desirable.

One prevalent strategy involves creating multi-
lingual word embeddings, where each language’s
vocabulary is embedded in the same latent space
(Vulić and Moens, 2013; Mikolov et al., 2013a;
Artetxe et al., 2016); however, many of these
methods still require a strong cross-lingual signal
in the form of a large seed dictionary.

More recent work has focused on reducing that
constraint. Vulić and Moens (2016) and Vulic
and Korhonen (2016) use document-aligned data
to learn bilingual embeddings instead of a seed
dictionary. Artetxe et al. (2017) use a very small,
automatically-generated seed lexicon of identi-
cal numerals as the initialization in an iterative
self-learning framework to learn a linear mapping
between monolingual embedding spaces; Zhang
et al. (2017) use an adversarial training method to
learn a similar mapping. Lample et al. (2018a)
use a series of techniques to align monolingual
embedding spaces in a completely unsupervised

way; their method is used by Lample et al. (2018b)
as the initialization for a completely unsupervised
machine translation system.

These recent advances in unsupervised bilin-
gual lexicon induction show promise for use in
low-resource contexts. However, none of them
make use of linguistic features of the languages
themselves (with the arguable exception of syn-
tactic/semantic information encoded in the word
embeddings). This is in contrast to work that
predates many of these embedding-based meth-
ods that leveraged linguistic features such as edit
distance and orthographic similarity: Dyer et al.
(2011) and Berg-Kirkpatrick et al. (2010) inves-
tigate using linguistic features for word align-
ment, and Haghighi et al. (2008) use linguis-
tic features for unsupervised bilingual lexicon in-
duction. These features can help identify words
with common ancestry (such as the English-Italian
pair agile-agile) and borrowed words (macaroni-
maccheroni).

The addition of linguistic features led to in-
creased performance in these earlier models, es-
pecially for related languages, yet these features
have not been applied to more modern methods.
In this work, we extend the modern embedding-
based approach of Artetxe et al. (2017) with ortho-
graphic information in order to leverage similari-
ties between related languages for increased accu-
racy in bilingual lexicon induction.

2 Background

This work is directly based on the work of Artetxe
et al. (2017). Following their work, let X ∈
R|Vs|×d and Z ∈ R|Vt|×d be the word embedding
matrices of two distinct languages, referred to re-
spectively as the source and target, such that each
row corresponds to the d-dimensional embedding
of a single word. We refer to the ith row of one of
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these matrices as Xi∗ or Zi∗. The vocabularies for
each language are Vs and Vt, respectively. Also
let D ∈ {0, 1}|Vs|×|Vt| be a binary matrix repre-
senting a dictionary such that Dij = 1 if the ith
word in the source language is aligned with the
jth word in the target language. We wish to find
a mapping matrix W ∈ Rd×d that maps source
embeddings onto their aligned target embeddings.
Artetxe et al. (2017) define the optimal mapping
matrix W ∗ with the following equation,

W ∗ = arg min
W

∑

i

∑

j

Dij ‖Xi∗W − Zj∗‖2

which minimizes the sum of the squared Euclidean
distances between mapped source embeddings and
their aligned target embeddings.

By normalizing and mean-centering X and Z,
and enforcing that W be an orthogonal matrix
(W TW = I), the above formulation becomes
equivalent to maximizing the dot product between
the mapped source embeddings and target embed-
dings, such that

W ∗ = arg max
W

Tr(XWZTDT )

where Tr(·) is the trace operator, the sum of all di-
agonal entries. The optimal solution to this equa-
tion is W ∗ = UV T , where XTDZ = UΣV T is
the singular value decomposition of XTDZ.

This formulation requires a seed dictionary. To
reduce the need for a large seed dictionary, Artetxe
et al. (2017) propose an iterative, self-learning
framework that determines W as above, uses it to
calculate a new dictionary D, and then iterates un-
til convergence. In the dictionary induction step,
they set Dij = 1 if j = arg maxk (Xi∗W ) · Zk∗
and Dij = 0 otherwise.

We propose two methods for extending this sys-
tem using orthographic information, described in
the following two sections.

3 Orthographic Extension of Word
Embeddings

This method augments the embeddings for all
words in both languages before using them in the
self-learning framework of Artetxe et al. (2017).
To do this, we append to each word’s embedding
a vector of length equal to the size of the union
of the two languages’ alphabets. Each position in
this vector corresponds to a single letter, and its
value is set to the count of that letter within the

spelling of the word. This letter count vector is
then scaled by a constant before being appended
to the base word embedding. After appending, the
resulting augmented vector is normalized to have
magnitude 1.

Mathematically, let A be an ordered set of char-
acters (an alphabet), containing all characters ap-
pearing in both language’s alphabets:

A = Asource ∪Atarget

Let Osource and Otarget be the orthographic
extension matrices for each language, containing
counts of the characters appearing in each word
wi, scaled by a constant factor ce:

Oij = ce · count(Aj , wi), O ∈ {Osource, Otarget}

Then, we concatenate the embedding matrices
and extension matrices:

X
′

= [X;Osource], Z
′

= [Z;Otarget]

Finally, in the normalized embedding matrices
X

′′
and Z

′′
, each row has magnitude 1:

X
′′
i∗ =

X
′
i∗

‖X ′
i∗‖

, Z
′′
i∗ =

Z
′
i∗

‖Z ′
i∗‖

These new matrices are used in place of X and
Z in the self-learning process.

4 Orthographic Similarity Adjustment

This method modifies the similarity score for each
word pair during the dictionary induction phase
of the self-learning framework of Artetxe et al.
(2017), which uses the dot product of two words’
embeddings to quantify similarity. We modify
this similarity score by adding a measure of or-
thographic similarity, which is a function of the
normalized string edit distance of the two words.

The normalized edit distance is defined as the
Levenshtein distance (L(·, ·)) (Levenshtein, 1966)
divided by the length of the longer word. The Lev-
enshtein distance represents the minimum number
of insertions, deletions, and substitutions required
to transform one word into the other. The normal-
ized edit distance function is denoted as NL(·, ·).

NL(w1, w2) =
L(w1, w2)

max(|w1|, |w2|)

We define the orthographic similarity of two
wordsw1 andw2 as log(2.0−NL(w1, w2)). These
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(b) Similarity Adjustment

Figure 1: Performance on development data vs. scaling factors ce and cs. The lowest tested value for
both was 10−6.

similarity scores are used to form an orthographic
similarity matrix S, where each entry corresponds
to a source-target word pair. Each entry is first
scaled by a constant factor cs. This matrix is added
to the standard similarity matrix, XWZT .

Sij = cs·log(2.0−NL(wi, wj)), wi ∈ Vs, wj ∈ Vt

The vocabulary for each language is 200,000
words, so computing a similarity score for each
pair would involve 40 billion edit distance cal-
culations. Also, the vast majority of word pairs
are orthographically very dissimilar, resulting in a
normalized edit distance close to 1 and an ortho-
graphic similarity close to 0, having little to no ef-
fect on the overall estimated similarity. Therefore,
we only calculate the edit distance for a subset of
possible word pairs.

Thus, the actual orthographic similarity matrix
that we use is as follows:

S
′
ij =

{
Sij 〈wi, wj〉 ∈ symDelete(Vt,Vs,k)
0 otherwise

This subset of word pairs was chosen using
an adaptation of the Symmetric Delete spelling
correction algorithm described by Garbe (2012),
which we denote as symDelete(·,·,·). This al-
gorithm takes as arguments the target vocabulary,
source vocabulary, and a constant k, and identifies
all source-target word pairs that are identical af-
ter k or fewer deletions from each word; that is,
all pairs where each is reachable from the other
with no more than k insertions and k deletions.
For example, the Italian-English pair moderno-
modern will be identified with k = 1, and the pair
tollerante-tolerant will be identified with k = 2.

The algorithm works by computing all strings
formed by k or fewer deletions from each target

word, stores them in a hash table, then does the
same for each source word and generates source-
target pairs that share an entry in the hash table.
The complexity of this algorithm can be expressed
as O(|V |lk), where V = Vt ∪ Vs is the combined
vocabulary and l is the length of the longest word
in V . This is linear with respect to the vocabu-
lary size, as opposed to the quadratic complexity
required for computing the entire matrix. How-
ever, the algorithm is sensitive to both word length
and the choice of k. In our experiments, we found
that ignoring all words of length greater than 30
allowed the algorithm to complete very quickly
while skipping less than 0.1% of the data. We also
used small values of k (0 < k < 4), and used
k = 1 for our final results, finding no significant
benefit from using a larger value.

5 Experiments

We use the datasets used by Artetxe et al. (2017),
consisting of three language pairs: English-
Italian, English-German, and English-Finnish.
The English-Italian dataset was introduced in
Dinu and Baroni (2014); the other datasets were
created by Artetxe et al. (2017). Each dataset
includes monolingual word embeddings (trained
with word2vec (Mikolov et al., 2013b)) for both
languages and a bilingual dictionary, separated
into a training and test set. We do not use the
training set as the input dictionary to the system,
instead using an automatically-generated dictio-
nary consisting only of numeral identity transla-
tions (such as 2-2, 3-3, et cetera) as in Artetxe
et al. (2017).1 However, because the methods pre-
sented in this work feature tunable hyperparame-
ters, we use a portion of the training set as devel-

1https://github.com/artetxem/vecmap
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Method English-German English-Italian English-Finnish
Artetxe et al. (2017) 40.27 39.40 26.47

Artetxe et al. (2017) + identity 51.73 44.07 42.63
Embedding extension, ce = 1

8
50.33 48.40 29.63

Embedding extension + identity, ce = 1
8

55.40 47.13 43.54
Similarity adjustment, cs = 1 43.73 39.93 28.16

Similarity adjustment + identity, cs = 1 52.20 44.27 41.99
Combined, ce = 1

8
, cs = 1 53.53 49.13 32.51

Combined + identity, ce = 1
8

, cs = 1 55.53 46.27 41.78

Table 1: Comparison of methods on test data. Scaling constants ce and cs were selected based on
performance on development data over all three language pairs. The last two rows report the results of
using both methods together.

Source Word Our Prediction (Language) Incorrect Baseline Prediction (Translation)
caesium cäsium (German) isotope (isotope)
unevenly ungleichmäßig (German) gleichmäßig (evenly)

Ethiopians Äthiopier (German) Afrikaner (Africans)
autumn autunno (Italian) primavera (spring)

Brueghel Bruegel (Italian) Dürer (Dürer)
Latvians latvialaiset (Finnish) ukrainalaiset (Ukrainians)

Table 2: Examples of pairs correctly identified by our embedding extension method that were incorrectly
translated by the system of Artetxe et al. (2017). Our system can disambiguate semantic clusters created
by word2vec.

opment data.2 In all experiments, a single target
word is predicted for each source word, and full
points are awarded if it is one of the listed correct
translations. On average, the number of transla-
tions for each source (non-English) word was 1.2
for English-Italian, 1.3 for English-German, and
1.4 for English-Finnish.

6 Results and Discussion

For our experiments with orthographic extension
of word embeddings, each embedding was ex-
tended by the size of the union of the alphabets
of both languages. The size of this union was 199
for English-Italian, 200 for English-German, and
287 for English-Finnish.

These numbers are perhaps unintuitively high.
However, the corpora include many other char-
acters, including diacritical markings and various
symbols (%, [, !, etc.) that are an indication that
tokenization of the data could be improved. We
did not filter these characters in this work.

For our experiments with orthographic similar-
ity adjustment, the heuristic identified approxi-
mately 2 million word pairs for each language pair
out of a possible 40 billion, resulting in significant
computation savings.

2We use all source-target pairs containing one of 1,000
randomly-selected target words.

Figure 1 shows the results on the development
data. Based on these results, we selected ce = 1

8
and cs = 1 as our hyperparameters. The local op-
tima were not identical for all three languages, but
we felt that these values struck the best compro-
mise among them.

Table 1 compares our methods against the sys-
tem of Artetxe et al. (2017), using scaling factors
selected based on development data results. Be-
cause approximately 20% of source-target pairs
in the dictionary were identical, we also extended
all systems to guess the identity translation if the
source word appeared in the target vocabulary.
This improved accuracy in most cases, with some
exceptions for English-Italian. We also experi-
mented with both methods together, and found that
this was the best of the settings that did not in-
clude the identity translation component; with the
identity component included, however, the embed-
ding extension method alone was best for English-
Finnish. The fact that Finnish is the only language
here that is not in the Indo-European family (and
has fewer words borrowed from English or its an-
cestors) may explain why the performance trends
for English-Finnish were different than those of
the other two language pairs.

In addition to identifying orthographically sim-
ilar words, the extension method is capable of
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learning a mapping between source and target let-
ters, which could partially explain its improved
performance over our edit distance method.

Table 2 shows some correct translations from
our system that were missed by the baseline.

7 Conclusion and Future Work

In this work, we presented two techniques (which
can be combined) for improving embedding-based
bilingual lexicon induction for related languages
using orthographic information and no parallel
data, allowing their use with low-resource lan-
guage pairs. These methods increased accuracy in
our experiments, with both the combined and em-
bedding extension methods providing significant
gains over the baseline system.

In the future, we want to extend this work to
related languages with different alphabets (experi-
menting with transliteration or phonetic transcrip-
tion) and to extend other unsupervised bilingual
lexicon induction systems, such as that of Lample
et al. (2018a).
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Ivan Vulić and Marie-Francine Moens. 2016. Bilingual
distributed word representations from document-
aligned comparable data. J. Artif. Int. Res.,
55(1):953–994.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017. Adversarial training for unsupervised
bilingual lexicon induction. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (ACL-17), pages 1959–1970,
Vancouver, Canada.

394



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 395–400
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Neural Cross-Lingual Coreference Resolution And Its Application To
Entity Linking

Gourab Kundu and Avirup Sil and Radu Florian and Wael Hamza
IBM Research

1101 Kitchawan Road
Yorktown Heights, NY 10598

{gkundu, avi, raduf, whamza}@us.ibm.com

Abstract

We propose an entity-centric neural cross-
lingual coreference model that builds on
multi-lingual embeddings and language-
independent features. We perform both
intrinsic and extrinsic evaluations of our
model. In the intrinsic evaluation, we
show that our model, when trained on En-
glish and tested on Chinese and Spanish,
achieves competitive results to the mod-
els trained directly on Chinese and Span-
ish respectively. In the extrinsic evalu-
ation, we show that our English model
helps achieve superior entity linking accu-
racy on Chinese and Spanish test sets than
the top 2015 TAC system without using
any annotated data from Chinese or Span-
ish.

1 Introduction

Cross-lingual models for NLP tasks are impor-
tant since they can be used on data from a new
language without requiring annotation from the
new language (Ji et al., 2014, 2015). This pa-
per investigates the use of multi-lingual embed-
dings (Faruqui and Dyer, 2014; Upadhyay et al.,
2016) for building cross-lingual models for the
task of coreference resolution (Ng and Cardie,
2002; Pradhan et al., 2012). Consider the follow-
ing text from a Spanish news article:

“Tormenta de nieve afecta a 100 millones de
personas en EEUU. Unos 100 millones de per-
sonas enfrentaban el sábado nuevas dificultades
tras la enorme tormenta de nieve de hace dı́as en
la costa este de Estados Unidos.”

The mentions “EEUU” (“US” in English) and
“Estados Unidos” (“United States” in English) are
coreferent. A coreference model trained on En-
glish data is unlikely to coreference these two

mentions in Spanish since these mentions did not
appear in English data and a regular English style
abbreviation of “Estados Unidos” will be “EU” in-
stead of “EEUU”. But in the bilingual English-
Spanish word embedding space, the word embed-
ding of “EEUU” sits close to the word embedding
of “US” and the sum of word embeddings of “Es-
tados Unidos” sit close to the sum of word em-
beddings of “United States”. Therefore, a coref-
erence model trained using English-Spanish bilin-
gual word embeddings on English data has the po-
tential to make the correct coreference decision
between “EEUU” and “Estados Unidos” without
ever encountering these mentions in training data.

The contributions of this paper are two-fold.
Firstly, we propose an entity-centric neural cross-
lingual coreference model. This model, when
trained on English and tested on Chinese and
Spanish from the TAC 2015 Trilingual Entity Dis-
covery and Linking (EDL) Task (Ji et al., 2015),
achieves competitive results to models trained di-
rectly on Chinese and Spanish respectively. Sec-
ondly, a pipeline consisting of this coreference
model and an Entity Linking (henceforth EL)
model can achieve superior linking accuracy than
the official top ranking system in 2015 on Chinese
and Spanish test sets, without using any supervi-
sion in Chinese or Spanish.

Although most of the active coreference re-
search is on solving the problem of noun phrase
coreference resolution in the Ontonotes data set,
invigorated by the 2011 and 2012 CoNLL shared
task (Pradhan et al., 2011, 2012), there are many
important applications/end tasks where the men-
tions of interest are not noun phrases. Consider
the sentence,

“(U.S. president Barack Obama who started
((his) political career) in (Illinois)), was born in
(Hawaii).”

The bracketing represents the Ontonotes style
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noun phrases and underlines represent the phrases
that should be linked to Wikipedia by an EL sys-
tem. Note that mentions like “U.S.” and “Barack
Obama” do not align with any noun phrase. There-
fore, in this work, we focus on coreference on
mentions that arise in our end task of entity link-
ing and conduct experiments on TAC TriLingual
2015 data sets consisting of English, Chinese and
Spanish.

2 Coreference Model

Each mention has a mention type (m type) of ei-
ther name or nominal and an entity type (e type)
of Person (PER) / Location (LOC) / GPE / facility
(FAC) / organization (ORG) (following standard
TAC (Ji et al., 2015) notations).

The objective of our model is to compute a func-
tion that can decide whether two partially con-
structed entities should be coreferenced or not. We
gradually merge the mentions in the given docu-
ment to form entities. Mentions are considered in
the order of names and then nominals and within
each group, mentions are arranged in the order
they appear in the document. Suppose, the sorted
order of mentions are m1, . . ., mN1 , mN1+1, . . . ,
mN1+N2 where N1 and N2 are respectively the
number of the named and nominal mentions. A
singleton entity is created from each mention. Let
the order of entities be e1, . . . , eN1 , eN1+1, . . . ,
eN1+N2 .
We merge the named entities with other named en-
tities, then nominal entities with named entities in
the same sentence and finally we merge nominal
entities across sentences as follows:
Step 1: For each named entity ei (1 ≤ i ≤ N1),
antecedents are all entities ej (1 ≤ j ≤ i − 1)
such that ej and ei have same e type. Training ex-
amples are triplets of the form (ei, ej , yij). If ei
and ej are coreferent (meaning, yij=1), they are
merged.
Step 2: For each nominal entity ei (N1 + 1 ≤ i ≤
N1 + N2), we consider antecedents ej such that
ei and ej have the same e type and ej has some
mention that appears in the same sentence as some
mention in ei. Training examples are generated
and entities are merged as in the previous step.
Step 3: This is similar to previous step, except ei
and ej have no sentence restriction.
Features: For each training triplet (e1, e2, y12),
the network takes the entity pair (e1, e2) as input
and tries to predict y12 as output. Since each entity

represents a set of mentions, the entity-pair em-
bedding is obtained from the embeddings of men-
tion pairs generated from the cross product of the
entity pair. Let M(e1, e2) be the set {(mi,mj)
| (mi,mj)∈ e1 × e2} . For each (mi,mj) ∈
M(e1, e2), a feature vector φmi,mj is computed.
Then, every feature in φmi,mj is embedded as
a vector in the real space. Let vmi,mj dentote
the concatenation of embeddings of all features
in φmi,mj . Embeddings of all features except the
words are learned in the training process. Word
embeddings are pre-trained. vmi,mj includes the
following language independent features:
String match: whether mi is a substring or exact
match of mj and vice versa (e.g. mi = “Barack
Obama” and mj = “Obama”)
Distance: word distance and sentence distance be-
tween mi and mj discretized into bins
m type: concatenation of m types for mi and mj

e type: concatenation of e types for mi and mj

Acronym: whether mi is an acronym of mj or
vice versa (e.g. mi = “United States” and mj =
“US”)
First name mismatch: whether mi and mj be-
long to e type of PERSON with the same last
name but different first name (e.g. mi=“Barack
Obama” and mj = “Michelle Obama”)
Speaker detection: whether mi and mj both oc-
cur in the context of words indicating speech e.g.
“say”, “said”
In addition, vmi,mj includes the average of the
word embeddings of mi and average of the word
embeddings of mj .

2.1 Network Architecture

The network architecture from the input to the out-
put is shown in figure 1.
Embedding Layer: For each training triplet (e1,
e2, y), a sequence of vectors vmi,mj (for each
((mi,mj) ∈ M(e1, e2))) is given as input to the
network.
Relu Layer: vrmi,mj

= max(0,W (1)vmi,mj )
Attention Layer: To generate the entity-pair em-
bedding, we need to combine the embeddings of
mention pairs generated from the entity-pair. Con-
sider two entities e1 = (President1, Obama)} and
e2 = {(President2, Clinton)}. Here the superscripts
are used to indicate two different mentions with
the same surface form. Since the named mention
pair (Obama, Clinton) has no string overlap, e1
and e2 should not be coreferenced even though the
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mention1 =  ``Obama’’
mention2 = ``President’’

…

mention3 =   ``Clinton’’
mention4 = ``President’’

…

entity e1 entity e2

P(link=1|e1,e2)

Embedding Layer
(embeddings for 
pairs of mentions)

Entities

ReLU Layer

Attention Layer

Output Layer

aname,name aname,nominal anominal,name

anominal,nominal

Sigmoid Layer

Figure 1: Network architecture for our coreference system. Blue circles in mention-pair embeddings
layer represent embeddings of features. Green circles represent word embeddings.

nominal mention pair (President1, President2) has
full string overlap. So, while combining the em-
beddings for the mention pairs, mention pairs with
m type (name, name) should get higher weight
than mention pairs with m type (nominal, nomi-
nal). The entity pair embedding is the weighted
sum of the mention-pair embeddings. We in-
troduce 4 parameters aname,name, aname,nominal,
anominal,nominal and anominal,name as weights for
mention pair embeddings with m types of (name,
name), (name, nominal), (nominal, nominal) and
(nominal, name) respectively. The entity pair em-
bedding is computed as follows:

vae1,e2 =
∑

(mi,mj)∈M(e1,e2)

am type(mi),m type(mj)

N
vrmi,mj

Here N is a normalizing constant given by:

N =

√ ∑

(mi,mj)∈M(e1,e2)

a2m type(mi),m type(mj)

This layer represents attention over the men-
tion pair embeddings where attention weights are
based on the m types of the mention pairs.
Sigmoid Layer: vse1,e2 = σ(W (2)vae1,e2)
Output Layer:

P (y12 = 1|e1, e2) =
1

1 + e−w
s.vse1,e2

The training objective is to maximize L.

L =
∏

d∈D

∏

(e1,e2,y12)∈Sd

P (y12|e1, e2;W (1),W (2), a, ws)

(1)
Here D is the corpus and Sd is the training triplets
generated from document d.

Decoding proceeds similarly to training algo-
rithm, except at each of the three steps, for each
entity ei, the highest scoring antecdent ej is se-
lected and if the score is above a threshold, ei and
ej are merged.

3 A Zero-shot Entity Linking model

We use our recently proposed cross-lingual EL
model, described in (Sil et al., 2018), where our
target is to perform “zero shot learning” (Socher
et al., 2013; Palatucci et al., 2009). We train an
EL model on English and use it to decode on any
other language, provided that we have access to
multi-lingual embeddings from English and the
target language. We briefly describe our tech-
niques here and direct the interested readers to the
paper. The EL model computes several similar-
ity/coherence scores S in a “feature abstraction
layer” which computes several measures of sim-
ilarity between the context of the mention m in
the query document and the context of the can-
didate link’s Wikipedia page which are fed to a
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feed-forward neural layer which acts as a binary
classifier to predict the correct link for m. Specif-
ically, the feature abstraction layer computes co-
sine similarities (Sil and Florian, 2016) between
the representations of the source query document
and the target Wikipedia pages over various gran-
ularities. These representations are computed by
performing CNNs and LSTMs over the context of
the entities. Then these similarities are fed into a
Multi-perspective Binning layer which maps each
similarity into a higher dimensional vector. We
also train fine-grained similarities and dissimilar-
ities between the query and candidate document
from multiple perspectives, combined with convo-
lution and tensor networks.

The model achieves state-of-the-art (SOTA) re-
sults on English benchmark EL datasets and also
performs surprisingly well on Spanish and Chi-
nese. However, although the EL model is “zero-
shot”, the within-document coreference resolu-
tion in the system is a language-dependent SOTA
coreference system that has won multiple TAC-
KBP (Ji et al., 2015; Sil et al., 2015) evaluations
but is trained on the target language. Hence, our
aim is to apply our proposed coreference model to
the EL system to perform an extrinsic evaluation
of our proposed algorithm.

4 Experiments

We evaluate cross-lingual transfer of corefer-
ence models on the TAC 2015 Tri-Lingual EL
datasets. It contains mentions annotated with their
grounded Freebase 1 links (if such links exist)
or corpus-wide clustering information for 3 lan-
guages: English (henceforth, En), Chinese (hence-
forth, Zh) and Spanish (henceforth, Es). Table 1
shows the size of the training and test sets for the
three languages. The documents come from two
genres of newswire and discussion forums. The
mentions in this dataset are either named entities
or nominals that belong to five types: PER, ORG,
GPE, LOC and FAC.
Hyperparameters: Every feature is embedded in
a 50 dimensional space except the words which
reside in a 300 dimensional space. The Relu and
Sigmoid layers have 100 and 500 neurons respec-
tively. We use SGD for optimization with an initial
learning rate of 0.05 which is linearly reduced to

1TAC uses BaseKB, which is a snapshot of Freebase.
SIL18 links entities to Wikipedia and in-turn links them to
BaseKB.

En Es Zh

Train 168 129 147
Test 167 167 166

Table 1: No of documents for the TAC 2015 Tri-
Lingual EL Dataset

MUC B3 CEAF CoNLL

This work 87.8 86.8 80.9 85.2
C&M16 83.6 78.7 69.2 77.2

Table 2: Coreference results on the En test set of
TAC 15 competition. Our model significantly out-
performs C&M16.

0.0001. Our mini batch size is 32 and we train for
50 epochs and keep the best model based on dev
set.
Coreference Results: For each language, we fol-
low the official train-test splits made in the TAC
2015 competition. Except, a small portion of the
training set is held out as development set for tun-
ing the models. All experimental results on all
languages reported in this paper were obtained on
the official test sets. We used the official CoNLL
2012 evaluation script and report MUC, B3 and
CEAF scores and their average (CONLL score).
See Pradhan et al. (2011, 2012).

To test the competitiveness of our model with
other SOTA models, we train the publicly avail-
able system of Clark and Manning (2016) (hence-
forth, C&M16) on the TAC 15 En training set and
test on the TAC 15 En test set. The C&M16 sys-
tem normally outputs both noun phrase mentions
and their coreference and is trained on Ontonotes.
To ensure a fair comparison, we changed the con-
figuration of the system to accept gold mention
boundaries both during training and testing. Since
the system was unable to deal with partially over-
lapping mentions, we excluded such mentions in
the evaluation. Table 2 shows that our model out-
performs C&M16 by 8 points.

For cross-lingual experiments, we build mono-
lingual embeddings for En, Zh and Es using the
widely used CBOW word2vec model (Mikolov
et al., 2013a). Recently Canonical Correlation
Analysis (CCA) (Faruqui and Dyer, 2014), Multi-
CCA (Ammar et al., 2016) and Weighted Regres-
sion (Mikolov et al., 2013b) have been proposed
for building the multi-lingual embedding space
from monolingual embedding. In our prelimi-
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MUC B3 CEAF CoNLL
Es Test Set

En model 89.5 91.2 87.2 89.3
Es Model 90 91.4 88 89.8

Zh Test Set

En model 95.5 93.3 88.7 92.5
Zh Model 96 92.8 89.6 92.8

Table 3: Coreference results on the Es and Zh test
sets of TAC 15. En model performs competitively
to the models trained on target language data.

nary experiments, the technique of Mikolov et al.
(2013b) performed the best and so we used it to
project the embeddings of Zh and Es onto En.

In Table 3, “En Model” refers to the model that
was trained on the En training set of TAC 15 using
multi-lingual embeddings and tested on the Es and
Zh testing set of TAC 15. “Es Model” refers to the
model trained on Es training set of TAC 15 using
Es embeddings. “Zh Model” refers to the model
trained on the Zh training set of TAC 15 using Zh
embeddings. The En model performs 0.5 point be-
low the Es model on the Es test set. On the Zh test
set, the En model performs only 0.3 point below
the Zh model. Hence, we show that without using
any target language training data, the En model
with multi-lingual embeddings gives comparable
results to models trained on the target language.
EL Results: We replace the in-document coref-
erence system (trained on the target language) of
SIL18 with our En model to investigate the per-
formance of our proposed algorithm on an extrin-
sic task. Table 4 shows the EL results on Es and
Zh test sets respectively. “EL - Coref” refers to
the case where the first step of coreference is not
used and EL is used to link the mentions directly
to Freebase. “EL + En Coref” refers to the case
where the neural english coreference model is first
used on Zh or Es data followed by the EL model.
The former is 3 points below the latter on Es and
2.6 points below Zh, implying coreference is a vi-
tal task for EL. Our “EL + En Coref” outperforms
the 2015 TAC best system by 0.7 points on Es and
0.8 points on Zh, without requiring any training
data for coreference on Es and Zh respectively. Fi-
nally, we show the SOTA results on these two data
sets recently reported by SIL18. Although their
EL model does not use any supervision from Es or
Zh, their coreference resolution model is trained
on a large internal data set on the same language as

Systems Train on Acc. on Acc. on
Target Lang Es Zh

EL - Coref No 78.1 81.3
EL + En Coref No 81.1 83.9

TAC Rank 1 Yes 80.4 83.1
SIL18 Yes 82.3 84.4

Table 4: Performance comparison on the TAC
2015 Es and Zh datasets. EL + En Coref outper-
forms the best 2015 TAC system (Rank 1) without
requiring any Es or Zh coreference data.

the test set .Without using any in-language train-
ing data, our results are competitive to their results
(1.2% below on Es and 0.5% below on Zh).

5 Related Work

Rule based (Raghunathan et al., 2010) and sta-
tistical coreference models (Bengtson and Roth,
2008; Rahman and Ng, 2009; Fernandes et al.,
2012; Durrett et al., 2013; Clark and Manning,
2015; Martschat and Strube, 2015; Björkelund
and Kuhn, 2014) are hard to transfer across lan-
guages due to their use of lexical features or pat-
terns in the rules. Neural coreference is promising
since it allows cross-lingual transfer using multi-
lingual embedding. However, most of the re-
cent neural coreference models (Wiseman et al.,
2015, 2016; Clark and Manning, 2015, 2016; Lee
et al., 2017) have focused on training and test-
ing on the same language. In contrast, our model
performs cross-lingual coreference. There have
been some recent promising results regarding such
cross-lingual models for other tasks, most notably
mention detection(Ni et al., 2017) and EL (Tsai
and Roth, 2016; Sil and Florian, 2016). In this
work, we show that such promise exists for coref-
erence also.

The tasks of EL and coreference are intrinsi-
cally related, prompting joint models (Durrett and
Klein, 2014; Hajishirzi et al., 2013). However, the
recent SOTA was obtained using pipeline models
of coreference and EL (Sil et al., 2018). Compared
to a joint model, pipeline models are easier to im-
plement, improve and adapt to a new domain.

6 Conclusion

The proposed cross-lingual coreference model
was found to be empirically strong in both intrin-
sic and extrinsic evaluations in the context of an
entity linking task.
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Abstract

Multilingual learning for Neural Named
Entity Recognition (NNER) involves
jointly training a neural network for
multiple languages. Typically, the goal is
improving the NER performance of one of
the languages (the primary language) us-
ing the other assisting languages. We show
that the divergence in the tag distributions
of the common named entities between
the primary and assisting languages can
reduce the effectiveness of multilingual
learning. To alleviate this problem, we
propose a metric based on symmetric KL
divergence to filter out the highly diver-
gent training instances in the assisting
language. We empirically show that our
data selection strategy improves NER per-
formance in many languages, including
those with very limited training data.

1 Introduction

Neural NER trains a deep neural network for the
NER task and has become quite popular as they
minimize the need for hand-crafted features and,
learn feature representations from the training data
itself. Recently, multilingual learning has been
shown to benefit Neural NER in a resource-rich
language setting (Gillick et al., 2016; Yang et al.,
2017). Multilingual learning aims to improve the
NER performance on the language under consid-
eration (primary language) by adding training data
from one or more assisting languages. The neural
network is trained on the combined data of the pri-
mary (DP ) and the assisting languages (DA). The
neural network has a combination of language-
dependent and language-independent layers, and,
the network learns better cross-lingual features via
these language-independent layers.

∗This work began when the second author was a research
scholar at IIT Bombay

Existing approaches add all training sentences
from the assisting language to the primary
language and train the neural network on the
combined data. However, data from assisting
languages can introduce a drift in the tag distribu-
tion for named entities, since the common named
entities from the two languages may have vastly
divergent tag distributions. For example, the entity
China appears in training split of Spanish (pri-
mary) and English (assisting) (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003)
with the corresponding tag frequencies, Spanish
= { Loc : 20, Org : 49, Misc : 1 } and English =
{ Loc : 91, Org : 7 }. By adding English data to
Spanish, the tag distribution of China is skewed
towards Location entity in Spanish. This leads to
a drop in named entity recognition performance.
In this work, we address this problem of drift
in tag distribution owing to adding training data
from a supporting language.

The problem is similar to the problem of
data selection for domain adaptation of various
NLP tasks, except that additional complexity
is introduced due to the multilingual nature of
the learning task. For domain adaptation in
various NLP tasks, several approaches have been
proposed to address drift in data distribution
(Moore and Lewis, 2010; Axelrod et al., 2011;
Ruder and Plank, 2017). For instance, in machine
translation, sentences from out-of-domain data
are selected based on a suitably defined metric
(Moore and Lewis, 2010; Axelrod et al., 2011).
The metric attempts to capture similarity of the
out-of-domain sentences with the in-domain data.
Out-of-domain sentences most similar to the
in-domain data are added.

Like the domain adaptation techniques summa-
rized above, we propose to judiciously add sen-
tences from the assisting language to the primary
language data based on the divergence between
the tag distributions of named entities in the train-
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Language Source Train Test Word Embeddings(#Tokens) (#Tokens)

English Tjong Kim Sang and De Meulder
(2003)

204,567 46,666

Dhillon et al. (2015)
(Spectral embeddings)Spanish Tjong Kim Sang (2002) 264,715 51,533

Dutch Tjong Kim Sang (2002) 202,931 68,994
Italian Speranza (2009) 149,651 86,420
German Faruqui and Padó (2010) 74,907 20,696

Hindi Lalitha Devi et al. (2014) 81,817 23,696

Bojanowski et al. (2017)
(fastText embeddings)

Marathi In-house 71,299 36,581
Tamil Lalitha Devi et al. (2014) 66,143 18,646
Bengali Lalitha Devi et al. (2014) 34,387 7,614
Malayalam Lalitha Devi et al. (2014) 26,295 8,275

Table 1: Dataset Statistics

ing instances. Adding assisting language sen-
tences with lower divergence reduces the possibil-
ity of entity drift enabling the multilingual model
to learn better cross-lingual features.

Following are the contributions of the paper:
(a) We present a simple approach to select assist-
ing language sentences based on symmetric KL-
Divergence of overlapping entities (b) We demon-
strate the benefits of multilingual Neural NER on
low-resource languages. We compare the pro-
posed data selection approach with monolingual
Neural NER system, and the multilingual Neural
NER system trained using all assisting language
sentences. To the best of our knowledge, ours is
the first work for judiciously selecting a subset of
sentences from an assisting language for multilin-
gual Neural NER.

2 Judicious Selection of Assisting
Language Sentences

For every assisting language sentence, we calcu-
late the sentence score based on the average sym-
metric KL-Divergence score of overlapping enti-
ties present in that sentence. By overlapping enti-
ties, we mean entities whose surface form appears
in both the languages’ training data. The symmet-
ric KL-Divergence SKL(x), of a named entity x,
is defined as follows,

SKL(x) =
[
KL( Pp(x) || Pa(x) )
+KL( Pa(x) || Pp(x) )

]
/2 (1)

where Pp(x) and Pa(x) are the probability dis-
tributions for entity x in the primary (p) and the
assisting (a) languages respectively. KL refers
to the standard KL-Divergence score between the
two probability distributions.

KL-Divergence calculates the distance between
the two probability distributions. Lower the KL-
Divergence score, higher is the tag agreement for
an entity in both the languages thereby, reducing
the possibility of entity drift in multilingual learn-
ing. Assisting language sentences with the sen-
tence score below a threshold value are added to
the primary language data for multilingual learn-
ing. If an assisting language sentence contains no
overlapping entities, the corresponding sentence
score is zero resulting in its selection.

Network Architecture

Several deep learning models (Collobert et al.,
2011; Ma and Hovy, 2016; Murthy and Bhat-
tacharyya, 2016; Lample et al., 2016; Yang
et al., 2017) have been proposed for monolingual
NER in the literature. Apart from the model by
Collobert et al. (2011), remaining approaches ex-
tract sub-word features using either Convolution
Neural Networks (CNNs) or Bi-LSTMs. The
proposed data selection strategy for multilingual
Neural NER can be used with any of the existing
models. We choose the model by Murthy and
Bhattacharyya (2016)1 in our experiments.

Multilingual Learning

We consider two parameter sharing configurations
for multilingual learning (i) sub-word feature
extractors shared across languages (Yang et al.,
2017) (Sub-word) (ii) the entire network trained
in a language independent way (All). As Murthy
and Bhattacharyya (2016) use CNNs to extract
sub-word features, only the character-level CNNs
are shared for the Sub-word configuration.

1The code is available here: https://github.com/
murthyrudra/NeuralNER
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Primary Assisting Layers Data Selection Primary Assisting Layers Data Selection

Language Language Shared All SKL Language Language Shared All SKL

German

Monolingual None 87.64 -

Italian

Monolingual None 75.98 -

English All 89.08 89.46 English All 76.22 76.91†
Sub-word 88.76 89.10 Sub-word 79.44 79.44

Spanish All 89.02 91.61† Spanish All 74.94 76.92†
Sub-word 88.37 89.10† Sub-word 76.99 77.45†

Dutch All 89.66 90.85† Dutch All 75.59 77.29†
Sub-word 89.94 90.11 Sub-word 77.38 77.56

Table 2: F-Score for German and Italian Test data using Monolingual and Multilingual learning strate-
gies. † indicates that the SKL results are statistically significant compared to adding all assisting language
data with p-value < 0.05 using two-sided Welch t-test.

3 Experimental Setup

In this section we list the datasets used and the net-
work configurations used in our experiments.

3.1 Datasets

The Table 1 lists the datasets used in our exper-
iments along with pre-trained word embeddings
used and other dataset statistics. For German
NER, we use ep-96-04-16.conll to create train and
development splits, and use ep-96-04-15.conll
as test split. As Italian has a different tag set
compared to English, Spanish and Dutch, we do
not share output layer for All configuration in
multilingual experiments involving Italian. Even
though the languages considered are resource-rich
languages, we consider German and Italian as
primary languages due to their relatively lower
number of train tokens. The German NER data
followed IO notation and for all experiments
involving German, we converted other language
data to IO notation. Similarly, the Italian NER
data followed IOBES notation and for all ex-
periments involving Italian, we converted other
language data to IOBES notation.

For low-resource language setup, we consider
the following Indian languages: Hindi, Marathi2,
Bengali, Tamil and Malayalam. Except for Hindi
all are low-resource languages. We consider
only Person, Location and Organization tags.
Though the scripts of these languages are differ-
ent, they share the same set of phonemes mak-
ing script mapping across languages easier. We
convert Tamil, Bengali and Malayalam data to
the Devanagari script using the Indic NLP li-

2Data is available here: http://www.cfilt.iitb.
ac.in/ner/annotated_corpus/

brary3 (Kunchukuttan et al., 2015) thereby, allow-
ing sharing of sub-word features across the Indian
languages. For Indian languages, the annotated
data followed the IOB format.

3.2 Network Hyper-parameters

With the exception of English, Spanish and
Dutch, remaining language datasets did not have
official train and development splits provided. We
randomly select 70% of the train split for training
the model and remaining as development split.
The threshold for sentence score SKL, is selected
based on cross-validation for every language pair.
The dimensions of the Bi-LSTM hidden layer are
200 and 400 for the monolingual and multilingual
experiments respectively. We extract 20 features
per convolution filter, with width varying from 1
to 9. The initial learning rate is 0.4 and multiplied
by 0.7 when validation error increases. The train-
ing is stopped when the learning rate drops below
0.002. We assign a weight of 0.1 to assisting
language sentences and oversample primary lan-
guage sentences to match the assisting language
sentence count in all multilingual experiments.

For European languages, we have performed
hyper-parameter tuning for both the monolingual
and multilingual learning (with all assisting lan-
guage sentences) configurations. The best hyper-
parameter values for the language pair involved
were observed to be within similar range. Hence,
we chose the same set of hyper-parameter values
for all languages.

3https://github.com/anoopkunchukuttan/
indic_nlp_library
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(a) English-Italian: Histogram of English Sentences

(b) Spanish-Italian: Histogram of Spanish Sentences

Figure 1: Histogram of assisting language sen-
tences ranked by their sentence scores

4 Results

We now present the results on both resource-rich
and resource-poor languages.

4.1 Resource-Rich Languages

Table 2 presents the results for German and Ital-
ian NER. We consistently observe improvements
for German and Italian NER using our data se-
lection strategy, irrespective of whether only sub-
word features are shared (Sub-word) or the entire
network (All) is shared across languages.

Adding all Spanish/Dutch sentences to Italian
data leads to drop in Italian NER performance
when all layers are shared. Label drift from
overlapping entities is one of the reasons for the
poor results. This can be observed by compar-
ing the histograms of English and Spanish sen-
tences ranked by the SKL scores for Italian mul-
tilingual learning (Figure 1). Most English sen-
tences have lower SKL scores indicating higher
tag agreement for overlapping entities and lower
drift in tag distribution. Hence, adding all En-
glish sentences improves Italian NER accuracy. In
contrast, most Spanish sentences have larger SKL

scores and adding these sentences adversely im-
pacts Italian NER performance. By judiciously se-
lecting assisting language sentences, we eliminate
sentences which are responsible for drift occurring
during multilingual learning.

To understand how overlapping entities im-
pact the NER performance, we study the statis-
tics of overlapping named entities between Italian-
English and Italian-Spanish pairs. 911 and 916
unique entities out of 4061 unique Italian entities
appear in the English and Spanish data respec-
tively. We had hypothesized that entities with di-
vergent tag distribution are responsible for hinder-
ing the performance in multilingual learning. If
we sort the common entities based on their SKL
divergence value. We observe that 484 out of 911
common entities in English and 535 out of 916
common entities in Spanish have an SKL score
greater than 1.0. 162 out of 484 common enti-
ties in English-Italian data having SKL divergence
value greater than 1.0 also appear more than 10
times in the English corpus. Similarly, 123 out of
535 common entities in Spanish-Italian data hav-
ing SKL divergence value greater than 1.0 also
appear more than 10 times in the Spanish cor-
pus. However, these common 162 entities have
a combined frequency of 12893 in English, mean-
while the 123 common entities have a combined
frequency of 34945 in Spanish. To summarize, al-
though the number of overlapping entities is com-
parable in English and Spanish sentences, entities
with larger SKL divergence score appears more
frequently in Spanish sentences compared to En-
glish sentences. As a consequence, adding all
Spanish sentences leads to significant drop in Ital-
ian NER performance which is not the case when
all English sentences are added.

Figure 2: Spanish-Italian Multilingual Learning:
Influence of Sentence score (SKL) on Italian NER
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Primary Language
Assisting Language

Hindi Marathi Bengali Malayalam Tamil

ALL SKL ALL SKL ALL SKL ALL SKL ALL SKL

Hindi 64.93 - 59.30 66.33 58.51 59.30 58.21 59.13 56.75 58.75
Marathi 54.46 63.30 61.46 - 47.67 61.28 50.13 61.05 59.04 58.62

Bengali 44.34 51.05† 41.28 55.77† 40.02 - 48.79 49.84† 38.38 44.14†
Malayalam 59.74 64.00† 65.88 66.42† 58.01 63.65† 57.94 - 58.25 58.92
Tamil 60.13 61.51† 60.54 61.67† 53.27 60.32† 61.03 61.45 53.13 -

Table 3: Test set F-Score from monolingual and multilingual learning on Indian languages. Result
from monolingual training on the primary language is underlined. † indicates SKL results statistically
significant compared to adding all assisting language data with p-value < 0.05 using two-sided Welch
t-test.

4.2 Resource-Poor Languages

As Indian languages exhibit high lexical overlap
(Kunchukuttan and Bhattacharyya, 2016) and
syntactic relatedness (V Subbãrão, 2012), we
share all layers of the network across languages.
Table 3 presents the results. Bengali, Malayalam,
and Tamil (low-resource languages) benefits from
our data selection strategy. Hindi and Marathi
NER performance improves when the other is
used as assisting language.

Bengali, Malayalam, and Tamil have weaker
baselines compared to Hindi and Marathi, and are
benefited from our approach irrespective of the
assisting language chosen. However, Hindi and
Marathi are not benefited from multilingual learn-
ing with Bengali, Malayalam and Tamil. Malay-
alam and Tamil being morphologically rich have
low entity overlap (surface level) with Hindi and
Marathi. As a result, only 2-3% of Malayalam and
Tamil sentences are eliminated from our approach,
leading to no gains from multilingual learning.
Hindi and Marathi are negatively impacted by
noisy Bengali data. Bengali has less training sen-
tences compared to other languages and, choosing
a low SKL threshold results in selecting very few
Bengali sentences for multilingual learning.

4.3 Influence of SKL Threshold

Here, we study the influence of SKL score
threshold on the NER performance. We run
experiments for Italian NER by adding Spanish
training sentences and sharing all layers except
for output layer across languages. We vary the
threshold value from 1.0 to 9.0 in steps of 1, and
select sentences with score less than the threshold.
A threshold of 0.0 indicates monolingual training
and threshold greater than 9.0 indicates all assist-

ing language sentences considered. The plot of
Italian test F-Score against SKL score is shown in
the Figure 2. Italian test F-Score increases initially
as we add more and more Spanish sentences and
then drops due to influence of drift becoming
significant. Finding the right SKL threshold is
important, hence we use a validation set to tune
the SKL threshold.

5 Conclusion

In this paper, we address the problem of diver-
gence in tag distribution between primary and as-
sisting languages for multilingual Neural NER.
We show that filtering out the assisting language
sentences exhibiting significant divergence in the
tag distribution can improve NER accuracy. We
propose to use the symmetric KL-Divergence met-
ric to measure the tag distribution divergence. We
observe consistent improvements in multilingual
Neural NER performance using our data selec-
tion strategy. The strategy shows benefits for ex-
tremely low resource primary languages too.

This problem of drift in data distribution may
not be unique to multilingual NER, and we plan
to study the influence of data selection for mul-
tilingual learning on other NLP tasks like sen-
timent analysis, question answering, neural ma-
chine translation, etc. We also plan to explore
more metrics for multilingual learning, specifi-
cally for morphologically rich languages.
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Abstract

Conventional Open Information Extrac-
tion (Open IE) systems are usually built
on hand-crafted patterns from other NLP
tools such as syntactic parsing, yet they
face problems of error propagation. In
this paper, we propose a neural Open IE
approach with an encoder-decoder frame-
work. Distinct from existing methods,
the neural Open IE approach learns highly
confident arguments and relation tuples
bootstrapped from a state-of-the-art Open
IE system. An empirical study on a large
benchmark dataset shows that the neural
Open IE system significantly outperforms
several baselines, while maintaining com-
parable computational efficiency.

1 Introduction

Open Information Extraction (Open IE) involves
generating a structured representation of informa-
tion in text, usually in the form of triples or n-ary
propositions. An Open IE system not only ex-
tracts arguments but also relation phrases from the
given text, which does not rely on pre-defined on-
tology schema. For instance, given the sentence
“deep learning is a subfield of machine learning”,
the triple (deep learning; is a subfield of ; ma-
chine learning) can be extracted, where the rela-
tion phrase “is a subfield of ” indicates the seman-
tic relationship between two arguments. Open IE
plays a key role in natural language understanding
and fosters many downstream NLP applications
such as knowledge base construction, question an-
swering, text comprehension, and others.

The Open IE system was first introduced
by TEXTRUNNER (Banko et al., 2007), fol-
lowed by several popular systems such as
REVERB (Fader et al., 2011), OLLIE (Mausam

et al., 2012), ClausIE (Del Corro and Gemulla,
2013) Stanford OPENIE (Angeli et al., 2015),
PropS (Stanovsky et al., 2016) and most recently
OPENIE41 (Mausam, 2016) and OPENIE52. Al-
though these systems have been widely used in
a variety of applications, most of them were
built on hand-crafted patterns from syntactic pars-
ing, which causes errors in propagation and com-
pounding at each stage (Banko et al., 2007; Gash-
teovski et al., 2017; Schneider et al., 2017). There-
fore, it is essential to solve the problems of cascad-
ing errors to alleviate extracting incorrect tuples.

To this end, we propose a neural Open IE ap-
proach with an encoder-decoder framework. The
encoder-decoder framework is a text generation
technique and has been successfully applied to
many tasks, such as machine translation (Cho
et al., 2014; Bahdanau et al., 2014; Sutskever
et al., 2014; Wu et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017), image caption (Vinyals
et al., 2014), abstractive summarization (Rush
et al., 2015; Nallapati et al., 2016; See et al., 2017)
and recently keyphrase extraction (Meng et al.,
2017). Generally, the encoder encodes the input
sequence to an internal representation called ‘con-
text vector’ which is used by the decoder to gen-
erate the output sequence. The lengths of input
and output sequences can be different, as there is
no one on one relation between the input and out-
put sequences. In this work, Open IE is cast as a
sequence-to-sequence generation problem, where
the input sequence is the sentence and the out-
put sequence is the tuples with special placehold-
ers. For instance, given the input sequence “deep
learning is a subfield of machine learning”, the
output sequence will be “〈arg1〉 deep learning
〈/arg1〉 〈rel〉 is a subfield of 〈/rel〉 〈arg2〉 machine

1https://github.com/allenai/openie-standalone
2https://github.com/dair-iitd/OpenIE-standalone
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Figure 1: The encoder-decoder model architecture for the neural Open IE system

learning 〈/arg2〉”. We obtain the input and out-
put sequence pairs from highly confident tuples
bootstrapped from a state-of-the-art Open IE sys-
tem. Experiment results on a large benchmark
dataset illustrate that the neural Open IE approach
is significantly better than others in precision and
recall, while also reducing the dependencies on
other NLP tools.

The contributions of this paper are three-
fold. First, the encoder-decoder framework learns
the sequence-to-sequence task directly, bypassing
other hand-crafted patterns and alleviating error
propagation. Second, a large number of high-
quality training examples can be bootstrapped
from state-of-the-art Open IE systems, which is
released for future research. Third, we conduct
comprehensive experiments on a large benchmark
dataset to compare different Open IE systems to
show the neural approach’s promising potential.

2 Methodology

2.1 Problem Definition

Let (X,Y ) be a sentence and tuples pair, where
X = (x1, x2, ..., xm) is the word sequence and
Y = (y1, y2, ..., yn) is the tuple sequence ex-
tracted from X . The conditional probability of
P (Y |X) can be decomposed as:

P (Y |X) = P (Y |x1, x2, ..., xm)

=

n∏

i=1

p(yi|y1, y2, ..., yi−1;x1, x2, ...xm)

(1)

In this work, we only consider the binary extrac-
tions from sentences, leaving n-ary extractions and

nested extractions for future research. In addi-
tion, we ensure that both the argument and rela-
tion phrases are sub-spans of the input sequence.
Therefore, the output vocabulary equals the input
vocabulary plus the placeholder symbols.

2.2 Encoder-Decoder Model Architecture

The encoder-decoder framework takes a variable
length input sequence to a compressed representa-
tion vector that is used by the decoder to generate
the output sequence. In this work, both the en-
coder and decoder are implemented using Recur-
rent Neural Networks (RNN) and the model archi-
tecture is shown in Figure 1.

The encoder uses a 3-layer stacked Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) network to covert the input sequence
X = (x1, x2, ...xm) into a set of hidden represen-
tations h = (h1, h2, ..., hm), where each hidden
state is obtained iteratively as follows:

ht = LSTM(xt, ht−1) (2)

The decoder also uses a 3-layer LSTM net-
work to accept the encoder’s output and generate
a variable-length sequence Y as follows:

st = LSTM(yt−1, st−1, c)

p(yt) = softmax(yt−1, st, c)
(3)

where st is the hidden state of the decoder LSTM
at time t, c is the context vector that is introduced
later. We use the softmax layer to calculate the
output probability of yt and select the word with
the largest probability.

An attention mechanism is vital for the encoder-
decoder framework, especially for our neural
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Open IE system. Both the arguments and rela-
tions are sub-spans that correspond to the input
sequence. We leverage the attention method pro-
posed by Bahdanau et al. to calculate the context
vector c as follows:

ci =
n∑

j=1

αijhj

αij =
exp(eij)∑n
k=1 exp(eik)

eij = a(si−1, hj)

(4)

where a is an alignment model that scores how
well the inputs around position j and the output
at position i match, which is measured by the en-
coder hidden state hj and the decoder hidden state
si−1. The encoder and decoder are jointly opti-
mized to maximize the log probability of the out-
put sequence conditioned on the input sequence.

2.3 Copying Mechanism
Since most encoder-decoder methods maintain a
fixed vocabulary of frequent words and convert a
large number of long-tail words into a special sym-
bol “〈unk〉”, the copying mechanism (Gu et al.,
2016; Gulcehre et al., 2016; See et al., 2017; Meng
et al., 2017) is designed to copy words from the in-
put sequence to the output sequence, thus enlarg-
ing the vocabulary and reducing the proportion of
generated unknown words. For the neural Open
IE task, the copying mechanism is more important
because the output vocabulary is directly from the
input vocabulary except for the placeholder sym-
bols. We simplify the copying method in (See
et al., 2017), the probability of generating the word
yt comes from two parts as follows:

p(yt) =

{
p(yt|y1, y2, ..., yt−1;X) if yt ∈ V∑

i:xi=yt
ati otherwise

(5)
where V is the target vocabulary. We combine the
sequence-to-sequence generation and attention-
based copying together to derive the final output.

3 Experiments

3.1 Data
For the training data, we used Wikipedia dump
201801013 and extracted all the sentences that
are 40 words or less. OPENIE4 is used to an-
alyze the sentences and extract all the tuples

3https://dumps.wikimedia.org/enwiki/20180101/

with binary relations. To further obtain high-
quality tuples, we only kept the tuples whose con-
fidence score is at least 0.9. Finally, there are
a total of 36,247,584 〈sentence, tuple〉 pairs ex-
tracted. The training data is released for pub-
lic use at https://1drv.ms/u/s!ApPZx_
TWwibImHl49ZBwxOU0ktHv.

For the test data, we used a large benchmark
dataset (Stanovsky and Dagan, 2016) that contains
3,200 sentences with 10,359 extractions4. We
compared with several state-of-the-art baselines
including OLLIE, ClausIE, Stanford OPENIE,
PropS and OPENIE4. The evaluation metrics are
precision and recall.

3.2 Parameter Settings

We implemented the neural Open IE model us-
ing OpenNMT (Klein et al., 2017), which is an
open source encoder-decoder framework. We used
4 M60 GPUs for parallel training, which takes
3 days. The encoder is a 3-layer bidirectional
LSTM and the decoder is another 3-layer LSTM.
Our model has 256-dimensional hidden states and
256-dimensional word embeddings. A vocabulary
of 50k words is used for both the source and tar-
get sides. We optimized the model with SGD and
the initial learning rate is set to 1. We trained the
model for 40 epochs and started learning rate de-
cay from the 11th epoch with a decay rate 0.7. The
dropout rate is set to 0.3. We split the data into
20 partitions and used data sampling in OpenNMT
to train the model. This reduces the length of the
epochs for more frequent learning rate updates and
validation perplexity computation.

3.3 Results

We used the script in (Stanovsky and Dagan,
2016)5 to evaluate the precision and recall of dif-
ferent baseline systems as well as the neural Open
IE system. The precision-recall curve is shown in
Figure 2. It is observed that the neural Open IE
system performs best among all tested systems.
Furthermore, we also calculated the Area under
Precision-Recall Curve (AUC) for each system.
The neural Open IE system with top-5 outputs
achieves the best AUC score 0.473, which is sig-
nificantly better than other systems. Although the

4https://github.com/gabrielStanovsky/
oie-benchmark

5The absolute scores are different from the original paper
because the authors changed the matching function in their
GitHub Repo, but did not change the relative performance.
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Figure 2: The Precision-Recall (P-R) curve and Area under P-R curve (AUC) of Open IE systems

neural Open IE is learned from the bootstrapped
outputs of OPENIE4’s extractions, only 11.4% of
the extractions from neural Open IE agree with
the OPENIE4’s extractions, while the AUC score
is even better than OPENIE4’s result. We be-
lieve this is because the neural approach learns
arguments and relations across a large number of
highly confident training instances. This also indi-
cates that the generalization capability of the neu-
ral approach is better than previous methods. We
observed many cases in which the neural Open IE
is able to correctly identify the boundary of argu-
ments but OpenIE4 cannot, for instance:

Input Instead , much of numerical analysis is
concerned with obtaining approximate
solutions while maintaining reasonable
bounds on errors .

Gold much of numerical analysis ||| con-
cerned ||| with obtaining approximate
solutions while maintaining reason-
able bounds on errors

OpenIE4 much of numerical analysis ||| is con-
cerned with ||| obtaining approximate
solutions

Neural Open IE much of numerical analysis ||| is con-
cerned ||| with obtaining approximate
solutions while maintaining reason-
able bounds on errors

This case illustrates that the neural approach re-
duces the limitation of hand-crafted patterns from
other NLP tools. Therefore, it reduces the error
propagation effect and performs better than other
systems especially for long sentences.

We also investigated the computational cost of
different systems. For the baseline systems, we
obtained the Open IE extractions using a Xeon
2.4 GHz CPU. For the neural Open IE, we eval-
uated performance based on an M60 GPU. The

running time was calculated by extracting Open
IE tuples from the test dataset that contains a to-
tal of 3,200 sentences. The results are shown in
Table 1. Among the aforementioned conventional
systems, Ollie is the most efficient approach which
takes around 160s to finish the extraction. By us-
ing GPU, the neural approach takes 172s to extract
the tuples from the test data, which is comparable
with conventional approaches. As the neural ap-
proach does not depend on other NLP tools, we
can further optimize the computational cost in fu-
ture research efforts.

System Device Time
Stanford CPU 234s

Ollie CPU 160s
ClausIE CPU 960s
PropS CPU 432s

OpenIE4 CPU 181s
Neural Open IE GPU 172s

Table 1: Running time of different systems

4 Related Work

The development of Open IE systems has
witnessed rapid growth during the past
decade (Mausam, 2016). The Open IE sys-
tem was introduced by TEXTRUNNER (Banko
et al., 2007) as the first generation. It casts
the argument and relation extraction task as a
sequential labeling problem. The system is highly
scalable and extracts facts from large scale web
content. REVERB (Fader et al., 2011) improved
over TEXTRUNNER with syntactic and lexical
constraints on binary relations expressed by verbs,
which more than doubles the area under the
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precision-recall curve. Following these efforts,
the second generation known as R2A2 (Etzioni
et al., 2011) was developed based on REVERB

and an argument identifier, ARGLEARNER, to
better extract the arguments for the relation
phrases. The first and second generation Open IE
systems extract only relations that are mediated
by verbs and ignore contexts. To alleviate these
limitations, the third generation OLLIE (Mausam
et al., 2012) was developed, which achieves better
performance by extracting relations mediated by
nouns, adjectives, and more. In addition, contex-
tual information is also leveraged to improve the
precision of extractions. All the three generations
only consider binary extractions from the text,
while binary extractions are not always enough
for their semantics representations. Therefore,
SRLIE (Christensen et al., 2010) was developed
to include an attribute context with a tuple when
it is available. OPENIE4 was built on SRLIE with
a rule-based extraction system RELNOUN (Pal
and Mausam, 2016) for extracting noun-mediated
relations. Recently, OPENIE5 improved upon
extractions from numerical sentences (Saha et al.,
2017) and broke conjunctions in arguments to
generate multiple extractions. During this period,
there were also some other Open IE systems
emerged and successfully applied in different sce-
narios, such as ClausIE (Del Corro and Gemulla,
2013) Stanford OPENIE (Angeli et al., 2015),
PropS (Stanovsky et al., 2016), and more.

The encoder-decoder framework was intro-
duced by Cho et al. and Sutskever et al., where
a multi-layered LSTM/GRU is used to map the
input sequence to a vector of a fixed dimension-
ality, and then another deep LSTM/GRU to de-
code the target sequence from the vector. Bah-
danau et al. and Luong et al. further improved
the encoder-decoder framework by integrating an
attention mechanism so that the model can au-
tomatically find parts of a source sentence that
are relevant to predicting a target word. To im-
prove the parallelization of model training, convo-
lutional sequence-to-sequence (ConvS2S) frame-
work (Gehring et al., 2016, 2017) was proposed
to fully parallelize the training since the number
of non-linearities is fixed and independent of the
input length. Recently, the transformer frame-
work (Vaswani et al., 2017) further improved over
the vanilla S2S model and ConvS2S in both accu-
racy and training time.

In this paper, we use the LSTM-based S2S ap-
proach to obtain binary extractions for the Open IE
task. To the best of our knowledge, this is the first
time that the Open IE task is addressed using an
end-to-end neural approach, bypassing the hand-
crafted patterns and alleviating error propagation.

5 Conclusion and Future Work

We proposed a neural Open IE approach using
an encoder-decoder framework. The neural Open
IE model is trained with highly confident binary
extractions bootstrapped from a state-of-the-art
Open IE system, therefore it can generate high-
quality tuples without any hand-crafted patterns
from other NLP tools. Experiments show that
our approach achieves very promising results on
a large benchmark dataset.

For future research, we will further investigate
how to generate more complex tuples such as n-
ary extractions and nested extractions with the
neural approach. Moreover, other frameworks
such as convolutional sequence-to-sequence and
transformer models could apply to achieve better
performance.
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Abstract

Document-level information is very im-
portant for event detection even at sen-
tence level. In this paper, we propose
a novel Document Embedding Enhanced
Bi-RNN model, called DEEB-RNN, to de-
tect events in sentences. This model first
learns event detection oriented embed-
dings of documents through a hierarchi-
cal and supervised attention based RNN,
which pays word-level attention to event
triggers and sentence-level attention to
those sentences containing events. It then
uses the learned document embedding to
enhance another bidirectional RNN model
to identify event triggers and their types
in sentences. Through experiments on
the ACE-2005 dataset, we demonstrate the
effectiveness and merits of the proposed
DEEB-RNN model via comparison with
state-of-the-art methods.

1 Introduction

Event Detection (ED) is an important subtask of
event extraction. It extracts event triggers from in-
dividual sentences and further identifies the type
of the corresponding events. For instance, accord-
ing to the ACE-2005 annotation guideline, in the
sentence “Jane and John are married”, an ED sys-
tem should be able to identify the word “married”
as a trigger of the event “Marry”. However, it may
be difficult to identify events from isolated sen-
tences, because the same event trigger might rep-
resent different event types in different contexts.

Existing ED methods can mainly be categorized
into two classes, namely, feature-based methods
(e.g., (McClosky et al., 2011; Hong et al., 2011;
Li et al., 2014)) and representation-based methods
(e.g., (Nguyen and Grishman, 2015; Chen et al.,

2015; Liu et al., 2016a; Chen et al., 2017)). The
former mainly rely on a set of hand-designed fea-
tures, while the latter employ distributed repre-
sentation to capture meaningful semantic informa-
tion. In general, most of these existing methods
mainly exploit sentence-level contextual informa-
tion. However, document-level information is also
important for ED, because the sentences in the
same document, although they may contain differ-
ent types of events, are often correlated with re-
spect to the theme of the document. For example,
there are the following sentences in ACE-2005:

... I knew it was time to leave. Isn’t that a
great argument for term limits? ...
If we only examine the first sentence, it is hard to
determine whether the trigger “leave” indicates a
“Transport” event meaning that he wants to leave
the current place, or an “End-Position” event in-
dicating that he will stop working for his current
organization. However, if we can capture the con-
textual information of this sentence, it is more
confident for us to label “leave” as the trigger of
an “End-Position” event. Upon such observation,
there have been some feature-based studies (Ji
and Grishman, 2008; Liao and Grishman, 2010;
Huang and Riloff, 2012) that construct rules to
capture document-level information for improving
sentence-level ED. However, they suffer from two
major limitations. First, the features used therein
often need to be manually designed and may in-
volve error propagation due to natural language
processing; Second, they discover inter-event in-
formation at document level by constructing infer-
ence rules, which is time-consuming and is hard to
make the rule set as complete as possible. Besides,
a representation-based study has been presented
in (Duan et al., 2017), which employs the PV-DM
model to train document embeddings and further
uses it in a RNN-based event classifier. How-
ever, as being limited by the unsupervised training
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Figure 1: The schematic diagram of the DEEB-RNN model for ED at sentence level.

process, the document-level representation cannot
specifically capture event-related information.

In this paper, we propose a novel Document
Embedding Enhanced Bi-RNN model, called
DEEB-RNN, for ED at sentence level. This model
first learns ED oriented embeddings of documents
through a hierarchical and supervised attention
based bidirectional RNN, which pays word-level
attention to event triggers and sentence-level at-
tention to those sentences containing events. It
then uses the learned document embeddings to fa-
cilitate another bidirectional RNN model to iden-
tify event triggers and their types in individual
sentences. This learning process is guided by a
general loss function where the loss correspond-
ing to attention at both word and sentence levels
and that of event type identification are integrated.
It should be mentioned that although the atten-
tion mechanism has recently been applied effec-
tively in various tasks, including machine transla-
tion (Zhang et al., 2017), question answering (Hao
et al., 2017), document summarization (Tan et al.,
2017), etc., this is the first study, to the best of
our knowledge, which adopts a hierarchical and
supervised attention mechanism to learn ED ori-
ented embeddings of documents.

We evaluate the developed DEEB-RNN model
on the benchmark dataset, ACE-2005, and sys-
tematically investigate the impacts of differ-
ent supervised attention strategies on its perfor-
mance. Experimental results show that the DEEB-
RNN model outperforms both feature-based and

representation-based state-of-the-art methods in
terms of recall and F1-measure.

2 The Proposed Model

We formalize ED as a multi-class classification
problem. Given a sentence, we treat every word
in it as a trigger candidate, and classify each can-
didate to a certain event type. In the ACE-2005
dataset, there are 8 event types, further being di-
vided into 33 subtypes, and a “Not Applicable
(NA)” type. Without loss of generality, in this pa-
per we regard the 33 subtypes as 33 event types.
Figure 1 presents the schematic diagram of the
proposed DEEB-RNN model, which contains two
main modules:

1. The ED Oriented Document Embedding
Learning (EDODEL) module, which learns
the distributed representations of documents
from both word and sentence levels via the
well-designed hierarchical and supervised at-
tention mechanism.

2. The Document-level Enhanced Event Detec-
tor (DEED) module, which tags each trigger
candidate with an event type based on the
learned embedding of documents.

2.1 The EDODEL Module
To learn the ED oriented embedding of a docu-
ment, we apply the hierarchical and supervised at-
tention network presented in Figure 1, which con-
sists of a word-level Bi-GRU (Schuster and Pali-
wal, 2002) encoder with attention on event triggers
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(a)

(b)

Figure 2: Examples of the gold word- and
sentence-level attention without normalization.
(a) Word-level attention. “Indicated” is a candi-
date trigger; (b) Sentence-level attention. The sen-
tences in purple contain trigger words.

and a sentence-level Bi-GRU encoder with atten-
tion on sentences with events. Given a document
with L sentences, DEEB-RNN learns its embed-
ding for detecting events in all sentences.

Word-level embeddings Given a sen-
tence si (i = 1, 2, ..., L) consisting of words
{wit|t = 1, 2, ..., T}. For each word wit, we first
concatenate its embedding wit and its entity type
embedding1 eit (Nguyen and Grishman, 2015)
as the input git of a Bi-GRU and thus obtain the
bidirectional hidden state hit:

hit = [
−−−−→
GRUw(git),

←−−−−
GRUw(git)]. (1)

We then feed hit to a perceptron with no bias to
get uit = tanh(Wwhit) as a hidden representa-
tion of hit and also obtain an attention weight
αit = uT

itcw, which should be normalized through
a softmax function. Here, similar to that in (Yang
et al., 2016), cw is a vector representing the word-
level context of wit, which is initialized at random.
Finally, the embedding of the sentence si can be
obtained by summing up hit with their weights:

si =
T∑

t=1

αithit. (2)

To pay more attention to trigger words than other
words, we construct the gold word-level attention
signals α∗

i for the sentence si, as illustrated in Fig-
ure 2a. We can then take the square error as the
general loss of the attention at word level to super-
vise the learning process:

Ew(α∗, α) =
L∑

i=1

T∑

t=1

(α∗
it − αit)

2. (3)

1The words in the ACE-2005 dataset are annotated with
their entity types (annotated as “NA” if they are not an entity).

Sentence-level embeddings Given the sentence
embeddings {si|i = 1, 2, ..., L}, we first get the
hidden state qi via a Bi-GRU:

qi = [
−−−→
GRUs(si),

←−−−
GRUs(si)]. (4)

Then we feed qi to a perceptron with no bias to get
the hidden representation ti = tanh(Wsqi) and
also obtain an attention weight βi = tT

i cs to be
normalized via softmax. Similarly, cs represents
the sentence-level context of si to be randomly ini-
tialized. We eventually obtain the document em-
bedding d as:

d =
L∑

i=1

βisi. (5)

We also think that the sentences containing event
should obtain more attention than other ones.
Therefore, similar to the case at word level, we
construct the gold sentence-level attention signals
β∗ for the document d, as illustrated in Figure 2b,
and further take the square error as the general loss
of the attention at sentence level to supervise the
learning process:

Es(β
∗, β) =

L∑

i=1

(β∗
i − βi)

2. (6)

2.2 The DEED Module
We employ another Bi-GRU encoder and a soft-
max output layer to model the ED task, which can
handle event triggers with multiple words. Specif-
ically, given a sentence sj (j = 1, 2, ..., L) in doc-
ument d, for each of its word wjt (t = 1, 2, ..., T ),
we concatenate its word embedding wjt and entity
type embedding ejt with the corresponding docu-
ment embedding d as the input rjt of the Bi-GRU
and thus obtain the hidden state fjt:

fjt = [
−−−→
GRUe(rjt),

←−−−
GRUe(rjt)]. (7)

Finally, we get the probability vector ojt with K
dimensions through a softmax layer for wjt, where
the k-th element, o

(k)
jt , of ojt indicates the proba-

bility of classifying wjt to the k-th event type. The
loss function, J(y, o), can thus be defined in terms
of the cross-entropy error of the real event type yjt

and the predicted probability o
(k)
jt as follows:

J(y, o) = −
L∑

j=1

T∑

t=1

K∑

k=1

I(yjt = k)log o
(k)
jt , (8)

where I(·) is the indicator function.
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2.3 Joint Training of the DEEB-RNN model
In the DEEB-RNN model, the above two modules
are jointly trained. For this purpose, we define the
joint loss function in the training process upon the
losses specified for different modules as follows:

J(θ)=
∑

∀d∈ϕ

(J(y, o)+λEw(α∗, α)+µEs(β
∗, β)),

(9)
where θ denotes, as a whole, the parameters used
in DEEB-RNN, ϕ is the training document set, and
λ and µ are hyper-parameters for striking a bal-
ance among J(y, o), Ew(α∗, α) and Es(β

∗, β).

3 Experiments

3.1 Datasets and Settings
We validate the proposed model through compar-
ison with state-of-the-art methods on the ACE-
2005 dataset. In the experiments, the validation
set has 30 documents from different genres, the
test set has 40 documents and the training set con-
tains the remaining 529 documents. All the data
preprocessing and evaluation criteria follow those
in (Ghaeini et al., 2016).

Hyper-parameters are tuned on the validation
set. We set the dimension of the hidden layers cor-
responding to GRUw, GRUs, and GRUe to 300,
200, and 300, respectively, the output size of Ww

and Ws to 600 and 400, respectively, the dimen-
sion of entity type embeddings to 50, the batch
size to 25, the dropout rate to 0.5. In addition,
we utilize the pre-trained word embeddings with
300 dimensions from (Mikolov et al., 2013) for
initialization. For entity types, their embeddings
are randomly initialized. We train the model using
Stochastic Gradient Descent (SGD) over shuffled
mini-batches and using dropout (Krizhevsky et al.,
2012) for regularization.

3.2 Baseline Models
In order to validate the proposed DEEB-RNN
model through experimental comparison, we
choose the following typical models as the base-
lines.

Sentence-level is a feature-based model pro-
posed in (Hong et al., 2011), which regards entity-
type consistency as a key feature to predict event
mentions.

Joint Local is a feature-based model developed
in (Li et al., 2013), which incorporates such fea-
tures that explicitly capture the dependency among
multiple triggers and arguments.

Methods λ µ P R F1

Bi-GRU - - 66.2 72.3 69.1
DEEB-RNN 0 0 69.3 75.2 72.1

DEEB-RNN1 1 0 70.9 76.7 73.7
DEEB-RNN2 0 1 72.3 74.5 73.4
DEEB-RNN3 1 1 72.3 75.8 74.0

Table 1: Experimental results with different atten-
tion strategies.

JRNN is a representation-based model pro-
posed in (Nguyen et al., 2016), which exploits the
inter-dependency between event triggers and argu-
ment roles via discrete structures.

Skip-CNN is a representation-based model pre-
sented in (Nguyen and Grishman, 2016), which
proposes a novel convolution to exploit non-
consecutive k-grams for event detection.

ANN-S2 is a representation-based model devel-
oped in (Liu et al., 2017), which explicitly exploits
argument information for event detection via su-
pervised attention mechanisms.

Cross-event is a feature-based model proposed
in (Liao and Grishman, 2010), which learns rela-
tions among event types from training corpus and
futher helps predict the occurrence of events.

PSL is a feature-based model developed in (Liu
et al., 2016b), which encods global information
such as event-event association in the form of logic
using the probabilistic soft logic model.

DLRNN is a representation-based model pro-
posed in (Duan et al., 2017), which automatically
extracts cross-sentence clues to improve sentence-
level event detection.

3.3 Impacts of Different Attention Strategies

In this section, we conduct experiments on the
ACE-2005 dataset to demonstrate the effective-
ness of different attention strategies.

Bi-GRU is the basic ED model, which does not
employ document-level embeddings.

DEEB-RNN uses the document embeddings
and computes attentions without supervision, in
which hyper-parameters λ and µ are set to 0.

DEEB-RNN1/2/3 means they uses the gold at-
tention signals as supervision information. Specif-
ically, DEEB-RNN1 uses only the gold word-level
attention signal (λ = 1 and µ = 0), DEEB-RNN2
uses only the gold sentence-level attention signal
(λ = 0 and µ = 1), whilst DEEB-RNN3 employs
the gold attention signals at both word and sen-
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Methods P R F1

Sentence-level (2011) 67.6 53.5 59.7
Joint Local (2013) 73.7 59.3 65.7

JRNN (2016) 66.0 73.0 69.3
Skip-CNN (2016) N/A N/A 71.3
ANN-S2 (2017) 78.0 66.3 71.7

Cross-event (2010)† 68.7 68.9 68.8
PSL (2016)† 75.3 64.4 69.4

DLRNN (2017)† 77.2 64.9 70.5

DEEB-RNN1† 70.9 76.7 73.7
DEEB-RNN2† 72.3 74.5 73.4
DEEB-RNN3† 72.3 75.8 74.0

Table 2: Comparison between different methods.
† indicates that the corresponding ED method uses
information at both sentence and document levels.

tence levels (λ = 1 and µ = 1).
Table 1 compares these methods, where we

can observe that the methods with document em-
beddings (i.e., the last four) significantly outper-
form the pure Bi-GRU method, which suggests
that document-level information is very benefi-
cial for ED. An interesting phenomenon is that, as
compared to DEEB-RNN, DEEB-RNN2 changes
the precision-recall balance. This is because of
the following reasons. On one hand, as com-
pared to DEEB-RNN, DEEB-RNN2 uses the gold
sentence-level attention signal, indicating that it
pays special attention to the sentences containing
events with event triggers. In this way, the Bi-
RNN model for learning document embeddings
will filter out the sentences containing events but
without explicit event triggers. That means the
events detected by DEEB-RNN2 are basically the
ones with explicit event triggers. Therefore, as
compared to DEEB-RNN, the precision of DEEB-
RNN2 is improved; On the other hand, the above
strategy may result in less learning of words,
which are event triggers but do not appear in the
training dataset. Therefore, those sentences with
such event triggers cannot be detected. The recall
of DEEB-RNN2 is thus lowered, as compared to
DEEB-RNN. Moreover, DEEB-RNN3 shows the
best performance, indicating that the gold atten-
tion signals at both word and sentence levels are
useful for ED.

3.4 Performance Comparison

Table 2 presents the overall performance of all
methods on ACE-2005. We can see that dif-
ferent versions of DEEB-RNN consistently out-

perform the existing state-of-the-art methods in
terms of both recall and F1-measure, while their
precision is comparable to that of others. The
better performance of DEEB-RNN can be ex-
plained by the following reasons: (1) Compared
with feature-based methods, including Sentence-
level, Joint Local, and representation-based meth-
ods, including JRNN, Skip-CNN and ANN-S2,
our method exploits document-level information
(i.e., the ED oriented document embeddings) from
both word and sentence levels in a document by
the supervised attention mechanism, which en-
hance the ability of identifying trigger words;
(2) Compared with feature-based methods using
document-level information, such as Cross-event,
PSL, our method can automatically capture event
types in documents via a end-to-end Bi-RNN
based model without manually designed rules; (3)
Compared with representation-based methods us-
ing document-level information, such as DLRNN,
our method can learn event detection oriented em-
beddings of documents through the hierarchical
and supervised attention based Bi-RNN network.

4 Conclusions and Future Work

In this study, we proposed a hierarchical and su-
pervised attention based and document embedding
enhanced Bi-RNN method, called DEEB-RNN,
for event detection. We explored different strate-
gies to construct gold word- and sentence-level at-
tentions to focus on event information. Experi-
ments on the ACE-2005 dataset demonstrate that
DEEB-RNN achieves better performance as com-
pared to the state-of-the-art methods in terms of
both recall and F1-measure. In this paper, we can
strike a balance between sentence and document
embeddings by adjusting their dimensions. In the
future, we may improve the DEEB-RNN model to
automatically determine the weights of sentence
and document embeddings.
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Abstract

We propose a method that can leverage un-
labeled data to learn a matching model for
response selection in retrieval-based chat-
bots. The method employs a sequence-to-
sequence architecture (Seq2Seq) model as
a weak annotator to judge the matching
degree of unlabeled pairs, and then per-
forms learning with both the weak signals
and the unlabeled data. Experimental re-
sults on two public data sets indicate that
matching models get significant improve-
ments when they are learned with the pro-
posed method.

1 Introduction

Recently, more and more attention from both
academia and industry is paying to building non-
task-oriented chatbots that can naturally converse
with humans on any open domain topics. Exist-
ing approaches can be categorized into generation-
based methods (Shang et al., 2015; Vinyals and
Le, 2015; Serban et al., 2016; Sordoni et al.,
2015; Xing et al., 2017; Serban et al., 2017; Xing
et al., 2018) which synthesize a response with nat-
ural language generation techniques, and retrieval-
based methods (Hu et al., 2014; Lowe et al., 2015;
Yan et al., 2016; Zhou et al., 2016; Wu et al.,
2017) which select a response from a pre-built
index. In this work, we study response selec-
tion for retrieval-based chatbots, not only because
retrieval-based methods can return fluent and in-
formative responses, but also because they have
been successfully applied to many real products
such as the social-bot XiaoIce from Microsoft
(Shum et al., 2018) and the E-commerce assistant
AliMe Assist from Alibaba Group (Li et al., 2017).

∗ Corresponding Author

A key step to response selection is measuring
the matching degree between a response candi-
date and an input which is either a single mes-
sage (Hu et al., 2014) or a conversational context
consisting of multiple utterances (Wu et al., 2017).
While existing research focuses on how to define
a matching model with neural networks, little at-
tention has been paid to how to learn such a model
when few labeled data are available. In practice,
because human labeling is expensive and exhaust-
ing, one cannot have large scale labeled data for
model training. Thus, a common practice is to
transform the matching problem to a classification
problem with human responses as positive exam-
ples and randomly sampled ones as negative ex-
amples. This strategy, however, oversimplifies the
learning problem, as most of the randomly sam-
pled responses are either far from the semantics
of the messages or the contexts, or they are false
negatives which pollute the training data as noise.
As a result, there often exists a significant gap be-
tween the performance of a model in training and
the same model in practice (Wang et al., 2015; Wu
et al., 2017).1

We propose a new method that can effec-
tively leverage unlabeled data for learning match-
ing models. To simulate the real scenario of a
retrieval-based chatbot, we construct an unlabeled
data set by retrieving response candidates from
an index. Then, we employ a weak annotator to
provide matching signals for the unlabeled input-
response pairs, and leverage the signals to super-
vise the learning of matching models. The weak
annotator is pre-trained from large scale human-
human conversations without any annotations, and
thus a Seq2Seq model becomes a natural choice.
Our approach is compatible with any matching
models, and falls in a teacher-student framework

1The model performs well on randomly sampled data, but
badly on human labeled data.
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(Hinton et al., 2015) where the Seq2Seq model
transfers the knowledge from human-human con-
versations to the learning process of the matching
models. Broadly speaking, both of (Hinton et al.,
2015) and our work let a neural network supervise
the learning of another network. An advantage of
our method is that it turns the hard zero-one labels
in the existing learning paradigm to soft (weak)
matching scores. Hence, the model can learn a
large margin between a true response with a true
negative example, and the semantic distance be-
tween a true response and a false negative exam-
ple is short. Furthermore, due to the simulation
of real scenario, harder examples can been seen in
the training phase that makes the model more ro-
bust in the testing.

We conduct experiments on two public data
sets, and experimental results on both data sets in-
dicate that models learned with our method can
significantly outperform their counterparts learned
with the random sampling strategy.

Our contributions include: (1) proposal of a new
method that can leverage unlabeled data to learn
matching models for retrieval-based chatbots; and
(2) empirical verification of the effectiveness of
the method on public data sets.

2 Approach

2.1 The Existing Learning Approach

Given a data setD = {xi, (yi,1, . . . , yi,n)}Ni=1 with
xi a message or a conversational context and yi,j a
response candidate of xi, we aim to learn a match-
ing modelM(·, ·) from D. Thus, for any new pair
(x, y),M(x, y) measures the matching degree be-
tween x and y.

To obtain a matching model, one has to deal
with two problems: (1) how to defineM(·, ·); and
(2) how to perform learning. Existing work fo-
cuses on Problem (1) where state-of-the-art meth-
ods include dual LSTM (Lowe et al., 2015), Multi-
View LSTM (Zhou et al., 2016), CNN (Yan et al.,
2016), and Sequential Matching Network (Wu
et al., 2017), but adopts a simple strategy for Prob-
lem (2): ∀xi, a human response is designated as
yi,1 with a label 1, and some randomly sampled
responses are treated as (yi,2, . . . , yi,n) with labels
0. M(·, ·) is then learned by maximizing the fol-
lowing objective:

∑N
i=1

∑n
j=1 [ri,j log(M(xi, yi,j)) + (1− ri,j) log(1−M(xi, yi,j))] ,

(1)

where ri,j ∈ {0, 1} is a label. While matching
accuracy can be improved by carefully designing
M(·, ·) (Wu et al., 2017), the bottleneck becomes
the learning approach which suffers obvious prob-
lems: most of the randomly sampled yi,j are se-
mantically far from xi which may cause an unde-
sired decision boundary at the end of optimization;
some yi,j are false negatives. As hard zero-one la-
bels are adopted in Equation (1), these false neg-
atives may mislead the learning algorithm. The
problems remind us that besides good architec-
tures of matching models, we also need a good
approach to learn such models from data.

2.2 A New Learning Method

As human labeling is infeasible when training
complicated neural networks, we propose a new
method that can leverage unlabeled data to learn
a matching model. Specifically, instead of ran-
dom sampling, we construct D by retrieving
(yi,2, . . . , yi,n) from an index (yi,1 is the human
response of xi). By this means, some yi,j are true
positives, and some are negatives but semantically
close to xi. After that, we employ a weak annota-
torG(·, ·) to indicate the matching degree of every
(xi, yi,j) in D as weak supervision signals. Let
sij = G(xi, yi,j), then the learning approach can
be formulated as:

argmin
M(·,·)

N∑

i=1

n∑

j=1

max(0,M(xi, yi,j)−M(xi, yi,1)+ s′i,j),

(2)

where s′ij is a normalized weak signal defined as
max(0,

si,j
si,1
− 1). The normalization here elimi-

nates bias from different xi.
Objective (2) encourages a large margin be-

tween the matching of an input and its human re-
sponse and the matching of the input and a neg-
ative response judged by G(·, ·) (as will be seen
later, si,j

si,1
> 1). The learning approach simu-

lates how we build a matching model in a retrieval-
based chatbot: given {xi}, some response candi-
dates are first retrieved from an index. Then hu-
man annotators are hired to judge the matching
degree of each pair. Finally, both the data and the
human labels are fed to an optimization program
for model training. Here, we replace the expensive
human labels with cheap judgment from G(·, ·).

We define G(·, ·) as a sequence-to-sequence ar-
chitecture (Vinyals and Le, 2015) with an attention
mechanism (Bahdanau et al., 2015), and pre-train
it with large amounts of human-human conversa-
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tion data. The Seq2Seq model can capture the
semantic correspondence between an input and a
response, and then transfer the knowledge to the
learning of a matching model in the optimization
of (2). sij is then defined as the likelihood of gen-
erating yi,j from xi:

sij =
∑

k

log[p(wyi,j ,k, |xi, wyi,j ,l<k)], (3)

where wyi,j ,k is the k-th word of yi,j and wyi,j ,l<k
is the word sequence before wyi,j ,k.

Since negative examples are retrieved by a
search engine, the oversimplification problem of
the negative sampling approach can be partially
mitigated. We leverage a weak annotator to assign
a score for each example to distinguish false neg-
ative examples and true negative examples. Equa-
tion (2) turns the hard zero-one labels in Equation
(1) to soft matching degrees, and thus our method
encourages the model to be more confident to clas-
sify a response with a high si,j score as a nega-
tive one. In this way, we can avoid false negative
examples and true negative examples are treated
equally during training, and update the model to-
ward a correct direction.

It is noteworthy that although our approach also
involves an interaction between a generator and
a discriminator, it is different from the GANs
(Goodfellow et al., 2014) in principle. GANs
try to learn a better generator via an adversarial
process, while our approach aims to improve the
discriminator with supervision from the genera-
tor, which also differentiates it from the recent
work on transferring knowledge from a discrimi-
nator to a generative visual dialog model (Lu et al.,
2017). Our approach is also different from those
semi-supervised approaches in the teacher-student
framework (Dehghani et al., 2017a,b), as there are
no labeled data in learning.

3 Experiment

We conduct experiments on two public data sets:
STC data set (Wang et al., 2013) for single-turn re-
sponse selection and Douban Conversation Corpus
(Wu et al., 2017) for multi-turn response selection.
Note that we do not test the proposed approach on
Ubuntu Corpus (Lowe et al., 2015), because both
training and test data in the corpus are constructed
by random sampling.

3.1 Implementation Details

We implement our approach with TensorFlow. In
both experiments, the same Seq2Seq model is ex-
ploited which is trained with 3.3 million input-
response pairs extracted from the training set of
the Douban data. Each input is a concatenation
of consecutive utterances in a context, and the re-
sponse is the next turn ({u<i}, ui). We set the vo-
cabulary size as 30, 000, the hidden vector size as
1024, and the embedding size as 620. Optimiza-
tion is conducted with stochastic gradient descent
(Bottou, 2010), and is terminated when perplex-
ity on a validation set (170k pairs) does not de-
crease in 3 consecutive epochs. In optimization of
Objective (2), we initialize M(·, ·) with a model
trained under Objective (1) with the (random) neg-
ative sampling strategy, and fix word embeddings
throughout training. This can stabilize the learn-
ing process. The learning rate is fixed as 0.1.

3.2 Single-turn Response Selection

Experiment settings: in the STC (stands for Short
Text Conversation) data set, the task is to select a
proper response for a post in Weibo2. The train-
ing set contains 4.8 million post-response (true re-
sponse) pairs. The test set consists of 422 posts
with each one associated with around 30 responses
labeled by human annotators in “good” and “bad”.
In total, there are 12, 402 labeled pairs in the test
data. Following (Wang et al., 2013, 2015), we
combine the score from a matching model with
TF-IDF based cosine similarity using RankSVM
whose parameters are chosen by 5-fold cross vali-
dation. Precision at position 1 (P@1) is employed
as an evaluation metric. In addition to the models
compared on the data in the existing literatures, we
also implement dual LSTM (Lowe et al., 2015) as
a baseline. As case studies, we learn a dual LSTM
and an CNN (Hu et al., 2014) with the proposed
approach, and denote them as LSTM+WS (Weak
Supervision) and CNN+WS, respectively. When
constructing D, we build an index with the train-
ing data using Lucene3 and retrieve 9 candidates
(i.e., {yi,2, . . . , yi,n}) for each post with the inline
algorithm of the index. We form a validation set
by randomly sampling 10 thousand posts associ-
ated with the responses from D (human response
is positive and others are treated as negative).

Results: Table 1 reports the results. We can see

2http://weibo.sina.com
3https://lucenenet.apache.org/
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P@1
TFIDF (Wang et al., 2013) 0.574
+Translation (Wang et al., 2013) 0.587
+WordEmbedding 0.579
+DeepMatchtopic (Lu and Li, 2013) 0.587
+DeepMatchtree (Wang et al., 2015) 0.608
+LSTM (Lowe et al., 2015) 0.592
+LSTM+WS 0.616
+CNN (Hu et al., 2014) 0.585
+CNN+WS 0.604

Table 1: Results on STC

that CNN and LSTM consistently get improved
when learned with the proposed approach, and
the improvements over the models learned with
random sampling are statistically significant (t-
test with p-value < 0.01). LSTM+WS even sur-
passes the best performing model, DeepMatchtree,
reported on this data. These results indicate
the usefulness of the proposed approach in prac-
tice. One can expect improvements to models like
DeepMatchtree with the new learning method. We
leave the verification as future work.

3.3 Multi-turn Response Selection

Experiment settings: Douban Conversation Cor-
pus contains 0.5 million context-response (true re-
sponse) pairs for training and 1000 contexts for
test. In the test set, every context has 10 re-
sponse candidates, and each of the response has
a label “good” or “bad” judged by human anno-
tators. Mean average precision (MAP) (Baeza-
Yates et al., 1999), mean reciprocal rank (MRR)
(Voorhees, 1999), and precision at position 1
(P@1) are employed as evaluation metrics. We
copy the numbers reported in (Wu et al., 2017) for
the baseline models, and learn LSTM, Multi-View,
and SMN with the proposed approach. We build
an index with the training data, and retrieve 9 can-
didates with the method in (Wu et al., 2017) for
each context when constructing D. 10 thousand
pairs are sampled from D as a validation set.

Results: Table 2 reports the results. Consis-
tent with the results on the STC data, every model
(+WS one) gets improved with the new learning
approach, and the improvements are statistically
significant (t-test with p-value < 0.01).

3.4 Discussion

Ablation studies: we first replace the weak su-
pervision s′i,j in Equation (2) with a constant ε se-
lected from {0.1, 0.2, . . . , 0.9} on validation, and
denote the models as model+const. Then, we keep

MAP MRR P@1
TFIDF 0.331 0.359 0.180
RNN 0.390 0.422 0.208
CNN 0.417 0.440 0.226
BiLSTM 0.479 0.514 0.313
DL2R (Yan et al., 2016) 0.488 0.527 0.330
LSTM (Lowe et al., 2015) 0.485 0.527 0.320
LSTM+WS 0.519 0.559 0.359
Multi-View (Zhou et al., 2016) 0.505 0.543 0.342
Multi-View+WS 0.534 0.575 0.378
SMN (Wu et al., 2017) 0.526 0.571 0.393
SMN+WS 0.565 0.609 0.421

Table 2: Results on Douban Conversation Corpus

STC Douban
P@1 MAP MRR P@1

CNN+WSrand 0.590 - - -
CNN+const 0.598 - - -
CNN+WS 0.604 - - -
LSTM+WSrand 0.598 0.501 0.532 0.323
LSTM+const 0.607 0.510 0.545 0.331
LSTM+WS 0.616 0.519 0.559 0.359
Multi-View+WSrand - 0.515 0.549 0.357
Multi-View+const - 0.528 0.564 0.370
Multi-View+WS - 0.534 0.575 0.378
SMN+WSrand - 0.536 0.574 0.377
SMN+const - 0.558 0.603 0.417
SMN+WS - 0.565 0.609 0.421

Table 3: Ablation results.

everything the same as our approach but replace
D with a set constructed by random sampling, de-
noted as model+WSrand. Table 3 reports the re-
sults. We can conclude that both the weak su-
pervision and the strategy of training data con-
struction are important to the success of the pro-
posed learning approach. Training data construc-
tion plays a more crucial role, because it involves
more true positives and negatives with different se-
mantic distances to the positives into learning.

Does updating the Seq2Seq model help? It
is well known that Seq2Seq models suffer from
the “safe response” (Li et al., 2016a) problem,
which may bias the weak supervision signals to
high-frequency responses. Therefore, we attempt
to iteratively optimize the Seq2Seq model and the
matching model and check if the matching model
can be further improved. Specifically, we update
the Seq2Seq model every 20 mini-batches with
the policy-based reinforcement learning approach
proposed in (Li et al., 2016b). The reward is de-
fined as the matching score of a context and a re-
sponse given by the matching model. Unfortu-
nately, we do not observe significant improvement
on the matching model. The result is attributed to
two factors: (1) it is difficult to significantly im-
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prove the Seq2Seq model with a policy gradient
based method; and (2) eliminating “safe response”
for Seq2Seq model cannot help a matching model
to learn a better decision boundary.

How the number of response candidates af-
fects learning: we vary the number of {yi,j}nj=1

in D in {2, 5, 10, 20} and study how the hyper-
parameter influences learning. We study with
LSTM on the STC data and SMN on the Douban
data. Table 4 reports the results. We can see that
as the number of candidates increases, the perfor-
mance of the the learned models becomes better.
Even with 2 candidates (one from human and the
other from retrieval), our approach can still im-
prove the peformance of matching models.

LSTM2 LSTM5 LSTM10 LSTM20

P@1 0.603 0.608 0.615 0.616
SMN2 SMN5 SMN10 SMN20

MAP 0.542 0.556 0.565 0.567
MRR 0.588 0.594 0.609 0.609
P@1 0.408 0.412 0.421 0.423

Table 4: The effect of instance number

4 Conclusion and Future Work

Previous studies focus on architecture design for
retrieval-based chatbots, but neglect the problems
brought by random negative sampling in the learn-
ing process. In this paper, we propose leveraging a
Seq2Seq model as a weak annotator on unlabeled
data to learn a matching model for response selec-
tion. By this means, we can mine hard instances
for matching model and give them scores with a
weak annotator. Experimental results on public
data sets verify the effectiveness of the new learn-
ing approach. In the future, we will investigate
how to remove bias from the weak supervisors,
and further improve the matching model perfor-
mance with a semi-supervised approach.
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Abstract

We present a generative neural network
model for slot filling based on a sequence-
to-sequence (Seq2Seq) model together
with a pointer network, in the situation
where only sentence-level slot annotations
are available in the spoken dialogue data.
This model predicts slot values by jointly
learning to copy a word which may be
out-of-vocabulary (OOV) from an input
utterance through a pointer network, or
generate a word within the vocabulary
through an attentional Seq2Seq model.
Experimental results show the effective-
ness of our slot filling model, especially
at addressing the OOV problem. Addi-
tionally, we integrate the proposed model
into a spoken language understanding sys-
tem and achieve the state-of-the-art perfor-
mance on the benchmark data.

1 Introduction

Slot filling is a key component in spoken language
understanding (SLU), which is usually treated
as a sequence labeling problem and solved us-
ing methods such as conditional random fields
(CRFs) (Raymond and Riccardi, 2007) or recur-
rent neural networks (RNNs) (Yao et al., 2013;
Mesnil et al., 2015).

Although these models have achieved good re-
sults, they are learned on the datasets with word-
level annotations, e.g., with the BIO tagging
schema as in ATIS (Hemphill et al., 1990). Man-
ual annotations at word level require big effort
and some corpora has only sentence-level annota-
tions available, e.g., the utterance “... moderately
priced restaurant” has a slot-value pair annotation
of “pricerange=moderate”. As such datasets lack
explicit alignment between the annotations and the

input words, some systems rely on handcrafted
rules to find the alignments in order to automati-
cally create word-level labels to learn the sequence
model (Zhou and He, 2011; Henderson, 2015), but
finding such alignments is non-trivial. For exam-
ple, it was shown in (Henderson, 2015) that when
applying the manually created word aliases to the
speech recognition hypotheses, only around 73%
of alignments can be found due to the noise, and
a CRF model trained on such noisy data performs
particularly worse than some other methods. In
addition it is time-consuming to adapt the manual
rules or aliases to new domains.

Some other work avoids this issue by regard-
ing slot filling as a classification task (Hender-
son et al., 2012; Williams, 2014; Barahona et al.,
2016), where an utterance is classified into one or
more slot-value pairs. This, however, brings other
challenges. One is that some types of slots may
have a large or even unlimited number of possible
values, so the classifiers may suffer from the data
sparsity problem when the training data is limited.
Another is the OOV problem caused by unknown
slot values (e.g., restaurant name, street name),
which is impossible to predefine and is very com-
mon in real-world spoken dialogue applications.

To address these challenges, we present a neural
generative model for slot filling on unaligned dia-
log data, specifically for slot value prediction as
it has more challenges caused by OOV. The model
uses Seq2Seq learning to predict a sequence of slot
values from an utterance. Inspired by the ability of
pointer network (Ptr-Net) (Vinyals et al., 2015) at
addressing OOV problems, we incorporate Ptr-Net
into a standard Seq2Seq attentional model to han-
dle OOV slots. It can predict slot values by either
generating one from a fixed vocabulary or select-
ing a word from the utterance. The final model is
a weighted combination of the two operations.

To summarize, our main contributions are:
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Figure 1: Our model for slot value prediction based on Seq2Seq learning with attention and Ptr-Net.

• We use a neural generative model for slot fill-
ing on the data without word-level annota-
tions which has received less attention.

• We adopt the pointer network to handle
the OOV problem in slot value prediction,
which achieves good performance without
any manually-designed rules or features.

2 Background of Pointer Network

Ptr-Net is a variation of the standard Seq2Seq
model with attention. At each decoding step, it
selects a position from the input sequence based
on the attention distribution instead of generating
a token from the target vocabulary. Given the in-
put X = {x1, ..., xT }, the output yt at time step t
is predicted by:

Pptr(yt = w|yt−1
1 , X) =

∑

i:xi=w

ati (1)

where ati is the attention weight of position i at
step t. The advantage of Ptr-Net is that it can make
better predictions on unknown or rare words. It
has been successfully applied to tasks such as ab-
stractive summarization (See et al., 2017), ques-
tion answering (He et al., 2017), reading com-
prehension (Wang and Jiang, 2016), and chunk-
ing (Zhai et al., 2017).

3 Model for Slot Value Prediction

Our model for slot value prediction is a hybrid of
a Seq2Seq attentional model and a Ptr-Net, simi-
lar as the one in See et al. (2017). The input is a
sequence of words in an utterance, and the output
is a sequence of slot values whose tokens may or
may not appear in the input.

The hybrid model, illustrated in Figure 1, allows
us to both generate a slot value from a fixed vo-
cabulary and pick a value from the input via point-
ing. The two components (Seq2Seq and Ptr-Net)
share the same encoder-decoder architecture and
attention scores. We adopt a single-layer bidirec-
tional GRU (Cho et al., 2014) for the encoder, and
a single-layer unidirectional GRU for the decoder.
The attention is calculated as in Bahdanau et al.
(2014).

The slot vocabulary is set to contain only the
values of enumerable slots, but not those of
non-enumerable slots (e.g., values of “restaurant
name”) as we assume these are not known in ad-
vance in the real scenarios.

We use the term “extended vocabulary” to de-
note the union of the slot vocabulary and all words
from the input utterances. The probability distri-
bution over the extended vocabulary is calculated
as:

P (w) = ptPgen + (1− pt)Pptr (2)

That is, the model makes the final predictions
using a weighted combination of the predictions
from two individual components. At the decod-
ing step t, the Seq2Seq component produces the
probability distribution Pgen for the next slot value
within the vocabulary, while Ptr-Net produces the
probability distribution Pptr over the input posi-
tions. pt ∈ [0, 1] is a parameter to balance the two
components. It is learned at each time step based
on the decoder input dt, decoder state st and the
context vector ct as follows:

pt = σ(wcct + wsst + wddt + b) (3)

where σ is a sigmoid function. wc, ws and wd are
all trainable weights.
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Model P R F
CNN 93.3 76.3 84.0

Seq2Seq w/ attention 86.6 81.9 84.2
Our model 88.8 81.3 84.9

Table 1: Results of slot value prediction.

4 Experiments

In this section, we present our experimental re-
sults on DSTC2 (Dialog State Tracking Chal-
lenge) (Henderson et al., 2014), including the re-
sults of slot value prediction solely and a complete
SLU system. Our models are implemented using
Keras1 with TensorFlow as backend. In all the ex-
periments, the dimension of hidden states is 128,
dimension of word embeddings is 100, dropout
rate is 0.5, and batch size is 32. Word embeddings
are not pre-trained but learned from scratch during
training. Teacher forcing is used during training,
with Adam optimizer (Kingma and Ba, 2014). All
training consists of 10 epochs with early stopping
on the development set.

4.1 Data
DSTC2 consists of multi-turn dialogues between
users and a dialog system, in the restaurant search
domain. Each utterance is annotated with seman-
tics including dialog-acts and slot-value pairs. For
an utterance, both its transcription and 10-best hy-
potheses are provided. We use the top hypothesis
as input throughout our experiments. The corpus
has been separated into training, development and
testing, containing 11,677, 3,934 and 9,890 utter-
ances respectively.

4.2 A Complete SLU System
For better evaluation and comparison, we inte-
grated our model of slot value prediction into a
complete SLU system, which uses a CNN clas-
sifier to obtain dialog-acts and slot types respec-
tively after slot value prediction. For dialog act
prediction, the input to the CNN model is the ut-
terance and the output is one or more dialog acts
(some utterances can have more than one dialog
acts). For slot type prediction, the input is each
predicted slot value together with the utterance,
and the output is one of the predefined slot types.
Given the limited numbers of various dialog-acts
and slot types for classification, a standard CNN
model is expected to achieve good performance.

1https://keras.io

Training size 5% 10% 15% 20%
OOV ratio (16%) (12%) (4%) (2%)

CNN
P 91.6 93.0 92.7 93.4
R 61.7 62.5 65.8 69.2
F 73.7 74.8 77.0 79.5

Seq2Seq
w/ attention

P 81.3 83.6 84.1 85.3
R 69.6 74.7 74.9 76.5
F 75.0 78.9 79.2 80.7

Our model
P 86.9 86.4 85.7 85.9
R 73.2 75.3 77.0 77.4
F 79.5 80.5 81.1 81.4

Table 2: Results of slot value prediction with vary-
ing training size and OOV ratio.

Note that we can adopt other SLU frameworks
as well (e.g., some joint frameworks), but given
our focus in this work is to explore the hybrid
Seq2Seq solutions for slot filling, we do not ex-
plore much on the SLU architecture, nor do we
use any extra information (e.g., dialogue context).
Despite the simplicity of our SLU system, it out-
performs the prior state-of-the-art. In the whole
process, neither manually designed features nor
domain-specific rules are employed.

4.3 Baselines

We compare the overall SLU performance of our
system against two existing baselines on DSTC2.
One baseline (Williams, 2014) uses binary SVM
classifiers to predict the existence of each slot-
value pair and dialog act. The other (Barahona
et al., 2016) uses CNN and LSTM jointly for clas-
sification.

For slot value prediction, since it is a sub-task
of SLU and not reported in the prior work, we im-
plemented another two models for it. One adopts
CNN to classify an utterance into one or more slot
values. The other uses the basic Seq2Seq atten-
tional model (without Ptr-Net). Note that when
learning this basic model, the target vocabulary is
set to contain all the slot values in the training set.

4.4 Results of Slot Value Prediction

We first report the results on slot value predic-
tion only. We compare the results of our proposed
model and our own implemented baselines in Ta-
ble 1, using precision, recall and F1.

We can see that the proposed hybrid model
achieves the best F1 score. Although CNN has a
high precision, it suffers from the low recall. By
looking into the results for each slot type, it is ob-
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Model P R F
SLU1 (Williams, 2014) 84.6 76.2 80.2
SLU2 (Williams, 2014) 87.0 77.7 82.1

CNN+LSTM w4
(Barahona et al., 2016)

- - 83.6

CNN 93.5 78.5 85.3
Seq2Seq w/ attention 87.5 82.7 85.0

Our model 89.0 82.8 85.8

Table 3: Overall SLU performance.

Training Size 5% 10% 15% 20%

CNN
P 91.6 92.0 92.3 93.0
R 67.5 70.4 71.7 72.7
F 77.8 79.8 80.7 81.6

Seq2Seq
w/ attention

P 82.8 87.2 86.4 87.9
R 74.3 75.1 78.0 78.4
F 78.3 80.7 82.0 82.9

Our model
P 84.9 86.3 88.4 88.0
R 76.8 77.9 79.0 79.9
F 80.6 81.9 83.4 83.8

Table 4: SLU results with varying training size.

served that CNN performs much poorer on non-
enumerable types of slots such as “food” due to
its high cardinality. While both our model and the
basic Seq2Seq model have higher recall.

Since our assumption is that the proposed model
can better handle the OOV problem, we analyze
the OOV rate in the corpus to obtain more insight.
By checking the percentage of slot values in the
testing set that do not exist in the training, we find
that the OOV problem in DSTC2 is not that severe,
with a OOV ratio less than 0.1%. This could be a
reason why our model does not obtain larger gain
on the complete dataset. We therefore design more
experiments in the next section to assess the model
when the OOV problem is more severe.

4.5 OOV Slot Prediction

We create specific datasets by re-sampling from
the original corpus. In particular, let group A de-
note all the training utterances that contain non-
enumerable slots, and group B denote the rest of
the training utterances. We randomly select 5%,
10%, 15%, and 20% of group A, plus the whole
set of group B. In this way, we can create training
data with less non-enumerable slot values thus re-
sulting in a higher OOV ratio. The testing set is
same as before. We compare the proposed model
with the baselines on these four specific datasets
with different OOV ratios (Table 2).

Input: danish food in the centre of town
Output: danish centre | spanish centre | centre
Input: i would like singaporean food
Output: singaporean | korean | None
Input: what about chiquito (portuguese)
Output: chiquito | portuguese | None
Input: an expensive restaurant serving cantonese food
Output: cantonese | portuguese expensive | expensive

Table 5: Examples of predicted slot values. Out-
put is from the proposed model, Seq2Seq w/ attn,
and CNN respectively (split by “|”). Bold denotes
gold standard and “None” denotes empty result.

As shown in each column, on all the specific
datasets, our model achieves the best performance.
The CNN model performs much poorer than be-
fore in terms of the recall. We can see that by
reducing the training size, the OOV ratio (indi-
cated in the first row in the brackets) goes up, and
the performance of all models decreases in gen-
eral. While CNN and the basic Seq2Seq model de-
cline 10.3% and 9.2% in F1 respectively using the
smallest training set compared to using the com-
plete one, our model is the most stable one with
the least performance drop of 5.4%. The gain of
our model over the other two becomes more sig-
nificant with the larger OOV rate. This shows the
capability of the Ptr-Net to correctly predict the
OOV slots.

Overall, the results in Section 4.4 and 4.5
demonstrate the effectiveness of the proposed hy-
brid model for slot value prediction, especially
when the training set is small and the OOV ratio
is large.

4.6 SLU Results

Table 3 compares the results of the overall SLU
task by our systems (incorporated with different
slot value prediction models) and prior arts. All
our systems outperform the prior work, and among
them the one with the proposed hybrid model
achieves the best F1 score.

We also conduct the similar OOV experiments
as in Section 4.5 for SLU (Table 4). Similar trend
is observed as discussed before. The performance
of the proposed model with 20% training data al-
ready reaches that of the best system reported in
the literature with 100% training data.

4.7 Case Study and Error Analysis

Table 5 gives some examples of slot values pre-
dicted by the proposed model and baselines. We
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can see that for the less frequent slots, our model
can still predict the values correctly, while without
the Ptr-Net, the basic Seq2Seq model tends to gen-
erate words not appearing in the input, and CNN
outputs nothing in many cases, which aligns with
our assumption. We analyze the cases where Ptr-
Net does not perform well and find several major
types of errors: 1) partial prediction (e.g., detect
only “oriental” for “asian oriental food”; 2) the
prediction contains repetition of correct values; 3)
speech recognition error although the prediction is
proper if we look at the hypothesis itself (the third
example). There are also cases where all the mod-
els fail to give a completely correct prediction, yet
with different behaviors (the last example).

5 Conclusion

We adopt an attentional Seq2Seq model with
Ptr-Net to predict slot values on dialogue data
when only sentence-level semantic annotations are
available. By switching between copying and gen-
erating words, this solution can bypass the need of
word-level annotations and overcome the OOV is-
sue which is very common in real-world spoken
dialogue applications. It does not require any do-
main specific rules or dictionaries, and therefore
can be easily adapted to new domains. Our model
has achieved the state-of-the-art performance for
both slot value prediction and SLU on the bench-
mark even with less training data.
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Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
2015. Using recurrent neural networks for slot fill-
ing in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech and Language Pro-
cessing (TASLP), 23(3):530–539.

Christian Raymond and Giuseppe Riccardi. 2007.
Generative and discriminative algorithms for spoken
language understanding. In Eighth Annual Confer-
ence of the International Speech Communication As-
sociation.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-LSTM and answer pointer.
arXiv preprint arXiv:1608.07905.

430



Jason D Williams. 2014. Web-style ranking and slu
combination for dialog state tracking. In SIGDIAL
Conference, pages 282–291.

Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang,
Yangyang Shi, and Dong Yu. 2013. Recurrent neu-
ral networks for language understanding. In Inter-
speech, pages 2524–2528.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural models for sequence chunking.
In AAAI, pages 3365–3371.

Deyu Zhou and Yulan He. 2011. Learning conditional
random fields from unaligned data for natural lan-
guage understanding. Advances in Information Re-
trieval, pages 283–288.

431



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 432–437
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing

Osman Ramadan, Paweł Budzianowski, Milica Gašić
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Abstract

Robust dialogue belief tracking is a key
component in maintaining good quality di-
alogue systems. The tasks that dialogue
systems are trying to solve are becoming
increasingly complex, requiring scalabil-
ity to multi-domain, semantically rich dia-
logues. However, most current approaches
have difficulty scaling up with domains
because of the dependency of the model
parameters on the dialogue ontology. In
this paper, a novel approach is introduced
that fully utilizes semantic similarity be-
tween dialogue utterances and the ontol-
ogy terms, allowing the information to
be shared across domains. The evalua-
tion is performed on a recently collected
multi-domain dialogues dataset, one order
of magnitude larger than currently avail-
able corpora. Our model demonstrates
great capability in handling multi-domain
dialogues, simultaneously outperforming
existing state-of-the-art models in single-
domain dialogue tracking tasks.

1 Introduction

Spoken Dialogue Systems (SDS) are computer
programs that can hold a conversation with a hu-
man. These can be task-based systems that help
the user achieve specific goals, e.g. finding and
booking hotels or restaurants. In order for the
SDS to infer the user goals/intentions during the
conversation, its Belief Tracking (BT) component
maintains a distribution of states, called a belief
state, across dialogue turns (Young et al., 2010).
The belief state is used by the system to take ac-
tions in each turn until the conversation is con-
cluded and the user goal is achieved. In order to
extract these belief states from the conversation,
traditional approaches use a Spoken Language

Understanding (SLU) unit that utilizes a seman-
tic dictionary to hold all the key terms, rephras-
ings and alternative mentions of a belief state. The
SLU then delexicalises each turn using this seman-
tic dictionary, before it passes it to the BT compo-
nent (Wang and Lemon, 2013; Henderson et al.,
2014b; Williams, 2014; Zilka and Jurcicek, 2015;
Perez and Liu, 2016; Rastogi et al., 2017). How-
ever, this approach is not scalable to multi-domain
dialogues because of the effort required to de-
fine a semantic dictionary for each domain. More
advanced approaches, such as the Neural Belief
Tracker (NBT), use word embeddings to alleviate
the need for delexicalisation and combine the SLU
and BT into one unit, mapping directly from turns
to belief states (Mrkšić et al., 2017). Nevertheless,
the NBT model does not tackle the problem of
mixing different domains in a conversation. More-
over, as each slot is trained independently without
sharing information between different slots, scal-
ing such approaches to large multi-domain sys-
tems is greatly hindered.

In this paper, we propose a model that jointly
identifies the domain and tracks the belief states
corresponding to that domain. It uses semantic
similarity between ontology terms and turn
utterances to allow for parameter sharing between
different slots across domains and within a single
domain. In addition, the model parameters are
independent of the ontology/belief states, thus
the dimensionality of the parameters does not
increase with the size of the ontology, making
the model practically feasible to deploy in multi-
domain environments without any modifications.
Finally, we introduce a new, large-scale corpora
of natural, human-human conversations providing
new possibilities to train complex, neural-based
models. Our model systematically improves upon
state-of-the-art neural approaches both in single
and multi-domain conversations.
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2 Background

The belief states of the BT are defined based
on an ontology - the structured representation of
the database which contains entities the system
can talk about. The ontology defines the terms
over which the distribution is to be tracked in
the dialogue. This ontology is constructed in
terms of slots and values in a single domain set-
ting. Or, alternatively, in terms of domains, slots
and values in a multi-domain environment. Each
domain consists of multiple slots and each slot
contains several values, e.g. domain=hotel,
slot=price, value=expensive. In each
turn, the BT fits a distribution over the values of
each slot in each domain, and a none value is
added to each slot to indicate if the slot is not
mentioned so that the distribution sums up to 1.
The BT then passes these states to the Policy Op-
timization unit as full probability distributions to
take actions. This allows robustness to noisy envi-
ronments (Young et al., 2010). The larger the on-
tology, the more flexible and multi-purposed the
system is, but the harder it is to train and maintain
a good quality BT.

3 Related Work

In recent years, a plethora of research has been
generated on belief tracking (Williams et al.,
2016). For the purposes of this paper, two pre-
viously proposed models are particularly relevant.

3.1 Neural Belief Tracker (NBT)
The main idea behind the NBT (Mrkšić et al.,
2017) is to use semantically specialized pre-
trained word embeddings to encode the user ut-
terance, the system act and the candidate slots and
values taken from the ontology. These are fed to
semantic decoding and context modeling modules
that apply a three-way gating mechanism and pass
the output to a non-linear classifier layer to pro-
duce a distribution over the values for each slot. It
uses a simple update rule, p(st) = βp(st−1)+λy,
where p(st) is the belief state at time step t, y is
the output of the binary decision maker of the NBT
and β and λ are tunable parameters.

The NBT leverages semantic information
from the word embeddings to resolve lexi-
cal/morphological ambiguity and maximize the
shared parameters across the values of each slot.
However, it only applies to a single domain and
does not share parameters across slots.

3.2 Multi-domain Dialogue State Tracking

Recently, Rastogi et al. (2017) proposed a multi-
domain approach using delexicalized utterances
fed to a two layer stacked bi-directional GRU net-
work to extract features from the user and the sys-
tem utterances. These, combined with the candi-
date slots and values, are passed to a feed-forward
neural network with a softmax in the last layer.
The candidate set fed to the network consists of
the selected candidates from the previous turn and
candidates from the ontology to a limit K, which
restricts the maximum size of the chosen set. Con-
sequently, the model does not need an ad-hoc be-
lief state update mechanism like in the NBT.

The parameters of the GRU network are de-
fined for the domain, whereas the parameters of
the feed-forward network are defined per slot, al-
lowing transfer learning across different domains.
However, the model relies on delexicalization to
extract the features, which limits the performance
of the BT, as it does not scale to the rich variety of
the language. Moreover, the number of parameters
increases with the number of slots.

4 Method

The core idea is to leverage semantic similarities
between the utterances and ontology terms to com-
pute the belief state distribution. In this way, the
model parameters only learn to model the interac-
tions between turn utterances and ontology terms
in the semantic space, rather than the mapping
from utterances to states. Consequently, informa-
tion is shared between both slots and across do-
mains. Additionally, the number of parameters
does not increase with the ontology size. Do-
main tracking is considered as a separate task but
is learned jointly with the belief state tracking of
the slots and values. The proposed model uses
semantically specialized pre-trained word embed-
dings (Wieting et al., 2015). To encode the user
and system utterances, we employed 7 indepen-
dent bi-directional LSTMs (Graves and Schmid-
huber, 2005). Three of them are used to encode
the system utterance for domain, slot and value
tracking respectively. Similarly, three Bi-LSTMs
encode the user utterance while and the last one
is used to track the user affirmation. A variant of
the CNNs as a feature extractor, similar to the one
used in the NBT-CNN (Mrkšić et al., 2017) is also
employed.
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Figure 1: The proposed model architecture, using Bi-LSTMs as encoders. Other variants of the model
use CNNs as feature extractors (Kim, 2014; Kalchbrenner et al., 2014).

4.1 Domain Tracking
Figure 1 presents the system architecture with two
bi-directional LSTM networks as information en-
coders running over the word embeddings of the
user and system utterances. The last hidden states
of the forward and backward layers are concate-
nated to produce hdusr,h

d
sys of size L for the user

and system utterances respectively. In the second
variant of the model, CNNs are used to produce
these vectors (Kim, 2014; Kalchbrenner et al.,
2014). To detect the presence of the domain in the
dialogue turn, element-wise multiplication is used
as a similarity metric between the hidden states
and the ontology embeddings of the domain:

dk = hdk � tanh(Wd ed + bd),

where k ∈ {usr, sys}, ed is the embedding vector
of the domain and Wd ∈ RL×D transforms the
domain word embeddings of dimension D to the
hidden representation. The information about se-
mantic similarity is held by dusr and dsys, which
are fed to a non-linear layer to output a binary de-
cision:

Pt(d) = σ(wd {dusr ⊕ dsys}+ bd),

where wd ∈ R2L and bd are learnable parameters
that map the semantic similarity to a belief state
probability Pt(d) of a domain d at a turn t.

4.2 Candidate Slots and Values Tracking

Slots and values are tracked using a similar archi-
tecture as for domain tracking (Figure 1). How-
ever, to correctly model the context of the system-
user dialogue at each turn, three different cases are
considered when computing the similarity vectors:

1. Inform: The user is informing the system
about his/her goal, e.g. ’I am looking for a
restaurant that serves Turkish food’.

2. Request: The system is requesting informa-
tion by asking the user about the value of
a specific slot. If the system utterance is:
’When do you want the taxi to arrive?’ and
the user answers with ’19:30’.

3. Confirm: The system wants to confirm in-
formation about the value of a specific slot. If
the system asked: ’Would you like free park-
ing?’, the user can either affirm positively or
negatively. The model detects the user affir-
mation, using a separate bi-directional LSTM
or CNN to output hausr.

The three cases are modelled as following:

ys,vinf = winf {susr ⊕ vusr}+ binf ,

ys,vreq = wreq {ssys ⊕ vusr}+ breq,

ys,vaf = waf {ssys ⊕ vsys ⊕ hausr}+ baf ,
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where sk,vk for k ∈ {usr, sys} represent seman-
tic similarity between the user and system utter-
ances and the ontology slot and value terms re-
spectively computed as shown in Figure 1, and w
and b are learnable parameters.

The distribution over the values of slot s in do-
main d at turn t can be computed by summing the
unscaled states, yinf , yreq and yaf for each value
v in s, and applying a softmax to normalize the
distribution:

Pt(s, v) = softmax(ys,vinf + ys,vreq + ys,vaf ).

4.3 Belief State Update
Since dialogue systems in the real-world operate
in noisy environments, a robust BT should utilize
the flow of the conversation to reduce the uncer-
tainty in the belief state distribution. This can
be achieved by passing the output of the deci-
sion maker, at each turn, as an input to an RNN
that runs over the dialogue turns as shown in Fig-
ure 1, which allows the gradients to be propagated
across turns. This alleviates the problem of tun-
ing hyper-parameters for rule-based updates. To
avoid the vanishing gradient problem, three net-
works were tested: a simple RNN, an RNN with
a memory cell (Henderson et al., 2014a) and a
LSTM. The RNN with a memory cell proved to
give the best results. In addition to the fact that it
reduces the vanishing gradient problem, this vari-
ant is less complex than an LSTM, which makes
training easier. Furthermore, a variant of RNN
used for domain tracking has all its weights of the
form: Wi = αiI, where αi is a distinct learn-
able parameter for hidden, memory and previous
state layers and I is the identity matrix. Similarly,
weights of the RNN used to track the slots and val-
ues is of the form: Wj = γjI+ λj(1− I), where
γj and λj are the learnable parameters. These two
variants of RNN are a combination of Henderson
et al. (2014a) and Mrkvsić and Vulić (2018) previ-
ous works. The output is P1:T (d) and P1:T (s,v),
which represents the joint probability distribution
of the domains and slots and values respectively
over the complete dialogue. Combining these to-
gether produces the full belief state distribution of
the dialogue:

P1:T (d, s,v) = P1:T (d)P1:T (s,v).

4.4 Training Criteria
Domain tracking and slots and values tracking are
trained disjointly. Belief state labels for each turn

are split into domains and slots and values. Thanks
to the disjoint training, the learning of slot and
value belief states are not restricted to a specific
domain. Therefore, the model shares the knowl-
edge of slots and values across different domains.
The loss function for the domain tracking is:

Ld = −
N∑

n=1

∑

d∈D
tn(d)logPn1:T (d),

where d is a vector of domains over the dialogue,
tn(d) is the domain label for the dialogue n and
N is the number of dialogues. Similarly, the loss
function for the slots and values tracking is:

Ls,v = −
N∑

n=1

∑

s,v∈S,V
tn(s,v)logPn1:T (s,v),

where s and v are vectors of slots and values over
the dialogue and tn(s,v) is the joint label vector
for the dialogue n.

5 Datasets and Baselines

Neural approaches to statistical dialogue develop-
ment, especially in a task-oriented paradigm, are
greatly hindered by the lack of large scale datasets.
That is why, following the Wizard-of-Oz (WOZ)
approach (Kelley, 1984; Wen et al., 2017), we
ran text-based multi-domain corpus data collec-
tion scheme through Amazon MTurk. The main
goal of the data collection was to acquire human-
human conversations between a tourist visiting a
city and a clerk from an information center. At the
beginning of each dialogue the user (visitor) was
given explicit instructions about the goal to ful-
fill, which often spanned multiple domains. The
task of the system (wizard) is to assist a visitor
having an access to databases over domains. The
WOZ paradigm allowed us to obtain natural and
semantically rich multi-topic dialogues spanning
over multiple domains such as hotels, attractions,
restaurants, booking trains or taxis. The dialogues
cover from 1 up to 5 domains per dialogue greatly
varying in length and complexity.

5.1 Data Structure

The data consists of 2480 single-domain dialogues
and 7375 multi-domain dialogues usually span-
ning from 2 up to 5 domains. Some domains con-
sists also of sub-domains like booking. The aver-
age sentence lengths are 11.63 and 15.01 for users
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WOZ 2.0 New WOZ (only restaurants)
Slot NBT-CNN Bi-LSTM CNN NBT-CNN Bi-LSTM CNN
Food 88.9 96.1 96.4 78.3 84.7 85.3

Price range 93.7 98.0 97.9 92.6 95.6 93.6
Area 94.3 97.8 98.1 78.3 82.6 86.4

Joint goals 84.2 85.1 85.5 57.7 59.9 63.7

Table 1: WOZ 2.0 and new dataset test set accuracies of the NBT-CNN and the two variants of the
proposed model, for slots food, price range, area and joint goals.

and wizards respectively. The combined ontol-
ogy consists of 5 domains, 27 slots and 663 val-
ues making it significantly larger than observed in
other datasets. To enforce reproducibility of re-
sults, we distribute the corpus with a pre-specified
train/test/development random split. The test and
development sets contain 1k examples each. Each
dialogues consists of a goal, user and system ut-
terances and a belief state per turn. The data and
model is publicly available.1

5.2 Evaluation

We also used the extended WOZ 2.0 dataset (Wen
et al., 2017).2 WOZ2 dataset consists of 1200 sin-
gle topic dialogues constrained to the restaurant
domain. All the weights were initialised using nor-
mal distribution of zero mean and unit variance
and biases were initialised to zero. ADAM op-
timizer (Kingma and Ba, 2014) (with 64 batch
size) is used to train all the models for 600 epochs.
Dropout (Srivastava et al., 2014) was used for reg-
ularisation (50% dropout rate on all the intermedi-
ate representations). For each of the two datasets
we compare our proposed architecture (using ei-
ther Bi-LSTM or CNN as encoders) to the NBT
model3 (Mrkšić et al., 2017).

6 Results

Table 1 shows the performance of our model in
tracking the belief state of single-domain dia-
logues, compared to the NBT-CNN variant of the
NBT discussed in Section 3.1. Our model outper-
forms NBT in all the three slots and the joint goals
for the two datasets. NBT previously achieved
state-of-the-art results (Mrkšić et al., 2017). More-
over, the performance of all models is worse on the
new dataset for restaurant compared to WOZ 2.0.

1http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
2Publicly available at https://mi.eng.cam.ac.

uk/˜nm480/woz_2.0.zip.
3Publicly available at https://github.com/

nmrksic/neural-belief-tracker.

New WOZ (multi-domain)
Model F1 score Accuracy %

Uniform Sampling 0.108 10.8
Bi-LSTM 0.876 93.7

CNN 0.878 93.2

Table 2: The overall F1 score and accuracy for the
multi-domain dialogues test set.4

This is because the dialogues in the new dataset
are richer and more noisier, as a closer resem-
blance to real environment dialogues.

Table 2 presents the results on multi-domain di-
alogues from the new dataset described in Sec-
tion 5. To demonstrate the difficulty of the multi-
domain belief tracking problem, values of a the-
oretical baseline that samples the belief state uni-
formly at random are also presented. Our model
gracefully handles such a difficult task. In most
of the cases, CNNs demonstrate better perfor-
mance than Bi-LSTMs. We hypothesize that this
comes from the effectiveness of extracting local
and position-invariant features, which are crucial
for semantic similarities (Yin et al., 2017).

7 Conclusions

In this paper, we proposed a new approach that
tackles the issue of multi-domain belief tracking,
such as model parameter scalability with the ontol-
ogy size. Our model shows improved performance
in single-domain tasks compared to the state-of-
the-art NBT method. By exploiting semantic sim-
ilarities between dialogue utterances and ontology
terms, the model alleviates the need for ontology-
dependent parameters and maximizes the amount
of information shared between slots and across do-
mains. In future, we intend to investigate introduc-
ing new domains and ontology terms without fur-
ther training thus performing zero-shot learning.

4F1-score is computed by considering all the values in
each slot of each domain as positive and the ”none” state of
the slot as negative.
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Abstract

Identifying long-span dependencies
between discourse units is crucial to
improve discourse parsing performance.
Most existing approaches design
sophisticated features or exploit various
off-the-shelf tools, but achieve little
success. In this paper, we propose a new
transition-based discourse parser that
makes use of memory networks to take
discourse cohesion into account. The
automatically captured discourse
cohesion benefits discourse parsing,
especially for long span scenarios.
Experiments on the RST discourse
treebank show that our method
outperforms traditional featured based
methods, and the memory based discourse
cohesion can improve the overall parsing
performance significantly 1.

1 Introduction

Discourse parsing aims to identify the structure
and relationship between different element
discourse units (EDUs). As a fundamental topic
in natural language processing, discourse parsing
can assist many down-stream applications such as
summarization (Louis et al., 2010), sentiment
analysis (Polanyi and van den Berg, 2011) and
question-answering (Ferrucci et al., 2010).
However, the performance of discourse parsing is
still far from perfect, especially for EDUs that are
distant to each other in the discourse. In fact, as
found in (Jia et al., 2018), the discourse parsing
performance drops quickly as the dependency
span increases. The reason may be twofold:

1Code for replicating our experiments is available at
https://github.com/PKUYeYuan/ACL2018 CFDP.

Firstly, as discussed in previous works (Joty
et al., 2013), it is important to address discourse
structure characteristics, e.g., through modeling
lexical chains in a discourse, for discourse
parsing, especially in dealing with long span
scenarios. However, most existing approaches
mainly focus on studying the semantic and
syntactic aspects of EDU pairs, in a more local
view. Discourse cohesion reflects the syntactic or
semantic relationship between words or phrases
in a discourse, and, to some extent, can indicate
the topic changing or threads in a discourse.
Discourse cohesion includes five situations,
including reference, substitution, ellipsis,
conjunction and lexical cohesion (Halliday and
Hasan, 1989). Here, lexical cohesion reflects the
semantic relationship of words, and can be
modeled as the recurrence of words, synonym
and contextual words.

However, previous works do not well model
the discourse cohesion within the discourse
parsing task, or do not even take this issue into
account. Morris and Hirst (1991) proposes to
utilize Roget thesauri to form lexical chains
(sequences of semantically related words that can
reflect the topic shifts within a discourse), which
are used to extract features to characterize
discourse structures. (Joty et al., 2013) uses
lexical chain feature to model multi-sentential
relation. Actually, these simplified cohesion
features can already improve parsing
performance, especially in long spans.

Secondly, in modern neural network methods,
modeling discourse cohesion as part of the
networks is not a trivial task. One can still use
off-the-shell tools to obtain lexical chains, but
these tools can not be jointly optimized with the
main neural network parser. We argue that
characterizing discourse cohesion implicitly
within a unified framework would be more

438



(9) It is nine o'clock.
(10) Thank God, I am not late for work.

(4) It is eight o'clock when I leave home.
(5) So late! 

(11) But the hamburger is cold,
(12) order some take-away food is better, maybe.

(1) I feel hungry after wake up,
(2) I rush into the kitchen and make my breakfast.
(3) My breakfast is hamburger.

slot2

slot3

slotn

slot1

...

(6) I drive into the highway,
(7) but meet a traffic jam.
(8) Oh, I finally arrive at the company.

Memory network

Figure 1: An illustration for modelling discourse
cohesion with memory network. The example
discourse includes 12 EDUs and talks about 3
different threads (food, time and traffic), which are
colored by blue, gray and white, respectively.

straightforward and effective for our neural
network based parser. As shown in Figure 1, the
12 EDUs in the given discourse talk about
different topics, marked with 3 different colors,
which could be captured by a memory network
that maintains several memory slots. In discourse
parsing, such an architecture may help to cluster
topically similar or related EDUs into the same
memory slot, and each slot could be considered as
a representation that maintains a specific topic or
thread within the current discourse. Intuitively,
we could also treat such a mechanism as a way to
capture the cohesion characteristics of the
discourse, just like the lexical chain features used
in previous works, but without relying on external
tools or resources.

In this paper, we investigate how to exploit
discourse cohesion to improve discourse parsing.
Our contribution includes: 1) we design a
memory network method to capture discourse
cohesion implicitly in order to improve discourse
parsing. 2) We choose bidirectional long-short
term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) with an attention mechanism
to represent EDUs directly from embeddings, and
use simple position features to capture shallow
discourse structures, without relying on
off-the-shelf tools or resources. Experiments on
the RST corpus show that the memory based
discourse cohesion model can help better capture
discourse structure information and lead to
significant improvement over traditional feature
based discourse parsing methods.

2 Model overview

Our parser is an arc-eager style transition system
(Nivre, 2003) with 2 stacks and a queue as shown
in Figure 2, which is similar in spirit with (Dyer
et al., 2015; Ballesteros et al., 2015). We follow
the conventional data structures in
transition-based dependency parsing, i.e., a queue
(B) of EDUs to be processed, a stack (S) to store
the partially constructed discourse trees, and a
stack (A) to represent the history of transitions
(actions combined with discourse relations).

In our parser, the transition actions include
Shift, Reduce, Left-arc and Right-arc. At each
step, the parser chooses to take one of the four
actions and pushes the selected transition into A.
Shift pushes the first EDU in queue B to the top of
the stack S, while Reduce pops the top item of S.
Left-arc connects the first EDU (head) in B to the
top EDU (dependent) in S and then pops the top
item of S, while Right-arc connects the top EDU
(head) of S to the first EDU (dependent) in B and
then pushes B’s first EDU to the top of S. A parse
tree can be finally constructed until B is empty
and S only contains a complete discourse tree.
For more details, please refer to (Nivre, 2003).

As shown in Figure 2, at time t, we
characterize the current parsing process by
preserving the top two elements in B, top three
elements in A and the root EDU in the partially
constructed tree at the top of S. We first
concatenate the embeddings of the preserved
elements in each data structure to obtain the
embeddings of S, B and A. We then append the
three representations with the position2 features
(introduced in Section 2.1), respectively. We pass
them through one ReLU layer and two fully
connected layers with ReLU as their activation
functions to obtain the final state representation pt
at time t, which will be used to determine the best
transition to take at t.

Next, we apply an affine transformation to pt
and feed it to a softmax layer to get the distribution
over all possible decisions (actions combined with
discourse relations). We train our model using the
automatically generated oracle action sequences
as the gold-standard annotations, and utilize cross
entropy as the loss function. We perform greedy
search during decoding.
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Figure 2: Our discourse parsing framework: (1)
Basic EDU representation module; (2) Memory
networks to capture the discourse cohesion so as
to obtain the refined representations of S and B.
RA(Li) means that the chosen action is Right-arc
and its relation is List. SH means Shift. a1 to
an are weights for the attention mechanism of the
bidirectional LSTM.

2.1 Discourse Structures

As mentioned in previous work (Jia et al., 2018),
when the top EDUs in S and B are far from each
other in the discourse, i.e., with a long span, the
parser will be prone to making wrong decisions.
To deal with these long-span cases, one should
take discourse structures into account, e.g.,
extracting features from the structure of a long
discourse or analyzing and characterizing
different topics discussed in the discourse.

We, therefore, choose two kinds of position
features to reflect the structure information, which
can be viewed as a shallow form of discourse
cohesion. The first one describes the position of an
EDU alone, while the second represents the spatial
relationship between the top EDUs of S and B.
(1) Position1: the positions of the EDU in the
sentence, paragraph and discourse, respectively.
(2) Position2: whether the top EDUs of S and
B are in the same sentence/paragraph or not, and
the distance between them.

3 Memory based Discourse Cohesion

Basic EDU representation: In our model, the
EDUs in both S and B follow the same
representation method, and we take an EDU in B
as an example as shown in Figure 2. The basic
representation for an EDU is built by
concatenating three components, i.e., word, POS
and Position1. Regarding word, we feed the

sequence of words in the EDU to a bi-directional
Long Short Term Memory (LSTM) with attention
mechanism and obtain the final word
representation by concatenating the two final
outputs from both directions. Here, we use
pre-trained Glove (Pennington et al., 2014) as the
word embeddings. We get the POS tags from
Stanford CoreNLP toolkit (Manning et al., 2014),
and similarly, send the POS tag sequence of the
EDU to a bi-directional LSTM with attention
mechanism to obtain the final POS representation.
For concise, we omit the bi-directional LSTM
network structure for POS in Figure 2, which is
the same as the one for word. The Position1
feature vectors are randomly initialized and we
expect them to work as a proxy to capture the
shallow discourse structure information.

Memory Refined Representation: Besides the
shallow structure features, we design a memory
network component to cluster EDUs with similar
topics to the same memory slot to alleviate the
long span issues, as illustrated in Figure 1. We
expect these memory slots can work as lexical
chains, which can maintain different threads
within the discourse. Such a memory mechanism
has the advantage that it can perform the
clustering automatically and does not rely on
extra tools or resources to train.

Concretely, we match the representations of S
and B with their corresponding memory
networks, respectively, to get their discourse
cohesion clues, which are used to improve the
original representations. Take B as an example,
we first compute the similarity between the
representation of B (Vb) and each memory slot mi

in B’s memory. We adopt the cosine similarity as
our metric as below:

Sim[x, y] =
x · y
‖x‖ · ‖y‖ (1)

Then, we use this cosine similarity to produce a
normalized weight wi for each memory slot. We
introduce a strength factor λ to improve the focus.

wi =
exp(λSim[Vb,mi])∑
j exp(λSim[Vb,mj ])

(2)

Finally, we get the discourse cohesion clue of B
(denoted by BCoh) from its memory according to
the weighted sum of mi.

BCoh =
∑

i

wimi (3)
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We concatenateBCoh (the discourse cohesion clue
of B) and the original embedding of B to get the
refined representation Brefined for B. Similarly,
we concatenate SCoh and the embedding of S
to get the refined representation Srefined for S,
as shown in Figure 2. In our experiments, each
memory contains 20 slots, which are randomly
initialized and optimized during training.

4 Evaluation and Results

Dataset: We use the RST Discourse Treebank
(Carlson et al., 2001) with the same split as in (Li
et al., 2014), i.e., 312 for training, 30 for
development and 38 for testing. We experiment
with two set of relations, the 111 types of
fine-grained relations and the 19 types of
coarse-grained relations, respectively.

Evaluation Metrics: In the Rhetorical
Structure Theory (RST) (Mann and Thompson,
1988), head is the core of a discourse, and a
dependent gives supporting evidence to its head
with certain relationship. We adopt unlabeled
accuracy UAS (the ratio of EDUs that correctly
identify their heads) and labeled accuracy LAS
(the ratio of EDUs that have both correct heads
and relations) as our evaluation metrics.

Baselines: We compare our method with the
following baselines and models: (1) Perceptron:
We re-implement the perceptron based arc-eager
style dependency discourse parser as mentioned
in (Jia et al., 2018) with coarse-grained relation.
The Perceptron model chooses words, POS tags,
positions and length features, totally 100 feature
templates, with the early update strategy (Collins
and Roark, 2004). (2) Jia18: Jia et al. (2018)
implement a transition-based discourse parser
with stacked LSTM, where they choose a
two-layer LSTM to represent EDUs by encoding
four kinds of features including words, POS tags,
positions and length features. (3) Basic EDU
representation (Basic): Our discourse parser with
the basic EDU representation method mentioned
in Section 3. (4) Memory refined representation
(Refined): Our full parser equipped with the
basic EDU representation method and the
memory networks to capture the discourse
cohesion mentioned in Section 3. (5) MST-full
(Li et al., 2014): a graph-based dependency
discourse parser with carefully selected 6 sets of
features including words, POS tags, positions,

length, syntactic and semantic similarity features,
which achieves the state-of-art performance on
the RST Treebank.

4.1 Results

We list the overall discourse parsing performance
in Table 1. Here, Jia18, a stack LSTM based
method (Jia et al., 2018), outperforms the
traditional Perceptron method, but falls behind
our Basic model with word, POS tags and
Position features. The reason may be that
representing EDUs directly from the sequence of
word/POS embeddings could probably capture
the semantic meaning of EDUs, which is
especially useful for taking into account
synonyms or paraphrases that often confuse
traditional feature-based methods. We can also
see that Basic(word+pos+position) significantly
outperforms Basic(word+pos), as the Position
features may play a crucial role in providing
useful structural clues to our parser. Such position
information can also be considered as a shallow
treatment to capture the discourse cohesion,
especially for long span scenarios. When using
the memory network, our Refined method
achieves better performance than the
Basic(word+pos+position) in both UAS and
LAS. The reason may come from the ability of
the memory networks in simulating the lexical
chains within a discourse, where the memory
networks can model the discourse cohesion so as
to provide topical or structural clues to our parser.
We use SIGF V2 (Padó, 2006) to perform
significance test for the discussed models. We
find that the Basic(word+pos+position) method
significantly outperforms (Jia et al., 2018), and
our Refined model performs significantly better
than Basic(word+pos+position) (with p < 0.1).

However, when compared with MST-full (Li
et al., 2014), our models still fall behind this
state-of-the-art method. The main reason might
be that MST-full follows a global graph-based
dependency parsing framework, where their high
order methods (in cubic time complexity) can
directly analyze the relationship between any
EDUs pairs in the discourse, while, we choose the
transition-based local method with linear time
complexity, which can only investigate the top
EDUs in S and B according to the selected
actions, thus usually has a lower performance
than the global graph-based methods, but with a
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lower (linear) time complexity. On the other
hand, the neural network components help us
maintain much fewer features than MST-full,
which carefully selects 6 different sets of features
that are usually obtained using extra tools and
resources. And, the neural network design is
flexible enough to incorporate various clues into a
uniform framework, just like how we introduce
the memory networks as a proxy to capture
discourse cohesion.

In the RST corpus, when the distance between
two EDUs is larger, there are usually fewer
numbers of such EDU pairs, but the parsing
performance for those long span cases drops more
significantly. For example, the LAS is even lower
than 5% for those dependencies that have a range
of 6 EDUs. We take a detailed look at the parsing
performance for dependencies at different lengths
(from 1 to 6 as an example) using coarse-grained
relations. As shown in Table 2, compared with
the Basic method, both UAS and LAS of the
Refined method are improved significantly in
almost all spans, where we observe more
prominent improvement for the UAS in larger
spans such as span 5 and span 6, with about
8.70% and 6.38%, respectively.

Method UAS LAS
(Fine)

LAS
(Coarse)

Perceptron 0.5422 0.3231 0.3777
Jia18 0.5852 0.3286 0.4037
Basic (word+pos) 0.5588 0.367 0.3985
Basic (word+pos+position) 0.5933 0.3832 0.4305
Refined (20 slots) 0.6197 0.3947 0.4445
MST-full 0.7331 0.4309 0.4851

Table 1: Overall discourse parsing performance in
the RST dataset.

span
(count)

Basic(word+pos+position) Refined (20)
UAS LAS UAS LAS

1(1225) 0.7796 0.618 0.8261 0.6261
2 (405) 0.6198 0.4 0.6025 0.4124
3 (212) 0.434 0.2217 0.4576 0.2642
4 (125) 0.256 0.112 0.296 0.128
5 (69) 0.1739 0.0725 0.2609 0.1015
6 (47) 0.1064 0.0426 0.1702 0.0638

Table 2: Performance in different discourse spans.

Finally, let us take a detailed comparison
between Refined and Basic to investigate the
advantages of capturing discourse cohesion. Note
that, our Refined method wins Basic in almost all
relations. Here, we discuss one typical relation
List, which often indicates a long span

dependency between a pair of EDUs. In the test
set of RST, the average span for List is 7.55, with
the max span of 69. Our Refined can successfully
identify 55 of them, with an average span of 9.02
and the largest one of 63, while, the Basic method
can only identify 41 edges labeled with List,
which are mostly shorter cases, with an average
span of 1.32 and the largest one of 5. More
detailedly, there are 18 edges that are correctly
identified by our Refined but missed by the Basic
method. The average span of those dependencies
is 25.39. It is easy to find that without further
considerations in discourse structures, the Basic
method has limited ability in correctly identifying
longer span dependencies. And those
comparisons prove again that our Refined can
take better advantage of modeling discourse
cohesion, which enables our model to perform
better in long span scenarios.

5 Conclusions

In this paper, we propose to utilize memory
networks to model discourse cohesion
automatically. By doing so we could capture the
topic change or threads within a discourse, which
can further improve the discourse parsing
performance, especially for long span scenarios.
Experimental results on the RST Discourse
Treebank show that our proposed method can
characterize the discourse cohesion efficiently and
archive significant improvement over traditional
feature based discourse parsing methods.

Acknowledgments

We would like to thank our anonymous reviewers,
Bingfeng Luo, and Sujian Li for their helpful
comments and suggestions, which greatly
improved our work. This work is supported by
National High Technology R&D Program of
China (Grant No.2015AA015403), and Natural
Science Foundation of China (Grant No.
61672057, 61672058). For any correspondence,
please contact Yansong Feng.

References
Miguel Ballesteros, Chris Dyer, and Noah A.

Smith. 2015. Improved transition-based
parsing by modeling characters instead of
words with lstms. In Proceedings of the 2015
Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon,

442



Portugal, September 17-21, 2015. pages 349–359.
http://aclweb.org/anthology/D/D15/D15-1041.pdf.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurovsky. 2001. Building a discourse-tagged
corpus in the framework of rhetorical structure
theory. In Proceedings of the SIGDIAL
2001 Workshop, The 2nd Annual Meeting
of the Special Interest Group on Discourse
and Dialogue, Saturday, September 1, 2001 to
Sunday, September 2, 2001, Aalborg, Denmark.
http://aclweb.org/anthology/W/W01/W01-
1605.pdf.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In
Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, 21-26
July, 2004, Barcelona, Spain.. pages 111–118.
http://aclweb.org/anthology/P/P04/P04-1015.pdf.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational
Linguistics and the 7th International Joint
Conference on Natural Language Processing
of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 334–343.
http://aclweb.org/anthology/P/P15/P15-1033.pdf.

David A. Ferrucci, Eric W. Brown, Jennifer
Chu-Carroll, James Fan, David Gondek,
Aditya Kalyanpur, Adam Lally, J. William
Murdock, Eric Nyberg, John M. Prager,
Nico Schlaefer, and Christopher A. Welty.
2010. Building watson: An overview of the
deepqa project. AI Magazine 31(3):59–79.
http://www.aaai.org/ojs/index.php/aimagazine/article
/view/2303.

M.A.K. Halliday and Ruqaiya Hasan. 1989. Language,
Context, and Text: Aspects of Language in a Social-
Semiotic Perspective.

Sepp Hochreiter and Jürgen Schmidhuber.
1997. Long short-term memory.
Neural Computation 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Yanyan Jia, Yansong Feng, Yuan Ye, Chao Lv,
Chongde Shi, and Dongyan Zhao. 2018. Improved
discourse parsing with two-step neural transition-
based model. ACM Trans. Asian & Low-
Resource Lang. Inf. Process. 17(2):11:1–11:21.
https://doi.org/10.1145/3152537.

Shafiq R. Joty, Giuseppe Carenini, Raymond T.
Ng, and Yashar Mehdad. 2013. Combining
intra- and multi-sentential rhetorical parsing
for document-level discourse analysis. In
Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics,

ACL 2013, 4-9 August 2013, Sofia, Bulgaria,
Volume 1: Long Papers. pages 486–496.
http://aclweb.org/anthology/P/P13/P13-1048.pdf.

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.
2014. Text-level discourse dependency parsing.
In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics,
ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 1: Long Papers. pages 25–35.
http://aclweb.org/anthology/P/P14/P14-1003.pdf.

Annie Louis, Aravind K. Joshi, and Ani Nenkova.
2010. Discourse indicators for content selection
in summarization. In Proceedings of the SIGDIAL
2010 Conference, The 11th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
24-15 September 2010, Tokyo, Japan. pages 147–
156. http://www.aclweb.org/anthology/W10-4327.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional
theory of text organization. Text - Interdisciplinary
Journal for the Study of Discourse 8(3):243–281.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Rose Finkel, Steven Bethard,
and David McClosky. 2014. The stanford
corenlp natural language processing toolkit. In
Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics,
ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, System Demonstrations. pages 55–60.
http://aclweb.org/anthology/P/P14/P14-5010.pdf.

Jane Morris and Graeme Hirst. 1991. Lexical cohesion
computed by thesaural relations as an indicator of
the structure of text. Computational Linguistics
17(1):21–48.

J Nivre. 2003. An efficient algorithm for projective
dependency parsing. In Iwpt-2003 : International
Workshop on Parsing Technology. pages 149–160.
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Abstract

Annotation corpus for discourse relations
benefits NLP tasks such as machine trans-
lation and question answering. In this
paper, we present SciDTB, a domain-
specific discourse treebank annotated on
scientific articles. Different from widely-
used RST-DT and PDTB, SciDTB uses
dependency trees to represent discourse
structure, which is flexible and simpli-
fied to some extent but do not sacrifice
structural integrity. We discuss the label-
ing framework, annotation workflow and
some statistics about SciDTB. Further-
more, our treebank is made as a bench-
mark for evaluating discourse dependency
parsers, on which we provide several base-
lines as fundamental work.

1 Introduction

Discourse relation depicts how the text spans in
a text relate to each other. These relations can
be categorized into different types according to
semantics, logic or writer’s intention. Annota-
tions of such discourse relations can benefit many
down-stream NLP tasks including machine trans-
lation (Guzmán et al., 2014; Joty et al., 2014) and
automatic summarization (Gerani et al., 2014).

Several discourse corpora have been proposed
in previous work, grounded with various discourse
theories. Among them Rhetorical Structure The-
ory TreeBank (RST-DT) (Carlson et al., 2003) and
Penn Discourse TreeBank (PDTB) (Prasad et al.,
2007) are the most widely-used resources. PDTB
focuses on shallow discourse relations between
two arguments and ignores the whole organiza-
tion. RST-DT based on Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988) represents
a text into a hierarchical discourse tree. Though

RST-DT provides more comprehensive discourse
information, its limitations including the introduc-
tion of intermediate nodes and absence of non-
projective structures bring the annotation and pars-
ing complexity.

Li et al. (2014) and Yoshida et al. (2014) both
realized the problems of RST-DT and introduced
dependency structures into discourse representa-
tion. Stede et al. (2016) adopted dependency
tree format to compare RST structure and Seg-
mented Discourse Representation Theory(SDRT)
(Lascarides and Asher, 2008) structure for a cor-
pus of short texts. Their discourse dependency
framework is adapted from syntactic dependency
structure (Hudson, 1984; Böhmová et al., 2003),
with words replaced by elementary discourse units
(EDUs). Binary discourse relations are repre-
sented from dominant EDU (called “head”) to sub-
ordinate EDU (called “dependent”), which makes
non-projective structure possible. However, Li
et al. (2014) and Yoshida et al. (2014) mainly fo-
cused on the definition of discourse dependency
structure and directly transformed constituency
trees in RST-DT into dependency trees. On the
one hand, they only simply treated the transforma-
tion ambiguity, while constituency structures and
dependency structures did not correspond one-to-
one. On the other hand, the transformed corpus
still did not contain non-projective dependency
trees, though “crossed dependencies” actually ex-
ist in the real flexible discourse structures (Wolf
and Gibson, 2005). In such case, it is essential to
construct a discourse dependency treebank from
scratch instead of through automatically convert-
ing from the constituency structures.

In this paper, we construct the discourse de-
pendency corpus SciDTB1. based on scientific ab-
stracts, with the reference to the discourse de-

1The treebank is available at https://github.com/PKU-
TANGENT/SciDTB
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pendency representation in Li et al. (2014). We
choose scientific abstracts as the corpus for two
reasons. First, we observe that when long news ar-
ticles in RST-DT have several paragraphs, the dis-
course relations between paragraphs are very loose
and their annotations are not so meaningful. Thus,
short texts with obvious logics become our pref-
erence. Here, we choose scientific abstracts from
ACL Anthology2 which are usually composed of
one passage and have strong logics. Second, we
prefer to conduct domain-specific discourse anno-
tation. RST-DT and PDTB are both constructed
on news articles, which are unspecific in domain
coverage. We choose the scientific domain that
is more specific and can benefit further academic
applications such as automatic summarization and
translation. Furthermore, our treebank SciDTB
can be made as a benchmark for evaluating dis-
course parsers. Three baselines are provided as
fundamental work.

2 Annotation Framework

In this section, we describe two key aspects of our
annotation framework, including elementary dis-
course units (EDU) and discourse relations.

2.1 Elementary Discourse Units

We first need to divide a passage into non-
overlapping text spans, which are named elemen-
tary discourse units (EDUs). We follow the cri-
terion of Polanyi (1988) and Irmer (2011) which
treats clauses as EDUs.

However, since a discourse unit is a semantic
concept but a clause is defined syntactically, in
some cases segmentation by clauses is still not
the most proper strategy. In practice, we refer
to the guidelines defined by (Carlson and Marcu,
2001). For example, subjective clauses, objective
clauses of non-attributive verbs and verb comple-
ment clauses are not segmented. Nominal post-
modifiers with predicates are treated as EDUs.
Strong discourse cues such as “despite” and “be-
cause of ” starts a new EDU no matter they are fol-
lowed by a clause or a phrase. We give an EDU
segmentation example as follows.

1. [Despite bilingual embeddings success,][the
contextual information][which is of critical

2http://www.aclweb.org/anthology/. SciDTB follows the
same CC BY-NC-SA 3.0 and CC BY 4.0 licenses as ACL
Anthology.

Coarse Fine
1. ROOT ROOT
2. Attribution Attribution
3. Background Related, Goal, General
4. Cause-effect Cause, Result
5. Comparison Comparison
6. Condition Condition
7. Contrast Contrast
8. Elaboration Addition, Aspect, Process-step,

Definition, Enumerate, Example
9. Enablement Enablement

10. Evaluation Evaluation
11. Explain Evidence, Reason
12. Joint Joint
13. Manner-means Manner-means
14. Progression Progression
15. Same-unit Same-unit
16. Summary Summary
17. Temporal Temporal

Table 1: Discourse relation category of SciDTB.

importance to translation quality,][was ig-
nored in previous work.]

It is noted, as in Example 1, there are EDUs
which are broken into two parts (in bold) by rel-
ative clauses or nominal postmodifiers. Like RST,
we connect the two parts by a pseudo-relation type
Same-unit to represent their integrity.

2.2 Discourse Relations
A discourse relation is defined as tri-tuple
(h, d, r), where h means the head EDU, d is the
dependent EDU, and r defines the relation cat-
egory between h and d. For a discourse rela-
tion, head EDU is defined as the unit with essen-
tial information and dependent EDU with support-
ive content. Here, we follow Carlson and Marcu
(2001) to adopt deletion test in the determination
of head and dependent. If one unit in a binary re-
lation pair is deleted but the whole meaning can
still be almost understood from the other unit, the
deleted unit is treated as dependent and the other
one as the head.

For the relation categories, we mainly refer to
the work of (Carlson and Marcu, 2001) and (Bunt
and Prasad, 2016). Table 1 presents the dis-
course relation set of SciDTB, which are not ex-
plained detailedly one by one due to space limita-
tion. Through investigation of scientific abstracts,
we define 17 coarse-grained relation types and 26
fine-grained relations for SciDTB.

It is noted that we make some modifications to
adapt to the scientific domain. For example, In
SciDTB, Background relation is divided into three
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encoded in online web data.
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to make use of this knowledge for semi-supervised Chinese word segmentation.

The basic idea of partial-label learning is to optimize a cost function
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that encodes this knowledge.

By integrating some domain adaptation techniques, such as EasyAdapt,

our result reaches an F-measure of 95.98 % on the CTB-6 corpus.
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Addition

Addition

Evaluation
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Figure 1: An example discourse dependency tree for an abstract in SciDTB.

subtypes: Related, Goal and General, because the
background description in scientific abstracts usu-
ally has more different intents. Meanwhile, for at-
tribution relation we treat the attributive content
rather than act as head, which is contrary to that
defined in (Carlson and Marcu, 2001), because sci-
entific facts or research arguments mentioned in
attributive content are more important in abstracts.
For some symmetric discourse relations such as
joint and comparison, where two connected EDUs
are equally important and have interchangeable se-
mantic roles, we follow the strategy as (Li et al.,
2014) and treat the preceding EDU as the head.

Another issue on coherence relations is about
polynary relations which involve more than two
EDUs. The first scenario is that one EDU dom-
inates a set of posterior EDUs as its member. In
this case, we annotate binary relations from head
EDU to each member EDU with the same rela-
tion. The second scenario is that several EDUs are
of equal importance in a polynary relation. For
this case, we link each former EDU to its neigh-
boring EDU with the same relation, forming a re-
lation chain similar to “right-heavy” binarization
transformation in (Morey et al., 2017).

By assuring that each EDU has one and only
one head EDU, we can obtain a dependency tree
for each scientific abstract. An example of depen-
dency annotation is shown in Figure 1.

3 Corpus Construction

Following the annotation framework, we col-
lected 798 abstracts from ACL anthology and con-

structed the SciDTB corpus. The construction de-
tails are introduced as follows.

Annotator Recruitment To select annotators,
we put forward two requirements to ensure the an-
notation quality. First, we required the candidates
to have linguistic knowledge. Second, each can-
didate was asked to join a test annotation of 20
abstracts, whose quality was evaluated by experts.
After the judgement, 5 annotators were qualified
to participate in our work.

EDU Segmentation We performed EDU seg-
mentation in a semi-automatic way. First, we did
sentence tokenization on raw texts using NLTK
3.2 (Bird and Loper, 2004). Then we used SPADE
(Soricut and Marcu, 2003), a pre-trained EDU
segmenter relying on Charniak’s syntactic parser
(Charniak, 2000), to automatically cut sentences
into EDUs. Then, we manually checked each seg-
mented abstract to ensure the segmentation qual-
ity. Two annotators conducted the checking task,
with one proofreading the output of SPADE, and
the other reviewing the proofreading. The check-
ing process was recorded for statistical analysis.

Tree Annotation Labeling dependency trees
was the most labor-intensive work in the corpus
construction. 798 segmented abstracts were la-
beled by 5 annotators in 6 months. 506 abstracts
were annotated more than twice separately by dif-
ferent annotators, with the purpose of analysing
annotation consistency and providing human per-
formance as an upper bound. The annotated trees
were stored in JSON format. For convenience, we
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developed an online tool3 for annotating and visu-
alising discourse dependency trees.

4 Corpus Statistics

SciDTB contains 798 unique abstracts with 63%
labeled more than once and 18,978 discourse rela-
tions in total. Table 2 compares the size of SciDTB
with RST-DT and another PDTB-style domain-
specific corpus BioDRB (Prasad et al., 2011), we
can see SciDTB has a comparable size with RST-
DT. Moreover, it is relatively easy for SciDTB to
augment its size since the dependency structure
simplifies the annotation to some extent. Com-
pared with BioDRB, SciDTB has larger size and
passage-level representations.

Corpus #Doc. #Doc. (unique) #Relation
SciDTB 1355 798 18978
RST-DT 438 385 23611
BioDRB 24 24 5859

Table 2: Size of SciDTB and other discourse rela-
tion banks.

4.1 Annotation Consistency

EDU Segmentation We use 214 abstracts for
analysis. After the proofreading of the first anno-
tator, the abstracts are composed of totally 2,772
EDUs. Among these EDUs, only 28 (1.01%)
EDUs are disagreed and revised by the second an-
notator, which means a very high consensus be-
tween annotators on EDU segmentation.

Annotator #Doc. UAS LAS Kappa score
1 & 2 93 0.811 0.644 0.763
1 & 3 147 0.800 0.628 0.761
1 & 4 42 0.772 0.609 0.767
3 & 4 46 0.806 0.639 0.772
4 & 5 44 0.753 0.550 0.699

Table 3: Relation annotation consistency.

Tree Labeling Here, we evaluate the consis-
tency of two annotators on labeling discourse re-
lations using 3 metrics from different aspects.
When labeling a discourse relation, each non-root
EDU must choose its head with a specific relation
type. Thus, the annotation disagreement mainly
comes from selecting head or determining relation
type. Similar to syntactic dependency parsing, un-
labeled and labeled attachment scores (UAS and

3http://123.56.88.210/demo/depannotate/

Distance #Relations Percentage/%
0 EDU 10576 61.64
1 EDU 2208 12.87
2 EDUs 1231 7.17

3-5 EDUs 1626 9.48
6-10 EDUs 1146 6.68

11-15 EDUs 304 1.77
>15 EDUs 67 0.39

Total 17158 100.00

Table 4: Distribution of dependency distance.

LAS) are employed to measure the labeling cor-
respondence. UAS calculates the proportion of
EDUs which are assigned the same head in two
annotations, while LAS considers the uniformity
of both head and relation label. Cohen’s Kappa
score evaluates the agreement of labeling relation
types under the premise of knowing the correct
heads.

Table 3 shows the agreement results between
two annotators. We can see that most of the
LAS values between annotators exceed 0.60. The
agreement on tree structure reflected by UAS all
reaches 0.75. The Kappa values for relation types
agreement keep equal to or greater than 0.7.

4.2 Structural Characteristics

Non-projection in Treebank One advantage of
dependency trees is that they can represent non-
projective structures. In SciDTB, we annotated 39
non-projective dependency trees, which account
for about 3% of the whole corpus. This phe-
nomenon in our treebank is not so frequent as
(Wolf and Gibson, 2005). We think this may be
because scientific abstracts are much shorter and
scientific expressions are relatively restricted.

Dependency Distance Here we investigate the
distance of two EDUs involved in a discourse re-
lation. The distance is defined as the number of
EDUs between head and dependent. We present
the distance distribution of all the relations in
SciDTB, as shown in Table 4. It should be noted
that ROOT and Same-unit relations are omitted in
this analysis. From Table 4, we find most relations
connect near EDUs. Most relations (61.6%) occur
between neighboring EDUs and about 75% rela-
tions occur with at most one intermediate EDU.

Although most dependency relations function
intra-sentence, there exist long-range dependency
relations in the treebank. On average, the dis-
tance of 8.8% relations is greater than 5. We sum-
marize that the most frequent 5 fine-grained rela-
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tion types of these long-distance relations belong
to Evaluation, Aspect, Addition, Process-step and
Goal, which tend to appear on higher level in de-
pendency trees.

5 Benchmark for Discourse Parsers

We further apply SciDTB as a benchmark for
comparing and evaluating discourse dependency
parsers. For the 798 unique abstracts in SciDTB,
154 are used for development set and 152 for test
set. The remaining 492 abstracts are used for train-
ing. We implement two transition-based parsers
and a graph-based parser as baselines.

Vanilla Transition-based Parser We adopt the
transition-based method for dependency parsing
by Nivre (2003). The action set of arc-standard
system (Nivre et al., 2004) is employed. We build
an SVM classifier to predict most possible transi-
tion action for given configuration. We adopt the
N-gram features, positional features, length fea-
tures and dependency features for top-2 EDUs in
the stack and top EDU in the buffer, which can be
referred from (Li et al., 2014; Wang et al., 2017)

Two-stage Transition-based Parser We imple-
ment a two-stage transition-based dependency
parser following (Wang et al., 2017). First, an un-
labeled tree is produced by vanilla transition-based
approach. Then we train a separate SVM classifier
to predict relation types on the tree in pre-order.
For the 2nd-stage, apart from features in the 1st-
stage, two kinds of features are added, including
depth of head and dependent in the tree and the
predicted relation between the head and its head.

Graph-based Parser We implement a graph-
based parser as in (Li et al., 2014). For simplic-
ity, we use averaged perceptron rather than MIRA
to train weights. N-gram, positional, length and
dependency features between head and dependent
labeled with relation type are considered.

Hyper-parameters During training, the hyper-
parameters of these models are tuned using de-
velopment set. For vanilla transition-based parser,
we take linear kernel for the SVM classifier. The
penalty parameter C is set to 1.5. For two-stage
parser, the 1st-stage classifier follows the same
setting as the vanilla parser. For 2nd-stage, we use
the linear kernel and set C to 0.5. The averaged
perceptron in graph-based parser is trained for 10
epochs on the training set. Weights of features are

Dev set Test set
UAS LAS UAS LAS

Vanilla transition 0.730 0.557 0.702 0.535
Two-stage transition 0.730 0.577 0.702 0.545

Graph-based 0.607 0.455 0.576 0.425
Human 0.806 0.627 0.802 0.622

Table 5: Performance of baseline parsers.

initialized to be 0 and trained with fixed learning
rate.

Results Table 5 shows the performance of these
parsers on development and test data. We also
measure parsing accuracy with UAS and LAS.
The human agreement is presented for compar-
ison. With the addition of tree structural fea-
tures in relation type prediction, the two-stage de-
pendency parser gets better performance on LAS
than vanilla system on both development and test
set. Compared with graph-based model, the two
transition-based baselines achieve higher accuracy
with regard to UAS and LAS. Using more effec-
tive training strategies like MIRA may improve
graph-based models. We can also see that human
performance is still much higher than the three
parsers, meaning there is large space for improve-
ment in future work.

6 Conclusions

In this paper, we propose to construct a discourse
dependency treebank SciDTB for scientific ab-
stracts. It represents passages with dependency
tree structure, which is simpler and more flexible
for analysis. We have presented our annotation
framework, construction workflow and statistics
of SciDTB, which can provide annotation experi-
ence for extending to other domains. Moreover,
this treebank can serve as an evaluating bench-
mark of discourse parsers.

In the future, we will enlarge our annotation
scale to cover more domains and longer passages,
and explore how to use SciDTB in some down-
streaming applications.
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Abstract

Because obtaining training data is often
the most difficult part of an NLP or ML
project, we develop methods for predict-
ing how much data is required to achieve a
desired test accuracy by extrapolating re-
sults from systems trained on a small pilot
training dataset. We model how accuracy
varies as a function of training size on sub-
sets of the pilot data, and use that model
to predict how much training data would
be required to achieve the desired accu-
racy. We introduce a new performance ex-
trapolation task to evaluate how well dif-
ferent extrapolations predict system accu-
racy on larger training sets. We show
that details of hyperparameter optimisa-
tion and the extrapolation models can have
dramatic effects in a document classifica-
tion task. We believe this is an important
first step in developing methods for esti-
mating the resources required to meet spe-
cific engineering performance targets.

1 Introduction

An engineering discipline should be able to predict
the cost of a project before the project is started.
Because training data is often the most expen-
sive part of an NLP or ML project, it is impor-
tant to estimate how much training data required
for a system to achieve a target accuracy. Un-
fortunately our field only offers fairly impracti-
cal advice, e.g., that more data increases accu-
racy (Banko and Brill, 2001); we currently have no
practical methods for estimating how much data or
what quality of data is required to achieve a target
accuracy goal. Imagine if bridge construction was
planned the way we build our systems!

Our long-term goal is to develop practical meth-
ods for designing systems that achieve target per-
formance specifications, including identifying the
amount of training data that the system will re-
quire. This paper starts to address this goal by in-
troducing an extrapolation methodology that pre-
dicts a system’s accuracy on a larger dataset from
its performance on subsets of much smaller pilot
data. These extrapolations allow us to estimate
how much training data a system will require to
achieve a target accuracy. We focus on a specific
task (document classification) using a specific sys-
tem (the fastText classifier of Joulin et al. (2016)),
and leave to future work to determine if our ap-
proach and results generalise to other tasks and
systems.

We introduce an accuracy extrapolation task
that can be used to evaluate different extrapolation
models. We describe three well-known extrapo-
lation models and evaluate them on a document
classification dataset. On our development data
the biased power-law method with binomial item
weighting performs best, so we propose it should
be a baseline for future research. We demon-
strate the importance of hyperparameter optimi-
sation on each different-sized data subset (rather
than just optimising on the largest data subset) and
item weighting, and show that these can have a
dramatic impact on extrapolation, especially from
small pilot data sets. The data and code for all
experiments in this paper, including the R code
for the graphics, is available from http://web.
science.mq.edu.au/˜mjohnson.

2 Related work

Power analysis (Cohen, 1992) is widely-used sta-
tistical technique (e.g., in biomedical trials) for
predicting the number of measurements required
in an experimental design; we aim to develop sim-
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ilar techniques for NLP and ML systems. There
is a large body of research on the relationship be-
tween training data size and system performance.
Geman et al. (1992) decompose the squared error
of a model into a bias term (due to model errors)
and a variance term (due to statistical noise). Bias
does not vary with training data size n, but the er-
ror due to variance should decrease as O(1/

√
n) if

the training observations are independent (Domin-
gos, 2000a,b). The power-law models used in this
paper have been investigated many times in prior
literature (Haussler et al., 1996; Mukherjee et al.,
2003; Figueroa et al., 2012; Beleites et al., 2013;
Hajian-Tilaki, 2014; Cho et al., 2015). Sun et al.
(2017), Barone et al. (2017) and the concurrent un-
published work by Hestness et al. (2017) point out
that these power-law models describe modern ML
and NLP systems quite well, including complex
deep-learning systems, so we expect our results to
generalise to these systems.

This paper differs from prior work in that we
explicitly focus on the task of extrapolating sys-
tem performance from small pilot data. We in-
troduce a new evaluation task to compare the ef-
fectiveness of different models for this extrapola-
tion, and demonstrate the importance of per-subset
hyperparameter optimisation and item weighting,
which prior work did not investigate.

3 Models for extrapolating pilot data

We are given a system whose accuracy on a large
dataset we wish to predict, but only a smaller pi-
lot dataset is available. We train the system on
different-sized subsets of the pilot dataset, and use
the results of those training runs to estimate how
the system’s accuracy varies as a function of train-
ing data size.

We focus on predicting the minimum error rate
e(n) that the system can achieve on a dataset of
size n after hyperparameter optimisation (where
the error rate is 1−accuracy for a classifier) given
a pilot dataset of size m � n (in the task below,
m = n/2 or m = n/10). We investigate three dif-
ferent extrapolation models of e(n) in this paper:

• Power law: ê(n) = bnc

• Inverse square-root: ê(n) = a+ bn−1/2

• Biased power law: ê(n) = a+ bnc

Here ê(n) is the estimate of e(n), and a, b and c
are adjustable parameters that are estimated based
on the system’s performance on the pilot dataset.
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Figure 1: An extrapolation run from pilot data
consisting of either 0.1 or 0.5 of the ag news
corpus. The x-axis is the size of the subset of
pilot data, while the y-axis is the classification
error rate. The shapes/colors show the maxi-
mum fraction of the corpus used in the pilot data,
and whether hyperparameters were optimised only
once on all of the pilot data (e.g., = 0.1 and = 0.5)
or at each smaller subset of the pilot data (e.g.,
≤ 0.1 and ≤ 0.5). The lines are least-squares fits
of biased power-law models (ê(n) = a + bnc) to
the corresponding pilot data. The red star shows
minimum error rate when all the training data is
used to train the classifier (this is the value we are
trying to predict).

The inverse square-root curve is what one would
expect if the error is distributed according to a
Bias-Variance decomposition (Geman et al., 1992)
with a constant bias term a and a variance term
that asymptotically follows the Central Limit The-
orem. We fit these models using weighted least
squares regression. Each data point or item in the
regression is the result of a run of the system on a
subset of the pilot dataset.

Assuming that the underlying system has ad-
justable hyperparameters, the question arises: how
should the hyperparameters be set? The com-
putationally least demanding approach is to opti-
mise the system’s hyperparameters on the full pilot
dataset, and use these hyperparameters for all the
runs on subsets of the pilot dataset. An alternative,
computationally more demanding approach is to
optimise the system’s hyperparameters separately
on each of the subsets of the pilot dataset. Figure 1
shows an example where optimising the hyperpa-
rameters just on the full pilot dataset is clearly in-
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ferior to optimising the hyperparameters on each
subset of the pilot dataset. We show below that the
more demanding approach of optimising on each
subset is superior, especially when extrapolating
from small pilot datasets.

We also investigate how details of the regression
fit affect the regression accuracy ê(n). We exper-
imented with several link functions (we used the
default Gaussian link here), but found that these
had less impact than adjusting the item weights in
the regression. Runs with smaller training sets pre-
sumably have higher variance, and since our goal
is to extrapolate to larger datasets, it is reasonable
to place more weight on items corresponding to
larger datasets. We investigated three item weight-
ing functions in regression:

• constant weights (1),
• linear weights (n), and
• binomial weights (n/e(1− e))

Linear weights are motivated by the assumption
that the item variance follows the Central Limit
Theorem, while the binomial weights are moti-
vated by the assumption that item variance follows
a binomial distribution (see the Supplemental Ma-
terials for further discussion). As Figure 2 makes
clear, linear weights and binomial weights gen-
erally produce more accurate extrapolations than
constant weights, so we use binomial weights in
our evaluation in Table 2.

4 A performance extrapolation task

We used the fastText document classifier and the
document classification corpora distributed with
it; see Joulin et al. (2016) for full details. Fast-
Text’s speed and evaluation scripts make it easy
to do the experiments described below. We fit-
ted our extrapolation models to the fastText docu-
ment classifier results on the 8 corpora distributed
with the fastText classifier. These corpora contain
labelled documents for a document classification
task, and come randomised and divided into train-
ing and test sections. All our results are on these
test sections.

The corpora were divided into development
and evaluation corpora (each with train and
test splits) as shown in table 1. We use
the amazon review polarity, sogou news, yahoo answers

and yelp review full corpora as our test set (so
these are only used in the final evaluation),
while the ag news, dbpedia, amazon review full and

yelp review polarity were used as development cor-
pora. The development and evaluation sets contain
document collections of roughly similar sizes and
complexities, but no attempt was made to accu-
rately “balance” the development and evaluation
corpora.

We trained the fastText classifier on 13
differently-sized prefixes of each training set that
are approximately logarithmically spaced over
two orders of magnitude (i.e., varying from 1⁄100 to
all of the training corpus). To explore the effect of
hyperparameter tuning on extrapolation, for each
prefix of each training set we trained a classifier on
each of 1,079 different hyperparameter settings,
varying the n-gram length, learning rate, dimen-
sionality of the hidden units and the loss function
(the fastText classifier crashed on 17 hyperparam-
eter combinations; we did not investigate why).
We re-ran the entire process 8 times on randomly-
shuffled versions of each training corpus.

As expected, the minimum error configuration
invariably requires the full training data. When
extrapolating from subsets of a smaller pilot set
(we explored pilot sets consisting of 0.1 and 0.5 of
the full training data) there are two plausible ways
of performing hyperparameter optimisation. Ide-
ally, one would optimise the hyperparameters for
each subset of the pilot data considered (we se-
lected the best-performing hyperparameters using
grid search). However, if one is not working with
computationally efficient algorithms like fastText,
one might be tempted to only optimise the hy-
perparameters once on all the pilot data, and use
the hyperparameters optimised on all the pilot data
when calculating the error rate on subsets of that
pilot data. As figure 2 and table 2 make clear, se-
lecting the optimal hyperparameters for each sub-
set of the pilot data generally produces better ex-
trapolation results. Figure 1 shows how different
ways of choosing hyperparameters can affect ex-
trapolation. As that figure shows, hyperparame-
ters optimised on 50% of the training data perform
very badly on 1% of the training data. As figure 2
shows, this can lead simpler extrapolation models
such as the power-law to dramatically underesti-
mate the error on the full dataset. Interestingly,
more complex extrapolation models, such as the
extended power-law model, often do much better.

Based on the development corpora results pre-
sented in Figures 1 and 2, we choose the biased
power law model (ê(n) = a+ bnc) with binomial
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Figure 2: Residuals on 8 runs when extrapolating from pilot data consisting of 0.1 or 0.5 of each devel-
opment training corpus. The y-axis shows the residual error (the difference between the predicted error
and the minimum error when the classifier is trained on all the training data), and the x-axis indicates the
weight function used in extrapolation. Colours indicate the model fitted, (i.e., power-law (ê(n) = bnc),
inverse square-root (ê(n) = a+ bn−1/2), or biased power-law (ê(n) = a+ bnc) models). Facets indicate
the development corpus used, and whether hyperparameters were optimised only once on all of the pilot
data (e.g., = 0.5 and = 0.1) or on each subset of the pilot data (e.g., ≤ 0.5 and ≤ 0.1).

Corpus Labels Train (K) Test (K)

ag news 4 120 7.6
dbpedia 14 560 70
amazon review full 5 3,000 650
yelp review polarity 2 560 38

amazon review polarity 2 3,600 400
sogou news 5 450 60
yahoo answers 10 1,400 60
yelp review full 5 650 50

Table 1: Summary statistics of the development
corpora (above line) and evaluation corpora (be-
low line).

item weights (n/e(1− e)) as the model to evaluate
on the evaluation corpora.

We evaluate an extrapolation by calculating the
root-mean-square (RMS) of the relative residuals
ê/e − 1, where e is the minimum error achieved
by the classifier with any hyperparameter setting
when trained on the full training set, and ê is the
predicted error made by the extrapolation model

Pilot
data

amazon
review
polarity

sogou
news

yahoo
answers

yelp
review

full
Overall

= 0.1 0.1016 0.2752 0.0519 0.0496 0.1510
≤ 0.1 0.0209 0.1900 0.0264 0.0406 0.0986

= 0.5 0.0338 0.0438 0.0254 0.0160 0.0315
≤ 0.5 0.0049 0.0390 0.0053 0.0046 0.0200

Table 2: RMS relative residuals (ê/e − 1) on the
four evaluation corpora over all runs for the biased
power law model (ê(n) = a+ bnc) with binomial
item weights (n/e(1− e)). Lower scores are better.

from the pilot dataset.1

Unsurprisingly, Table 2 shows that extrapola-
tion is more accurate from larger pilot datasets;
increasing the size of the pilot dataset 5 times re-

1We use relative residuals because the residuals them-
selves vary greatly from corpus to corpus, and we use RMS
to penalise large extrapolation errors. We admit that RMS
relative residuals is probably not a close approximation to the
extrapolation loss in real applications, and we hope future
work will develop more realistic loss functions.
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duces the RMS relative residuals by a factor of
10. It also clearly shows that it valuable to per-
form hyperparameter optimisation on all subsets
of the pilot dataset, not just on the whole pilot
data. Interestingly, Table 2 shows that the RMS
difference between the two approaches to hyper-
parameter setting is greater when the pilot data is
larger. This makes sense; the hyperparameters that
are optimal on a large pilot dataset may be far from
optimal on a very small subset (this is clearly visi-
ble in Figure 1, where the items deviating most are
those for the = 0.5 pilot data and hyperparameter
choice).

5 Conclusions and Future Work

This paper introduced an extrapolation methodol-
ogy for predicting accuracy on large dataset from
a small pilot dataset, applied it to a document clas-
sification system, and identified the biased power-
law model with binomial weights as a good base-
line extrapolation model. This only scratches the
surface of performance extrapolation tasks. We
hope that teams with greater computational re-
sources will study the extrapolation task for com-
putationally more-demanding systems, including
popular deep learning models. The power-law
models should be considered baselines for more
sophisticated extrapolation models, which might
exploit more information than just accuracy on
subsets of the pilot data.

We hope this work will spur the development of
better methods for estimating the resources needed
to build an NLP or ML system to meet a specifica-
tion, as we believe this is essential for any mature
engineering field.
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sat. 1992. Neural networks and the bias/variance
dilemma. Neural Computation 4:1–58.

Karimollah Hajian-Tilaki. 2014. Sample size estima-
tion in diagnostic test studies of biomedical infor-
matics. Journal of biomedical informatics 48:193–
204.

David Haussler, Michael Kearns, H. Sebastian Seung,
and Naftali Tishby. 1996. Rigorous learning curve
bounds from statistical mechanics. Machine Learn-
ing 25(2).

Joel Hestness, Sharan Narang, Newsha Ardalani, Gre-
gory Diamos, Heewoo Jun, Hassan Kianinejad, Md.
Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou.
2017. Deep learning scaling is predictable, empiri-
cally. arXiv:1712.00409 .

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv:1607.01759 .

Sayan Mukherjee, Pablo Tamayo, Simon Rogers, Ryan
Rifkin, Anna Engle, Colin Campbell, Todd R Golub,
and Jill P Mesirov. 2003. Estimating dataset size
requirements for classifying DNA microarray data.
Journal of computational biology 10(2):119–142.

454



Chen Sun, Abhinav Shrivastava, Saurabh Singh,
and Abhinav Gupta. 2017. Revisiting unreason-
able effectiveness of data in deep learning era.
arXiv:1707.02968 .

455



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 456–461
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

The Influence of Context on Sentence Acceptability Judgements

Jean-Philippe Bernardy
University of Gothenburg

jean-philippe.bernardy@gu.se

Shalom Lappin
University of Gothenburg
shalom.lappin@gu.se

Jey Han Lau
IBM Research Australia
jeyhan.lau@gmail.com

Abstract

We investigate the influence that docu-
ment context exerts on human acceptabil-
ity judgements for English sentences, via
two sets of experiments. The first com-
pares ratings for sentences presented on
their own with ratings for the same set
of sentences given in their document con-
texts. The second assesses the accuracy
with which two types of neural models
— one that incorporates context during
training and one that does not — predict
these judgements. Our results indicate
that: (1) context improves acceptability
ratings for ill-formed sentences, but also
reduces them for well-formed sentences;
and (2) context helps unsupervised sys-
tems to model acceptability.1

1 Introduction

Sentence acceptability is defined as the extent to
which a sentence is well formed or natural to na-
tive speakers of a language. It encompasses se-
mantic, syntactic and pragmatic plausibility and
other non-linguistic factors such as memory lim-
itation. Grammaticality, by contrast, is the syntac-
tic well-formedness of a sentence. Grammaticality
as characterised by formal linguists is a theoretical
concept that is difficult to elicit from non-expert
assessors. In the research presented here we are
interested in predicting acceptability judgements.2

Lau et al. (2015, 2016) present unsupervised
probabilistic methods to predict sentence accept-
ability, where sentences were judged indepen-
dently of context. In this paper we extend this

1Annotated data (with acceptability ratings) is available
at: https://github.com/GU-CLASP/BLL2018.

2See Lau et al. (2016) for a detailed discussion of the re-
lationship between acceptability and grammaticality. They
provide motivation for measuring acceptability rather than
grammaticality in their crowd source surveys and modelling
experiments.

research to investigate the impact of context on
human acceptability judgements, where context
is defined as the full document environment sur-
rounding a sentence. We also test the accuracy of
more sophisticated language models — one which
incorporates document context during training —
to predict human acceptability judgements.

We believe that understanding how context in-
fluences acceptability is crucial to success in mod-
elling human acceptability judgements. It has im-
plications for tasks such as style/coherence assess-
ment and language generation. Showing a strong
correlation between unsupervised language model
sentence probability and acceptability supports the
view that linguistic knowledge can be represented
as a probabilistic system. This result addresses
foundational questions concerning the nature of
grammatical knowledge (Lau et al., 2016).

Our work is guided by 3 hypotheses:
H1: Document context boosts sentence accept-
ability judgements.
H2: Document context helps language models to
model acceptability.
H3: A language model predicts acceptability more
accurately when it is tested on sentences within
document context than when it is tested on the sen-
tences alone.

We sample sentences and their document con-
texts from English Wikipedia articles. We per-
form round-trip machine translation to generate
sentences of varying degrees of well-formedness
and ask crowdsourced workers to judge the ac-
ceptability of these sentences, presenting the sen-
tences with and without their document environ-
ments. We describe this experiment and address
H1 in Section 2.

In Section 3, we experiment with two types
of language models to predict acceptability: a
standard language model and a topically-driven
model. The latter extends the language model by
incorporating document context as a conditioning
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variable. The model comparison allows us to un-
derstand the impact of incorporating context dur-
ing training for acceptability prediction. We also
experiment with adding context as input at test
time for both models. These experiments col-
lectively address H2, by investigating the impact
of using context during training and testing for
modelling acceptability. We evaluate the models
against crowd-sourced annotated sentences judged
both in context and out of context. This tests H3.

In Section 4 we briefly consider related work.
We indicate the issues to be addressed in future
research and summarise our conclusions in Sec-
tion 5.

2 The Influence of Document Context on
Acceptability Ratings

Our goal is to construct a dataset of sentences an-
notated with acceptability ratings, judged with and
without document context. To obtain sentences
and their document context, we extracted 100 ran-
dom articles from the English Wikipedia and sam-
pled a sentence from each article. To generate a set
of sentences with varying degrees of acceptabil-
ity we used the Moses MT system (Koehn et al.,
2007) to translate each sentence from English to
4 target languages — Czech, Spanish, German
and French — and then back to English.3 We
chose these 4 languages because preliminary ex-
periments found that they produce sentences with
different sorts of grammatical, semantic, and lex-
ical infelicities. Note that we only translate the
sentences; the document context is not modified.

To gather acceptability judgements we used
Amazon Mechanical Turk and asked workers to
judge acceptability using a 4-point scale.4 We ran
the annotation task twice: first where we presented
sentences without context, and second within their
document context. For the in-context experiment,
the target sentence was highlighted in boldface,
with one preceding and one succeeding sentence
included as additional context. Workers had the
option of revealing the full document context by
clicking on the preceding and succeeding sen-
tences. We did not check whether subjects viewed

3We use the pre-trained Moses models for translation:
http://www.statmt.org/moses/RELEASE-4.0/
models/.

4We ask workers to judge how “natural” they find a sen-
tence. For more details on the AMT protocol and our use of a
four category naturalness rating system, see Lau et al. (2015,
2016).

the full context when recording their ratings.
Henceforth human judgements made without

context are denoted as h− and judgements with
context as h+. We collected 20 judgements per
sentence, giving us a total of a 20,000 annotations
(100 sentences× 5 languages× 2 presentations×
20 judgements).

To ensure annotation reliability, sentences were
presented in groups of five, one from the original
English set, and four from the round-trip transla-
tions, one per target language, with no sentence
type (English original or its translated variant) ap-
pearing more than once in a HIT.5 We assume that
the original English sentences are generally ac-
ceptable, and we filtered out workers who fail to
consistently rate these sentences as such.6 Post-
filtering, we aggregate the multiple ratings and
compute the mean.

We first look at the correlation between without-
context (h−) and with-context (h+) mean ratings.
Figure 1 is a scatter plot of this relation. We found
a strong correlation of Pearson’s r = 0.80 between
the two sets of ratings.

We see that adding context generally improves
acceptability (evidenced by points above the di-
agonal), but the pattern reverses as acceptability
increases, suggesting that context boosts sentence
ratings most for ill-formed sentences. The trend
persists throughout the whole range of accept-
ability, so that for the most acceptable sentences,
adding context actually diminishes their rated ac-
ceptability. We can see this trend clearly in Fig-
ure 1, where the average difference between h−

and h+ is represented by the distance between the
linear regression and the diagonal. These lines
cross at h+ = h− = 3.28, the point where context
no longer boosts acceptability.

To understand the spread of individual judge-
ments on a sentence, we compute the standard de-
viation of ratings for each sentence and then take
the mean over all sentences. We found a small dif-
ference: 0.71 for h− and 0.76 for h+. We also
calculate one-vs-rest correlation, where for each

5A HIT is a “human intelligence task”. It constitutes a
unit of work for crowdworkers.

6Control sentence rating threshold = 3. Minimum accu-
racy for control sentences = 0.70. To prevent workers from
gaming this system (by giving all perfect ratings), we also
removed workers whose average rating ≥ 3.5. Using these
rules we filtered out on average, for each sentence, 7.5125
answers for h+ and 3.9725 for h−. This gave us approxi-
mately 13 and 16 annotators for each h+ and h− sentence
respectively.
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Language Sentence h− h+

— david acker, harry’s son, became the president of sleepy’s in 2001. 3.47 3.38
Czech david acker harry’ with son has become president of the sleepy’ with in 2001. 1.75 2.08

German david field, harry’ the son was the president of ” in 2001. 1.63 3.00
Spanish david acker, harry’ his son, became president of the sleeping’ in 2001. 2.19 2.62
French david acker, harry’ son, the president of the sleepy’ in 2001. 1.47 2.46

Table 1: A sample of sentences with their without-context (h−) and with-context (h+) ratings. The
“Language” column denotes the intermediate translation language. The original English sentence is
marked with “—”.
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Figure 1: With-context (h+) against without-
context (h−) ratings. Points above the full diag-
onal represent sentences which are judged more
acceptable when presented with context. The to-
tal least-square linear regression is shown as the
second line.

sentence we randomly single out an annotator rat-
ing and compute the Pearson correlation between
these judgements against the mean ratings for the
rest of the annotators.7 This number can be inter-
preted as a performance upper bound on a single
annotator for predicting the mean acceptability of
a group of annotators.

We found a big gap in the one-vs-rest correla-
tions: 0.628 for h− and 0.293 for h+. We were
initially surprised as to why the correlation is so
different, even though the standard deviation is
similar. Further investigation reveals that this dif-

7Trials are repeated 1000 times and the average correla-
tion is computed, to insure that we obtain robust results and
avoid outlier ratings skewing our Pearson coefficient value.
See Lau et al. (2016) for the details of this and an alternative
method for simulating an individual annotator.

ference is explained by the pattern shown in Fig-
ure 1. Adding context “compressess” the distri-
bution of (mean) ratings, pushing the extremes to
the middle (i.e. very ill/well-formed sentences are
now less ill/well-formed). The net effect is that it
lowers correlation, as the good and bad sentences
are now less separable.

One possible explanation for this compression
is that workers focus more on global semantic and
pragmatic coherence when context is supplied. If
this is the case, then the syntactic mistakes intro-
duced by MT have less effect on ratings than for
the out-of-context sentences, where global coher-
ence is not a factor.

To give a sense how context influences rat-
ings, we present a sample of sentences with their
without-context (h−) and with-context (h+) rat-
ings in Table 1.

3 Modelling Sentence Acceptability with
Enriched LMs

Lau et al. (2015, 2016) explored a number of
unsupervised models for predicting acceptabil-
ity, including n-gram language models, Bayesian
HMMs, LDA-based models, and a simple recur-
rent network language model. They found that
the neural model outperforms the others consis-
tently over multiple domains, in several languages.
In light of this, we experiment with neural mod-
els in this paper. We use: (1) a LSTM lan-
guage model (lstm: Hochreiter and Schmidhuber
(1997); Mikolov et al. (2010)), and (2) a topically
driven neural language model (tdlm: Lau et al.
(2017)).8

lstm is a standard LSTM language model,
trained over a corpus to predict word sequences.

8We use the following tdlm implemen-
tation: https://github.com/jhlau/
topically-driven-language-model.
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Acc. Measure Equation

LogProb logPm(s, c)

Mean LP
logPm(s, c)

|s|
Norm LP (Div) − logPm(s, c)

logPu(s)
Norm LP (Sub) logPm(s, c)− logPu(s)

SLOR
logPm(s, c)− logPu(s)

|s|

Table 2: Acceptability measures for predicting the
acceptability of a sentence. s is the sentence (|s|
is the sentence length); c is the document context
(only used by lstm+ and tdlm+); Pm(s, c) is
the probability of the sentence given by a model;
Pu(s) is the unigram probability of the sentence.

tdlm is a joint model of topic and language. The
topic model component produces topics by pro-
cessing documents through a convolutional layer
and aligning it with trainable topic embeddings.
The language model component incorporates con-
text by combining its topic vector (produced by
the topic model component) with the LSTM’s hid-
den state, to generate the probability distribution
for the next word.

After training, given a sentence both lstm and
tdlm produce a sentence probability (aggregated
using the sequence of conditional word probabili-
ties). In our case, we also have the document con-
text, information which both models can leverage.
Therefore we have 4 variants at test time: models
that use only the sentence as input, lstm− and
tdlm−, and models that use both sentence and
context, lstm+ and tdlm+.9 lstm+ incorpo-
rates context by feeding it to the LSTM network
and taking its final state10 as the initial state for
the current sentence. tdlm− ignores the context
by converting the topic vector into a vector of ze-
ros.

To map sentence probability to acceptability,
we compute several acceptability measures (Lau
et al., 2016), which are designed to normalise sen-
tence length and word frequency. These are given
in Table 2.

We train tdlm and lstm on a sample of 100K
English Wikipedia articles, which has no over-

9There are only two trained models: lstm and tdlm.
The four variants are generated by varying the type of input
provided at test time when computing the sentence probabil-
ity.

10The final state is the hidden state produced by the last
word of the context.

Rtg Model LP Mean NrmD NrmS SLOR

h−

lstm− 0.151 0.487 0.586 0.342 0.584
lstm+ 0.161 0.529 0.618 0.351 0.633
tdlm− 0.147 0.515 0.634 0.359 0.640
tdlm+ 0.165 0.541 0.645 0.373 0.653

h+

lstm− 0.153 0.421 0.494 0.293 0.503
lstm+ 0.168 0.459 0.522 0.310 0.546
tdlm− 0.153 0.450 0.541 0.313 0.557
tdlm+ 0.169 0.473 0.552 0.325 0.568

Table 3: Pearson’s r of acceptability measures and
human ratings. “Rtg” = ”Rating”, “LP” = Log-
Prob, “Mean” = Mean LP, “NrmD” = Norm LP
(Div) and “NrmS” = Norm LP (Sub). Boldface
indicates optimal performance in each row.

lap with the 100 documents used for the annota-
tion described in Section 2. The training data has
approximately 40M tokens and a vocabulary size
of 66K.11 Training details and all model hyper-
parameter settings are detailed in the supplemen-
tary material.

To assess the performance of the acceptability
measures, we compute Pearson’s r against mean
human ratings (Table 3). We also experimented
with Spearman’s rank correlation, but found simi-
lar trends and so present only the Pearson results.

The first observation is that we replicate the per-
formance of the original experiment setting (Lau
et al., 2015). We achieved a correlation of 0.584
when we compared lstm− against h−, which
is similar to the previously reported performance
(0.570).12 SLOR outperforms all other measures,
which is consistent with the findings in Lau et al.
(2015). We will focus on SLOR for the remainder
of the discussion.

Across all models (lstm and tdlm) and hu-
man ratings (h− and h+), using context at test
time improves model performance. This suggests
that taking context into account helps in modelling
acceptability, regardless of whether it is tested
against judgements made with (h+) or without
context (h−).13 We also see that tdlm consis-

11We filter word types that occur less than 10 times, low-
ercase all words, and use a special unkown token to represent
unseen words.

12We note two differences. First, we use a different set of
Wikipedia training and testing articles. Second, we employ a
LSTM instead of a simple RNN for the language model.

13We believe incorporating context at test time for lstm
improves performance because context puts the starting state
of the current sentence in the right “semantic” space when
predicting its words. Without context, the initial state for
the current sentence is defaulted to a vector of zeros, and the
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tently outperforms lstm over both types of hu-
man ratings and test input variants, showing that
tdlm is a better model at predicting acceptabil-
ity. In fact, if we look at tdlm− vs. lstm+

(h−: 0.640 vs. 0.633; h+: 0.557 vs. 0.546),
tdlm still performs better without context than
lstm with context. These observations confirm
that context helps in the modelling of accept-
ability, whether it is incorporated during training
(lstm vs. tdlm) or at test time (lstm−/tdlm−

vs. lstm+/tdlm+).

Interestingly, we see a lower correlation when
we are predicting sentence acceptability that is
judged with context. The SLOR correlation of
lstm+/tdlm+ vs. h+ (0.546/568) is lower than
that of lstm−/tdlm− vs. h− (0.584/0.640). This
result corresponds to the low one-vs-rest human
performance of h+ compared to h− (0.299 vs.
0.636, see Section 2). It suggests that h+ ratings
are more difficult to predict than h−. With human
performance taken into account, both models sub-
stantially outperform the average single-annotator
correlation, which is encouraging for the prospect
of accurate model prediction on this task.

4 Related Work

Nagata (1988) reports a small scale experiment
with 12 Japanese speakers on the effect of repe-
tition of sentences, and embedding them in con-
text. He notes that both repetition and context
cause acceptability judgements for ill formed sen-
tences to be more lenient. Gradience in acceptabil-
ity judgements are studied in the works of Sorace
and Keller (2005) and Sprouse (2007).

There is an extensive literature on auto-
matic detection of grammatical errors (Atwell,
1987; Chodorow and Leacock, 2000; Bigert and
Knutsson, 2002; Sjöbergh, 2005; Wagner et al.,
2007), but limited work on acceptability predic-
tion. Heilman et al. (2014) trained a linear re-
gression model that uses features such as spelling
errors, sentence scores from n-gram models and
parsers. Lau et al. (2015, 2016) experimented
with unsupervised learners and found that a sim-
ple RNN was the best performing model. Both
works predict acceptability independently of any
contextual factors outside the target sentence.

model has no information as to what words will be relevant.

5 Future Work and Conclusions

We found that (i) context positively influences ac-
ceptability, particularly for ill-formed sentences,
but it also has the reverse effect for well-formed
sentences (H1); (ii) incorporating context (dur-
ing training or testing) when modelling accept-
ability improves model performance (H2); and
(iii) prediction performance declines when tested
on judgements collected with context, overturning
our original hypothesis (H3). We discovered that
human agreement decreases when context is intro-
duced, suggesting that ratings are less predictable
in this case.

While it is intuitive that context should improve
acceptability for ill-formed sentences, it is less ob-
vious why it reduces acceptability for well-formed
sentences. We will investigate this question in fu-
ture work. We will also experiment with a wider
range of models, including sentence embedding
methodologies such as Skip-Thought (Kiros et al.,
2015).
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Abstract

Feed-forward networks are widely used in
cross-modal applications to bridge modal-
ities by mapping distributed vectors of one
modality to the other, or to a shared space.
The predicted vectors are then used to
perform e.g., retrieval or labeling. Thus,
the success of the whole system relies on
the ability of the mapping to make the
neighborhood structure (i.e., the pairwise
similarities) of the predicted vectors akin
to that of the target vectors. However,
whether this is achieved has not been in-
vestigated yet. Here, we propose a new
similarity measure and two ad hoc experi-
ments to shed light on this issue. In three
cross-modal benchmarks we learn a large
number of language-to-vision and vision-
to-language neural network mappings (up
to five layers) using a rich diversity of im-
age and text features and loss functions.
Our results reveal that, surprisingly, the
neighborhood structure of the predicted
vectors consistently resembles more that
of the input vectors than that of the target
vectors. In a second experiment, we fur-
ther show that untrained nets do not signif-
icantly disrupt the neighborhood (i.e., se-
mantic) structure of the input vectors.

1 Introduction

Neural network mappings are widely used to
bridge modalities or spaces in cross-modal re-
trieval (Qiao et al., 2017; Wang et al., 2016; Zhang
et al., 2016), zero-shot learning (Lazaridou et al.,
2015b, 2014; Socher et al., 2013) in building mul-
timodal representations (Collell et al., 2017) or in
word translation (Lazaridou et al., 2015a), to name
a few. Typically, a neural network is firstly trained

to predict the distributed vectors of one modality
(or space) from the other. At test time, some op-
eration such as retrieval or labeling is performed
based on the nearest neighbors of the predicted
(mapped) vectors. For instance, in zero-shot im-
age classification, image features are mapped to
the text space and the label of the nearest neigh-
bor word is assigned. Thus, the success of such
systems relies entirely on the ability of the map
to make the predicted vectors similar to the tar-
get vectors in terms of semantic or neighborhood
structure.1 However, whether neural nets achieve
this goal in general has not been investigated yet.
In fact, recent work evidences that considerable
information about the input modality propagates
into the predicted modality (Collell et al., 2017;
Lazaridou et al., 2015b; Frome et al., 2013).

To shed light on these questions, we first in-
troduce the (to the best of our knowledge) first
existing measure to quantify similarity between
the neighborhood structures of two sets of vec-
tors. Second, we perform extensive experiments
in three benchmarks where we learn image-to-text
and text-to-image neural net mappings using a rich
variety of state-of-the-art text and image features
and loss functions. Our results reveal that, con-
trary to expectation, the semantic structure of the
mapped vectors consistently resembles more that
of the input vectors than that of the target vectors
of interest. In a second experiment, by using six
concept similarity tasks we show that the seman-
tic structure of the input vectors is preserved after
mapping them with an untrained network, further
evidencing that feed-forward nets naturally pre-
serve semantic information about the input. Over-
all, we uncover and rise awareness of a largely

1We indistinctly use the terms semantic structure, neigh-
borhood structure and similarity structure. They refer to all
pairwise similarities of a set of N vectors, for some similarity
measure (e.g., Euclidean or cosine).

462



f(M )

M   

f(M )

Figure 1: Effect of applying a mapping f to a (dis-
connected) manifold M with three hypothetical
classes (�, N and •).

ignored phenomenon relevant to a wide range of
cross-modal / cross-space applications such as re-
trieval, zero-shot learning or image annotation.

Ultimately, this paper aims at: (1) Encouraging
the development of better architectures to bridge
modalities / spaces; (2) Advocating for the use of
semantic-based criteria to evaluate the quality of
predicted vectors such as the neighborhood-based
measure proposed here, instead of purely geomet-
ric measures such as mean squared error (MSE).

2 Related Work and Motivation

Neural network and linear mappings are popu-
lar tools to bridge modalities in cross-modal re-
trieval systems. Lazaridou et al. (2015b) leverage
a text-to-image linear mapping to retrieve images
given text queries. Weston et al. (2011) map la-
bel and image features into a shared space with a
linear mapping to perform image annotation. Al-
ternatively, Frome et al. (2013), Lazaridou et al.
(2014) and Socher et al. (2013) perform zero-shot
image classification with an image-to-text neural
network mapping. Instead of mapping to latent
features, Collell et al. (2018) use a 2-layer feed-
forward network to map word embeddings directly
to image pixels in order to visualize spatial ar-
rangements of objects. Neural networks are also
popular in other cross-space applications such as
cross-lingual tasks. Lazaridou et al. (2015a) learn
a linear map from language A to language B and
then translate new words by returning the nearest
neighbor of the mapped vector in the B space.

In the context of zero-shot learning, short-
comings of cross-space neural mappings have
also been identified. For instance, “hub-
ness” (Radovanović et al., 2010) and “pollu-

tion” (Lazaridou et al., 2015a) relate to the high-
dimensionality of the feature spaces and to overfit-
ting respectively. Crucially, we do not assume that
our cross-modal problem has any class labels, and
we study the similarity between input and mapped
vectors and between output and mapped vectors.

Recent work evidences that the predicted vec-
tors of cross-modal neural net mappings are
still largely informative about the input vectors.
Lazaridou et al. (2015b) qualitatively observe that
abstract textual concepts are grounded with the
visual input modality. Counterintuitively, Collell
et al. (2017) find that the vectors “imagined” from
a language-to-vision neural map, outperform the
original visual vectors in concept similarity tasks.
The paper argued that the reconstructed visual
vectors become grounded with language because
the map preserves topological properties of the in-
put. Here, we go one step further and show that
the mapped vectors often resemble the input vec-
tors more than the target vectors in semantic terms,
which goes against the goal of a cross-modal map.

Well-known theoretical work shows that net-
works with as few as one hidden layer are able
to approximate any function (Hornik et al., 1989).
However, this result does not reveal much nei-
ther about test performance nor about the semantic
structure of the mapped vectors. Instead, the phe-
nomenon described is more closely tied to other
properties of neural networks. In particular, conti-
nuity guarantees that topological properties of the
input, such as connectedness, are preserved (Arm-
strong, 2013). Furthermore, continuity in a topol-
ogy induced by a metric also ensures that points
that are close together are mapped close together.
As a toy example, Fig. 1 illustrates the distortion
of a manifold after being mapped by a neural net.2

In a noiseless world with fully statistically de-
pendent modalities, the vectors of one modality
could be perfectly predicted from those of the
other. However, in real-world problems this is
unrealistic given the noise of the features and
the fact that modalities encode complementary
information (Collell and Moens, 2016). Such
unpredictability combined with continuity and
topology-preserving properties of neural nets pro-
pel the phenomenon identified, namely mapped
vectors resembling more the input than the target
vectors, in nearest neighbors terms.

2Parameters of these mappings were generated at random.
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3 Proposed Approach

To bridge modalities X and Y , we consider two
popular cross-modal mappings f : X → Y .

(i) Linear mapping (lin):

f(x) =W0x+ b0

with W0 ∈ Rdy×dx , b0 ∈ Rdy , where dx and dy
are the input and output dimensions respectively.

(ii) Feed-forward neural network (nn):

f(x) =W1σ(W0x+ b0) + b1

with W1 ∈ Rdy×dh , W0 ∈ Rdh×dx , b0 ∈ Rdh ,
b1 ∈ Rdy where dh is the number of hidden units
and σ() the non-linearity (e.g., tanh or sigmoid).
Although single hidden layer networks are already
universal approximators (Hornik et al., 1989), we
explored whether deeper nets with 3 and 5 hid-
den layers could improve the fit (see Supplement).

Loss: Our primary choice is the MSE:
1
2‖f(x) − y‖2, where y is the target vector.
We also tested other losses such as the co-
sine: 1 − cos(f(x), y) and the max-margin:
max{0, γ + ‖f(x) − y‖ − ‖f(x̃) − y‖}, where
x̃ belongs to a different class than (x, y), and
γ is the margin. As in Lazaridou et al. (2015a)
and Weston et al. (2011), we choose the first x̃
that violates the constraint. Notice that losses
that do not require class labels such as MSE are
suitable for a wider, more general set of tasks than
discriminative losses (e.g., cross-entropy). In fact,
cross-modal retrieval tasks often do not exhibit
any class labels. Additionally, our research ques-
tion concerns the cross-space mapping problem in
isolation (independently of class labels).

Let us denote a set of N input and output vec-
tors by X ∈ RN×dx and Y ∈ RN×dy respectively.
Each input vector xi is paired to the output vec-
tor yi of the same index (i = 1, · · · , N ). Let
us henceforth denote the mapped input vectors by
f(X) ∈ RN×dy . In order to explore the similarity
between f(X) and X , and between f(X) and Y ,
we propose two ad hoc settings below.

3.1 Neighborhood Structure of Mapped
Vectors (Experiment 1)

To measure the similarity between the neighbor-
hood structure of two sets of paired vectors V and

Z, we propose the mean nearest neighbor overlap
measure (mNNOK(V,Z)). We define the near-
est neighbor overlap NNOK(vi, zi) as the num-
ber of K nearest neighbors that two paired vec-
tors vi, zi share in their respective spaces. E.g.,
if the 3 (= K) nearest neighbors of vcat in V
are {vdog, vtiger, vlion} and those of zcat in Z are
{zmouse, ztiger, zlion}, the NNO3(vcat, zcat) is 2.

Definition 1 Let V = {vi}Ni=1 and Z = {zi}Ni=1

be two sets of N paired vectors. We define:

mNNOK(V,Z) =
1

KN

N∑

i=1

NNOK(vi, zi) (1)

with NNOK(vi, zi) = |NNK(vi) ∩ NNK(zi)|,
where NNK(vi) and NNK(zi) are the indexes of
the K nearest neighbors of vi and zi, respectively.

The normalizing constant K simply scales
mNNOK(V,Z) between 0 and 1, making it
independent of the choice of K. Thus, a
mNNOK(V,Z) = 0.7 means that the vectors in
V and Z share, on average, 70% of their near-
est neighbors. Notice that mNNO implicitly per-
forms retrieval for some similarity measure (e.g.,
Euclidean or cosine), and quantifies how semanti-
cally similar two sets of paired vectors are.

3.2 Mapping with Untrained Networks
(Experiment 2)

To complement the setting above (Sect. 3.1), it
is instructive to consider the limit case of an un-
trained network. Concept similarity tasks provide
a suitable setting to study the semantic structure
of distributed representations (Pennington et al.,
2014). That is, semantically similar concepts
should ideally be close together. In particular,
our interest is in comparing X with its projection
f(X) through a mapping with random parameters,
to understand the extent to which the mapping may
disrupt or preserve the semantic structure of X .

4 Experimental Setup

4.1 Experiment 1
4.1.1 Datasets
To test the generality of our claims, we select a
rich diversity of cross-modal tasks involving texts
at three levels: word level (ImageNet), sentence
level (IAPR TC-12), and document level (Wiki).
ImageNet (Russakovsky et al., 2015). Consists of
∼14M images, covering ∼22K WordNet synsets
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(or meanings). Following Collell et al. (2017), we
take the most relevant word for each synset and
keep only synsets with more than 50 images. This
yields 9,251 different words (or instances).
IAPR TC-12 (Grubinger et al., 2006). Contains
20K images (18K train / 2K test) annotated with
255 labels. Each image is accompanied with a
short description of one to three sentences.
Wikipedia (Pereira et al., 2014). Has 2,866 sam-
ples (2,173 train / 693 test). Each sample is a sec-
tion of a Wikipedia article paired with one image.

4.1.2 Hyperparameters and Implementation
See the Supplement (Sect. 1) for details.

4.1.3 Image and Text Features
To ensure that results are independent of the
choice of image and text features, we use 5 (2 im-
age + 3 text) features of varied dimensionality (64-
d, 128-d, 300-d, 2,048-d) and two directions, text-
to-image (T → I) and image-to-text (I → T ). We
make our extracted features publicly available.3

Text. In ImageNet we use 300-dimensional
GloVe4 (Pennington et al., 2014) and 300-d
word2vec (Mikolov et al., 2013) word embed-
dings. In IAPR TC-12 and Wiki, we employ state-
of-the-art bidirectional gated recurrent unit (bi-
GRU) features (Cho et al., 2014) that we learn with
a classification task (see Sect. 2 of Supplement).
Image. For ImageNet, we use the publicly
available5 VGG-128 (Chatfield et al., 2014) and
ResNet (He et al., 2015) visual features from
Collell et al. (2017), where we obtained 128-
dimensional VGG-128 and 2,048-d ResNet fea-
tures from the last layer (before the softmax) of
the forward pass of each image. The final repre-
sentation for a word is the average feature vector
(centroid) of all available images for this word. In
IAPR TC-12 and Wiki, features for individual im-
ages are obtained similarly from the last layer of a
ResNet and a VGG-128 model.

4.2 Experiment 2

4.2.1 Datasets
We include six benchmarks, comprising three
types of concept similarity: (i) Semantic simi-
larity: SemSim (Silberer and Lapata, 2014), Sim-
lex999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016); (ii) Relatedness: MEN (Bruni et al.,

3http://liir.cs.kuleuven.be/software.html
4http://nlp.stanford.edu/projects/glove
5http://liir.cs.kuleuven.be/software.html

2014) and WordSim-353 (Finkelstein et al., 2001);
(iii) Visual similarity: VisSim (Silberer and Lap-
ata, 2014) which includes the same word pairs as
SemSim, rated for visual similarity instead of se-
mantic. All six test sets contain human ratings of
similarity for word pairs, e.g., (‘cat’,‘dog’).

4.2.2 Hyperparameters and Implementation
The parameters in W0,W1 are drawn from a ran-
dom uniform distribution [−1, 1] and b0, b1 are set
to zero. We use a tanh activation σ().6 The output
dimension dy is set to 2,048 for all embeddings.

4.2.3 Image and Text Features
Textual and visual features are the same as de-
scribed in Sect. 4.1.3 for the ImageNet dataset.

4.2.4 Similarity Predictions
We compute the prediction of similarity between
two vectors z1, z2 with both the cosine z1z2

‖z1‖‖z2‖
and the Euclidean similarity 1

1+‖z1−z2‖ .
7

4.2.5 Performance Metrics
As is common practice, we evaluate the predic-
tions of similarity of the embeddings (Sect. 4.2.4)
against the human similarity ratings with the
Spearman correlation ρ. We report the average of
10 sets of randomly generated parameters.

5 Results and Discussion

We test statistical significance with a two-sided
Wilcoxon rank sum test adjusted with Bonferroni.
The null hypothesis is that a compared pair is
equal. In Tab. 1, ∗ indicates that mNNO(X, f(X))
differs from mNNO(Y, f(X)) (p < 0.001) on
the same mapping, embedding and direction. In
Tab. 2, ∗ indicates that performance of mapped and
input vectors differs (p < 0.05) in the 10 runs.

5.1 Experiment 1

Results below are with cosine neighbors and K =
10. Euclidean neighbors yield similar results and
are thus left to the Supplement. Similarly, results
in ImageNet with GloVe embeddings are shown
below and word2vec results in the Supplement.
The choice ofK = {5, 10, 30} had no visible effect
on results. Results with 3- and 5-layer nets did not
show big differences with the results below (see
Supplement). The cosine and max-margin losses

6We find that sigmoid and ReLu yield similar results.
7Notice that papers generally use only cosine similarity

(Lazaridou et al., 2015b; Pennington et al., 2014).
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Figure 2: Learning a nn model in Wiki (left),
IAPR TC-12 (middle) and ImageNet (right).

performed slightly worse than MSE (see Supple-
ment). Although Lazaridou et al. (2015a) and We-
ston et al. (2011) find that max-margin performs
the best in their tasks, we do not find our result en-
tirely surprising given that max-margin focuses on
inter-class differences while we look also at intra-
class neighbors (in fact, we do not require classes).

Tab. 1 shows our core finding, namely that the
semantic structure of f(X) resembles more that of
X than that of Y , for both lin and nn maps.

ResNet VGG-128

X, f(X) Y, f(X) X, f(X) Y, f(X)

Im
ag

eN
et I → T

lin 0.681∗ 0.262 0.723∗ 0.236
nn 0.622∗ 0.273 0.682∗ 0.246

T → I
lin 0.379∗ 0.241 0.339∗ 0.229
nn 0.354∗ 0.27 0.326∗ 0.256

IA
PR

T
C

-1
2

I → T
lin 0.358∗ 0.214 0.382∗ 0.163
nn 0.336∗ 0.219 0.331∗ 0.18

T → I
lin 0.48∗ 0.2 0.419∗ 0.167
nn 0.413∗ 0.225 0.372∗ 0.182

W
ik

ip
ed

ia I → T
lin 0.235∗ 0.156 0.235∗ 0.143
nn 0.269∗ 0.161 0.282∗ 0.148

T → I
lin 0.574∗ 0.156 0.6∗ 0.148
nn 0.521∗ 0.156 0.511∗ 0.151

Table 1: Test mean nearest neighbor over-
lap. Boldface indicates the largest score at each
mNNO10(X, f(X)) and mNNO10(Y, f(X)) pair,
which are abbreviated by X, f(X) and Y, f(X).

Fig. 2 is particularly revealing. If we would
only look at train performance (and allow train
MSE to reach 0) then f(X) = Y and clearly train
mNNO(f(X), Y ) = 1 while mNNO(f(X), X)
can only be smaller than 1. However, the inter-
est is always on test samples, and (near-)perfect
test prediction is unrealistic. Notice in fact in
Fig. 2 that even if we look at train fit, MSE
needs to be close to 0 for mNNO(f(X), Y ) to be

reasonably large. In all the combinations from
Tab. 1, the test mNNO(f(X), Y ) never surpasses
test mNNO(f(X), X) for any number of epochs,
even with an oracle (not shown).

5.2 Experiment 2
Tab. 2 shows that untrained linear (flin) and neural
net (fnn) mappings preserve the semantic structure
of the input X , complementing thus the findings
of Experiment 1. Experiment 1 concerns learning,
while, by “ablating” the learning part and random-
izing weights, Experiment 2 is revealing about the
natural tendency of neural nets to preserve seman-
tic information about the input, regardless of the
choice of the target vectors and loss function.

WS-353 Men SemSim

Cos Eucl Cos Eucl Cos Eucl

fnn(GloVe) 0.632 0.634∗ 0.795 0.791∗ 0.75∗ 0.744∗
flin(GloVe) 0.63 0.606 0.798 0.781 0.763 0.712
GloVe 0.632 0.601 0.801 0.782 0.768 0.716

fnn(ResNet) 0.402 0.408∗ 0.556 0.554∗ 0.512 0.513
flin(ResNet) 0.425 0.449 0.566 0.534 0.533 0.514
ResNet 0.423 0.457 0.567 0.535 0.534 0.516

VisSim SimLex SimVerb

Cos Eucl Cos Eucl Cos Eucl

fnn(GloVe) 0.594∗ 0.59∗ 0.369 0.363∗ 0.313 0.301∗
flin(GloVe) 0.602∗ 0.576 0.369 0.341 0.326 0.23
GloVe 0.606 0.58 0.371 0.34 0.32 0.235

fnn(ResNet) 0.527∗ 0.526∗ 0.405 0.406 0.178 0.169
flin(ResNet) 0.541 0.498 0.409 0.404 0.198 0.182
ResNet 0.543 0.501 0.409 0.403 0.211 0.199

Table 2: Spearman correlations between human
ratings and the similarities (cosine or Euclidean)
predicted from the embeddings. Boldface denotes
best performance per input embedding type.

6 Conclusions

Overall, we uncovered a phenomenon neglected
so far, namely that neural net cross-modal map-
pings can produce mapped vectors more akin to
the input vectors than the target vectors, in terms
of semantic structure. Such finding has been pos-
sible thanks to the proposed measure that explic-
itly quantifies similarity between the neighbor-
hood structure of two sets of vectors. While other
measures such as mean squared error can be mis-
leading, our measure provides a more realistic
estimate of the semantic similarity between pre-
dicted and target vectors. In fact, it is the semantic
structure (or pairwise similarities) what ultimately
matters in cross-modal applications.
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Abstract

Dynamic oracles provide strong supervi-
sion for training constituency parsers with
exploration, but must be custom defined
for a given parser’s transition system. We
explore using a policy gradient method as
a parser-agnostic alternative. In addition
to directly optimizing for a tree-level met-
ric such as F1, policy gradient has the po-
tential to reduce exposure bias by allow-
ing exploration during training; moreover,
it does not require a dynamic oracle for
supervision. On four constituency parsers
in three languages, the method substan-
tially outperforms static oracle likelihood
training in almost all settings. For parsers
where a dynamic oracle is available (in-
cluding a novel oracle which we define for
the transition system of Dyer et al. (2016)),
policy gradient typically recaptures a sub-
stantial fraction of the performance gain
afforded by the dynamic oracle.

1 Introduction

Many recent state-of-the-art models for con-
stituency parsing are transition based, decom-
posing production of each parse tree into a se-
quence of action decisions (Dyer et al., 2016;
Cross and Huang, 2016; Liu and Zhang, 2017;
Stern et al., 2017), building on a long line of work
in transition-based parsing (Nivre, 2003; Yamada
and Matsumoto, 2003; Henderson, 2004; Zhang
and Clark, 2011; Chen and Manning, 2014; Andor
et al., 2016; Kiperwasser and Goldberg, 2016).

However, models of this type, which decom-
pose structure prediction into sequential decisions,
can be prone to two issues (Ranzato et al., 2016;
Wiseman and Rush, 2016). The first is exposure
bias: if, at training time, the model only observes

states resulting from correct past decisions, it will
not be prepared to recover from its own mistakes
during prediction. Second is the loss mismatch be-
tween the action-level loss used at training and any
structure-level evaluation metric, for example F1.

A large family of techniques address the ex-
posure bias problem by allowing the model to
make mistakes and explore incorrect states during
training, supervising actions at the resulting states
using an expert policy (Daumé III et al., 2009;
Ross et al., 2011; Choi and Palmer, 2011; Chang
et al., 2015); these expert policies are typically
referred to as dynamic oracles in parsing (Gold-
berg and Nivre, 2012; Ballesteros et al., 2016).
While dynamic oracles have produced substan-
tial improvements in constituency parsing perfor-
mance (Coavoux and Crabbé, 2016; Cross and
Huang, 2016; Stern et al., 2017; González and
Gómez-Rodrı́guez, 2018), they must be custom
designed for each transition system.

To address the loss mismatch problem, another
line of work has directly optimized for structure-
level cost functions (Goodman, 1996; Och, 2003).
Recent methods applied to models that produce
output sequentially commonly use policy gradi-
ent (Auli and Gao, 2014; Ranzato et al., 2016;
Shen et al., 2016) or beam search (Xu et al., 2016;
Wiseman and Rush, 2016; Edunov et al., 2017) at
training time to minimize a structured cost. These
methods also reduce exposure bias through explo-
ration but do not require an expert policy for su-
pervision.

In this work, we apply a simple policy gra-
dient method to train four different state-of-the-
art transition-based constituency parsers to max-
imize expected F1. We compare against training
with a dynamic oracle (both to supervise explo-
ration and provide loss-augmentation) where one
is available, including a novel dynamic oracle that
we define for the top-down transition system of
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Dyer et al. (2016).
We find that while policy gradient usually out-

performs standard likelihood training, it typically
underperforms the dynamic oracle-based methods
– which provide direct, model-aware supervision
about which actions are best to take from arbi-
trary parser states. However, a substantial frac-
tion of each dynamic oracle’s performance gain is
often recovered using the model-agnostic policy
gradient method. In the process, we obtain new
state-of-the-art results for single-model discrimi-
native transition-based parsers trained on the En-
glish PTB (92.6 F1), French Treebank (83.5 F1),
and Penn Chinese Treebank Version 5.1 (87.0 F1).

2 Models

The transition-based parsers we use all decompose
production of a parse tree y for a sentence x into
a sequence of actions (a1, . . . aT ) and resulting
states (s1, . . . sT+1). Actions at are predicted se-
quentially, conditioned on a representation of the
parser’s current state st and parameters θ:

p(y|x; θ) =
T∏

t=1

p(at | st; θ) (1)

We investigate four parsers with varying transi-
tion systems and methods of encoding the current
state and sentence: (1) the discriminative Recur-
rent Neural Network Grammars (RNNG) parser of
Dyer et al. (2016), (2) the In-Order parser of Liu
and Zhang (2017), (3) the Span-Based parser of
Cross and Huang (2016), and (4) the Top-Down
parser of Stern et al. (2017).1 We refer to the orig-
inal papers for descriptions of the transition sys-
tems and model parameterizations.

3 Training Procedures

Likelihood training without exploration maxi-
mizes Eq. 1 for trees in the training corpus, but
may be prone to exposure bias and loss mismatch
(Section 1). Dynamic oracle methods are known
to improve on this training procedure for a vari-
ety of parsers (Coavoux and Crabbé, 2016; Cross
and Huang, 2016; Stern et al., 2017; González and
Gómez-Rodrı́guez, 2018), supervising exploration

1Stern et al. (2017) trained their model using a non-
probabilistic, max-margin objective. For comparison to the
other models and to allow training with policy gradient,
we create a locally-normalized probabilistic variant of their
model by applying a softmax function to the predicted scores
for each action.

during training by providing the parser with the
best action to take at each explored state. We de-
scribe how policy gradient can be applied as an
oracle-free alternative. We then compare to sev-
eral variants of dynamic oracle training which fo-
cus on addressing exposure bias, loss mismatch,
or both.

3.1 Policy Gradient
Given an arbitrary cost function ∆ comparing
structured outputs (e.g. negative labeled F1, for
trees), we use the risk objective:

R(θ) =
N∑

i=1

∑

y

p(y | x(i); θ)∆(y,y(i))

which measures the model’s expected cost over
possible outputs y for each of the training exam-
ples (x(1),y(1)), . . . , (x(N),y(N)).

Minimizing a risk objective has a long his-
tory in structured prediction (Povey and Wood-
land, 2002; Smith and Eisner, 2006; Li and Eis-
ner, 2009; Gimpel and Smith, 2010) but often re-
lies on the cost function decomposing according
to the output structure. However, we can avoid
any restrictions on the cost using reinforcement
learning-style approaches (Xu et al., 2016; Shen
et al., 2016; Edunov et al., 2017) where cost is as-
cribed to the entire output structure – albeit at the
expense of introducing a potentially difficult credit
assignment problem.

The policy gradient method we apply is a sim-
ple variant of REINFORCE (Williams, 1992). We
perform mini-batch gradient descent on the gradi-
ent of the risk objective:

∇R(θ) =

N∑

i=1

∑

y

p(y|x(i))∆(y,y(i))∇ log p(y|x(i); θ)

≈
N∑

i=1

∑

y∈Y(x(i))

∆(y,y(i))∇ log p(y|x(i); θ)

whereY(x(i)) is a set of k candidate trees obtained
by sampling from the model’s distribution for sen-
tence x(i). We use negative labeled F1 for ∆.

To reduce the variance of the gradient estimates,
we standardize ∆ using its running mean and stan-
dard deviation across all candidates used so far
throughout training. Following Shen et al. (2016),
we also found better performance when including
the gold tree y(i) in the set of k candidatesY(x(i)),
and do so for all experiments reported here.2

2Including the gold tree in the set of candidates does bias
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3.2 Dynamic Oracle Supervision
For a given parser state st, a dynamic oracle de-
fines an action a∗(st) which should be taken to
incrementally produce the best tree still reachable
from that state.3

Dynamic oracles provide strong supervision for
training with exploration, but require custom de-
sign for a given transition system. Cross and
Huang (2016) and Stern et al. (2017) defined opti-
mal (with respect to F1) dynamic oracles for their
respective transition systems, and below we define
a novel dynamic oracle for the top-down system of
RNNG.

In RNNG, tree production occurs in a stack-
based, top-down traversal which produces a left-
to-right linearized representation of the tree using
three actions: OPEN a labeled constituent (which
fixes the constituent’s span to begin at the next
word in the sentence which has not been shifted),
SHIFT the next word in the sentence to add it to
the current constituent, or CLOSE the current con-
stituent (which fixes its span to end after the last
word that has been shifted). The parser stores
opened constituents on the stack, and must there-
fore close them in the reverse of the order that they
were opened.

At a given parser state, our oracle does the fol-
lowing:

1. If there are any open constituents on the stack
which can be closed (i.e. have had a word
shifted since being opened), check the top-
most of these (the one that has been opened
most recently). If closing it would produce
a constituent from the the gold tree that has
not yet been produced (which is determined
by the constituent’s label, span beginning po-
sition, and the number of words currently
shifted), or if the constituent could not be
closed at a later position in the sentence to
produce a constituent in the gold tree, return
CLOSE.

the estimate of the risk objective’s gradient; however since
in the parsing tasks we consider, the gold tree has constant
and minimal cost, augmenting with the gold is equivalent to
jointly optimizing the standard likelihood and risk objectives,
using an adaptive scaling factor for each objective that is de-
pendent on the cost for the trees that have been sampled from
the model. We found that including the gold candidate in this
manner outperformed initial experiments that first trained a
model using likelihood training and then fine-tuned using un-
biased policy gradient.

3More generally, an oracle can return a set of such actions
that could be taken from the current state, but the oracles we
use select a single canonical action.

2. Otherwise, if there are constituents in the
gold tree which have not yet been opened in
the parser state, with span beginning at the
next unshifted word, OPEN the outermost of
these.

3. Otherwise, SHIFT the next word.

While we do not claim that this dynamic ora-
cle is optimal with respect to F1, we find that it
still helps substantially in supervising exploration
(Section 5).

Likelihood Training with Exploration Past
work has differed on how to use dynamic ora-
cles to guide exploration during oracle training
(Ballesteros et al., 2016; Cross and Huang, 2016;
Stern et al., 2017). We use the same sample-based
method of generating candidate sets Y as for pol-
icy gradient, which allows us to control the dy-
namic oracle and policy gradient methods to per-
form an equal amount of exploration. Likelihood
training with exploration then maximizes the sum
of the log probabilities for the oracle actions for
all states composing the candidate trees:

LE(θ) =
N∑

i=1

∑

y∈Y(x(i))

∑

s∈y
log p(a∗(s) | s)

where a∗(s) is the dynamic oracle’s action for
state s.

Softmax Margin Softmax margin loss (Gimpel
and Smith, 2010; Auli and Lopez, 2011) addresses
loss mismatch by incorporating task cost into the
training loss. Since trees are decomposed into a
sequence of local action predictions, we cannot
use a global cost, such as F1, directly. As a proxy,
we rely on the dynamic oracles’ action-level su-
pervision.

In all models we consider, action probabilities
(Eq. 1) are parameterized by a softmax function

pML(a | st; θ) ∝ exp(z(a, st, θ))

for some state–action scoring function z. The
softmax-margin objective replaces this by

pSMM (a | st; θ) ∝ exp(z(a, st, θ) + ∆(a, a∗t ))
(2)

We use ∆(a, a∗t ) = 0 if a = a∗t and 1 otherwise.
This can be viewed as a “soft” version of the max-
margin objective used by Stern et al. (2017) for
training without exploration, but retains a locally-
normalized model that we can use for sampling-
based exploration.
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Figure 1: English development set F1 by training
epoch, comparing likelihood training with two ex-
ploration variants for the Top-Down parser.

Softmax Margin with Exploration Finally, we
train using a combination of softmax margin loss
augmentation and exploration. We perform the
same sample-based candidate generation as for
policy gradient and likelihood training with explo-
ration, but use Eq. 2 to compute the training loss
for candidate states. For those parsers that have a
dynamic oracle, this provides a means of training
that more directly provides both exploration and
cost-aware losses.

4 Experiments

We compare the constituency parsers listed in Sec-
tion 2 using the above training methods. Our
experiments use the English PTB (Marcus et al.,
1993), French Treebank (Abeillé et al., 2003), and
Penn Chinese Treebank (CTB) Version 5.1 (Xue
et al., 2005).

Training To compare the training procedures
as closely as possible, we train all models for a
given parser in a given language from the same
randomly-initialized parameter values.

We train two different versions of the RNNG
model: one model using size 128 for the LSTMs
and hidden states (following the original work),
and a larger model with size 256. We perform
evaluation using greedy search in the Span-Based
and Top-Down parsers, and beam search with
beam size 10 for the RNNG and In-Order parsers.
We found that beam search improved performance
for these two parsers by around 0.1-0.3 F1 on the
development sets, and use it at inference time in
every setting for these two parsers.

In our experiments, policy gradient typically re-
quires more epochs of training to reach perfor-
mance comparable to either of the dynamic oracle-
based exploration methods. Figure 1 gives a typi-
cal learning curve, for the Top-Down parser on En-
glish. We found that policy gradient is also more
sensitive to the number of candidates sampled per

sentence than either of the other exploration meth-
ods, with best performance on the development set
usually obtained with k = 10 for k ∈ {2, 5, 10}
(where k also counts the sentence’s gold tree, in-
cluded in the candidate set). See Appendix A in
the supplemental material for the values of k used.

Tags, Embeddings, and Morphology We
largely follow previous work for each parser in our
use of predicted part-of-speech tags, pretrained
word embeddings, and morphological features.

All parsers use predicted part-of-speech tags as
part of their sentence representations. For En-
glish and Chinese, we follow the setup of Cross
and Huang (2016): training the Stanford tagger
(Toutanova et al., 2003) on the training set of each
parsing corpus to predict development and test set
tags, and using 10-way jackknifing to predict tags
for the training set.

For French, we use the predicted tags and mor-
phological features provided with the SPMRL
dataset (Seddah et al., 2014). We modified the
publicly released code for all parsers to use pre-
dicted morphological features for French. We fol-
low the approach outlined by Cross and Huang
(2016) and Stern et al. (2017) for representing
morphological features as learned embeddings,
and use the same dimensions for these embeddings
as in their papers. For RNNG and In-Order, we
similarly use 10-dimensional learned embeddings
for each morphological feature, feeding them as
LSTM inputs for each word alongside the word
and part-of-speech tag embeddings.

For RNNG and the In-Order parser, we use the
same word embeddings as the original papers for
English and Chinese, and train 100-dimensional
word embeddings for French using the structured
skip-gram method of Ling et al. (2015) on French
Wikipedia.

5 Results and Discussion

Table 1 compares parser F1 by training procedure
for each language. Policy gradient improves upon
likelihood training in 14 out of 15 cases, with im-
provements of up to 1.5 F1. One of the three dy-
namic oracle-based training methods – either like-
lihood with exploration, softmax margin (SMM),
or softmax margin with exploration – obtains bet-
ter performance than policy gradient in 10 out of
12 cases. This is perhaps unsurprising given the
strong supervision provided by the dynamic ora-
cles and the credit assignment problem faced by
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training English French Chinese

Span-Based (Cross and Huang, 2016)
C&H∗ 91.3 83.3 —
likelihood 91.0 81.5 83.3
policy gradient 91.4 (+0.4) 81.4 (-0.1) 83.5 (+0.2)
likelihood+explore∗ 91.3 (+0.3) 81.2 (-0.3) 83.5 (+0.2)
SMM∗ 91.3 (+0.3) 81.5 (+0.0) 83.7 (+0.4)
SMM+explore∗ 91.5 (+0.5) 81.7 (+0.2) 84.0 (+0.7)
Top-Down (Stern et al., 2017)
Stern et al.∗† 91.8 82.2 —
likelihood 91.2 80.7 83.9
policy gradient 91.4 (+0.2) 81.4 (+0.7) 84.7 (+0.8)
likelihood+explore∗ 91.3 (+0.1) 81.5 (+0.8) 85.3 (+1.4)
SMM∗ 91.1 (-0.1) 81.2 (+0.5) 84.5 (+0.6)
SMM+explore∗ 91.4 (+0.2) 81.9 (+1.2) 84.8 (+0.9)
RNNG Discriminative, Size 128 (Dyer et al., 2016)
Dyer et al. 91.7 — 84.6
likelihood 91.4 83.2 84.5
policy gradient 91.6 (+0.2) 83.3 (+0.1) 84.7 (+0.2)
likelihood+explore∗ 92.1 (+0.7) 83.0 (-0.2) 85.5 (+1.0)
SMM∗ 91.5 (+0.1) 82.8 (-0.4) 83.6 (-0.9)
SMM+explore∗ 92.1 (+0.7) 83.5 (+0.3) 85.0 (+0.5)
RNNG Discriminative, Size 256
likelihood 91.7 83.1 84.5
policy gradient 92.3 (+0.7) 83.2 (+0.1) 85.6 (+1.1)
likelihood+explore 92.6 (+0.9) 82.9 (-0.2) 86.0 (+1.5)
In-Order (Liu and Zhang, 2017)
L&Z 91.8 — 86.1
likelihood 91.6 82.7 85.5
policy gradient 92.2 (+0.6) 83.3 (+0.6) 87.0 (+1.5)

Table 1: Test set F1 by training procedure, and
in comparison to past work using the same mod-
els. Improvements over likelihood training are
indicated in parentheses, with the highest results
among the training procedures compared here in
bold. ∗: training uses a dynamic oracle; †: past
work using a global scoring model (all models we
train here are locally-normalized).

policy gradient. However, a substantial fraction of
this performance gain is recaptured by policy gra-
dient in most cases.

While likelihood training with exploration us-
ing a dynamic oracle more directly addresses ex-
ploration bias, and softmax margin training more
directly addresses loss mismatch, these two phe-
nomena are still entangled, and the best dynamic
oracle-based method to use varies. The effective-
ness of the oracle method is also likely to be influ-
enced by the nature of the dynamic oracle avail-
able for the parser. For example, the oracle for
RNNG lacks F1 optimality guarantees, and soft-
max margin without exploration often underper-
forms likelihood for this parser. However, explo-
ration improves softmax margin training across all
parsers and conditions.

Although results from likelihood training are
mostly comparable between RNNG-128 and the
larger model RNNG-256 across languages, policy
gradient and likelihood training with exploration
both typically yield larger improvements in the
larger models, obtaining 92.6 F1 for English and
86.0 for Chinese (using likelihood training with
exploration), although results are slightly higher
for the policy gradient and dynamic oracle-based
methods for the smaller model on French (includ-
ing 83.5 with softmax margin with exploration).
Finally, we observe that policy gradient also pro-
vides large improvements for the In-Order parser,
where a dynamic oracle has not been defined.

We note that although some of these results
(92.6 for English, 83.5 for French, 87.0 for Chi-
nese) are state-of-the-art for single model, dis-
criminative transition-based parsers, other work
on constituency parsing achieves better perfor-
mance through other methods. Techniques that
combine multiple models or add semi-supervised
data (Vinyals et al., 2015; Dyer et al., 2016; Choe
and Charniak, 2016; Kuncoro et al., 2017; Liu
and Zhang, 2017; Fried et al., 2017) are orthog-
onal to, and could be combined with, the single-
model, fixed training data methods we explore.
Other recent work (Gaddy et al., 2018; Kitaev and
Klein, 2018) obtains comparable or stronger per-
formance with global chart decoders, where train-
ing uses loss augmentation provided by an ora-
cle. By performing model-optimal global infer-
ence, these parsers likely avoid the exposure bias
problem of the sequential transition-based parsers
we investigate, at the cost of requiring a chart de-
coding procedure for inference.

Overall, we find that although optimizing for
F1 in a model-agnostic fashion with policy gradi-
ent typically underperforms the model-aware ex-
pert supervision given by the dynamic oracle train-
ing methods, it provides a simple method for con-
sistently improving upon static oracle likelihood
training, at the expense of increased training costs.
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Abstract

Recently, span-based constituency parsing
has achieved competitive accuracies with
extremely simple models by using bidirec-
tional RNNs to model “spans”. However,
the minimal span parser of Stern et al.
(2017a) which holds the current state of
the art accuracy is a chart parser running in
cubic time, O(n3), which is too slow for
longer sentences and for applications be-
yond sentence boundaries such as end-to-
end discourse parsing and joint sentence
boundary detection and parsing. We pro-
pose a linear-time constituency parser with
RNNs and dynamic programming using
graph-structured stack and beam search,
which runs in time O(nb2) where b is
the beam size. We further speed this up
to O(nb log b) by integrating cube prun-
ing. Compared with chart parsing base-
lines, this linear-time parser is substan-
tially faster for long sentences on the Penn
Treebank and orders of magnitude faster
for discourse parsing, and achieves the
highest F1 accuracy on the Penn Treebank
among single model end-to-end systems.

1 Introduction

Span-based neural constituency parsing (Cross
and Huang, 2016; Stern et al., 2017a) has attracted
attention due to its high accuracy and extreme
simplicity. Compared with other recent neural
constituency parsers (Dyer et al., 2016; Liu and
Zhang, 2016; Durrett and Klein, 2015) which use
neural networks to model tree structures, the span-
based framework is considerably simpler, only us-
ing bidirectional RNNs to model the input se-
quence and not the output tree. Because of this
factorization, the output space is decomposable

which enables efficient dynamic programming al-
gorithm such as CKY. But existing span-based
parsers suffer from a crucial limitation in terms
of search: on the one hand, a greedy span parser
(Cross and Huang, 2016) is fast (linear-time) but
only explores one single path in the exponentially
large search space, and on the other hand, a chart-
based span parser (Stern et al., 2017a) performs
exact search and achieves state-of-the-art accu-
racy, but in cubic time, which is too slow for
longer sentences and for applications that go be-
yond sentence boundaries such as end-to-end dis-
course parsing (Hernault et al., 2010; Zhao and
Huang, 2017) and integrated sentence boundary
detection and parsing (Björkelund et al., 2016).

We propose to combine the merits of both
greedy and chart-based approaches and design a
linear-time span-based neural parser that searches
over exponentially large space. Following Huang
and Sagae (2010), we perform left-to-right dy-
namic programming in an action-synchronous
style, with (2n − 1) actions (i.e., steps) for a sen-
tence of nwords. While previous non-neural work
in this area requires sophisticated features (Huang
and Sagae, 2010; Mi and Huang, 2015) and thus
high time complexity such as O(n11), our states
are as simple as ` : (i, j) where ` is the step in-
dex and (i, j) is the span, modeled using bidirec-
tional RNNs without any syntactic features. This
gives a running time ofO(n4), with the extraO(n)
for step index. We further employ beam search
to have a practical runtime of O(nb2) at the cost
of exact search where b is the beam size. How-
ever, on the Penn Treebank, most sentences are
less than 40 words (n < 40), and even with a small
beam size of b = 10, the observed complexity of
an O(nb2) parser is not exactly linear in n (see
Experiments). To solve this problem, we apply
cube pruning (Chiang, 2007; Huang and Chiang,
2007) to improve the runtime toO(nb log b) which
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renders an observed complexity that is linear in n
(with minor extra inexactness).

We make the following contributions:

• We design the first neural parser that is both
linear time and capable of searching over ex-
ponentially large space.1

• We are the first to apply cube pruning to in-
cremental parsing, and achieves, for the first
time, the complexity of O(nb log b), i.e., lin-
ear in sentence length and (almost) linear in
beam size. This leads to an observed com-
plexity strictly linear in sentence length n.

• We devise a novel loss function which penal-
izes wrong spans that cross gold-tree spans,
and employ max-violation update (Huang
et al., 2012) to train this parser with struc-
tured SVM and beam search.

• Compared with chart parsing baselines, our
parser is substantially faster for long sen-
tences on the Penn Treebank, and orders
of magnitude faster for end-to-end discourse
parsing. It also achieves the highest F1 score
on the Penn Treebank among single model
end-to-end systems.

• We devise a new formulation of graph-
structured stack (Tomita, 1991) which re-
quires no extra bookkeeping, proving a new
theorem that gives deep insight into GSS.

2 Preliminaries

2.1 Span-Based Shift-Reduce Parsing

A span-based shift-reduce constituency parser
(Cross and Huang, 2016) maintains a stack of
spans (i, j), and progressively adds a new span
each time it takes a shift or reduce action. With
(i, j) on top of the stack, the parser can either shift
to push the next singleton span (j, j + 1) on the
stack, or it can reduce to combine the top two
spans, (k, i) and (i, j), forming the larger span
(k, j). After each shift/reduce action, the top-most
span is labeled as either a constituent or with a null
label ∅, which means that the subsequence is not a
subtree in the final decoded parse. Parsing initial-
izes with an empty stack and continues until (0, n)
is formed, representing the entire sentence.

1
https://github.com/junekihong/beam-span-parser

input w0 . . . wn−1

state ` : 〈i, j〉 : (c, v)

init 0 : 〈0, 0〉 : (0, 0)

goal 2n− 1 : 〈0, n〉 : (c, c)

shift
` : 〈 , j〉 : (c, )

`+ 1 : 〈j, j + 1〉 : (c+ ξ, ξ)
j < n

reduce
`′ : 〈k, i〉 : (c′, v′) ` : 〈i, j〉 : ( , v)

`+ 1 : 〈k, j〉 : (c′ + v + σ, v′ + v + σ)

Figure 1: Our shift-reduce deductive system. Here
` is the step index, c and v are prefix and inside
scores. Unlike Huang and Sagae (2010) and Cross
and Huang (2016), ξ and σ are not shift/reduce
scores; instead, they are the (best) label scores of
the resulting span: ξ = maxX s(j, j+1, X) and
σ = maxX s(k, j,X) where X is a nonterminal
symbol (could be ∅). Here `′ = `− 2(j − i) + 1.

2.2 Bi-LSTM features
To get the feature representation of a span (i, j),
we use the output sequence of a bi-directional
LSTM (Cross and Huang, 2016; Stern et al.,
2017a). The LSTM produces f0, ..., fn forwards
and bn, ...,b0 backwards outputs, which we con-
catenate the differences of (fj−fi) and (bi−bj) as
the representation for span (i, j). This eliminates
the need for complex feature engineering, and can
be stored for efficient querying during decoding.

3 Dynamic Programming

3.1 Score Decomposition
Like Stern et al. (2017a), we also decompose the
score of a tree t to be the sum of the span scores:

s(t) =
∑

(i,j,X)∈t
s(i, j,X) (1)

=
∑

(i,j)∈t
max
X

s((fj − fi;bi − bj), X) (2)

Note that X is a nonterminal label, a unary chain
(e.g., S-VP), or null label ∅.2 In a shift-reduce
setting, there are 2n − 1 steps (n shifts and n − 1
reduces) and after each step we take the best label
for the resulting span; therefore there are exactly

2The actual code base of Stern et al. (2017b) forces
s(i, j,∅) to be 0, which simplifies their CKY parser and
slightly improves their parsing accuracy. However, in our
incremental parser, this change favors shift over reduce and
degrades accuracy, so our parser keeps a learned score for ∅.
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2n−1 such (labeled) spans (i, j,X) in tree t. Also
note that the choice of the label for any span (i, j)
is only dependent on (i, j) itself (and not depend-
ing on any subtree information), thus the max over
label X is independent of other spans, which is
a nice property of span-based parsing (Cross and
Huang, 2016; Stern et al., 2017a).

3.2 Graph-Struct. Stack w/o Bookkeeping

We now reformulate this DP parser in the above
section as a shift-reduce parser. We maintain a step
index ` in order to perform action-synchronous
beam search (see below). Figure 1 shows how
to represent a parsing stack using only the top
span (i, j). If the top span (i, j) shifts, it pro-
duces (j, j + 1), but if it reduces, it needs to know
the second last span on the stack, (k, i), which is
not represented in the current state. This problem
can be solved by graph-structure stack (Tomita,
1991; Huang and Sagae, 2010), which maintains,
for each state p, a set of predecessor states π(p)
that p can combine with on the left.

This is the way our actual code works (π(p) is
implemented as a list of pointers, or “left point-
ers”), but here for simplicity of presentation we
devise a novel but easier-to-understand formula-
tion in Fig. 1, where we explicitly represent the set
of predecessor states that state ` : (i, j) can com-
bine with as `′ : (k, i) where `′ = `−2(j− i) + 1,
i.e., (i, j) at step ` can combine with any (k, i) for
any k at step `′. The rationale behind this new for-
mulation is the following theorem:

Theorem 1 The predecessor states π(` : (i, j))
are all in the same step `′ = `− 2(j − i) + 1.

Proof. By induction.
This Theorem bring new and deep insights and

suggests an alternative implementation that does
not require any extra bookkeeping. The time com-
plexity of this algorithm is O(n4) with the extra
O(n) due to step index.3

3.3 Action-Synchronous Beam Search

The incremental nature of our parser allows us to
further lower the runtime complexity at the cost of
inexact search. At each time step, we maintain the
top b parsing states, pruning off the rest. Thus, a
candidate parse that made it to the end of decod-
ing had to survive within the top b at every step.

3The word-synchronous alternative does not need the step
index ` and enjoys a cubic time complexity, being almost
identical to CKY. However, beam search becomes very tricky.

With O(n) parsing actions our time complexity
becomes linear in the length of the sentence.

3.4 Cube Pruning
However, Theorem 1 suggests that a parsing state
p can have up to b predecessor states (“left point-
ers”), i.e., |π(p)| ≤ b because π(p) are all in the
same step, a reduce action can produce up to b
subsequent new reduced states. With b items on
a beam and O(n) actions to take, this gives us an
overall complexity of O(nb2). Even though b2 is
a constant, even modest values of b can make b2

dominate the length of the sentence. 4

To improve this at the cost of additional inex-
actness, we introduce cube pruning to our beam
search, where we put candidate actions into a heap
and retrieve the top b states to be considered in
the next time-step. We heapify the top b shift-
merged states and the top b reduced states. To
avoid inserting all b2 reduced states from the pre-
vious beam, we only consider each state’s high-
est scoring left pointer,5 and whenever we pop a
reduced state from the heap, we iterate down its
left pointers to insert the next non-duplicate re-
duced state back into the heap. This process fin-
ishes when we pop b items from the heap. The
initialization of the heap takes O(b) and popping
b items takes O(b log b), giving us an overall im-
proved runtime of O(nb log b).

4 Training

We use a Structured SVM approach for training
(Stern et al., 2017a; Shi et al., 2017). We want
the model to score the gold tree t∗ higher than any
other tree t by at least a margin ∆(t, t∗):

∀t, s(t∗)− s(t) ≥ ∆(t, t∗).

Note that ∆(t, t) = 0 for any t and ∆(t, t∗) > 0
for any t 6= t∗. At training time we perform loss-
augmented decoding:

t̂ = arg max
t
s∆(t) = arg max

t
s(t) + ∆(t, t∗).

4The average length of a sentence in the Penn Treebank
training set is about 24. Even with a beam size of 10, we al-
ready have b2 = 100, which would be a significant factor in
our runtime. In practice, each parsing state will rarely have
the maximum b left pointers so this ends up being a loose
upper-bound. Nevertheless, the beam search should be per-
formed with the input length in mind, or else as b increases
we risk losing a linear runtime.

5If each previous beam is sorted, and if the beam search
is conducted by going top-to-bottom, then each state’s left
pointers will implicitly be kept in sorted order.
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Figure 2: Runtime plots of decoding on the train-
ing set of the Penn Treebank. The differences be-
tween the different algorithms become evident af-
ter sentences of length 40. The regression curves
have been empirically fitted.

where s∆(·) is the loss-augmented score. If t̂ =
t∗, then all constraints are satisfied (which implies
arg maxt s(t) = t∗), otherwise we perform an up-
date by backpropagating from s∆(t̂)− s(t∗).

4.1 Cross-Span Loss
The baseline loss function from Stern et al.
(2017a) counts the incorrect labels (i, j,X) in the
predicted tree:

∆base(t, t
∗) =

∑

(i,j,X)∈t
1
(
X 6= t∗(i,j)

)
.

Note that X can be null ∅, and t∗(i,j) denotes
the gold label for span (i, j), which could also
be ∅.6 However, there are two cases where
t∗(i,j) = ∅: a subspan (i, j) due to binarization
(e.g., a span combining the first two subtrees in
a ternary branching node), or an invalid span in
t that crosses a gold span in t∗. In the baseline
function above, these two cases are treated equiv-
alently; for example, a span (3, 5,∅) ∈ t is not pe-
nalized even if there is a gold span (4, 6,VP) ∈ t∗.
So we revise our loss function as:

∆new(t, t∗) =
∑

(i,j,X)∈t
1
(
X 6= t∗(i,j)

∨ cross(i, j, t∗)
)

6Note that the predicted tree t has exactly 2n − 1 spans
but t∗ has much fewer spans (only labeled spans without ∅).
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Figure 3: Runtime plot of decoding the discourse
treebank training set. The log-log plot on the right
shows the cubic complexity of baseline chart pars-
ing. Whereas beam search decoding maintains lin-
ear time even for sequences of thousands of words.

where cross(i, j, t∗) = ∃ (k, l) ∈ t∗, and i < k <
j < l or k < i < l < j.

4.2 Max Violation Updates
Given that we maintain loss-augmented scores
even for partial trees, we can perform a training
update on a given example sentence by choos-
ing to take the loss where it is the greatest along
the parse trajectory. At each parsing time-step `,
the violation is the difference between the high-
est augmented-scoring parse trajectory up to that
point and the gold trajectory (Huang et al., 2012;
Yu et al., 2013). Note that computing the viola-
tion gives us the max-margin loss described above.
Taking the largest violation from all time-steps
gives us the max-violation loss.

5 Experiments

We present experiments on the Penn Treebank
(Marcus et al., 1993) and the PTB-RST discourse
treebank (Zhao and Huang, 2017). In both cases,
the training set is shuffled before each epoch, and
dropout (Hinton et al., 2012) is employed with
probability 0.4 to the recurrent outputs for regu-
larization. Updates with minibatches of size 10
and 1 are used for PTB and the PTB-RST respec-
tively. We use Adam (Kingma and Ba, 2014) with
default settings to schedule learning rates for all
the weights. To address unknown words during
training, we adopt the strategy described by Kiper-
wasser and Goldberg (Kiperwasser and Goldberg,
2016); words in the training set are replaced with
the unknown word symbol UNK with probability
punk = 1

1+f(w) , with f(w) being the number of
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Development Set 22 (F1)
Baseline +cross-span Time

This Work Beam 1 89.41 89.93 0.042
This Work Beam 5 91.27 91.91 0.050
This Work Beam 10 91.56 92.09 0.058
This Work Beam 15 91.74 92.16 0.062
This Work Beam 20 91.65 92.20 0.066
Chart 92.02 92.21 0.076

Table 1: Comparison of PTB development set
results, with the time measured in seconds-per-
sentence. The baseline chart parser is from Stern
et al. (2017b), with null-label scores unconstrained
to be nonzero, replicating their paper.

Test Set 23
End-to-End & Single Model LR LP F1
Socher et al. (2013) 90.4
Durrett and Klein (2015) 91.1
Cross and Huang (2016) 90.5 92.1 91.3
Liu and Zhang (2016) 91.3 92.1 91.7
Dyer et al. (2016) (discrim.) 91.7
Stern et al. (2017a) 90.63 92.98 91.79
Stern et al. (2017a) +cross-span 91.67 91.94 91.81
Stern et al. (2017b) 91.35 92.38 91.86
This Work Beam 10 91.44 91.91 91.67
This Work Beam 15 91.64 92.04 91.84
This Work Beam 20 91.49 92.45 91.97
Reranking/Ensemble/Separate Decoding
Vinyals et al. (2015) (ensem) 90.5
Dyer et al. (2016) (gen., rerank) 93.3
Choe and Charniak (2016) (rerank) 93.8
Stern et al. (2017c) (sep. decoding) 92.57 92.56 92.56
Fried et al. (2017) (ensem/rerank) 94.25

Table 2: Final PTB Test Results. We compare our
models with other (neural) single-model end-to-
end trained systems.

occurrences of word w in the training corpus. Our
system is implemented in Python using the DyNet
neural network library (Neubig et al., 2017).

5.1 Penn Treebank

We use the Wall Street Journal portion of the Penn
Treebank, with the standard split of sections 2-21
for training, 22 for development, and 23 for test-
ing. Tags are provided using the Stanford tagger
with 10-way jackknifing.

Table 1 shows our development results and
overall speeds, while Table 2 compares our test re-
sults. We show that a beam size of 20 can be fast
while still achieving state-of-the-art performances.

5.2 Discourse Parsing

To measure the tractability of parsing on longer
sequences, we also consider experiments on the

LR LP F1
Zhao and Huang (2017) 81.6 83.5 82.5
This Work Beam 10 80.47 80.61 80.54
This Work Beam 20 80.86 80.73 80.79
This Work Beam 200 81.51 80.84 81.18
This Work Beam 500? 81.50 80.81 81.16
This Work Beam 1000? 81.55 80.85 81.20

Table 3: Overall test accuracies for PTB-RST dis-
course treebank. Starred? rows indicate a run that
was decoded from the beam 200 model.

segment structure +nuclearity +relation
Bach et al. (2012) 95.1 - - -
Hernault et al. (2010) 94.0 72.3 59.1 47.3
Zhao and Huang (2017) 95.4 78.8 65.0 52.2
This Work Beam 200 91.20 73.36 58.87 46.38
This Work Beam 500? 93.52 74.93 60.16 47.03
This Work Beam 1000? 94.06 75.60 60.61 47.37

Table 4: F1 scores comparing discourse systems.
Results correspond to the accuracies in Table 3,
broken down to focus on the discourse labels.

PTB-RST discourse Treebank, a joint discourse
and constituency dataset with a combined rep-
resentation, allowing for parsing at either level
(Zhao and Huang, 2017). We compare our run-
times out-of-the-box in Figure 3. Without any
pre-processing, and by treating discourse exam-
ples as constituency trees with thousands of words,
our trained models represent end-to-end discourse
parsing systems.

For our overall constituency results in Table 3,
and for discourse results in Table 4, we adapt the
split-point feature described in (Zhao and Huang,
2017) in addition to the base parser. We find that
larger beamsizes are required to achieve good dis-
course scores.

6 Conclusions
We have developed a new neural parser that main-
tains linear time, while still searching over an ex-
ponentially large space. We also use cube prun-
ing to further improve the runtime to O(nb log b).
For training, we introduce a new loss function,
and achieve state-of-the-art results among single-
model end-to-end systems.
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Abstract
While syntactic dependency annotations
concentrate on the surface or functional
structure of a sentence, semantic depen-
dency annotations aim to capture between-
word relationships that are more closely
related to the meaning of a sentence, using
graph-structured representations. We ex-
tend the LSTM-based syntactic parser of
Dozat and Manning (2017) to train on and
generate these graph structures. The re-
sulting system on its own achieves state-
of-the-art performance, beating the pre-
vious, substantially more complex state-
of-the-art system by 0.6% labeled F1.
Adding linguistically richer input repre-
sentations pushes the margin even higher,
allowing us to beat it by 1.9% labeled F1.

1 Introduction

Syntactic dependency parsing is arguably the most
popular method for automatically extracting the
low-level relationships between words in a sen-
tence for use in natural language understanding
tasks. However, typical syntactic dependency
frameworks are limited in the number and types of
relationships that can be captured. For example, in
the sentence Mary wants to buy a book, the word
Mary is the subject of both want and buy—either
or both relationships could be useful in a down-
stream task, but a tree-structured representation of
this sentence (as in Figure 1a) can only represent
one of them.1

The 2014 SemEval shared task on Broad-
Coverage Semantic Dependency Parsing (Oepen
et al., 2014) introduced three new dependency rep-
resentations that do away with the assumption of

1Though efforts have been made to address this limitation;
seeDe Marneffe et al. (2006); Nivre et al. (2016); Schuster
and Manning (2016); Candito et al. (2017) for examples.

strict tree structure in favor of a richer graph-
structured representation, allowing them to cap-
ture more linguistic information about a sentence.
This opens up the possibility of providing more
useful information to downstream tasks (Reddy
et al., 2017; Schuster et al., 2017), but increases
the difficulty of automatically extracting that in-
formation, since most previous work on parsing
has focused on generating trees.

Dozat and Manning (2017) developed a suc-
cessful syntactic dependency parsing system with
few task-specific sources of complexity. In this
paper, we extend that system so that it can train
on and produce the graph-structured data of se-
mantic dependency schemes. We also consider
straightforward extensions of the system that are
likely to increase performance over the straightfor-
ward baseline, including giving the system access
to lemma embeddings and building in a character-
level word embedding model. Finally, we briefly
examine some of the design choices of that archi-
tecture, in order to assess which components are
necessary for achieving the highest accuracy and
which have little impact on final performance.

2 Background

2.1 Semantic dependencies

The 2014 SemEval (Oepen et al., 2014, 2015)
shared task introduced three new semantic de-
pendency formalisms, applied to the Penn Tree-
bank (shown in Figure 1, compared to Universal
Dependencies (Nivre et al., 2016)): DELPH-IN
MRS, or DM (Flickinger et al., 2012; Oepen and
Lønning, 2006); Predicate-Argument Structures,
or PAS (Miyao and Tsujii, 2004); and Prague Se-
mantic Dependencies, or PSD (Hajic et al., 2012).
Whereas syntactic dependencies generally anno-
tate functional relationships between words—such
as subject and object—semantic dependencies aim
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Figure 1: Comparison between syntactic and semantic dependency schemes

to reflect semantic relationships—such as agent
and patient (cf. semantic role labeling (Gildea and
Jurafsky, 2002)). The SemEval semantic depen-
dency schemes are also directed acyclic graphs
(DAGs) rather than trees, allowing them to anno-
tate function words as being heads without length-
ening paths between content words (as in 1b).

2.2 Related work

Our approach to semantic dependency parsing is
primarily inspired by the success of Dozat and
Manning (2017) and Dozat et al. (2017) at syn-
tactic dependency parsing and Peng et al. (2017)
at semantic dependency parsing. In Dozat and
Manning (2017) and Peng et al. (2017), parsing in-
volves first using a multilayer bidirectional LSTM
over word and part-of-speech tag embeddings.
Parsing is then done using directly-optimized self-
attention over recurrent states to attend to each
word’s head (or heads), and labeling is done with
an analgous multi-class classifier.

Peng et al.’s (2017) system uses a max-margin
classifer on top of a BiLSTM, with the score for
each graph coming from several sources. First, it
scores each word as either taking dependents or
not. For each ordered pair of words, it scores the
arc from the first word to the second. Lastly, it
scores each possible labeled arc between the two
words. The graph that maximizes these scores
may not be consistent, with an edge coming from
a non-predicate, for example, so they enforce hard
constraints in order to prune away invalid semantic
graphs. Decisions are not independent, so in order
to find the highest-scoring graph that follows these
constraints, they use the AD3 decoding algorithm
(Martins et al., 2011).

Dozat and Manning’s (2017) approach to syn-
tactic dependency parsing is similar, but avoids
the possibility of generating invalid trees by fully
factorizing the system. Rather than summing the
scores from multiple modules and then finding the
valid structure that maximizes that sum, the sys-

tem makes parsing and labeling decisions sequen-
tially, choosing the labels for each edge only af-
ter the edges in the tree have been finalized by an
MST algorithm.

Wang et al. (2018) take a different approach in
their recent work, using a transition-based parser
built on stack-LSTMs (Dyer et al., 2015). They
extend Choi and McCallum’s (2013) transition
system for producing non-projective trees so that
it can produce arbitrary DAGs and they modify the
stack-LSTM architecture slightly to make the net-
work more powerful.

3 Approach

3.1 Basic approach

We can formulate the semantic dependency pars-
ing task as labeling each edge in a directed graph,
with null being the label given to pairs with no
edge between them. Using only one module that
labels each edge in this way would be an unfactor-
ized approach. We can, however, factorize it into
two modules: one that predicts whether or not a
directed edge (wj , wi) exists between two words,
and another that predicts the best label for each
potential edge.

Our approach closely follows that of Dozat and
Manning (2017). As with many successful recent
parsers, we concatenate word and POS tag2 em-
beddings, and feed them into a multilayer bidirec-
tional LSTM to get contextualized word represen-
tations.3

xi = e
(word)
i ⊕ e

(tag)
i (1)

R = BiLSTM(X) (2)

2We use the POS tags (and later, lemmas) provided with
each dataset.

3We follow the convention of representing scalars in low-
ercase italics a, vectors in lowercase bold a, matrices in up-
percase italics A, and tensors in uppercase bold A. We main-
tain this convention when indexing and stacking, so ai is
row i of matrix A and A contains the sequence of vectors
(a1, . . . ,an).
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For each of the two modules, we use single-layer
feedforward networks (FNN) to split the top re-
current states into two parts—a head representa-
tion, as in Eq. (5, 6) and a dependent representa-
tion, as in Eq. (7, 8). This allows us to reduce the
recurrent size to avoid overfitting in the classifer
without weakening the LSTM’s capacity. We can
then use bilinear or biaffine classifiers in Eq. (3,
4)—which are generalizations of linear classifiers
to include multiplicative interactions between two
vectors—to predict edges and labels.4

Bilin(x1,x2) = x>1 Ux2 (3)

Biaff(x1,x2) = x>1 Ux2 +W (x1 ⊕ x2) + b (4)

h
(edge-head)
i = FNN(edge-head)(ri) (5)

h
(label-head)
i = FNN(label-head)(ri) (6)

h
(edge-dep)
i = FNN(edge-dep)(ri) (7)

h
(label-dep)
i = FNN(label-dep)(ri) (8)

s
(edge)
i,j = Biaff(edge)

(
h
(edge-dep)
i ,h

(edge-head)
j

)
(9)

s
(label)
i,j = Biaff(label)

(
h
(label-dep)
i ,h

(label-head)
j

)
(10)

y
′(edge)
i,j = {si,j ≥ 0} (11)

y
′(label)
i,j = argmax si,j (12)

The tensor U can optionally be diagonal (such that
ui,k,j = 0 wherever i 6= j) to conserve param-
eters. The unlabeled parser scores every edge be-
tween pairs of words in the sentence—these scores
can be decoded into a graph by keeping only edges
that received a positive score. The labeler scores
every label for each pair of words, so we simply
assign each predicted edge its highest-scoring la-
bel and discard the rest. We can train the system by
summing the losses from the two modules, back-
propagating error to the labeler only through edges
with a non-null gold label. This system is shown
graphically in Figure 2. We find that sometimes
the loss for one module overwhelms the loss for
the other, causing the system to underfit. Thus we
add a tunable interpolation constant λ ∈ (0, 1) to
even out the two losses.

` = λ`(label) + (1− λ)`(edge) (13)

Worth noting is that the removal of the max-
imum spanning tree algorithm and change from
softmax cross-entropy to sigmoid cross-entropy in

4For the labeled parser, U will be (d×c×d)-dimensional,
where c is the number of labels. For the unlabeled parser, U
will be (d× 1× d)-dimensional, so that si,j will be a single
score.

. . .BiLSTM

Embed

FC

Edges Labels

Figure 2: The basic architecture of our factorized
system. Labels are only assigned to word pairs
with an edge between them.

the unlabeled parser represent the only changes
needed to allow the original syntactic parser to
generate fully graph-structured semantic depen-
dency output. Note also that this system is gen-
eral enough that it could be used for any graph-
structured dependency scheme, including the en-
hanced dependencies of the Universal Dependen-
cies formalism (which allows cyclic graphs).

3.2 Augmentations

Ballesteros et al. (2016), Dozat et al. (2017), and
Ma et al. (2018) find that character-level word em-
bedding models improve performance for syntac-
tic dependency parsing, so we also want to explore
the impact it has on semantic dependency pars-
ing. Dozat et al. (2017) confirm that their syntactic
parser performs better with POS tags, which leads
us to examine whether word lemmas—another
form of low-level lexical information—might also
improve dependency parsing performance.

4 Results

4.1 Hyperparameters

We tuned the hyperparameters for our basic sys-
tem (with no character embeddings or lemmas)
fairly extensively on the DM development data.
The hyperparameter configuration for our final
system is given in Table 2. All input embeddings
(word, pretrained, POS, etc.) were concatenated.
We used 100-dimensional pretrained GloVe em-
beddings (Pennington et al., 2014), but linearly
transformed them to be 125-dimensional. Only
words or lemmas that occurred 7 times or more
were included in the word and lemma embedding
matrix—including less frequent words appeared to
facilitate overfitting. Character-level word embed-
dings were generated using a one-layer unidirec-
tional LSTM that convolved over three character
embeddings at a time, whose end state was linearly
transformed to be 100-dimensional. The core BiL-
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DM PAS PSD Avg
ID OOD ID OOD ID OOD ID OOD

(Du et al., 2015) 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8
(Almeida and Martins, 2015) 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2
WCGL18 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8
PTS17: Basic 89.4 84.5 92.2 88.3 77.6 75.3 87.4 83.6
PTS17: Freda3 90.4 85.3 92.7 89.0 78.5 76.4 88.0 84.4
Ours: Basic 91.4 86.9 93.9 90.8 79.1 77.5 88.1 85.0
Ours: +Char 92.7 87.8 94.0 90.6 80.5 78.6 89.1 85.7
Ours: +Lemma 93.3 88.8 93.9 90.5 80.3 78.7 89.1 86.0
Ours: +Char +Lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3

Table 1: Comparison between our system and the previous state of the art on in-domain (WSJ) and
out-of-domain (Brown corpus) data, according to labeled F1 (LF1).

Hidden Sizes
Word/Glove/POS/

100
Lemma/Char
GloVe linear 125
Char LSTM 1 @ 400
Char linear 100
BiLSTM 3 @ 600
Arc/Label 600

Dropout Rates (drop prob)
Word/GloVe/

20%
POS/Lemma
Char LSTM (FF/recur) 33%
Char linear 33%
BiLSTM (FF/recur) 45%/25%
Arc/Label 25%/33%

Loss & Optimizer
Interpolation (λ) .025
L2 regularization 3e−9

Learning rate 1e−3

Adam β1 0
Adam β2 .95

Table 2: Final hyperparameter configuration.

STM was three layers deep. The different types of
word embeddings—word, GloVe, and character-
level—were dropped simultaneously, but indepen-
dently from POS and lemma embeddings (which
were dropped independently from each other).
Dropped embeddings were replaced with learned
<DROP> tokens. LSTMs used same-mask recur-
rent dropout (Gal and Ghahramani, 2016). The
systems were trained with batch sizes of 3000 to-
kens for up to 75,000 training steps, terminating
early after 10,000 steps pass with no improve-

ment in validation accuracy. The L2 regularization
penalty was so small that it likely had little impact.

4.2 Performance

We use biaffine classifiers, with no nonlinearities,
and a diagonal tensor in the label classifier but not
the edge classifier. The system trains at a speed
of about 300 sequences/second on an nVidia Ti-
tan X and parses about 1,000 sequences/second.
Du et al. (2015) and Almeida and Martins (2015)
are the systems that won the 2015 shared task
(closed track). PTS17: Basic represents the
single-task versions of Peng et al. (2017), which
they make multitask across the three datasets in
Freda3 by adding frustratingly easy domain adap-
tation (Daumé III, 2007; Kim et al., 2016) and
a third-order decoding mechanism. WCGL18 is
Wang et al.’s (2018) transition-based system. Ta-
ble 1 compares our performance with these sys-
tems. Our fully factorized basic system already
substantially outperforms Peng et al.’s single-task
baseline and also beats out their much more com-
plex multi-task approach. Simply adding in either
a character-level word embedding model (similar
to Dozat et al.’s (2017)) or a lemma embedding
matrix likewise improves performance quite a bit,
and including both together generally pushes per-
formance even higher. Many infrequent words
were excluded from the frequent token embedding
matrix, so it makes sense that the system should
improve when provided more lexical information
that’s harder to overfit on.

Surprisingly, the PAS dataset seems not to ben-
efit substantially from lemma or character embed-
dings. It has been noted that PAS is the easiest of
the three datasets to achieve good performance for;
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Figure 3: Performance of architecture variations:
our basic system; unfactorized (labeler-only); om-
mitting the hidden layers (Eqs. 7–6); with bilinear
classifiers (Eq. 3); with nondiagonal tensors in the
labeler or diagonal tensors in the parser; with the
ReLU nonlinearity.

so one possible explanation is that 94% LF1 may
simply be near the ceiling of what can be achieved
for the dataset. Alternatively, the main difference
bewteen PAS as DM/PSD is that PAS includes se-
mantically vacuous function words in its represen-
tation. Because function words are extremely fre-
quent, it’s possible that they are being dispropor-
tionately represented in the loss or LF1 score. Us-
ing a hinge loss (like Peng et al. (2017)) instead of
a cross-entropy loss might help, since the system
would stop focusing on potentially “easy” func-
tional predicates once it learned to predict their ar-
gument structures confidently, allowing it to put
more resources into modeling more challenging
phenomena.

4.3 Variations
We also consider the impact that slight variations
on basic architecture have on final performance
in Figure 3. We train twenty models on the DM
treebank for each variation we consider, reduc-
ing the number of training steps but keeping all
other hyperparameters constant. Rank-sum tests
(Lehmann et al., 1975) reveal that the basic sys-
tem outperforms variants with no hidden layers in
the edge classifier (W=339; p<.001) or the label
classifier (W=307; p<.01). Using a diagonal ten-
sor U in the unlabeled parser also significantly
hurts performance (W=388; p<.001), likely be-
ing too underpowered. While the other variations
(especially the unfactorized and ReLU systems)
appeared to make a difference during hyperparam-
eter tuning, they were not significant here.

The improved performance of deeper systems

(replicating Dozat and Manning (2017)) likely jus-
tifies the added complexity. On the other hand,
the choice between biaffine and bilinear classi-
fiers comes down largely to aesthetics. This is
perhaps unsurprising since the change from bi-
affine to bilinear represents only a small decrease
in overall power. Unusually, using no nonlin-
earity in the hidden layers in Eqs. (7–6) works
as well as ReLU—in fact, using ReLU in the
unlabeled parser marginally reduced performance
(W=269; p=.063). Overall, the parser displayed
considerable invariance to architecture changes.
Since our system is significantly larger and more
heavily regularized than the systems we com-
pare against, this suggests that unglamorous, low-
level hyperparameters—such as hidden sizes and
dropout rates—are more critical to system perfor-
mance than high-level architecture enhancements.

5 Discussion

We minimally extended a simple syntactic de-
pendency parser to produce graph-structured de-
pendencies. Without any further augmentations,
our carefully-tuned system achieves state-of-the-
art performance, highlighting the importance of
finding the best hyperparameter configuration (and
by extention, building fast systems that can be
trained quickly). Additionally, we can see that a
multitask system relying on a complex decoding
algorithm to prune away invalid graph structures
isn’t necessary for achieving the level of parsing
performance a simple system can achieve (though
it could push performance even higher). We also
find easier or independently motivated ways to
improve accuracy—taking advantage of provided
lemma or subtoken information provides a boost
comparable to one found by drastically increasing
system complexity.

Further, we observe a high-performing graph-
based parser can be adapted to different types
of dependency graphs (projective tree, non-
projective tree, directed graph) with only small
changes without obviously hurting accuracy. By
contrast, transition-based parsers—which were
originally designed for parsing projective con-
stituency trees (Nivre, 2003; Aho and Ullman,
1972)—require whole new transition sets or even
data structures to generate arbitrary graphs. We
feel that this points to graph-based parsers be-
ing the most natural way to produce dependency
graphs with different structural restrictions.
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Ondrej Bojar, Silvie Cinková, Eva Fucı́ková, Marie
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Abstract

An abugida is a writing system where the
consonant letters represent syllables with
a default vowel and other vowels are de-
noted by diacritics. We investigate the fea-
sibility of recovering the original text writ-
ten in an abugida after omitting subordi-
nate diacritics and merging consonant let-
ters with similar phonetic values. This is
crucial for developing more efficient in-
put methods by reducing the complexity
in abugidas. Four abugidas in the south-
ern Brahmic family, i.e., Thai, Burmese,
Khmer, and Lao, were studied using a
newswire 20, 000-sentence dataset. We
compared the recovery performance of a
support vector machine and an LSTM-
based recurrent neural network, finding
that the abugida graphemes could be re-
covered with 94% – 97% accuracy at the
top-1 level and 98% – 99% at the top-4
level, even after omitting most diacritics
(10 – 30 types) and merging the remain-
ing 30 – 50 characters into 21 graphemes.

1 Introduction

Writing systems are used to record utterances in
a wide range of languages and can be organized
into the hierarchy shown in Fig. 1. The sym-
bols in a writing system generally represent either
speech sounds (phonograms) or semantic units
(logograms). Phonograms can be either segmen-
tal or syllabic, with segmental systems being more
phonetic because they use separate symbols (i.e.,
letters) to represent consonants and vowels. Seg-
mental systems can be further subdivided depend-
ing on their representation of vowels. Alphabets
(e.g., the Latin, Cyrillic, and Greek scripts) are the
most common and treat vowel and consonant let-

writing
system

phonogram

logogram

segmental

syllabic abugida
alphabet
abjad

Figure 1: Hierarchy of writing systems.
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consonant character
merging
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…ជិតណណន…
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(b) RECOVERY

machine
learning
methods

Figure 2: Overview of the approach in this study.

ters equally. In contrast, abjads (e.g., the Arabic
and Hebrew scripts) do not write most vowels ex-
plicitly. The third type, abugidas, also called al-
phasyllabary, includes features from both segmen-
tal and syllabic systems. In abugidas, consonant
letters represent syllables with a default vowel,
and other vowels are denoted by diacritics. Abugi-
das thus denote vowels less explicitly than alpha-
bets but more explicitly than abjads, while being
less phonetic than alphabets, but more phonetic
than syllabaries. Since abugidas combine segmen-
tal and syllabic systems, they typically have more
symbols than conventional alphabets.

In this study, we investigate how to simplify and
recover abugidas, with the aim of developing a
more efficient method of encoding abugidas for in-
put. Alphabets generally do not have a large set of
symbols, making them easy to map to a traditional
keyboard, and logogram and syllabic systems need
specially designed input methods because of their
large variety of symbols. Traditional input meth-
ods for abugidas are similar to those for alphabets,
mapping two or three different symbols onto each
key and requiring users to type each character and
diacritic exactly. In contrast, we are able to sub-
stantially simplify inputting abugidas by encoding
them in a lossy (or “fuzzy”) way.

491



TH
ะ ั  ั   ั  ั  ั  ั  ั  ั 

ั  ั  ั  ั   ั  ั  ั  ั   ั
MY ိ  ိ  ိ  ိ  ေိ ိ  ိ  ိ   ိ KM

 ិ  ិ  ិ  ិ  ិ  ិ  ិ ើ  ិ ើិ  ើិ  ើិ ែិ ៃិ 

ើិ  ើិ   ិ ិ  ិ   ិ  ិ  ិ  ិ  ិ  ិ  ិ  ិ  ិ
LO
ະ  ិ   ិ    ិ   ិ   ិ   ិ   ិ   ិ

  ិ   ិ  ຽ  ិ   ិ   ិ   ិ   ិ   ិ
OMITTED

I II I II I II I II

MN K G U C J I Y T D N L P B M W R S H Q A E

TH กขฃ คฅฆ ง จฉ ชซฌ ญ ย ฎฏฐดตถ ฑฒทธ ณน ลฦฬ บปผฝ พฟภ ม ว รฤ ศษส หฬ อ   ๅ เ แ โ ใ ไ

MY ကခ ဂဃ င စဆ ဇဈ ဉ ည ယ ိ ဋဌတထ ဍဎဒဓ ဏန လဠ ပဖ ဗဘ မ ဝ ိ ရ ြိ သဿ ဟ ိ အ ိ  ိ  ိ ိ 

KM កខ គឃ ង ចឆ ជឈ ញ យ ដឋតថ ឌឍទធ ណន លឡ បផ ពភ ម វ រ ឝឞស ហ អ ិ  ្
LO ກຂ ຄ ງ ຈ ຊ ຍ ຢ ດຕຖ ທ ນ ລ ບປຜຝ ພຟ ມ ວ ຣ ສ ຫຮ ອ  ເ ແ ໂ ໃ ໄ

A
P

P
.

DENTALPALATE
PRE-V.

DE-V.
PLOSIVE

N
A

S.

M
E
R
G
E
D

R
-L

IK
E

S-
LI

K
E

H
-L

IK
E

LO
N

G
-A

ZE
R

O
-C

.LABIAL

PLOSIVE

N
A

S.

A
P

P
.PLOSIVE

N
A

S.

GUTTURAL

PLOSIVE

N
A

S.

A
P

P
.

Figure 3: Merging and omission for Thai (TH), Burmese (MY), Khmer (KM), and Lao (LO) scripts. The
MN row lists the mnemonics assigned to graphemes in our experiment. In this study, the mnemonics can
be assigned arbitrarily, and we selected Latin letters related to the real pronunciation wherever possible.

Fig. 2 gives an overview of this study, show-
ing examples in Khmer. We simplify abugidas by
omitting vowel diacritics and merging consonant
letters with identical or similar phonetic values,
as shown in (a). This simplification is intuitive,
both orthographically and phonetically. To resolve
the ambiguities introduced by the simplification,
we use data-driven methods to recover the origi-
nal texts, as shown in (b). We conducted experi-
ments on four southern Brahmic scripts, i.e., Thai,
Burmese, Khmer, and Lao scripts, with a unified
framework, using data from the Asian Language
Treebank (ALT) (Riza et al., 2016). The exper-
iments show that the abugidas can be recovered
satisfactorily by a recurrent neural network (RNN)
using long short-term memory (LSTM) units, even
when nearly all of the diacritics (10 – 30 types)
have been omitted and the remaining 30 – 50 char-
acters have been merged into 21 graphemes. Thai
gave the best performance, with 97% top-1 ac-
curacy for graphemes and over 99% top-4 accu-
racy. Lao, which gave the worst performance,
still achieved the top-1 and top-4 accuracies of
around 94% and 98%, respectively. The Burmese
and Khmer results, which lay in-between the other
two, were also investigated by manual evaluation.

2 Related Work

Some optimized keyboard layout have been pro-
posed for specific abugidas (Ouk et al., 2008).
Most studies on input methods have focused on
Chinese and Japanese characters, where thousands
of symbols need to be encoded and recovered. For
Chinese characters, Chen and Lee (2000) made
an early attempt to apply statistical methods to
sentence-level processing, using a hidden Markov
model. Others have examined max-entropy mod-
els, support vector machines (SVMs), conditional

random fields (CRFs), and machine translation
techniques (Wang et al., 2006; Jiang et al., 2007;
Li et al., 2009; Yang et al., 2012). Similar meth-
ods have also been developed for character con-
version in Japanese (Tokunaga et al., 2011). This
study takes a similar approach to the research on
Chinese and Japanese, transforming a less infor-
mative encoding into strings in a natural and re-
dundant writing system. Furthermore, our study
can be considered as a specific lossy compression
scheme on abugida textual data. Unlike images or
audio, the lossy text compression has received lit-
tle attention as it may cause difficulties with read-
ing (Witten et al., 1994). However, we handle this
issue within an input method framework, where
the simplified encoding is not read directly.

3 Simplified Abugidas

We designed simplification schemes for several
different scripts within a unified framework based
on phonetics and conventional usages, without
considering many language specific features. Our
primary aim was to investigate the feasibility of re-
ducing the complexity of abugidas and to establish
methods of recovering the texts. We will consider
language-specific optimization in a future work,
via both data- and user-driven studies.

The simplification scheme is shown in Fig. 3.1

Generally, the merges are based on the common
distribution of consonant phonemes in most natu-
ral languages, as well as the etymology of the char-
acters in each abugida. Specifically, three or four

1Each script also includes native punctuation marks, digit
notes, and standalone vowel characters that are not repre-
sented by diacritics. These characters were kept in the experi-
mental texts but not evaluated in the final results, as the usage
of these characters is trivial. In addition, white spaces, Latin
letters, Arabic digits, and non-native punctuation marks were
normalized into placeholders in the experiments, and were
also excluded from evaluation.

492



graphemes are preserved for the different articu-
lation locations (i.e., guttural, palate, dental, and
labial), that two for plosives, one for nasal (NAS.),
and one for approximant (APP.) if present. Addi-
tional consonants such as trills (R-LIKE), frica-
tives (S-/H-LIKE), and empty (ZERO-C.) are
also assigned their own graphemes. Although the
simplification omits most diacritics, three types
are retained, i.e., one basic mark common to
nearly all Brahmic abugidas (LONG-A), the pre-
posed vowels in Thai and Lao (PRE-V.), and
the vowel-depressors (and/or consonant-stackers)
in Burmese and Khmer (DE-V.). We assigned
graphemes to these because we found they in-
formed the spelling and were intuitive when typ-
ing. The net result was the omission of 18 types
of diacritics in Thai, 9 in Burmese, 27 in Khmer,
and 18 in Lao, and the merging of the remaining
53 types of characters in Thai, 43 in Burmese, 37
in Khmer, and 33 in Lao, into a unified set of 21
graphemes. The simplification thus substantially
reduces the number of graphemes, and represents
a straightforward benchmark for further language-
specific refinement to build on.

4 Recovery Methods

The recovery process can be formalized as a se-
quential labeling task, that takes the simplified
encoding as input, and outputs the writing units,
composed of merged and omitted character(s) in
the original abugidas, corresponding to each sim-
plified grapheme. Although structured learning
methods such as CRF (Lafferty et al., 2001) have
been widely used, we found that searching for
the label sequences in the output space was too
costly, because of the number of labels to be
recovered.2 Instead, we adopted non-structured
point-wise prediction methods using a linear SVM
(Cortes and Vapnik, 1995) and an LSTM-based
RNN (Hochreiter and Schmidhuber, 1997).

Fig. 4 shows the overall structure of the RNN.
After many experimentations, a general “shallow
and broad” configuration was adopted. Specifi-
cally, simplified grapheme bi-grams are first em-
bedded into 128-dimensional vectors3 and then
encoded in one layer of a bi-directional LSTM,

2One consonant character can be modified by multiple di-
acritics. In the ALT data used in this study, there are around
600 – 900 types of writing units in each script, and there
could be over 1, 000 on larger textual data.

3Directly embedding uni-grams (single graphemes) did
not give good performance in our preliminary experiments.
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LSTM-RNN

512-dim.

input

output

linear

softmax

(256×2)

Figure 4: Structure of the RNN used in this study.

resulting in a final representation consisting of
a 512-dimensional vector that concatenates two
256-dimensional vectors from the two directions.
The number of dimensions used here is large be-
cause we found that higher-dimensional vectors
were more effective than the deeper structures for
this task, as memory capacity was more important
than classification ability. For the same reason, the
representations obtained from the LSTM layer are
transformed linearly before the softmax function
is applied, as we found that non-linear transfor-
mations, which are commonly used for final clas-
sification, did not help for this task.

5 Experiments and Evaluation

We used raw textual data from the ALT,4 compris-
ing around 20, 000 sentences translated from En-
glish. The data were divided into training, devel-
opment, and test sets as specified by the project.5

For the SVM experiments, we used the off-
the-shelf LIBLINEAR library (Fan et al., 2008)
wrapped by the KyTea toolkit.6 Table 1 gives
the recovery accuracies, demonstrating that recov-
ery is not a difficult classification task, given well
represented contextual features. In general, us-
ing up to 5-gram features before/after the sim-
plified grapheme yielded the best results for the
baseline, except with Burmese, where 7-gram fea-
tures brought a small additional improvement. Be-
cause Burmese texts use relatively more spaces
than the other three scripts, longer contexts help
more. Meanwhile, Lao produced the worst results,
possibly because the omission and merging pro-
cess was harsh: Lao is the most phonetic of the
four scripts, with the least redundant spellings.

The LSTM-based RNN was implemented using
DyNet (Neubig et al., 2017), and it was trained
using Adam (Kingma and Ba, 2014) with an initial

4http://www2.nict.go.jp/astrec-att/
member/mutiyama/ALT/

5Around 18, 000, 1, 000, and 1, 000 sentences, resp.
6http://www.phontron.com/kytea/
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learning rate of 10−3. If the accuracy decreased on
the development set, the learning rate was halved,
and learning was terminated when there was no
improvement on the development set for three it-
erations. We did not use dropout (Srivastava et al.,
2014) but instead a voting ensemble over a set of
differently initialized models trained in parallel,
which is both more effective and faster.

As shown in Table 2, the RNN outperformed
SVM on all scripts in terms of top-1 accuracy.
A more lenient evaluation, i.e., top-n accuracy,
showed a satisfactory coverage of around 98%
(Khmer and Lao) to 99% (Thai and Burmese) con-
sidering only the top four results. Fig. 5 shows the
effect of changing the size of the training dataset
by repeatedly halving it until it was one-eighth of
its original size, demonstrating that the RNN out-
performed SVM regardless of training data size.
The LSTM-based RNN should thus be a substan-
tially better solution than the SVM for this task.

We also investigated Burmese and Khmer fur-
ther using manual evaluation. The results of
RNN@1

⊕16 in Table 2 were evaluated by native
speakers, who examined the output writing units
corresponding to each input simplified grapheme
and classified the errors using four levels: 0) ac-
ceptable, i.e., alternative spelling, 1) clear and
easy to identify the correct result, 2) confusing but
possible to identify the correct result, and 3) in-
comprehensible. Table 3 shows the error distribu-
tion. For Burmese, most of the errors are at lev-
els 1 and 2, and Khmer has a wider distribution.
For both scripts, around 50% of the errors are se-
rious (level 2 or 3), but the distributions suggest
that they have different characteristics. We are cur-
rently conducting a case study on these errors for
further language-specific improvements.

6 Conclusion and Future Work

In this study, a scheme was used to substantially
simplify four abugidas, omitting most diacritics
and merging the remaining characters. An SVM
and an LSTM-based RNN were then used to re-
cover the original texts, showing that the simpli-
fied abugidas could be recovered well. This illus-
trates the feasibility of encoding abugidas less re-
dundantly, which could help with the development
of more efficient input methods.

As for the future work, we are planning to in-
clude language-specific optimizations in the de-
sign of the simplification scheme and to improve

Thai Burmese Khmer Lao
Dev±3 96.1% 94.0% 94.6% 91.5%
Dev±5 97.1% 96.0% 95.7% 93.1%
Dev±7 97.0% 96.3% 95.7% 93.0%

Test 97.2% 96.1% 95.2% 93.1%

Leng. 76.0% 74.0% 77.6% 72.8%

Table 1: Top-1 recovery accuracy for the SVM.
Here, “Dev±m” represents the results for the de-
velopment set when using N -gram (N ∈ [1,m])
features within m-grapheme windows of the sim-
plified encodings, and “Test” represents the test set
results when using the feature set that gave the best
development set results. “Leng.” shows the ratio
of the number of characters in the simplified en-
codings compared with the original strings.

Thai Burmese Khmer Lao
SVM 97.2% 96.1% 95.2% 93.1%

RNN@1
⊕4 97.2% 96.3%‡ 95.5%‡ 93.3%‡

RNN@1
⊕8 97.3%† 96.4%‡ 95.6%‡ 93.6%‡

RNN@1
⊕16 97.4%‡ 96.5%‡ 95.6%‡ 93.6%‡

RNN@2
⊕16 98.8% 98.4% 97.5% 96.6%

RNN@4
⊕16 99.2% 98.8% 98.1% 97.7%

RNN@8
⊕16 99.2% 98.9% 98.4% 97.9%

Table 2: Top-n accuracy on the test set for the
LSTM-based RNN with an m-model ensemble
(RNN@n

⊕m). Here, † and ‡ mean the RNN outper-
formed the SVM with statistical significance at
p < 10−2 and p < 10−3 level, respectively, mea-
sured by bootstrap re-sampling.

88%

90%

92%

94%

96%

98%

2.E+05 2.E+06

TH-SVM

MY-SVM

KH-SVM

LO-SVM

TH-RNN

MY-RNN

KH-RNN

LO-RNN

Figure 5: Top-1 accuracy on the test set (y-axis)
for different training data sizes (x-axis, number of
graphemes after simplification, logarithmic).

Level 0 1 2 3
Burmese 4.5% 51.0% 42.2% 2.2%
Khmer 22.5% 28.5% 16.3% 32.8%

Table 3: Recovery error distribution.

the LSTM-based RNN by integrating dictionaries
and increasing the amount of training data.
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Abstract

As more and more academic papers are
being submitted to conferences and jour-
nals, evaluating all these papers by profes-
sionals is time-consuming and can cause
inequality due to the personal factors of
the reviewers. In this paper, in order
to assist professionals in evaluating aca-
demic papers, we propose a novel task:
automatic academic paper rating (AAPR),
which automatically determine whether
to accept academic papers. We build a
new dataset for this task and propose a
novel modularized hierarchical convolu-
tional neural network to achieve automatic
academic paper rating. Evaluation results
show that the proposed model outperforms
the baselines by a large margin. The
dataset and code are available at https:
//github.com/lancopku/AAPR

1 Introduction

Every year there are thousands of academic pa-
pers submitted to conferences and journals. Rating
all these papers can be exhausting, and sometimes
rating scores can be affected by the personal fac-
tors of the reviewers, leading to inequality prob-
lem. Therefore, there is a great need for rating
academic papers automatically. In this paper, we
explore how to automatically rate the academic
papers based on their LATEX source file and meta
information, which we call the task of automatic
academic paper rating (AAPR).

A task that is similar to the AAPR is automatic
essay scoring (AES). AES has been studied for a
long time. Project Essay Grade (Page, 1967, 1968)
is one of the earliest attempts to solve the AES task
by predicting the score using linear regression over
expert crafted textual features. Much of the fol-

lowing work applied similar methods by using var-
ious classifiers with more sophisticated features
including grammar, vocabulary and style (Rud-
ner and Liang, 2002; Attali and Burstein, 2004).
These traditional methods can work almost as well
as human raters. However, they all demand a large
amount of feature engineering, which requires a
lot of expertise.

Recent studies turn to use deep neural networks,
claiming that deep learning models can relieve the
system from heavy feature engineering. Alikanio-
tis et al. (2016) proposed to use long short term
memory network (Hochreiter and Schmidhuber,
1997) with a linear regression output layer to pre-
dict the score. They added a score prediction loss
to the original C&W embedding (Collobert and
Weston, 2008; Collobert et al., 2011), so that the
word embeddings are related to the quality of the
essay. Taghipour and Ng (2016) also applied re-
current neural networks to process the essay, ex-
cept that they put a convolutional layer ahead of
the recurrent layer to extract local features. Dong
and Zhang (2016) proposed to apply a two-layer
convolutional neural network (CNN) to model the
essay. The first layer is responsible for encoding
the sentence and the second layer is to encode the
whole essay. Dong et al. (2017) further proposed
to add attention mechanism to the pooling layer to
automatically decide which part is more important
in determining the quality of the essay.

Although there has been a lot of work dealing
with AES task, researchers have not attempted the
AAPR task. Different from the essay in language
capability tests, academic papers are much longer
with much more information, and the overall qual-
ity is affected by a variety of factors besides the
writing. Therefore, we propose a model that con-
siders the overall information of one academic pa-
per, including the title, authors, abstract and the
main content of the LATEX source file of the paper.
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Our main contributions are listed as follows:

• We propose the task of automatically rating
academic papers and build a new dataset for
this task.

• We propose a modularized hierarchical con-
volutional neural network model that consid-
ers the overall information of the source pa-
per. Experimental results show that the pro-
posed method outperforms the baselines by a
large margin.

2 Proposed Method

A source paper usually consists of several mod-
ules, such as abstract1, title and so on. There
is also a hierarchical structure from word-level to
sentence-level in each module. The structure in-
formation is likely to be helpful to make more ac-
curate predictions. Besides, the model can be im-
proved by considering the difference in contribu-
tions of various parts of the source paper. Based on
this observation, we propose a modularized hierar-
chical CNN. An overview of our model is shown
in Figure 1. We assume that a source paper has l
modules, with m words and the filter size is h (de-
tailed explanations can be referred to Section 2.1
and Section 2.2). l, m and h are set to be 3, 3, 2,
respectively in the Figure 1 for simplicity.

2.1 Modularized Hierarchical CNN
Given a complete source paper r, represented by
a sequence of tokens, we first divide it into sev-
eral modules (r1, r2, · · · , rl) based on the gen-
eral structure of the source paper (abstract, title,
authors, introduction, related work, methods and
conclusion). For each module, the one-hot rep-
resentation of the i-th word wi is embedded to
a dense vector xi through an embedding matrix.
For the following modules (abstract, introduction,
related work, methods, conclusion), we use the
attention-based CNN (illustrated in Section 2.2)
in word-level to get the representation si of the
i-th sentence. Another attention-based CNN layer
is applied to encode the sentence-level representa-
tions into the representation mi of the i-th mod-
ule.

There is only one sentence in the title of the
source paper, so it is reasonable to get the module-
level representation of title only using attention-
based CNN in word-level. Besides, the weighted

1Italicized words represent modules of the source paper.

ACNN

ACNN

Softm
ax

Layer

ACNN

AP
(a) Modularized hierarchical convolutional neural network.

Convolution Attentive
Pooling

(b) Attention-based convolutional neural network.

Figure 1: The overview of our model. ACNN de-
notes attention-based CNN, whose basic structure
is shown in (b). AP denotes attentive pooling.

average method is applied to obtain the module-
level representation of authors by Equation (1) be-
cause the authors are independent of each other.

mauthors =

A∑

i=1

γiai (1)

where γ = (γ1, . . . , γA)T is the weight parame-
ter. ai is the embedding vector of the i-th author
in the source paper, which is randomly initialized
and can be learned at the training stage. A is the
maximum length of the author sequence.

Representations m1, m2, · · · , ml of all mod-
ules are aggregated to form the paper-level repre-
sentation d of the source paper with an attentive
pooling layer. A softmax layer is used to take
d as input and predict the probability of being ac-
cepted. At the training stage, the cross entropy loss
function is optimized as objective function, which
is widely used in various classification tasks.

ŷ = softmax(Wdd + bd) (2)

2.2 Details of Attention-Based CNN
Attention-based CNN consists of a convolution
layer and an attentive pooling layer. The convolu-
tion layer is used to capture local features and at-
tentive pooling layer can automatically decide the
relative weights of words, sentences, and modules.

Convolution layer: A sequence of vectors
of length m is represented as the row con-
catenation of m k-dimensional vectors: X =
[x1; x2; · · · ; xm]. A filter Wx ∈ Rh×k convolves
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with the window vectors at each position to gener-
ate a feature map c ∈ Rm−h+1. Each element cj

of the feature map is calculated as follows:

cj = f(Wx ◦ [xj : xj+h−1] + bx) (3)

where ◦ is element-wise multiplication, bx ∈ R is
a bias term, and f is a non-linear activation func-
tion. Here we choose f to be ReLU (Nair and
Hinton, 2010). n different filters can be used to
extract multiple feature maps c1, c2, · · · , cn. We
get new feature representations C ∈ R(m−h+1)×n

as the column concatenation of feature maps C =
[c1, c2, · · · , cn]. The i-th row c(i) of C is the new
feature representation generated at position i.

Attentive pooling layer: Given a sequence
c(1), c(2), · · · , c(q), which are q n-dimensional
vectors, the attentive pooling is applied to aggre-
gate the representations of the sequence by mea-
suring the contribution of each vector to form the
high-level representation s of the whole sequence.
Formally, we have

zi = tanh(Wcc
(i) + bc) (4)

αi =
zT

i uw∑
k exp(zT

k uw)
(5)

s =
∑

i

αizi (6)

where Wc and bc are weight matrix and bias vec-
tor, respectively. uw is a randomly initialized vec-
tor, which can be learned at the training stage.

3 Experiments

In this section, we evaluate our model on the
dataset we build for this task. We first introduce
the dataset, evaluation metric, and experimental
details. Then, we compare our model with base-
lines. Finally, we provide the analysis and the dis-
cussion of experimental results.

3.1 Dataset
Arxiv Academic Paper Dataset: As there is no
existing dataset that can be used directly, we cre-
ate a dataset by collecting data on academic pa-
pers in the field of artificial intelligence from the
website2. The dataset consists of 19,218 academic
papers. The information of each source paper con-
sists of the venue which marks whether the paper
is accepted, and the source LATEX file. We divide
the dataset into training, validation, and test parts.
The details are shown in Table 1.

2https://arxiv.org/

Dataset #Total #Positive #Negative
Training set 17,218 8,889 8,329
Validation set 1,000 507 493
Test set 1,000 504 496

Table 1: Statistical information of Arxiv aca-
demic paper dataset. Positive and Negative de-
note whether the source paper is accepted.

3.2 Experimental Details

We use accuracy as our evaluation metric instead
of the F-score, precision, and recall because the
positive and negative examples in our dataset are
well balanced.

Since the author names are different from the
common scientific words in the paper, we sep-
arately build up vocabulary for authors and text
words of source papers with the size of 20,000 and
50,000, respectively.

We use the training strategies mentioned in
Zhang and Wallace (2015) for CNN classifier to
tune the hyper-parameters based on the accuracy
on the validation set. The word or author embed-
ding is randomly initialized and can be learned
during training. The size of word embedding or
author embedding is 128 and the batch size is 32.
Adam optimizer (Kingma and Ba, 2014) is used
to minimize cross entropy loss function. We ap-
ply dropout regularization (Srivastava et al., 2014)
to avoid overfitting and clip the gradients (Pascanu
et al., 2013) to the maximum norm of 5.0.

During training, we train the model for a fixed
number of epochs and monitor its performance on
the validation set after every 50 updates. Once
training is finished, we select the model with the
highest accuracy on the validation set as our final
model and evaluate its performance on the testing
set.

3.3 Baselines

We compare our model with the following base-
lines:

• Randomly predict (RP): We randomly de-
cide whether the source paper can be ac-
cepted. In other words, the probability of ac-
ceptance of every source paper is always 0.5
using this strategy.

• Traditional machine learning algorithms:
We use various machine learning classifiers
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Models Accuracy Models Accuracy
RP 50.0% Logistic 60.0%
CART 58.6% KNN 60.3%
MNB 58.3% GNB 58.5%
SVM 61.6% AdaBoost 58.9%
Bagging 59.4% LSTM 60.5%
CNN 61.3% C-LSTM 60.8%
MHCNN 67.7%

Table 2: Comparison between our proposed model
and the baselines on the test set. Our proposed
model is denoted as MHCNN.

to predict the labels based on the tf-idf fea-
tures of the text.

• Neural networks models: We apply
three representative neural network models:
CNN (Kim, 2014), LSTM (Hochreiter and
Schmidhuber, 1997), and C-LSTM (Zhou
et al., 2015). We concatenate all modules of
the source paper into a long text sequence as
the input to the neural network models.

3.4 Results
In this subsection, we present the results of evalu-
ation by comparing our proposed method with the
baselines. Table 2 reports experimental results of
various models. As is shown in Table 2, the pro-
posed MHCNN outperforms all the above men-
tioned baselines. The best baseline model SVM
achieves the accuracy of 61.6%, while the pro-
posed model achieves the accuracy of 67.7%. In
addition, our MHCNN outperforms other repre-
sentative deep-learning models by a large margin.
For instance, the proposed MHCNN achieves an
improvement of 6.4% accuracy over the traditional
CNN. This shows that our MHCNN can learn bet-
ter representation by considering modularized hi-
erarchical structure in the source paper. Our pro-
posed MHCNN aims to divide a long text into sev-
eral modules and using attention mechanism to
aggregate the representations of each module to
form a final high-level representation of a com-
plete source paper. By incorporating knowledge of
the structure of the source paper and automatically
selecting the most informative words, the model is
capable of making more accurate predictions.

4 Analysis and Discussions

Here we perform further analysis on the model and
experiment results.

Models Accuracy Decline
MHCNN 67.7% −−
w/o Attention 66.8%* ↓0.9%
w/o Module 61.3%* ↓6.4%

Table 3: Ablation Study. The symbol * indicates
that the difference compared to MHCNN is signif-
icant with p ≤ 0.05 under t-test.

4.1 Exploration on Internal Structure of the
Model

As is shown in Table 2, our MHCNN model out-
performs all baselines by a large margin. Com-
pared with the basic CNN model, the proposed
model has a modularized hierarchical structure
and uses multiple attention mechanisms. In order
to explore the impact of internal structure of the
model, we remove the modularized hierarchical
structure and attention mechanisms in turn. The
performance is shown in Table 3. “w/o Attention”
means that we still use modularized hierarchical
structure while do not use any attention mecha-
nism. “w/o Module” means that we do not use
both attention mechanism and modularized hier-
archical structure, which is the same as the CNN
model in the baselines.

As is shown in Table 3, the accuracy of the
model drops by 0.9% when the attention mecha-
nism is removed from the model. This shows that
there are differences in the contribution of textual
content. For instance, the abstract of a source
paper is more important than its title. Attention
mechanism can automatically decide the relative
weights of modules, which makes model predic-
tions more accurate. However, the accuracy of the
model drops by 6.4% when we remove the modu-
larized hierarchical structure, which is much larger
than 0.9%. It shows that the modularized hierar-
chical structure of the model is of great help to ob-
tain better representations by incorporating knowl-
edge of the structure of the source paper.

4.2 The Impact of Modules of the Source
Paper

One interesting issue is which part of the source
paper best determines whether it can be accepted.
To explore this issue, we subtract each module
from complete source papers in turn and observe
the change in the performance of the model. The
experimental result is shown in Table 4.

As is shown in Table 4, the performance of the
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Contexts Accuracy Decline
Full data 67.7% −−
w/o Title 66.6%* ↓1.1%
w/o Abstract 65.5%* ↓2.2%
w/o Authors 64.6%* ↓3.1%
w/o Introduction 65.7%* ↓2.0%
w/o Related work 66.0%* ↓1.7%
w/o Methods 66.2%* ↓1.5%
w/o Conclusion 65.0%* ↓2.7%

Table 4: Ablation Study. The symbol * indicates
that the difference compared to full data is signifi-
cant with p ≤ 0.05 under t-test.

model shows different degrees of decline when
we remove different modules of the source paper.
This shows that there are differences in the con-
tribution of different modules of the source paper
to its acceptance, which further illustrates the rea-
sonableness of our use of modularized hierarchi-
cal structure and attention mechanism. All the de-
clines are significant with p ≤ 0.05 under the t-
test.

When we remove authors module, the accuracy
drops by 3.1%, which is the largest decline. This
shows that the authors of the source paper largely
determines whether it can be accepted. Obviously,
a source paper written by a proficient scholar tends
to be good work, which has a higher probability
of being accepted. Except for authors, the two
most significant modules affecting the probabil-
ity of being accepted are conclusions and abstract.
Because they are the essence of the entire source
paper, which can directly reflect the quality of the
source paper. However, the methods module of
the source paper has little effect on the probability
of being accepted according to Table 4. The rea-
son may be that the methods of different source
papers vary widely, which means that there ex-
ists high variance in this module. Therefore, our
model may not do well in capturing a unified inter-
nal pattern to make prediction. The impact of the
title is the smallest and the accuracy of the model
drops by only 1.1% when title is removed from the
source paper.

5 Related Work

The most relevant task for our work is automatic
essay scoring (AES). There are two main types
of methods for the AES task: traditional machine
learning algorithms and neural network models.

Most traditional methods for the AES task use
supervised learning algorithms, including classi-
fication (Larkey, 1998; Rudner and Liang, 2002;
Yannakoudakis et al., 2011; Chen and He, 2013),
regression (Attali and Burstein, 2004; Phandi
et al., 2015; Zesch et al., 2015) and so on. How-
ever, they all require lots of manual features, for
instance, bag of words, spelling errors, or lengths,
which can be time-consuming and requires a large
amount of expertise.

In recent years, some neural network models
have also been used for the AES task, which
have achieved great success. Alikaniotis et al.
(2016) proposed to use the LSTM model with a
linear regression output layer to predict the score.
Taghipour and Ng (2016) applied the CNN model
followed by a recurrent layer to extract local fea-
tures and model sequence dependencies. A two-
layer CNN model was proposed by Dong and
Zhang (2016) to cover more high-level and ab-
stract information. Dong et al. (2017) further pro-
posed to add attention mechanism to the pooling
layer to automatically decide which part is more
important in determining the quality of the essay.
Song et al. (2017) proposed a multi-label neural
sequence labeling approach for discourse mode
identification and showed that features extracted
by this method can further improve the AES task.

6 Conclusions

In this paper, we propose the task of automatic
academic paper rating (AAPR), which aims to au-
tomatically determine whether to accept academic
papers. We propose a novel modularized hierar-
chical CNN for this task to make use of the struc-
ture of a source paper. Experimental results show
that the proposed model outperforms various base-
lines by a large margin. In addition, we find that
the conclusion and abstract parts have the most
influence on whether the source paper can be ac-
cepted when setting aside the factor of authors.
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Abstract

In this work, we present an approach based
on combining string kernels and word em-
beddings for automatic essay scoring. String
kernels capture the similarity among strings
based on counting common character n-
grams, which are a low-level yet powerful
type of feature, demonstrating state-of-the-
art results in various text classification tasks
such as Arabic dialect identification or native
language identification. To our best knowl-
edge, we are the first to apply string kernels
to automatically score essays. We are also
the first to combine them with a high-level
semantic feature representation, namely the
bag-of-super-word-embeddings. We report
the best performance on the Automated Stu-
dent Assessment Prize data set, in both in-
domain and cross-domain settings, surpass-
ing recent state-of-the-art deep learning ap-
proaches.

1 Introduction

Automatic essay scoring (AES) is the task of as-
signing grades to essays written in an educational
setting, using a computer-based system with nat-
ural language processing capabilities. The aim of
designing such systems is to reduce the involve-
ment of human graders as far as possible. AES is a
challenging task as it relies on grammar as well as
semantics, pragmatics and discourse (Song et al.,
2017). Although traditional AES methods typi-
cally rely on handcrafted features (Larkey, 1998;
Foltz et al., 1999; Attali and Burstein, 2006; Dikli,
2006; Wang and Brown, 2008; Chen and He,
2013; Somasundaran et al., 2014; Yannakoudakis
et al., 2014; Phandi et al., 2015), recent results in-
dicate that state-of-the-art deep learning methods
reach better performance (Alikaniotis et al., 2016;
Dong and Zhang, 2016; Taghipour and Ng, 2016;
Dong et al., 2017; Song et al., 2017; Tay et al.,
2018), perhaps because these methods are able to

capture subtle and complex information that is rel-
evant to the task (Dong and Zhang, 2016).

In this paper, we propose to combine string
kernels (low-level character n-gram features) and
word embeddings (high-level semantic features)
to obtain state-of-the-art AES results. Since
recent methods based on string kernels have
demonstrated remarkable performance in various
text classification tasks ranging from authorship
identification (Popescu and Grozea, 2012) and
sentiment analysis (Giménez-Pérez et al., 2017;
Popescu et al., 2017) to native language iden-
tification (Popescu and Ionescu, 2013; Ionescu
et al., 2014; Ionescu, 2015; Ionescu et al., 2016;
Ionescu and Popescu, 2017) and dialect identifi-
cation (Ionescu and Popescu, 2016; Ionescu and
Butnaru, 2017), we believe that string kernels can
reach equally good results in AES. To the best
of our knowledge, string kernels have never been
used for this task. As string kernels are a simple
approach that relies solely on character n-grams as
features, it is fairly obvious that such an approach
will not to cover several aspects (e.g.: semantics,
discourse) required for the AES task. To solve
this problem, we propose to combine string ker-
nels with a recent approach based on word embed-
dings, namely the bag-of-super-word-embeddings
(BOSWE) (Butnaru and Ionescu, 2017). To our
knowledge, this is the first successful attempt to
combine string kernels and word embeddings. We
evaluate our approach on the Automated Student
Assessment Prize data set, in both in-domain and
cross-domain settings. The empirical results in-
dicate that our approach yields a better perfor-
mance than state-of-the-art approaches (Phandi
et al., 2015; Dong and Zhang, 2016; Dong et al.,
2017; Tay et al., 2018).

2 Method

String kernels. Kernel functions (Shawe-Taylor
and Cristianini, 2004) capture the intuitive no-
tion of similarity between objects in a specific do-
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main. For example, in text mining, string ker-
nels can be used to measure the pairwise similar-
ity between text samples, simply based on charac-
ter n-grams. Various string kernel functions have
been proposed to date (Lodhi et al., 2002; Shawe-
Taylor and Cristianini, 2004; Ionescu et al., 2014).
One of the most recent string kernels is the his-
togram intersection string kernel (HISK) (Ionescu
et al., 2014). For two strings over an alphabet Σ,
x, y ∈ Σ∗, the intersection string kernel is for-
mally defined as follows:

k∩(x, y) =
∑

v∈Σn

min{numv(x), numv(y)}, (1)

where numv(x) is the number of occurrences of
n-gram v as a substring in x, and n is the length
of v. In our AES experiments, we use the inter-
section string kernel based on a range of charac-
ter n-grams. We approach AES as a regression
task, and employ ν-Support Vector Regression (ν-
SVR) (Suykens and Vandewalle, 1999; Shawe-
Taylor and Cristianini, 2004) for training.

Bag-of-super-word-embeddings. Word embed-
dings are long known in the NLP community
(Bengio et al., 2003; Collobert and Weston, 2008),
but they have recently become more popular due
to the word2vec (Mikolov et al., 2013) framework
that enables the building of efficient vector repre-
sentations from words. On top of the word embed-
dings, Butnaru and Ionescu (2017) developed an
approach termed bag-of-super-word-embeddings
(BOSWE) by adapting an efficient computer vi-
sion technique, the bag-of-visual-words model
(Csurka et al., 2004), for natural language process-
ing tasks. The adaptation consists of replacing the
image descriptors (Lowe, 2004) useful for recog-
nizing object patterns in images with word embed-
dings (Mikolov et al., 2013) useful for recognizing
semantic patterns in text documents.

The BOSWE representation is computed as fol-
lows. First, each word in the collection of training
documents is represented as word vector using a
pre-trained word embeddings model. Based on the
fact that word embeddings carry semantic infor-
mation by projecting semantically related words in
the same region of the embedding space, the next
step is to cluster the word vectors in order to ob-
tain relevant semantic clusters of words. As in the
standard bag-of-visual-words model, the cluster-
ing is done by k-means (Leung and Malik, 2001),
and the formed centroids are stored in a random-
ized forest of k-d trees (Philbin et al., 2007) to re-

duce search cost. The centroid of each cluster is
interpreted as a super word embedding or super
word vector that embodies all the semantically re-
lated word vectors in a small region of the embed-
ding space. Every embedded word in the collec-
tion of documents is then assigned to the nearest
cluster centroid (the nearest super word vector).
Put together, the super word vectors generate a vo-
cabulary (codebook) that can further be used to
describe each document as a bag-of-super-word-
embeddings. To obtain the BOSWE represenation
for a document, we just have to compute the oc-
currence count of each super word embedding in
the respective document. After building the repre-
sentation, we employ a kernel method to train the
BOSWE model for our specific task. To be con-
sistent with the string kernel approach, we choose
the histogram intersection kernel and the same re-
gression method, namely ν-SVR.

Model fusion. In the primal form, a linear classi-
fier takes as input a feature matrix X of r samples
(rows) with m features (columns) and optimizes
a set of weights in order to reproduce the r train-
ing labels. In the dual form, the linear classifier
takes as input a kernel matrix K of r × r com-
ponents, where each component kij is the similar-
ity between examples xi and xj . Kernel methods
work by embedding the data in a Hilbert space and
by searching for linear relations in that space, us-
ing a learning algorithm. The embedding can be
performed either (i) implicitly, by directly speci-
fying the similarity function between each pair of
samples, or (ii) explicitly, by first giving the em-
bedding map φ and by computing the inner prod-
uct between each pair of samples embedded in the
Hilbert space. For the linear kernel, the associ-
ated embedding map is φ(x) = x and options (i)
or (ii) are equivalent, i.e. the similarity function
is the inner product. Hence, the linear kernel ma-
trix K can be obtained as K = X · X ′, where
X ′ is the transpose of X . For other kernels, e.g.
the histogram intersection kernel, it is not possible
to explicitly define the embedding map (Shawe-
Taylor and Cristianini, 2004), and the only solu-
tion is to adopt option (i) and compute the cor-
responding kernel matrix directly. Therefore, we
combine HISK and BOSWE in the dual (kernel)
form, by simply summing up the two correspond-
ing kernel matrices. However, summing up kernel
matrices is equivalent to feature vector concatena-
tion in the primal Hilbert space. To better explain
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Prompt Number of Essays Score Range

1 1783 2-12
2 1800 1-6
3 1726 0-3
4 1726 0-3
5 1772 0-4
6 1805 0-4
6 1569 0-30
6 723 0-60

Table 1: The number of essays and the score
ranges for the 8 different prompts in the Auto-
mated Student Assessment Prize (ASAP) data set.

this statement, let us suppose that we can define
the embedding map of the histogram intersection
kernel and, consequently, we can obtain the cor-
responding feature matrix of HISK with r × m1

components denoted by X1 and the correspond-
ing feature matrix of BOSWE with r ×m2 com-
ponents denoted by X2. We can now combine
HISK and BOSWE in two ways. One way is to
compute the corresponding kernel matrices K1 =
X1 ·X ′1 andK2 = X2 ·X ′2, and to sum the matrices
into a single kernel matrix K+ = K1 + K2. The
other way is to first concatenate the feature ma-
trices into a single feature matrix X+ = [X1X2]
of r × (m1 + m2) components, and to compute
the final kernel matrix using the inner product,
i.e. K+ = X+ · X ′+. Either way, the two ap-
proaches, HISK and BOSWE, are fused before the
learning stage. As a consequence of kernel sum-
mation, the search space of linear patterns grows,
which should help the kernel classifier, in our case
ν-SVR, to find a better regression function.

3 Experiments

Data set. To evaluate our approach, we use the
Automated Student Assessment Prize (ASAP) 1

data set from Kaggle. The ASAP data set contains
8 prompts of different genres. The number of es-
says per prompt along with the score ranges are
presented in Table 1. Since the official test data of
the ASAP competition is not released to the pub-
lic, we, as well as others before us (Phandi et al.,
2015; Dong and Zhang, 2016; Dong et al., 2017;
Tay et al., 2018), use only the training data in our
experiments.
Evaluation procedure. As Dong and Zhang
(2016), we scaled the essay scores into the range

1
https://www.kaggle.com/c/asap-aes/data

0-1. We closely followed the same settings for
data preparation as (Phandi et al., 2015; Dong and
Zhang, 2016). For the in-domain experiments,
we use 5-fold cross-validation. The 5-fold cross-
validation procedure is repeated for 10 times and
the results were averaged to reduce the accuracy
variation introduced by randomly selecting the
folds. We note that the standard deviation in all
cases in below 0.2%.

For the cross-domain experiments, we use the
same source→target domain pairs as (Phandi
et al., 2015; Dong and Zhang, 2016), namely,
1→2, 3→4, 5→6 and 7→8. All essays in the
source domain are used as training data. Target
domain samples are randomly divided into 5 folds,
where one fold is used as test data, and the other
4 folds are collected together to sub-sample tar-
get domain train data. The sub-sample sizes are
nt = {10, 25, 50, 100}. The sub-sampling is re-
peated for 5 times as in (Phandi et al., 2015; Dong
and Zhang, 2016) to reduce bias. As our approach
performs very well in the cross-domain setting,
we also present experiments without sub-sampling
data from the target domain, i.e. when the sub-
sample size is nt = 0. As evaluation metric, we
use the quadratic weighted kappa (QWK).

Baselines. We compare our approach with state-
of-the-art methods based on handcrafted features
(Phandi et al., 2015), as well as deep features
(Dong and Zhang, 2016; Dong et al., 2017; Tay
et al., 2018). We note that results for the cross-
domain setting are reported only in some of these
recent works (Phandi et al., 2015; Dong and
Zhang, 2016).

Implementation choices. For the string ker-
nels approach, we used the histogram intersection
string kernel (HISK) based on the blended range
of character n-grams from 1 to 15. To compute the
intersection string kernel, we used the open-source
code provided by Ionescu et al. (2014). For the
BOSWE approach, we used the pre-trained word
embeddings computed by the word2vec toolkit
(Mikolov et al., 2013) on the Google News data
set using the Skip-gram model, which produces
300-dimensional vectors for 3 million words and
phrases. We used functions from the VLFeat li-
brary (Vedaldi and Fulkerson, 2008) for the other
steps involved in the BOSWE approach, such as
the k-means clustering and the randomized forest
of k-d trees. We set the number of clusters (di-
mension of the vocabulary) to k = 500. After
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Method 1 2 3 4 5 6 7 8 Overall

Human 0.721 0.814 0.769 0.851 0.753 0.776 0.721 0.629 0.754

(Phandi et al., 2015) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705
(Dong and Zhang, 2016) - - - - - - - - 0.734
(Dong et al., 2017) 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
(Tay et al., 2018) 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.764

HISK and ν-SVR 0.836 0.724 0.677 0.821 0.830 0.828 0.801 0.726 0.780
BOSWE and ν-SVR 0.788 0.689 0.667 0.809 0.824 0.824 0.766 0.679 0.756
HISK+BOSWE and ν-SVR 0.845 0.729 0.684 0.829 0.833 0.830 0.804 0.729 0.785

Table 2: In-domain automatic essay scoring results of our approach versus several state-of-the-art meth-
ods (Phandi et al., 2015; Dong and Zhang, 2016; Dong et al., 2017; Tay et al., 2018). Results are reported
in terms of the quadratic weighted kappa (QWK) measure, using 5-fold cross-validation. The best QWK
score (among the machine learning systems) for each prompt is highlighted in bold.

computing the BOSWE representation, we apply
the L1-normalized intersection kernel. We com-
bine HISK and BOSWE in the dual form by sum-
ming up the two corresponding matrices. For the
learning phase, we employ the dual implementa-
tion of ν-SVR available in LibSVM (Chang and
Lin, 2011). We set its regularization parameter to
c = 103 and ν = 10−1 in all our experiments.
In-domain results. The results for the in-domain
automatic essay scoring task are presented in Ta-
ble 2. In our empirical study, we also include fea-
ture ablation results. We report the QWK mea-
sure on each prompt as well as the overall av-
erage. We first note that the histogram intersec-
tion string kernel alone reaches better overall per-
formance (0.780) than all previous works (Phandi
et al., 2015; Dong and Zhang, 2016; Dong et al.,
2017; Tay et al., 2018). Remarkably, the over-
all performance of the HISK is also higher than
the inter-human agreement (0.754). Although the
BOSWE model can be regarded as a shallow ap-
proach, its overall results are comparable to those
of deep learning approaches (Dong and Zhang,
2016; Dong et al., 2017; Tay et al., 2018). When
we combine the two models (HISK and BOSWE),
we obtain even better results. Indeed, the combi-
nation of string kernels and word embeddings at-
tains the best performance on 7 out of 8 prompts.
The average QWK score of HISK and BOSWE
(0.785) is more than 2% better the average scores
of the best-performing state-of-the-art approaches
(Dong et al., 2017; Tay et al., 2018).
Cross-domain results. The results for the cross-
domain automatic essay scoring task are presented
in Table 3. For each and every source→target pair,
we report better results than both state-of-the-art

methods (Phandi et al., 2015; Dong and Zhang,
2016). We observe that the difference between
our best QWK scores and the other approaches
are sometimes much higher in the cross-domain
setting than in the in-domain setting. We par-
ticularly notice that the difference from (Phandi
et al., 2015) when nt = 0 is always higher than
10%. Our highest improvement (more than 54%,
from 0.187 to 0.728) over (Phandi et al., 2015) is
recorded for the pair 5→6, when nt = 0. Our
score in this case (0.728) is even higher than both
scores of Phandi et al. (2015) and Dong and Zhang
(2016) when they use nt = 50. Different from
the in-domain setting, we note that the combina-
tion of string kernels and word embeddings does
not always provide better results than string ker-
nels alone, particularly when the number of target
samples (nt) added into the training set is less or
equal to 25.
Discussion. It is worth noting that in a set of pre-
liminary experiments (not included in the paper),
we actually considered another approach based on
word embeddings. We tried to obtain a document
embedding by averaging the word vectors for each
document. We computed the average as well as the
standard deviation for each component of the word
vectors, resulting in a total of 600 features, since
the word vectors are 300-dimensional. We ap-
plied this method in the in-domain setting and we
obtained a surprisingly low overall QWK score,
around 0.251. We concluded that this simple ap-
proach is not useful, and decided to use BOSWE
(Butnaru and Ionescu, 2017) instead.

It would have been interesting to present an
error analysis based on the discriminant features
weighted higher by the ν-SVR method. Unfortu-
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Source→Target Method nt = 0 nt = 10 nt = 25 nt = 50 nt = 100

1→2 (Phandi et al., 2015) 0.434 0.463 0.457 0.492 0.510
(Dong and Zhang, 2016) - 0.546 0.569 0.563 0.559

HISK and ν-SVR 0.440 0.586 0.637 0.652 0.657
BOSWE and ν-SVR 0.398 0.474 0.478 0.492 0.506
HISK+BOSWE and ν-SVR 0.542 0.584 0.632 0.657 0.661

3→4 (Phandi et al., 2015) 0.522 0.593 0.609 0.618 0.646
(Dong and Zhang, 2016) - 0.628 0.656 0.659 0.662

HISK and ν-SVR 0.703 0.716 0.724 0.742 0.751
BOSWE and ν-SVR 0.615 0.640 0.716 0.728 0.727
HISK+BOSWE and ν-SVR 0.701 0.713 0.737 0.754 0.779

5→6 (Phandi et al., 2015) 0.187 0.539 0.662 0.680 0.713
(Dong and Zhang, 2016) - 0.647 0.700 0.714 0.750

HISK and ν-SVR 0.715 0.726 0.754 0.757 0.781
BOSWE and ν-SVR 0.617 0.623 0.644 0.650 0.692
HISK+BOSWE and ν-SVR 0.728 0.734 0.764 0.771 0.788

7→8 (Phandi et al., 2015) 0.171 0.586 0.607 0.613 0.621
(Dong and Zhang, 2016) - 0.570 0.590 0.568 0.587

HISK and ν-SVR 0.486 0.604 0.617 0.626 0.639
BOSWE and ν-SVR 0.419 0.526 0.577 0.582 0.591
HISK+BOSWE and ν-SVR 0.522 0.606 0.637 0.638 0.649

Table 3: Corss-domain automatic essay scoring results of our approach versus two state-of-the-art meth-
ods (Phandi et al., 2015; Dong and Zhang, 2016). Results are reported in terms of the quadratic weighted
kappa (QWK) measure, using the same evaluation procedure as (Phandi et al., 2015; Dong and Zhang,
2016). The best QWK scores for each source→target domain pair are highlighted in bold.

nately, this is not possible because our approach
works in the dual space and we cannot transform
the dual weights into primal weights, as long as
the histogram intersection kernel does not have an
explicit embedding map associated to it. In future
work, however, we aim to replace the histogram
intersection kernel with the presence bits kernel,
which will enable us to perform an error analysis
based on the overused or underused patterns, as
described by Ionescu et al. (2016).

4 Conclusion

In this paper, we described an approach based on
combining string kernels and word embeddings
for automatic essay scoring. We compared our
approach on the Automated Student Assessment
Prize data set, in both in-domain and cross-domain
settings, with several state-of-the-art approaches
(Phandi et al., 2015; Dong and Zhang, 2016; Dong
et al., 2017; Tay et al., 2018). Overall, the in-
domain and the cross-domain comparative studies
indicate that string kernels, both alone and in com-
bination with word embeddings, attain the best

performance on the automatic essay scoring task.
Using a shallow approach, we report better re-
sults compared to recent deep learning approaches
(Dong and Zhang, 2016; Dong et al., 2017; Tay
et al., 2018).
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Abstract

Predicting how Congressional legislators
will vote is important for understanding
their past and future behavior. How-
ever, previous work on roll-call predic-
tion has been limited to single session set-
tings, thus did not consider generalization
across sessions. In this paper, we show
that metadata is crucial for modeling vot-
ing outcomes in new contexts, as changes
between sessions lead to changes in the
underlying data generation process. We
show how augmenting bill text with the
sponsors’ ideologies in a neural network
model can achieve an average of a 4%
boost in accuracy over the previous state-
of-the-art.

1 Introduction

Quantitative analysis of the voting behavior of leg-
islators has long been a problem of interest in po-
litical science, and recently in NLP as well (Ger-
rish and Blei, 2011; Kraft et al., 2016). One of
the most popular techniques in political science
for modeling legislator behavior is the applica-
tion of spatial, or ideal point, models built from
voting records (Poole and Rosenthal, 1985; Clin-
ton et al., 2004), that are often used to repre-
sent uni-dimensional or multi-dimensional ideo-
logical stances. While roll call votes (i.e Congres-
sional voting records) provide explanatory power
about a legislators position with respect to previ-
ously voted-on bills, these models are limited to
in-sample analysis, and are thus incapable of pre-
dicting votes on new bills.

To address this limitation, recent work has in-
troduced methods that take advantage the text of
the bill, along with the voting records, to model
Congressional voting behavior (Gerrish and Blei,

2011; Nguyen et al., 2015; Kraft et al., 2016). This
work is related to a long line of studies on using
political text to model behavior, ranging over po-
litical books, Supreme Court decisions, speeches
and Twitter (Mosteller and Wallace, 1963; Thomas
et al., 2006; Yu et al., 2008; Sim et al., 2016;
Iyyer et al., 2014a; Sim et al., 2013; Preoţiuc-
Pietro et al., 2017).

In addition to enabling prediction, associating
text with ideology allows for a further degree of
interpretability. However, all previous work incor-
porating text into roll call prediction have limited
their evaluation to in-session training and testing.1

As legislators typically serve for multiple ses-
sions, and similar bills are proposed across ses-
sions, we want to be able to leverage this data
across sessions to inform our model. However, the
generalizability of previous methods to a cross-
session setting is unknown.

In this work, we explore the problem of roll call
prediction across sessions. We show that previ-
ous methods are unable to generalize across ses-
sions, thus suggesting that current text represen-
tations are not sufficient for modeling voting out-
comes in new contexts. We hypothesize that each
session has a different underlying data generation
process, wherein the ideological position of the
observed bills varies depending on the controlling
party. This is supported by the observation that
about 75% of bills up for a vote in a given session
have a sponsor in the party in power.

As noted in Linder et al. (2018), the policy area,
or topic, of the bill, and the ideological position,
are two separate dimensions underlying the text.
Since legislators tend to sponsor bills that are ide-
ologically aligned with them, a model trained on
a single session will mostly be exposed to bills
with a specific ideology on each topic. Thus, a

1A session is a 2-year period of legislative business.
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single session model may get the ideology infor-
mation as an implicit prior without needing to ex-
plicitly capture it. This challenge was not obvious
in previous studies that were limited to a single
session. Across sessions, however, the ideological
prior on a given topic changes, resulting in vari-
ations in voting patterns that are not captured by
current text modeling methodologies alone.

In applications where the text may contain an
insufficient signal, researchers may turn to addi-
tional metadata features. This technique has previ-
ously been used in various contexts, such as incor-
porating sponsor and committee features for pre-
dicting bill committee survival (Yano et al., 2012),
and enhancing tweet recommendations with loca-
tion data (Xing and Paul, 2017).

We propose a neural architecture that directly
models the ideological variation across sessions
using metadata about the bill sponsors, and show
that this can strongly improve performance with
little overhead to complexity and training time.

2 Model

Spatial voting models assume that a legislator has
a numeric ideal point which represents their ideol-
ogy. They make voting decisions on bills, which
also have a numeric representation. While the de-
tails of the implementation vary,2 spatial voting
models share the idea that the closer a bill’s rep-
resentation is to a legislator’s ideal point the more
likely the legislator is to vote yes.

Following this framework, we model the core
vote prediction problem as follows: Given a leg-
islator, L, and a bill, B, predict their vote y, with
possible outcomes: yes or no.

Using these inputs, let vL be an embedding rep-
resenting the legislator, and vB be the bill embed-
ding. First, vB is projected into the legislator em-
bedding space:

vBL = WBvB + bB (1)

where WB and bB are a weight matrix and a bias
vector, respectively. Then, we measure the align-
ment between the two vectors. Previous work used
a dot-product for this step, instead, we express the
comparison as follows:

Wv(vBL � vL) + bv (2)
2For example, Poole and Rosenthal represent bills as cut-

points that divide legislators into yes and no groups (Poole
and Rosenthal, 1985) and later work based on item response
theory conceptualizes bills as ”discrimination” vectors that
are mutiplied by an ideal point vector.

where � represents element-wise multiplication,
and Wv is a weight vector of the same dimensions
as vL. Finally, we apply a sigmoid activation func-
tion to get the vote prediction:

p(y = yes|B,L) = σ(Wv(vBL�vL)+bv) (3)

Using this architecture, we develop several
novel bill representations. First, we consider dif-
ferent text-only representations, then we show
how to incorporate metadata.

2.1 Text Model

Previous work incorporating text has primar-
ily been based on topic models (Gerrish and
Blei, 2011; Lauderdale and Clark, 2014; Nguyen
et al., 2015) and embeddings (Kraft et al., 2016).
As the embedding framework achieved superior
performance, we adopt a similar architecture.
While Kraft et al. (2016) represented the text us-
ing a mean word embedding (MWE) represen-
tation, we replace it with a Convolutional Neu-
ral Network (CNN) representation (Kim, 2014),
which has achieved superior performance on re-
cent text classification tasks (Dauphin et al., 2016;
Wen et al., 2016; Yang et al., 2016). Our CNN
uses 4-grams and 400 filter maps.

2.2 Sponsor Metadata

We posit that a legislator’s voting behavior is in-
fluenced both by the topic and the ideology of a
bill. A legislator may be more liberal on one issue
and more conservative on another. Thus, we need
to capture both aspects. While previous work has
shown that text alone contains ideological infor-
mation (Iyyer et al., 2014b), the metadata of the
bill may be a stronger source, especially for ideol-
ogy. This approach has had success in the related
problem of bill committee survival,3 where signals
about the sponsors, committee and chamber were
used in conjunction with text models (Yano et al.,
2012).

We use this idea to improve our bill representa-
tions. One particularly strong signal is the author
of the bill, because of their ideological motives.
For simplicity, we represent the bill’s authorship
as the percentage of Republican and Democrat
sponsors (pr and pd). We propose that the Repub-
lican and Democratic sponsors influence the text

3Congressional bills, first, are voted on in a committee,
before moving to the floor.
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of the bill in different ways. To obtain the over-
all ideological position of the bill, we combine the
versions of the bill influenced by each party. The
final bill can thus be represented as follows:

vB = ((arpr) · Tr) + ((adpd) · Td) (4)

where Tr and Td are the Republican and Demo-
cratic copies of the text representation (e.g MWE
or CNN); pr and pd are the scalars representing the
percentage of sponsors from each party (e.g 0.7
and 0.3); and ar and ap are vectors representing
how the percentages should influence each dimen-
sion of the text embedding.

The larger pr or pd is, the stronger the influence
of that party on the bill.

We test two text representations for Tr and Td:
one using MWEs and one using CNNs. The un-
derlying word embeddings are initialized with 50d
GloVE vectors (Pennington et al., 2014) and are
non-static during training.

The rest of the model weights are initialized
randomly with the glorot uniform distribution
(Glorot and Bengio, 2010). The length of vL is set
to 25. All models are trained using binary cross-
entropy loss and optimized with the AdaMax al-
gorithm (Kingma and Ba, 2014). The models are
trained for 50 epochs, using mini-batches of size
50.

3 Dataset

Our dataset was collected from GovTrack,4 and
consists of nonunanimous roll call votes and texts
of resolutions and bills introduced in the 106th to
111th Congressional sessions.5 We also collect the
bill summaries written by the Congressional Re-
search Service6 (a non-partisan organization), that
provide shorter descriptions of the key actions in
each bill. All text is preprocessed by lowercasing
and removing stop-words.

As bills are often much longer than the typical
document encountered in other NLP tasks, with
an average of 2683 words per bill, and some bills
having hundreds of pages, with correspondingly

4https://theunitedstates.io/
5We exclude bills with unanimous votes because these are

typically associated with routine matters (for example, the
naming a post office or an official commendation) that do not
contain ideological motivation. We consider bills where less
than 1% of legislators voted ‘no’ to be unanimous; about 42%
of bills fall into this category.

6https://www.congress.gov/help/
legislative-glossary/

Session Total Bills Total Votes
% Yes
Votes

2005-2012 1718 685,091 68.4%
2013-2014 360 136,807 66.4%
2015-2016 382 153,605 61.8%

Table 1: Count of Bills and Votes

Session House Majority Senate Majority
2005-2006 R R
2007-2008 D D
2009-2010 D D
2011-2012 R D
2013-2014 R D
2015-2016 R R

Table 2: Party in power by session

lengthy summaries, this poses a problem for our
compositional neural architecture. To address this,
we limit the length of each full-text and summary
to N words, where N is empirically set to the
80th percentile of the collection. For summaries
N=400, and for full-text N=2000.

4 Experiments

As described earlier, the experimental framework
in previous work treated each session individually.
To evaluate the ability of our model to generalize
across sessions, we perform several sets of exper-
iments. In the first set, in-session, we perform 5
fold cross-validation over the 2005-2012 sessions.
In the second, out-of-session, we train on multi-
ple sessions, 2005-2012, and evaluate on sessions
not included during training, the 2013-2014 and
2015-2016 sessions. During testing, we only in-
clude legislators present in the training data.

The overall statistics for our dataset are pre-
sented in Tables 1 and 2.

5 Results

To understand how sponsor parties and text in-
teract in the input, and how our predictive power
changes when testing on in-session bills and out-
of-session bills. We test the following models:

• MWE: mean word embedding text model as
described in Kraft et al. (2016) using sum-
maries;

• MWE+FT: MWE model using full bill text;

512



• CNN: text model from Section 2.1 over sum-
maries;

• MWE+Meta: MWE representation com-
bined with metadata as described in Sec-
tion 2.2;

• CNN+Meta: like MWE+Meta but using a
CNN instead of averaging;

• MWE+Meta+FT: As above using full bill
text;

• Meta-Only: A variation on MWE+Meta that
uses the same, random “dummy” text for all
the bills, only changing the metadata (pr and
pd).

Each model is first evaluated in-session, where
both train and test bills come from the same set of
sessions, and thus same distribution, and then out-
of-session, where training bills are from one set of
sessions and the model is evaluated on a different
set. All results are presented in Table 3.

5.1 In-session Results

We evaluate our models with accuracy on 5-fold
cross-validation. All three models combining text
with metadata perform significantly better than the
others, showing that the text and meta informa-
tion have complimentary predictive power, and
that our models’ sponsor-augmented text repre-
sentation is able to capture the ideological prefer-
ence. The CNN+Meta achieves the highest accu-
racy of 86.21, followed by MWE+Meta at 85.96,
showing that the CNN learns a somewhat better
text representation than MWE. Compare this to
the baseline MWE model without meta informa-
tion, which achieves an accuracy of 81.10, only
slightly better than the Meta-Only model at 80.27.
Contrary to our hypothesis, MWE achieves higher
accuracy than Meta-Only. However, it remains un-
clear whether this signal is related to ideology or
other contextual information. The performance on
the out-of-session setting will determine whether
this signal is akin to ideology.

5.2 Out-of-session Results

In this setting, on both test sessions, text with
meta information achieves the best performance as
well. On the 2013-2014 session, the CNN+Meta
model does the best at 83.59. Unlike the in-session
setting, Meta-only does better than the text-only

in-session out-of-session
2005-
2012

2013-
2014

2015-
2016

Guess Yes 68.31 65.92 61.07
MWE 81.10 77.57 69.80
MWE + FT 81.46 68.33 57.94
CNN 83.24 77.49 69.63
Meta-Only 80.87 82.28 67.10
MWE + Meta 85.96 82.73 71.90
MWE+Meta+FT 85.14 82.43 69.86
CNN + Meta 86.21 83.59 70.99

Table 3: Accuracy Results

models (MWE, CNN). This supports the theory
that within the sessions we are able to capture con-
textual ideology from the text, but once we move
to a new session the text models no longer contain
an accurate representation of the Congressional
ideology.

While in other experiments we are able to
achieve at least a 17% improvement over the
Guess Yes baseline, on 2015-2016, the best model,
MWE+Meta, is only able to achieve a 10% gain.
During this session divisions arose within the Re-
publican party in the House of Representatives
that disrupted the typical voting dynamics.7 Un-
like 2013-2014, the Meta-Only model does worse
than the text ones; however, the gap between them
is much smaller.

5.3 Overall Analysis

These experiments provide several interesting in-
sights. First, because using both text and meta-
data (MWE+Meta or CNN+Meta) results in the
strongest model in every case, we confirm that leg-
islators vote based on both the topic and the ideol-
ogy of the bill.

Second, the text-only models do significantly
worse on the out-of-session tests than the in-
session ones. This confirms our theory that
session-specific contextual information is implic-
itly captured by the previous single-session mod-
els, but that context is not accurate in new sessions.
If we were capturing ideology from the text, then
the text only model should have performed well
out-of-session.

7A conservative bloc of the Republican Party (the Free-
dom Caucus) began to assert influence over party leadership,
eventually resulting in the ouster of John Boehner as Speaker
(Lizza, 2017).
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Third, to further examine whether a neural
model was the best technique for modeling text
with metadata, we trained a SVM model over the
bag-of-words representation of the summary, indi-
cator variables for the legislators and the percent
of bill sponsors in each party (e.g pd). This model
did not perform as well as either MWE or Meta-
Only, showing that the embedding approach is bet-
ter at representing this combination of features.

Finally, the models that embed the full text
(+FT) generally perform worse than embedding
the summaries. While this confirms that the sum-
mary contains sufficient information about the top-
ics and the actions in the bill, we did not fully ex-
plore the bill text.

6 Future Work

While Congress introduces close to 20, 000 bills
every session, very few of them receive a vote,
limiting the dataset. We would like to explore var-
ious bootstrapping techniques that would allow us
to expand the dataset size with artificial votes.

Furthermore, while our text representations are
sufficient for modeling shorter text, i.e. sum-
maries, we would like to test more sophisticated
representations in the future, in particular, those
designed to handle longer texts.

7 Conclusion

In this paper, we developed a neural network ar-
chitecture to predict legislators votes that aug-
ments bill text with sponsor metadata. We intro-
duced a new evaluation setting for this task: out-
of-session performance; which allows us to ex-
amine the generalizability of our proposed model,
and was not considered in past studies. Finally, we
showed that the introduction of metadata to bias
the text representations outperforms the existing
text-based methods in all experimental settings.
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Abstract

For extracting meaningful topics from
texts, their structures should be considered
properly. In this paper, we aim to analyze
structured time-series documents such as
a collection of news articles and a series
of scientific papers, wherein topics evolve
along time depending on multiple topics in
the past, and are also related to each other
at each time. To this end, we propose a
dynamic and static topic model, which si-
multaneously considers the dynamic struc-
tures of the temporal topic evolution and
the static structures of the topic hierarchy
at each time. We show the results of ex-
periments on collections of scientific pa-
pers, in which the proposed method out-
performed conventional models. More-
over, we show an example of extracted
topic structures, which we found helpful
for analyzing research activities.

1 Introduction

Probabilistic topic models such as latent Dirichlet
allocation (LDA) (Blei et al., 2003) have been uti-
lized for analyzing a wide variety of datasets such
as document collections, images, and genes. Al-
though vanilla LDA has been favored partly due to
its simplicity, one of its limitations is that the out-
put is not necessarily very understandable because
the priors on the topics are independent. Conse-
quently, there has been a lot of research aimed at
improving probabilistic topic models by utilizing
the inherent structures of datasets in their model-
ing (see, e.g., Blei and Lafferty (2006); Li and Mc-
Callum (2006); see Section 2 for other models).

In this work, we aimed to leverage the dynamic
and static structures of topics for improving the
modeling capability and the understandability of

topic models. These two types of structures, which
we instantiate below, are essential in many types of
datasets, and in fact, each of them has been con-
sidered separately in several previous studies. In
this paper, we propose a topic model that is aware
of both of these structures, namely dynamic and
static topic model (DSTM).

The underlying motivation of DSTM is twofold.
First, a collection of documents often has dynamic
structures; i.e., topics evolve along time influenc-
ing each other. For example, topics in papers are
related to topics in past papers. We may want
to extract such dynamic structures of topics from
collections of scientific papers for summarizing
research activities. Second, there are also static
structures of topics such as correlation and hierar-
chy. For instance, in a collection of news articles,
the “sports” topic must have the “baseball” topic
and the “football” topic as its subtopic. This kind
of static structure of topics helps us understand the
relationship among them.

The remainder of this paper is organized as fol-
lows. In Section 2, we briefly review related work.
In Section 3, the generative model and the infer-
ence/learning procedures of DSTM are presented.
In Section 4, the results of the experiments are
shown. This paper is concluded in Section 5.

2 Related Work

Researchers have proposed several variants of
topic models that consider the dynamic or static
structure. Approaches focusing on the dynamic
structure include dynamic topic model (DTM)
(Blei and Lafferty, 2006), topic over time (TOT)
(Wang and McCallum, 2006), multiscale dynamic
topic model (MDTM) (Iwata et al., 2010), de-
pendent Dirichlet processes mixture model (D-
DPMM) (Lin et al., 2010), and infinite dynamic
topic model (iDTM) (Ahmed and Xing, 2010).
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Dt number of documents at epoch t
nt

d number of words in the d-th doc. at epoch t
wt

d,i the i-th word in the d-th doc. at epoch t
K total number of subtopics
S number of supertopics
yt

d,i supertopic of wt
d,i

zt
d,i subtopic of wt

d,i
1✓t

d multinomial distribution over supertopics for
the d-th doc. at epoch t

2✓t
d,s multinomial distribution over subtopics for the

d-th doc. in s-th supertopic at epoch t
�t

k multinomial distribution over words for the k-
th subtopic at epoch t

2↵t
s static structure weight (prior of 2✓t

d,s)
�t dynamic structure weight between topics at

time t � 1 and those at epoch t

Table 1: Notations in the proposed model.

These methods have been successfully applied to
a temporal collection of documents, but none of
them take temporal dependencies between multi-
ple topics into account; i.e., in these models, only
a single topic contributes to a topic in the future.

For the static structure, several models includ-
ing correlated topic model (CTM) (Lafferty and
Blei, 2006), pachinko allocation model (PAM) (Li
and McCallum, 2006), and segmented topic model
(STM) (Du et al., 2010) have been proposed. CTM
models the correlation between topics using the
normal distribution as the prior, PAM introduces
the hierarchical structure to topics, and STM uses
paragraphs or sentences as the hierarchical struc-
ture. These models can consider the static struc-
ture such as correlation and hierarchy between
topics. However, most of them lack the dynamic
structure in their model; i.e., they do not premise
temporal collections of documents.

One of the existing methods that is most re-
lated to the proposed model is the hierarchical
topic evolution model (HTEM) (Song et al., 2016).
HTEM captures the relation between evolving
topics using a nested distance-dependent Chinese
restaurant process. It has been successfully ap-
plied to a temporal collection of documents for ex-
tracting structure but does not take multiple topics
dependencies into account either.

In this work, we built a new model to overcome
the limitation of the existing models, i.e., to ex-
amine both the dynamic and static structures si-
multaneously. We expect that the proposed model
can be applied to various applications such as topic
trend analysis and text summarization.

Figure 1: Graphical model of the proposed model
for epochs t� 1 and t.

3 Dynamic and Static Topic Model

In this section, we state the generative model of
the proposed method, DSTM. Afterward, the pro-
cedure for inference and learning is presented. Our
notations are summarized in Table 1.

3.1 Generative Model
In the proposed model, DSTM, the dynamic and
static structures are modeled as follows.

Dynamic Structure We model the temporal
evolution of topic-word distribution by making it
proportional to a weighted sum of topic-word dis-
tributions at the previous time (epoch), i.e.,

�t
k ⇠ Dirichlet

 
KX

k0=1

�t
k,k0�t�1

k0

!
, (1)

where �t
k denotes the word distribution of the k-th

topic at the t-th time-epoch, and �t
k,k0 is a weight

that determines the dependency between the k-th
topic at epoch t and the k0-th topic at epoch t� 1.

Static Structure We model the static structure
as a hierarchy of topics at each epoch. We uti-
lize the supertopic-subtopic structure as in PAM
(Li and McCallum, 2006), where the priors of top-
ics (subtopics) are determined by their supertopic.

Generative Process In summary, the generative
process at epoch t is as follows.
1. For each subtopic k = 1, .., K ,

(a) Draw a topic-word distribution
�t

k ⇠ Dirichlet(
P

k0 �t
k,k0�

t�1
k0 ).

2. For each document d = 1, ..., Dt,
(a) Draw a supertopic distribution

1✓t
d ⇠ Dirichlet(1↵t).
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(b) For each supertopic s = 1, ..., S,
i. Draw a subtopic distribution

2✓t
d,s ⇠ Dirichlet(2↵t

s).

(c) For each word i = 1, ..., nt
d,

i. Draw a supertopic-word assignment
yt

d,i ⇠ Multinomial(1✓t
d).

ii. Draw a subtopic-word assignment
zt
d,i ⇠ Multinomial(2✓t

d,yt
d,i

).

iii. Draw a word-observation
wt

d,i ⇠ Multinomial(�t
zt
d,i

).

Note that the above process should be repeated for
every epoch t. The corresponding graphical model
is presented in Figure 1.

3.2 Inference and Learning
Since analytical inference for DSTM is in-
tractable, we resort to a stochastic EM algorithm
(Andrieu et al., 2003) with the collapsed Gibbs
sampling (Griffiths and Steyvers, 2004). How-
ever, such a strategy is still much costly due to the
temporal dependencies of �. Therefore, we intro-
duce a further approximation; we surrogate �t�1

k0

in Eq. (1) by its expectation �̂t�1
k0 = E[�t�1

k0 ]. This
compromise enables us to run the EM algorithm
for each epoch in sequence from t = 1 to t = T
without any backward inference. In fact, such ap-
proximation technique is also utilized in the infer-
ence of MDTM (Iwata et al., 2010).

Note that the proposed model has a moderate
number of hyperparameters to be set manually,
and that they can be tuned according to the ex-
isting know-how of topic modeling. This feature
makes the proposed model appealing in terms of
inference and learning.

E-step In E-step, the supertopic/subtopic as-
signments are sampled. Given the current state of
all variables except yt

d,i and zt
d,i, new values for

them should be sampled according to

p(yt
d,i = s, zt

d,i = k | wt, yt, zt,�t�1, 1↵t, 2↵t,�t)

/
nt

d,s\i + 1↵t
s

nt
d\i

+
PS

s=1
1↵t

s

·
nt

d,s,k\i + 2↵t
s,k

nt
d,s\i

+
PK

k=1
2↵t

s,k

·
nt

k,v\i +
PK

k0=1 �
t
k,k0 �̂t�1

k0,v

nt
k\i

+
PK

k0=1 �
t
k,k0

,

(2)

where nt
k,v denotes the number of tokens assigned

to topic k for word v at epoch t, nt
k=
P

v nt
k,v,

and nt
d,s and nt

d,s,k denote the number of tokens in
document d assigned to supertopic s and subtopic

NIPS Drone

Date 1987–1999 2009–2016
# Documents 1,740 1,035
# Vocabulary 11,443 3,442

# Tokens 2,271,087 68,305

Table 2: Summary of the datasets.

k (via s), at epoch t respectively. Moreover, nt
·\i

denotes the count yielded excluding the i-th token.

M-step In M-step, 2↵t and �t are updated using
the fixed-point iteration (Minka, 2000).

(2↵t
s,k)⇤ = 2↵t

s,k

PDt

d=1 (nt
d,s,k + 2↵t

s,k) � (2↵t
s,k)

PDt

d=1 (nt
d,s + 2↵t

s) � (2↵t
s)

, (3)

(�t
k,k0 )

⇤ = �t
k,k0

P
v �̂

t�1
k0,vBt

k0,v

 (nt
k +

P
k0 �t

k,k0 ) � (
P

k0 �t
k,k0 )

. (4)

Here, is the digamma function, 2↵t
s=
P

k
2↵t

s,k,
and

Bt
k0,v =  

⇣
nt

k,v +
X

k0
�t

k,k0 �̂t�1
k0,v

⌘
� 

⇣X

k0
�t

k,k0 �̂t�1
k0,v

⌘
.

Overall Procedure The EM algorithm is run for
each epoch in sequence; at epoch t, after running
the EM until convergence, �̂t

k,v is computed by

�̂t
k,v =

nt
k,v +

P
k0 �t

k,k0 �̂
t�1
k0,v

nt
k +

P
k0 �t

k,k0
,

and then this value is used for the EM at the next
epoch t + 1. Moreover, see Supplementary A for
the computation of the statistics of the other vari-
ables.

4 Experiments

4.1 Datasets

We used two datasets comprising technical pa-
pers: NIPS (Perrone et al., 2016) and Drone (Liew
et al., 2017). NIPS is a collection of the pa-
pers that appeared in NIPS conferences. Drone
is a collection of abstracts of papers on unmanned
aerial vehicles (UAVs) and was collected from re-
lated conferences and journals for surveying re-
cent developments in UAVs. The characteristics
of those datasets are summarized in Table 2. See
Supplementary B for the details of data prepro-
cessing.
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NIPS Drone

static dynamic K30 (S15) K40 (S20) K50 (S25) K15 (S3) K20 (S3) K25 (S3)

LDA - - 1455.6 (16.7) 1407.3 (15.9) 1374.6 (16.8) 1624.3 (191.1) 1634.8 (189.1) 1644.7 (193.0)
PAM X - 1455.1 (18.2) 1407.0 (17.5) 1376.9 (16.7) 1587.4 (185.1) 1589.9 (191.4) 1590.8 (186.8)

DRTM - X 1380.7 (18.5) 1308.6 (17.5) 1253.9 (17.9) 1212.5 (153.2) 1206.1 (148.0) 1201.2 (143.5)
DSTM X X 1378.7 (16.5) 1301.0 (17.9) 1247.3 (17.2) 1194.2 (148.2) 1180.0 (147.0) 1171.6 (141.4)

Table 3: Means (and standard deviations) of PPLs averaged over all epochs for each dataset with different
values of K and S. The proposed method, DSTM, achieved the smallest PPL.

Figure 2: Part of the topic structure extracted from Drone dataset using the proposed method. The solid
arrows denote the temporal evolution of “planning” topics. The dotted arrows mean that “planning”
topics are related to “hardware”, “control”, and “mapping” topics via some supertopics (filled circles).

4.2 Evaluation by Perplexity
First, we evaluate the performance of the proposed
method quantitatively using perplexity (PPL):

PPL = exp

0
@�

PD
d=1

P
wtest

d
log p(wd,i|M)

PD
d=1 ntest

d

1
A .

For each epoch, we used 90% of tokens in each
document for training and calculated the PPL us-
ing the remaining 10% of tokens. We randomly
created 10 train-test pairs and evaluated the means
of the PPLs over those random trials. We com-
pared the performance of DSTM to three base-
lines: LDA (Blei et al., 2003), PAM (Li and Mc-
Callum, 2006), and the proposed model without
the static structure, which we term DRTM. See
Supplementary C on their hyperparameter setting.

The means of the PPLs averaged over all epochs
for each dataset with different values K are shown
in Table 3. In both datasets with every setting
of K, the proposed model, DSTM, achieved the
smallest PPL, which implies its effectiveness for
modeling a collection of technical papers. For
clarity, we conducted paired t-tests between the
perplexities of the proposed method and those of
the baselines. On the differences between DSTM
and DRTM, the p-values were 4.2 ⇥ 10�2 (K =
30), 7.9 ⇥ 10�5 (K = 40), and 6.4 ⇥ 10�7

(K = 50) for the NIPS dataset, and 1.3 ⇥ 10�4

(K = 15), 8.8⇥ 10�5 (K = 20), and 4.9⇥ 10�6

(K = 25) for the Drone dataset, respectively. It
is also noteworthy that DRTM shows more sig-
nificant improvement relative to LDA than PAM
does. This suggests that the dynamic structure
with multiple-topic dependencies is essential for
datasets of this kind.

4.3 Analysis of Extracted Structure
We examined the topic structures extracted from
the Drone dataset using DSTM. In Figure 2, we
show a part of the extracted structure regarding
planning of the UAV’s path and/or movement. We
identified “planning” topics by looking for key-
words such as “trajectory” and “motion.” In Fig-
ure 2, each node is labeled with eight most prob-
able keywords. Moreover, solid arrows (dynamic
relations) are drawn if the corresponding �t

k,k0 is
larger than 200, and dotted arrows (static relations)
are drawn between a supertopic and subtopics with
the two or three largest values of 2↵t

s,k.
Looking at the dynamic structure, we may

see how research interest regarding planning has
changed. For example, word “online” first
emerges in the “planning” topic in 2016. This
is possibly due to the increasing interest in real-
time planning problems, which is becoming fea-
sible due to the recent development of on-board
computers. In regard to the static structures, for
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example, the “planning” topic is related to the
“hardware” and “control” topics in 2013 and 2014,
whereas it is also related to the “mapping” topic in
2015 and 2016. Looking at these static structures,
we may anticipate how research areas are related
to each other in each year. In this case, we can
anticipate that planning problems are combined
with mapping problems well in recent years. Note
that we cannot obtain these results unless the dy-
namic and static structures are considered simul-
taneously.

5 Conclusion

In this work, we developed a topic model with
dynamic and static structures. We confirmed the
superiority of the proposed model to the conven-
tional topic models in terms of perplexity and ana-
lyzed the topic structures of a collection of papers.
Possible future directions of research include auto-
matic inference of the number of topics and appli-
cation to topic trend analysis in various domains.
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Abstract

Recent emerged phrase-level topic mod-
els are able to provide topics of phrases,
which are easy to read for humans. But
these models are lack of the ability to cap-
ture the correlation structure among the
discovered numerous topics. We propose a
novel topic model PhraseCTM and a two-
stage method to find out the correlated top-
ics at phrase level. In the first stage, we
train PhraseCTM, which models the gen-
eration of words and phrases simultane-
ously by linking the phrases and compo-
nent words within Markov Random Fields
when they are semantically coherent. In
the second stage, we generate the correla-
tion of topics from PhraseCTM. We eval-
uate our method by a quantitative exper-
iment and a human study, showing the
correlated topic modeling on phrases is a
good and practical way to interpret the un-
derlying themes of a corpus.

1 Introduction

In recent years, topic modeling on phrases has
been developed for providing more interpretable
topics (El-Kishky et al., 2014; Kawamae, 2014;
He, 2016). They represent each topic as a list of
phrases, which are easy to read for humans. For
example, the topic represented in “grounding con-
ductor, grounding wire, aluminum wiring, neutral
ground, ...” is easier to read than the topic with
words “ground, wire, use, power, cable, wires, ...”,
although they are both about the topic of house-
hold electricity.

But when the number of topics grows, it’s hard
to review all the topics, even they are represented
in phrases. The correlation structure is introduced
by CTM (Blei and Lafferty, 2005) to figure out the

correlated relationship between topics and group
the similar topics together. And the correlated top-
ics mined from the scientific papers (Blei and Laf-
ferty, 2007), news corpus (He et al., 2017), and
social science data (Roberts et al., 2016), showed
their practical utility on grasping the semantic
meaning of text documents.

However, it’s nontrivial to apply CTM directly
on phrases. The reasons are mainly due to two
facts: (1) phrases are much less than words in
each document; (2) similar to LDA (Tang et al.,
2014), CTM doesn’t perform well on short doc-
uments. Therefore, CTM needs more contextual
information to build a good enough model, rather
than only using the extracted phrases.

To find out the correlated topics at phrase level,
we take full advantage of contextual information
about the phrases. Firstly, the topic of a phrase
in a document is highly related to the topics of
other words and phrases in the same document.
Secondly, some phrases’ meaning can be implied
from their component words. Taking a document
in Figure 1 as an example, the phrase “orbital ve-
hicle” shares the same topic as the word “DC-
X” (a reusable spaceship), as well as its compo-
nent words “orbital”, and “vehicle”, which are all
about the topic of space exploration. The assump-
tion that the words within the same phrase tend
to have the same latent topic is directly used by
PhraseLDA (El-Kishky et al., 2014). Note that
not all the phrases always have the same topic
as their component words (e.g., the newspaper
Boston Globe) (Mikolov et al., 2013). It’s difficult
to distinguish the “orbital vehicle” type phrases
from “Boston Globe” type phrases, but we can use
the data-driven method to find out the semantically
coherent ones by the NPMI metric (Bouma, 2009),
and put them in Markov Random Fields (Kin-
dermann and Snell, 1980) to align the topics of
phrases and their component words.
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20newsgroups/sci.space/62117

extracted 

phraseswords

…

…

…
It will be tough to make DC-X succeed, and to turn 
it into an operational orbital vehicle. Doubtless it 
will fail to meet some of the promised goals. The 
reason people are so fond of it is that it's the only 
chance we have now, or will have for a ong time to 
come, to develop a launch vehicle with radically 
lower costs.
…

“orbital vehicle”

“launch vehicle”

Figure 1: An example of phrases’ contextual infor-
mation. The phrases and words marked gray are
about the same topic. The arrows show the top-
ics of the phrases and their component words tend
to be same, which tendency are modeled within
Markov Random Field.

Based on these two kinds of contextual informa-
tion, we propose a novel topic model PhraseCTM
and a two-stage method. In the first stage, we train
PhraseCTM, which (1) double counts the phrases
as two parts, one as the phrase itself, the other as
the component words; (2) models the generation
of words and phrases simultaneously by linking
the phrases and component words within Markov
Random Fields when they are semantically coher-
ent; (3) uses the logistic normal distribution to rep-
resent the correlation among the topics, like a pre-
vious method CTM. In the second stage, we gen-
erate the correlation of topics from PhraseCTM.

We evaluate our method on five datasets by a
quantitative experiment and a human study, show-
ing that the correlated topic modeling on phrases
is a good way to interpret the underlying themes
of a corpus.

2 Related Works

There are two orthogonal lines of research stud-
ies related to our work. (1) With the development
of phrase extraction techniques (El-Kishky et al.,
2014; Liu et al., 2015; Shang et al., 2018), several
topic models based on extracted phrases are pro-
posed to provide high-quality phrase-level topics,
such as PhraseLDA (El-Kishky et al., 2014), and
TPM (He, 2016). Because of the quality of ex-
tracted phrases, PhraseLDA performs better than
previous n-gram method TNG (Wang et al., 2007),
which combines phrase extraction and topic mod-
eling together. (2) CTM (Blei and Lafferty, 2005)
uses the logistic normal distribution (Aitchison,
1982) to replace the Dirichlet prior, so it can cap-
ture the correlated structure of topics. And the ex-
periments in the further works (Chen et al., 2013;
Roberts et al., 2016; He et al., 2017) showed its
usefulness in exploring the text corpus by using

the correlated word-level topics. Note that our
work is not a simple combination of these two
methods, because the existing topic models on
phrases lack the ability to capture the correlation
structure while CTM cannot be directly applied
on phrases due to the sparseness of phrases in
each document. And as we used Markov Random
Fields (Kindermann and Snell, 1980), our work
is different from previous ones (Daume III, 2009;
Sun et al., 2009; Xie et al., 2015) because we don’t
put all links into Markov Random Fields but only
choose the semantic coherent links.

3 The proposed method

By preparing data as described in the subsection
3.1, our method is carried out in two stages, shown
in the subsection 3.2, and 3.3 respectively.

3.1 Semantically Coherent Links for MRF

Given the input data in the form of raw text doc-
uments, we transform each document into the
format as “words, phrases, semantically coherent
links between phrases and component words”. Ex-
tracting words is trivial, and extracting phrases
can be conducted by using an existing tool, e.g.,
AutoPhrase (Shang et al., 2018). In this process,
each extracted phrase is counted twice, one as the
phrase itself (represented in the phrase vocabu-
lary), the other is divided into component words
(represented in the word vocabulary).

In a given document, we denote the i-th phrase
as w

(P)
i , and its component words as wl(i). We

use the Equation (1) to determine the semantic
coherent score between w

(P)
i and wl(i) by utiliz-

ing NPMI (Bouma, 2009) . The NPMI metric is
defined upon two word types as NPMI(x, y) =

log p(x,y)
p(x)p(y)/(− log p(x, y)), where p(x) is esti-

mated by the document frequency |d(x)|
D , and

p(x, y) = |d(x)∩d(y)|
D .

s(w
(P)
i , wl(i)) = min

j,k∈l(i)
{NPMI(wj , wk)} (1)

Bouma (2009) pointed out that NPMI has the
advantage that it ranges within the fixed interval.
Inherited from NPMI, the semantic coherent score
also ranges from -1 to 1. A negative semantic co-
herent score means the phrase does not share the
same topic with its component words in the corpus
level (e.g., long run, the newspaper Boston Globe).
A positive score means the opposite, and the score
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1 suggests that the phrase and its component words
should be aligned to the same topic in whole cor-
pus. By a reasonable threshold τ , we can add the
semantically coherent link for w

(P)
i and wl(i), if

s(w
(P)
i , wl(i)) > τ . In practice, we set τ to 0.4.

Assuming the topic of the phrase w
(P)
i is z

(P)
i

and the topics of words wl(i) are zl(i), when
they have the above mentioned semantically co-
herent link, we put z

(P)
i and zl(i) in a Markov

Random Field. More specifically, for z
(P)
i and

zj , j ∈ l(i), there’s the edge potential function
exp{κ·I(z(P)

i = zj)/|l(i)|}, where κ is the weight
to adjust how much the link is introduced to con-
straint the topics to be same. In the following ex-
periment, κ is set to be 10−3.

3.2 PhraseCTM

In the first stage, when given the prepared data
as described in subsection 3.1, we are going to
train better correlated phrase-level topics β(P).
The contextual information of phrases include (i)
words in the same document, and (ii) their com-
ponent words within semantically coherent links.
Part (ii) has been modeled in the previous subsec-
tion. For part (i), we let the phrases and words
in a same document d share the topic parameter
ηd, which is a K-dimension vector sampled from
a Gaussian distribution N (µ, Σ). Like CTM, Σ
is the covariance matrix, modeling the correlation
between topics.

As a part of MRF, the unary potential on the
topic node z

(P)
d,i or zd,j is defined by a logistic-

normal distribution like CTM p(zd,j = k|ηd) =
exp ηd,k/

∑
k exp ηd,k. Therefore, the joint distri-

bution of topics over the phrases and the words
in document d are defined as the following equa-
tion, where Ad(ηd) is used for normalization, and
NLd

is the number of semantically coherent links
in document d.

p(zd, z
(P)
d |ηd) =

1

Ad(ηd)

Nd∏

m=1

p(zd,m|ηd)

·
N

(P)
d∏

i=1

p(z
(P)
d,i |ηd) · exp{

NLd∑

i=1

(
κ

|l(d, i)|
∑

j∈l(d,i)

I(z
(P)
d,i = zd,j))}

The whole generation process is illustrated in
Figure 2(a). We train PhraseCTM by variational
inference like CTM. The different part lies in the
phrases and component words which are in seman-
tically coherent links. For these phrases, we use

Eq. (2) to update the variational parameters φ
(P)
d,i

for the latent topic z
(P)
d,i of the phrase w

(P)
d,i . For

the phrases that are not in semantically coherent
links, we use the Eq. (3), which is same as the
original CTM’s variational inference. In Eqs. (2)
and (3), λd is the variational parameter for ηd such
that ηd,k ∼ N (λd,k, ν

2
d,k).

φ̂
(P)
d,i,k ∝ β

(P)
k,wi

exp(λd,k +
κ

|l(d, i)|
∑

j∈l(d,i)

φd,j,k) (2)

φ̂
(P)
d,i,k ∝ β

(P)
k,wi

exp(λd,k) (3)

Similarly, the variational parameters for the
component words in semantically coherent links
are updated by Eq. (4), while other words are up-
dated by Eq. (5). In this way, PhraseCTM intro-
duces the impact from words and phrases on each
other by Markov Random Fields.

φ̂d,i,k ∝ βk,wi exp(λd,k +
κ

|l(d, j)|φ
(P)
d,j,k), i ∈ l(d, j) (4)

φ̂d,i,k ∝ βk,wi exp(λd,k) (5)

µ

Σ

ηd

zd,j wd,j βk

z
(P)
d,i w

(P)
d,i β

(P)
k

D

Nd

N
(P)
d K

(a) The first stage: training on our proposed model Phra-
seCTM. When observed words W and phrases W (P), we learn
word topics β, and phrase topics β(P).

µ(P)

Σ(P)

η
(P)
d

z
(P)
d,i w

(P)
d,i β

(P)
k

D
N

(P)
d K

(b) The second stage: inferring the phrase topics’ correlation.
When given the phrases W (P), and the phrase topics β(P)

learned from the first stage, we infer the phrase-level topics’
covariance Σ(P) as the correlation result.

Figure 2: Illustration of two stages of our method

3.3 Generation of Phrase Topics’ Correlation

In the second stage, we aim to get the correla-
tion for β(P). It cannot be directly derived from
Σ, which has also been learned in the first stage,
because Σ consists the impact from word topics.
Thus, given W (P) and β(P), we use the variational
inference again to learn Σ(P) as the illustration of
Figure 2(b). Finally, the correlation matrix can be

computed by corr(P)(i, j) =
Σ

(P)
i,j√

Σ
(P)
i,i Σ

(P)
j,j

.
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|V | |V (P)| |W | |W (P)| |D| |W |/|D| |W (P)|/|D|
20 Newsgroup 22,787 4,245 1,361,843 51,024 18,828 72.3 2.7

Argentina@Wiki 20,847 5,505 1,052,674 98,502 8,617 122.2 11.4
Mathematics@Wiki 43,779 27,371 6,062,815 594,704 27,947 216.9 21.3
Chemistry@Wiki 76,265 67,979 11,346,781 1,546,088 60,375 187.9 25.6
PubMed Abstracts 34,125 24,233 11,274,350 968,928 99,214 113.6 9.8

Table 1: The statistics of the datasets. In average, phrases appear more sparse than words. Phrases are
extracted by AutoPhrase (Shang et al., 2018).

4 Experiments

PhraseCTM is supposed to get benefits from two
aspects: (1) generating high-quality phrase-level
topics; (2) providing the correlation among phrase
topics to help users to understand the underlying
themes of a corpus. To check the first claim, we
compare PhraseCTM with existing topic models
on phrases. To evaluate the second claim, we
design a user study to compare PhraseCTM with
standard CTM that runs only on words.

Datasets. We choose several public text cor-
pora, including 20Newsgroups (Lang, 1995), sub-
sets of English Wikipedia, a subset of PubMed Ab-
stracts (Varmus et al., 1999). Due to efficiency
problem, we do not test on the whole Wikipedia
corpus. We construct the Mathematics, Chem-
istry, and Argentina subsets of English Wikipedia
as (Huang et al., 2017). For each corpus, we ex-
tract the phrases by the implementation1 of Au-
toPhrase (Shang et al., 2018), and build the se-
mantically coherent links as subsection 3.1. More
specifically, in phrase extraction process, we set
the minimum support as 5, and leave other pa-
rameters in AutoPhrase as its suggestion. In aver-
age, each document of the resulted 20Newsgroups
only contains 2.7 phrases while 72.3 words, show-
ing that phrases are much less than words. More
statistics about the datasets are shown in Table 1.

4.1 Quantitative Result
Baselines. We compare with PhraseLDA (El-
Kishky et al., 2014), the state-of-the-art model on
phrases. Besides that, we run plain LDA and plain
CTM2 directly on the extracted phrases (without
considering the impact of words). To check the
effectiveness of MRF, we run a variant version
PhraseCTM(-) by removing all the semantically
coherent links from PhraseCTM. We also run a n-
gram based topic model TNG (Wang et al., 2007),

1https://github.com/shangjingbo1226/
AutoPhrase

2https://github.com/blei-lab/ctm-c

which has already been implemented in Mallet3.
All the topic numbers are set to be 100. For plain
LDA and PhraseLDA, we set β = 0.005. For plain
CTM and TNG, we use the default settings in their
existing implementations. Since TNG combines
phrase extraction and topic modeling together, we
run it on the raw datasets.

We use the NPMI metric (Bouma, 2009) to eval-
uate the semantic coherence of top-10 phrases in
each topic (K=100), by taking the entire English
Wikipedia as the reference corpus. Roder (2015)
has shown that the NPMI metric is highly corre-
lated to human topic coherence ratings, so it’s nat-
ural to use it to show how PhraseCTM improves
the quality of topics. Although we have already
used NPMI in the semantic coherent score for
finding semantically coherent links, it does not in-
fluence the rationality of the metric used for topic
evaluation, because the semantic coherent score
is defined upon two word types while the NPMI
score on topics is defined upon two phrase types.

0.0

0.1

0.2

0.3

0.4

0.5

20NG Argentina Maths Chemistry PubMed

N
P

M
I

TNG Plain LDA Plain CTM PhraseLDA PhraseCTM− PhraseCTM

Figure 3: The quality of the learned topics.

The result is shown in Figure 3. Due to the
computational costs, TNG cannot scale up to large
datasets. Plain LDA and plain CTM performs
not well on the datasets because of the sparsity
of phrases in each document, while TNG per-
forms better than them as it can utilize more
words as its contextual information. PhraseCTM(-
) is comparable to PhraseLDA in the experiment.
PhraseLDA also utilizes all the contextual infor-
mation with the assumption that the words in a
phrase have the same topic. But this assumption

3http://mallet.cs.umass.edu/
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Figure 4: A part of the topic graph (K=100) generated by our method on the Argentina-related Wikipedia
pages, where each node shows the top-5 phrases in each topic, and edges connect correlated topics. The
left-aligned numbers in the graph represent the topic ID.

is too strong, which can be adjusted by our intro-
duced semantically coherent links in MRF. This
experiment demonstrates that our method has gen-
erated high-quality phrase-level topics.

4.2 Human Study

To compare the correlated topics at different level,
we directly run CTM on words. Trained on
Argentina@Wiki and Maths@Wiki by CTM and
PhraseCTM respectively, we outputted the topics
with top-10 words/phrases in each topic and the
correlation of topics for 10 human annotators, and
asked them to label the topics. The duration of
consuming time for topic labeling is a quite use-
ful metric to check whether the topics are easy to
understand for human annotators. It’s based on
our following observation in the human study: the
confused topic may consume more time to give it
an appropriate label, while the good one is easy to
understand for human and consumes less time.

There are 2 groups of annotators. The
annotators in Group A got the CTM re-
sult on Maths@Wiki and PhraseCTM’s on Ar-
gentina@Wiki. The annotators in Group B got the
results in the opposite setting. The labeling pro-
cess was logged to calculate the accumulated time.
The labeling time to reach 50 accurate topics’ la-
bels on PhraseCTM is much less than the labeling
time on CTM. In average, the annotators spent 7.1
minutes on PhraseCTM while 13.2 minutes on the
others, which is listed in Table 2. In Figure 3, it’s
easy to label the topics in top right corner as poli-

CTM PhraseCTM
Maths Argentina Maths Argentina

Group A 12.4 - - 7.5
Group B - 14.0 6.7 -

In Average 13.2 7.1
Table 2: Human time consumption on topic label-
ing for correlated topics generated by CTM and
PhraseCTM, measured in minutes.

tics. And the edges in the figure illustrate the cor-
relation between topics. As an example, the edge
between the topic 71 and the topic 31 represents
that the economics and the politics in Argentina is
related, helping users to understand the corpus.

5 Conclusion

We provide a new topic model PhraseCTM to
make the Correlated Topic Modeling available for
phrase-level topics. PhraseCTM utilizes more
contextual information of phrases, and put them
within Markov Random Fields, so it can provide
high-quality correlated topics at phrase level. The
experiments show that the correlated topic model-
ing on phrases is a practical tool to interpret the
underlying themes of a corpus. In future, we will
optimize the efficiency of PhraseCTM to scale it
up to large datasets.
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Abstract

In this paper, we address the problem of
finding a novel document descriptor based
on the covariance matrix of the word vec-
tors of a document. Our descriptor has a
fixed length, which makes it easy to use in
many supervised and unsupervised appli-
cations. We tested our novel descriptor in
different tasks including supervised and un-
supervised settings. Our evaluation shows
that our document covariance descriptor
fits different tasks with competitive perfor-
mance against state-of-the-art methods.

1 Introduction

Retrieving documents that are similar to a query
using vectors has a long history. Earlier meth-
ods modeled documents and queries using vec-
tor space models via bag-of-words (BOW) rep-
resentation (Salton and Buckley, 1988). Other
representations include latent semantic indexing
(LSI) (Deerwester et al., 1990), which can be used
to define dense vector representation for documents
and/or queries. The past few years have witnessed a
big interest in distributed representation for words,
sentences, paragraphs and documents. This was
achieved by leveraging deep learning methods that
learn word vector representation. Introduction of
neural language models (Bengio et al., 2003) us-
ing deep learning allowed to learn word vector
representation (word embedding for simplicity).
The seminal work of Mikolov et al. introduced an
efficient way to compute dense vectorized repre-
sentation of words (Mikolov et al., 2013a,b). A
more recent step was taken to move beyond dis-
tributed representation of words. This is to find a
distributed representation for sentences, paragraphs
and documents. Most of the presented works study
the interrelationship between words in a text snip-

Figure 1: Doc1 is about “pets” and Doc2 is about
“travel”. Top: The first two dimensions of a word
embedding for each document. Bottom Left: The
embedding of the words of the two documents. The
Mean vectors and the paragraph vectors are shown.
Covariance matrices are shown via the confidence
ellipses. Bottom Right: Corresponding covari-
ance matrices are represented as points in a new
space.

pet (Hill et al., 2016; Kiros et al., 2015; Le and
Mikolov, 2014) in an unsupervised fashion. Other
methods build a task specific representation (Kim,
2014; Collobert et al., 2011).

In this paper we propose to use the covariance
matrix of the word vectors in some document to de-
fine a novel descriptor for a document. We call our
representation DoCoV descriptor. Our descriptor
obtains a fixed-length representation of the para-
graph which captures the interrelationship between
the dimensions of the word embedding via the co-
variance matrix elements. This makes our work dis-
tinguished from to the work of (Le and Mikolov,
2014; Hill et al., 2016; Kiros et al., 2015) where
they study the interrelationship of words in the text
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snippet.

1.1 Toy Example

We show a toy example to highlight the differences
between DoCoV vector, the Mean vector and para-
graph vector (Le and Mikolov, 2014). First, we
used Gensim library1 to generate word vectors and
paragraph vectors using a dummy training corpus.
Next, we formed two hypothetical documents; first
document contains words about “pets” and second
document contains words about “travel”. In figure 1
we show on the top part the first two dimensions of
a word embedding for each document separately.
On the bottom Left, we show embedding of the
two documents’ words in the same space. We also
show the Mean vectors and the paragraph vectors.
In the word embedding space the covariance ma-
trices are represented via the confidence ellipses.
On the bottom right we show the corresponding
covariance matrices as points in a new space after
vectorization step.

1.2 Motivation and Contributions

Below we describe our motivation towards the pro-
posal of our novel representation:
(1) Some neural-based paragraph representations
such as paragraph vectors (Le and Mikolov, 2014)
, FastSent (Hill et al., 2016) use a shared space
between the words and paragraphs. This is counter
intuitive, as the paragraph is a different entity other
than the words. Figure 1 illustrates that point, we
do not see a clear interpretation of why the para-
graph vectors (Le and Mikolov, 2014) are posi-
tioned in the space as in figure 1.
(2) The covariance matrix represents the second
order summary statistic of multivariate data. This
distinguishes the covariance matrix from the mean
vector. In figure 1 we visualize the covariance ma-
trix using confidence ellipse representation.We see
that the covariance encodes the shape of the density
composed of the words of interest. In the earlier
example the Mean vectors of two dissimilar doc-
uments are put close by the word embedding. On
the other hand, the covariance matrices capture the
distinctness of the two documents.
(3) The use of the covariance as a spatial descriptor
for multivariate data has a great success in different
domains like computer vision (Tuzel et al., 2006;
Hussein et al., 2013; Sharaf et al., 2015) and brain
signal analysis (Barachant et al., 2013). With this

1https://radimrehurek.com/gensim/

global success of this representation, we believe
this method can be useful for text-related tasks.
(4) The computation of the covariance descriptor is
known to be fast and highly parallelizable. More-
over, there is no inference steps involved while
computing the covariance matrix given its observa-
tions. This is an advantage compared to existing
methods for generating paragraph vectors, such as
(Le and Mikolov, 2014; Hill et al., 2016).

Our contribution in this work is two-fold:
(1) We propose the Document-Covariance descrip-
tor (DoCoV) to represent every document as the
covariance of the word embedding of its words. To
the best of our knowledge, we are the first to explic-
itly compute covariance descriptors on word em-
bedding such as word2vec (Mikolov et al., 2013b)
or similar word vectors.
(2) We empirically show the effectiveness of our
novel descriptor in comparison to the state-of-the-
art methods in various unsupervised and supervised
classification tasks. Our results show that our de-
scriptor can attain comparable accuracy to state-of-
the-art methods in a diverse set of tasks.

1.3 Related Work

We can see the word embedding at the core of
recent state-of-art methods for solving many tasks
like semantic textual similarity, sentiment analysis
and more. Among the approaches of finding word
embedding are (Pennington et al., 2014; Levy and
Goldberg, 2014; Mikolov et al., 2013b). These
alternatives share the same objective of finding a
fixed-length vectorized representation for words
to capture the semantic and syntactic regularities
between words.

These efforts paved the way for many re-
searchers to judge document similarity based on
word embedding. Some efforts aimed at find-
ing a global representation of a text snippet us-
ing a paragraph-level representation such as para-
graph vectors (Le and Mikolov, 2014). Recently
other neural-based sentence and paragraph level
representations appeared to provide a fixed length
representation like Skip-Thought Vectors (Kiros
et al., 2015) and FastSent (Hill et al., 2016).
Some efforts focused on defining a Word Mover
Distance(WMD) based on word level representa-
tion (Kusner et al., 2015).

Prior to this work, we proposed earlier trials
for using covariance features in community ques-
tion answering (Malhas et al., 2016b,a; Torki et al.,
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2017). In these trials we used the covariance fea-
tures in combination with lexical and semantic fea-
tures. Close to our work is (Nikolentzos et al.,
2017), they build an implicit representation of doc-
uments using multidimensional Gaussian distribu-
tion. Then they compute a similarity kernel to be
used in document classification task. Our work is
distinguished from (Nikolentzos et al., 2017) as
we compute an explicit descriptor for any docu-
ment. Moreover, we use linear models which scale
much better than non-linear kernels as introduced
in (Nikolentzos et al., 2017).

2 Document Covariance Descriptor

We present our DoCoV descriptor. First, we define
a document observation matrix. Second, we show
how to extract our DoCoV descriptor.
Document Observation Matrix
Given a d-dimensional word embedding model and
an n-terms document. We can define a document
observation matrix O ∈ Rn×d. In the matrix O, a
row represents a term in the document and columns
represent the d-dimensional word embedding rep-
resentation for that term.

Assume that we have observed n terms of a d-
dimensional random variable; we have a data ma-
trix O(n× d) :

O =




x11 · · · x1d
x21 · · · x2d

...
. . .

...
xn1 · · · xnd


 (1)

The rows xi =
[
x1 x2 · · · xd

]T ∈ Rd, denote
the i-th observation of a d-dimensional random
variable X ∈ Rd. The “sample mean vector” of
the n observations ∈ Rd is given by the vector x̄
of the means x̄j of the d variables:

x̄ =
[
x̄1 x̄2 · · · x̄d

]T ∈ Rd (2)

From hereafter, when we mention the Mean vector
we mean the sample Mean Vector x̄.
Document-Covariance Descriptor (DoCoV)
Given an observation matrix O for a document,

we compute the covariance matrix entriesfor every
pair of dimensions (X,Y ).

σX,Y =

∑N
i=1(xi − x̄)(yi − ȳ)

N
(3)

The matrix C ∈ Rd×d is a symmetric matrix and
is defined as

C =




σ2X1
σX1X2 · · · σX1Xd

σX1X2 σ2X2
· · · σX2Xd

...
...

. . .
...

σX1Xd
σX2Xd

· · · σ2Xd


(4)

We Compute a vectorized representation of the
matrix C as the stacking of the upper triangular
part of matrix C as in eq. 5. This process produces
a vector v ∈ Rd(d+1)/2. The Euclidean distance
between vectorized matrices is equivalent to the
Frobenius norm of the original covariance matrices.

v = vect(C) =

{√
2Cp,q if p < q

Cp,q if p = q
(5)

3 Experimental Evaluation

We show an extensive comparative evaluation for
unsupervised paragraph representation approaches.
We test the unsupervised semantic textual similarity
task. Next, we show a comparative evaluation for
text classification benchmarks.

3.1 Effect of Word Embedding Source and
Dimensionality on Classification Results

We evaluate classification performance over the
IMDB movie reviews dataset using error rate as
the evaluation measure. We report our results using
a linear SVM classifier.We chose the default pa-
rameters for Linear SVM classifier in scikit-learn
library2.

The IMDB movie review dataset was first pro-
posed by Maas et al. (Maas et al., 2011) as a bench-
mark for sentiment analysis. The dataset consists
of 100K IMDB movie reviews and each review has
several sentences. The 100K reviews are divided
into three datasets: 25K labelled training instances,
25K labelled test instances and 50K unlabelled
training instances. Each review has one label rep-
resenting the sentiment of it: Positive or Negative.
These labels are balanced in both the training and
the test set.

The objective is to show that theDoCoV de-
scriptor can be used with different alternatives for
word representations. Also, the experiment shows
that pre-trained models are giving the best results,
namely the word2vec model built on Google news.
This alleviates the need of computing a problem

2 http://scikit-learn.org/
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specific word embedding. In some cases there is
no available data to construct the word embedding.
To illustrate that we tried different alternatives for
word representation.
(1) We computed our own skipgram models using
Gensim Library. We used the Training and unla-
belled subsets of IMDB dataset to obtain different
embedding by setting number of dimensions to 100,
200 and 300.
(2) We used pre-trained GloVe models trained on
wikipedia2014 and Gigaword5. We tested the avail-
able different dimensionality 100, 200 and 300. We
also used the 300 dimensions GloVe model that
used commoncrawl with 42 Billion tokens We call
the last one Lrg. This model provides word vectors
of 300 dimensions for each word.
(3) We used pre-trained word2vec model trained
on Google news. We call it Gnews. This model
provides word vectors of 300 dimensions for each
word. Table 1 shows the results when using DoCoV
computed at different dimensions of word embed-
ding in classification. The table also compares
classification performance when using DoCoV to
the performance when using the Mean of word em-
bedding as a baseline. Also, we show the effect of
fusing DoCoV with other feature sets. We mainly
experiment with the following sets: DoCoV, Mean,
and bag-of-words (BOW). We use the mean and
DoCoV features.

Observations
From the results we can observe the following
(1) We observe that the DoCoV is consistently out-
performing the Mean vector for different dimen-
sionality of the word embedding regardless of the
embedding source.
(3) The best performing feature concatenation is
DoCoV+BOW. This ensures that the concatenation
in fact is benefiting from both representations.
(3) In general the best results are achieved using
the available 300-dimensions Gnews word embed-
ding. In the subsequent experiments we will use
that embedding such that we do not need to build a
different word embedding for every task on hand.

Unsupervised Semantic Textual Similarity
We conduct a comparative evaluation against the
state-of-the-art approaches in unsupervised para-
graph representation. We follow the setup used
in (Hill et al., 2016).
Datasets and Baselines
We contrast our results against the methods re-
ported in (Hill et al., 2016). The competing meth-

ods are the paragraph vectors (Le and Mikolov,
2014), skip-thought vectors (Kiros et al., 2015),
Fastsent (Hill et al., 2016), Sequential (Denois-
ing) Autoencoders (SDAE) (Hill et al., 2016). The
Mean vector baseline is also implemented. Also,
we use the sum of the similarities generated by
the DoCoV and the mean vectors. All of our re-
sults are reported using the freely available Gnews
word2vec of dim = 300. We use same evaluation
measures (Hill et al., 2016). We use the Pearson
correlation and Spearman correlation with the man-
ual relatedness judgements.

The semantic sentence relatedness datasets
used in the comparative evaluation the SICK
dataset (Marelli et al., 2014) consists of 10,000
pairs of sentences and relatedness judgements and
the STS 2014 dataset (Agirre et al., 2014) consists
of 3,750 pairs and ratings from six linguistic do-
mains.
Results and Discussion
We show the correlation values between the simi-
larities computed via DoCoV and the human judge-
ments. We contrast the performance of other repre-
sentations in table 2.

We observe that DoCoV representation outper-
forms other representations in this task. Other mod-
els such as skipthought vectors (Kiros et al., 2015)
and SDAE (Hill et al., 2016) requires building an
encoder-decoder model which takes time3 to learn.
For other models like paragraph vectors (Le and
Mikolov, 2014) and Fastsent vectors (Hill et al.,
2016), they require a gradient descent inference
step to compute the paragraph/sentence vectors.
Using the DoCoV, we just require a pre-trained
word embedding model and we do not need any
additional training like encoder-decoder models or
inference steps via gradient descent.
Text Classification Benchmarks
The datasets used in this experiment form a text-

classification benchmark for sentence and para-
graph classification. Towards the end of this sec-
tion we can clearly identify the value of the DoCoV
descriptor as a generic descriptor for text classifica-
tion tasks.
Datasets and Baselines
We contrast our results against the same methods
of unsupervised paragraph representations. In ad-
dition to the results of DoCoV we examined con-
catenation of BoW with tf-idf weighting and Mean
vectors with our DoCoV descriptors. We use linear

3Up to weeks.
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Table 1: Error-Rate performance when changing word vectors dimensionality.
Model/Dim
BOW 9.66%
Gensim Mean DoCoV DoCoV DoCoV DoCoV

+Mean Bow +Mean+Bow
d=100 14.13% 11.64% 11.16% 9.39% 9.44%
d=200 12.86% 11.08% 10.80% 9.39% 9.58%
d=300 12.83% 11.08% 10.85% 9.41% 9.47%
Glove Mean DoCoV DoCoV DoCoV DoCoV

+Mean Bow +Mean+Bow
d=100 20% 13.07% 12.88% 9.63% 9.62%
d=200 16.95% 12.36% 12.22% 9.64% 9.65%
d=300 16.29% 12.00% 11.91% 9.63% 9.66%
d=300,Lrg 14.94% 11.70% 11.56% 9.5% 9.6%
Gnews Mean DoCoV DoCoV DoCoV DoCoV

+Mean Bow +Mean+Bow
d=300 14.03% 11.11% 10.75% 9.32% 9.6%

Table 2: Spearman/Pearson correlations on unsupervised (relatedness) evaluations.
STS-2014 SICKModel News Forums Wordnet Twitter Images Headlines All

P2vec (Le and Mikolov, 2014) 0.42/0.46 0.33/0.34 0.51/0.48 0.54/0.57 0.32/0.30 0.46/0.47 0.44/0.44 0.44/0.46
FastSent (Hill et al., 2016) 0.44/0.45 0.14/0.15 0.39/0.34 0.42/0.43 0.55/0.60 0.43/0.44 0.27/0.29 0.57/0.60
FastSent+AE (Hill et al., 2016) 0.58/0.59 0.41/0.36 0.74/0.70 0.63/0.66 0.74/0.78 0.57/0.59 0.63/0.64 0.61/0.72
Skip-Thought (Kiros et al., 2015) 0.56/0.59 0.41/0.40 0.69/0.64 0.70/0.74 0.63/0.65 0.58/0.60 0.62/0.62 0.60/0.65
SAE (Hill et al., 2016) 0.17/0.16 0.12/0.12 0.30/0.23 0.28/0.22 0.49/0.46 0.13/0.11 0.12/0.13 0.32/0.31
SAE+embs (Hill et al., 2016) 0.52/0.54 0.22/0.23 0.60/0.55 0.60/0.60 0.64/0.64 0.41/0.41 0.42/0.43 0.47/0.49
SDAE (Hill et al., 2016) .07/0.04 0.11/0.13 0.33/0.24 0.44/0.42 0.44/0.38 0.36/0.36 0.17/0.15 0.46/0.46
SDAE+embs (Hill et al., 2016) 0.51/0.54 0.29/0.29 0.56/0.50 0.57/0.58 0.59/0.59 0.43/0.44 0.37/0.38 0.46/0.46
Mean 0.65/0.68 0.46/0.45 0.75/0.78 0.71/0.75 0.76/0.78 0.59/0.64 0.64/0.66 0.63/0.73
DoCoV 0.62/0.68 0.50/0.51 0.77/0.79 0.69/0.75 0.78/0.80 0.60/0.63 0.67/0.70 0.61/0.69
DoCoV+Mean 0.64/0.70 0.51/0.51 0.79/0.78 0.71/0.76 0.78/0.81 0.61/0.65 0.67/0.70 0.62/0.71

Table 3: Accuracy of sentence representation mod-
els on text classification benchmarks.

Representation \Dataset MR CR Trec Subj Overall
Mean 77.4 79.2 80 91.3 81.98
BOW +tf-idf weights 77.1 78.5 89.3 89.3 83.55
P2vec (Le and Mikolov, 2014) 74.8 78.1 91.8 90.5 83.8
Skip-uni (Kiros et al., 2015) 75.5 79.3 91.4 92.1 84.58
bi-skip (Kiros et al., 2015) 73.9 77.9 89.4 92.5 84.43
comb-skip (Kiros et al., 2015) 76.5 80.1 92.2 93.6 85.6
FastSent (Hill et al., 2016) 70.8 78.4 76.8 88.7 78.68
FastSentAE (Hill et al., 2016) 71.8 76.7 80.4 88.8 79.43
SAE (Hill et al., 2016) 62.6 68 80.2 86.1 74.23
SAE+embs (Hill et al., 2016) 73.2 75.3 80.4 89.8 79.68
SDAE (Hill et al., 2016) 67.6 74 77.6 89.3 77.13
SDAE+embs (Hill et al., 2016) 74.6 78 78.4 90.8 80.45
COV 79.7 79.4 89.5 92.8 85.35
COV+Mean 80.2 80.1 90.3 93.1 85.93
COV+Bow 80.7 80.5 91.8 93.3 86.58
COV+Mean+BOW 81.1 81.5 91.6 93.2 86.85

SVM for all the tasks. All of our results are re-
ported using the freely available Gnews word2vec
of dim = 300. We use classification accuracy as
the evaluation measure for this experiment as (Hill
et al., 2016).
The subsets used in comparative benchmark evalua-
tion are: Movie Reviews MR (Pang and Lee, 2005),
Subjectivity Subj (Pang and Lee, 2004),Customer
Reviews CR (Hu and Liu, 2004) and TREC Ques-
tion TREC (Li and Roth, 2002).
Results and Discussion
Table 3 shows the results of our variants against
state-of-art algorithms that use unsupervised para-
graph representation.

We observe that DoCoV is consistently better
than the Mean vector and BOW with tf-idf weights.
Also, DoCoV is improving consistently when con-
catenated with baselines such as Mean vector and
BOW vectors. This means each feature is captur-
ing different discriminating information. This justi-
fies the choice of concatenating DoCoV with other
features. We further observe that DoCoV is con-
sistently better than the paragraph vectors (Le and
Mikolov, 2014), Fastsent and SDAE (Hill et al.,
2016). The overall accuracy of DoCoV is high-
lighted and it outperforms other methods on the
text classification benchmark.

4 Conclusion

We presented a novel descriptor to represent text
on any level such as sentences, paragraphs or docu-
ments. Our representation is generic which makes
it useful for different supervised and unsupervised
tasks. It has fixed-length property which makes
it useful for different learning algorithms. Also,
our descriptor requires minimal training. We do
not require a encoder-decoder model or a gradient
descent iterations to be computed.

Empirically we showed the effectiveness of the
descriptor in different tasks. We showed better
performance against other state-of-the-art methods
in supervised and unsupervised settings.
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Abstract

We report an empirical study on the task of
negation scope extraction given the nega-
tion cue. Our key observation is that cer-
tain useful information such as features re-
lated to negation cue, long distance de-
pendencies as well as some latent struc-
tural information can be exploited for such
a task. We design approaches based on
conditional random fields (CRF), semi-
Markov CRF, as well as latent-variable
CRF models to capture such information.
Extensive experiments on several standard
datasets demonstrate that our approaches
are able to achieve better results than exist-
ing approaches reported in the literature.

1 Introduction

Negation is an important linguistic phenomenon
(Morante and Sporleder, 2012), which reverts the
assertion associated with a proposition. Broadly
speaking, the part of the sentence being negated
is called negation scope (Huddleston et al., 2002).
Automatic negation scope detection is a vital but
challenging task that has various applications in
areas such as text mining (Szarvas et al., 2008),
and sentiment analysis (Wiegand et al., 2010;
Councill et al., 2010). Negation scope detection
task commonly involves a negation cue which can
be one of the following 3 types – either a single
word (e.g., not), affixes (e.g., im-, -less) or multi-
ple words (e.g., no longer) expressing negation.
Figure 1 presents two real examples for such a
task, where the first example involves discontin-
uous negation scope of an affix cue. The second
example shows a discontinuous negation cue and
its corresponding discontinuous negation scope.

Most existing approaches tackled the negation
scope detection problem from a boundary detec-

He declares that he heard cries but is unable
to state from what direction they came .

There is neither money nor credit in it , and
yet one would wish to tidy it up .

Figure 1: Two examples with negation cues in
bold blue and negation scope in red.

tion perspective, aiming to identify whether each
word token in the sentence belongs to the nega-
tion scope or not. To perform sequence labeling,
various approaches have been proposed based on
models such as support vector machines (SVMs)
(with heuristic rules) (Read et al., 2012; de Al-
bornoz et al., 2012; Packard et al., 2014), condi-
tional random fields (CRF) (Lapponi et al., 2012;
Chowdhury and Mahbub, 2012; White, 2012; Zou
et al., 2015) and neural networks (Fancellu et al.,
2016; Qian et al., 2016). These models typically
either make use of external resources for extract-
ing complex syntax and grammar features, or are
based on neural architectures such as long short-
term memory networks (LSTM) and convolutional
neural networks (CNNs) to extract automatic fea-
tures.

We observe that there are some useful fea-
tures that can be explicitly and implicitly captured
and modelled in the learning process for negation
scope extraction. We use the term partial scope to
refer to a continuous text span that is part of dis-
continuous scope, and use the term gap to refer to
the text span between two pieces of partial scope.

From the first example in Figure 1 we can ob-
serve that, with the negation cue as a prefix in a
word, the partial scope before, after and in the
middle of the negation cue differ in terms of com-
position of words and their associated syntactic
roles in the sentence. Furthermore, the type of cue
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He declares that he heard cries but is unable to state from what direction they came .

ILinear O O O O O O I I I I I I I I I O

ISemi o O I I I I I I I I I O

ISemi i O O O O O O I O

ISemi io O I O

I0Latent i
O O O O O O I0 I0 I0 I0 I0 I0 I0 I0 I0 O

I1 I1 I1 I1 I1 I1 I1 I1 I1 I1

ILatent o
O0 O0 O0 O0 O0 O0 I I I I I I I I I O0

O1 O1 O1 O1 O1 O1 O1

I0Latent io
O0 O0 O0 O0 O0 O0 I0 I0 I0 I0 I0 I0 I0 I0 I0 O0

I1 O1 O1 O1 O1 O1 O1 I1 I1 I1 I1 I1 I1 I1 I1 I1 O1

Figure 2: Label assignments of model variants for the first example mentioned in Figure 1.

as we mentioned earlier may also reveal crucial
information for this task. Moreover, two pieces of
partial scope separated by a gap might have some
long distance dependencies. For instance, in the
first sentence of Figure 1, “He” as the first partial
scope is the subject phrase of the token “is” which
is the first word of the second partial scope with a
long gap in between.

Similarly, the second example shows that a dis-
continuous negation cue involves multiple words,
neither and nor, which shows the importance of
cue features and some long distance dependencies
among text spans.

Furthermore, besides explicit features that we
are able to define, we believe there exist some
implicit linguistic patterns within the scope for a
given negation cue. While it is possible to manu-
ally design linguistic features to extract such pat-
terns, approaches that can automatically capture
such implicit patterns in a domain and language
independent manner can be more attractive. How
to design models that can effectively capture such
features mentioned above remains a research ques-
tion to be answered.

In the paper, we design different models to cap-
ture such useful features based on the above moti-
vations, and report our empirical findings through
extensive experiments. We release our code at
http://statnlp.org/research/st.

2 Approaches

Based on the observations described earlier, we
aim to capture three types of features by design-
ing different models based on CRF.

Negation Cue

The linear CRF (Lafferty et al., 2001) model
(which we refer to as Linear in this paper), as il-
lustrated in Figure 2 , is used to capture negation
cue related features. The probability of predicting

a possible output y, the label sequence capturing
negation scope, given an input sentence x is:

p(y|x) = exp (wT f(x,y))∑
y′∈Y(x) exp(w

T f(x,y′))

where f(x,y) is a feature function defined over
the (x,y) pair. The negation cue related features
mainly involve cue type, position of the cue, as
well as relative positions of each partial scope. For
example, the cue type refers to the string form of
the cue, which could be a single word, an affix
(prefix or suffix), or a multi-word expression.

We follow a standard approach to assign tags to
words. Specifically, O and I are used to indicate
whether a word appears outside or inside the nega-
tion scope respectively.

Long Distance Dependencies

We use the semi-CRF (Sarawagi and Cohen, 2004)
model (referred to as Semi) to capture long dis-
tance dependencies. The semi-CRF is an exten-
sion to the linear-CRF. The difference is that the
output y may not be a sequence of individual
words. Rather, it is now a sequence of spans,
where each span consists of one or more words.
The semi-CRF model is more expressive than the
linear-CRF model as such a model is able to cap-
ture features that are defined at the span level, al-
lowing longer-range dependencies to be captured.

Since the Semi approach is capable of model-
ing a span (which can be a gap or partial scope),
we are able to model the features between two sep-
arate text spans. We propose three variants for the
Semi model, as illustrated in Figure 2, to capture
different types of long distance features. The Semi
i model regards a piece of partial scope as a span
in order to capture long distance dependencies be-
tween two gaps. The Semi o model treats a gap
as a span to capture long distance dependencies
between two pieces of partial scope. The Semi io

534



model regards both partial scope and gaps as spans
to capture both types of long distance dependen-
cies mentioned above.

Implicit Patterns
The latent variable CRF model, denoted as La-
tent, is used to model implicit patterns. The prob-
ability of predicting a possible output y, which is
the label sequence capturing negation scope infor-
mation, given an input sentence x is defined as:

p(y|x) =
∑

h exp (w
T f(x,y,h))∑

y′∈Y(x)

∑
h′ exp(wT f(x,y′ ,h′))

where h is a latent variable encoding the implicit
pattern.

We believe such latent pattern information can
be learned from data without any linguistic guid-
ance. The Latent model is capable of capturing
this type of implicit signals. For example, as illus-
trated as Latent io in Figure 2, each position has
O0, O1, I0 and I1 as latent tags. This way, we
can construct features of forms such as “He/Oi-
declares/Ij” that capture the underlying interac-
tions between the words and the latent tag patterns.

In order to investigate the relation between la-
tent variables and tags, we proposed another two
latent models. The Latent i only considers latent
variables on I tags (for partial scope), while La-
tent o only takes latent variables on O tags (for
gaps).

3 Experimental Setup

CDS-CO Train Dev Test
#Sentence 847 144 235
#Instance 983 173 264

Table 1: Statistics of the CDS-CO corpus.

We mainly conducted our experiments on the
CDS-CO corpus released from the *SEM2012
shared task (Morante and Blanco, 2012). The
negation cue and corresponding negation scope
are annotated. For each word token, the corre-
sponding POS tag and the syntax tree informa-
tion are provided. If the sentence contains mul-
tiple negation cues, each of them is annotated
separately. The corpus statistics is listed in Ta-
ble 1. During training and testing, following prior
works (Fancellu et al., 2016), only instances with
at least one negation cue will be selected. For
the sentence containing multiple negation cues, we
create as many copies as the number of instances,

System
Token-Level Scope-Level (Exact Scope Match)

P. R. F1 PA. RA. F1A PB. RB. F1B

Read et al. (2012) - - - 98.8 64.3 77.9 - - -
Packard et al. (2014) 86.1 90.4 88.2 98.8 65.5 78.7 - - -
Fancellu et al. (2016) 92.6 85.1 88.7 99.4 63.9 77.8 - - -
Linear (-c -r) 84.7 73.9 78.6 99.2 49.4 65.6 51.5 49.4 50.4
Linear (-r) 90.6 78.4 84.1 100 60.6 75.5 61.4 60.6 61.0
Linear (-c) 91.0 78.9 84.5 99.3 56.6 72.1 60.0 56.6 58.3
Linear 94.4 82.6 88.1 100 67.9 80.9 69.3 67.9 68.6
Semi i 95.0 84.1 89.2 100 67.5 80.6 69.4 67.5 68.4
Semi o 94.0 85.3 89.4 100 69.1 81.7 71.1 69.1 70.1
Semi io 94.5 84.1 89.0 100 68.3 81.2 70.3 68.3 69.3
Latent i 94.4 83.4 88.6 99.4 67.9 80.7 69.6 67.9 68.7
Latent o 90.4 83.9 87.1 99.4 65.5 78.9 66.3 65.5 65.9
Latent io 94.8 83.2 88.6 100 69.5 82.0 70.6 69.5 70.0

Table 2: Main results on CDS-CO data

each of which has only one negation cue and its
corresponding negation scope.

The L2 regularization hyper-parameter λ is set
to 0.1 based on the development set. We conduct
evaluations of negation scope extraction based on
metrics at token-level evaluations and scope-level
evaluations. There are two versions of evalua-
tion metrics, referred to as version A and version
B1, defined at the scope-level that can be used to
measure the performance according to *SEM2012
shared task (Morante and Blanco, 2012).

Moreover, to understand the model robustness,
we also conducted additional experiments on Bio-
Scope (Szarvas et al., 2008) and CNeSP (Zou
et al., 2015).

4 Results and Discussion

4.1 Main Results

The main results on the CDS-CO corpus are shown
in Table 2. PA.,RA. and F1A. are precision, recall
and F1 measure under version A, while PB., RB.,
F1B. are for version B. Note that none of the prior
works reported results under version B. Moreover,
c refers to the cue type features, r refers to relative
position of partial scope with respect to the cue.

We focus on Linear models first, where Linear
(-c -r) is the baseline without features c and r for
comparisons. By adding c, the Linear (-r) model
improves the performance by 9.9 and 10.6 in terms
of F1 scores for both versions of evaluation meth-
ods at the scope level respectively. By adding r
solely, the Linear (-c) model increases the perfor-
mance by 6.5 and 7.9 on F1 scores of both ver-
sions. By adding both c and r, the Linear model
increases the performance by 15.3 and 18.2 on F1

scores at the scope level, outperforming previous

1The official evaluation contains both two versions. We
explain the differences between two versions of evaluation in
the supplementary material.
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This person is alone and can not be approached by
letter without a breach of that absolute secrecy .

He has been there for ten days, and neither Mr. War-
ren , nor I , nor the girl has once set eyes upon him.

Figure 3: Examples showing incorrect instances
in the Linear model but correct in Semi o model
(The incorrect predictions by Linear model are un-
derlined).

works. These improvements demonstrate the im-
portance of the negation cue features.

Compared with the Linear model, Semi models
achieve better results. Specifically, Semi o model
achieves the best result on F1B at the scope level
among all the models and achieves the highest re-
sult on F1 at the token level.

The Latent io model outperforms all the other
models in terms of F1A at scope level and a com-
petitive result in terms of F1B .

4.2 Analysis

By analyzing predictions that are incorrect in Lin-
ear model that are correct in the Semi models,
we have some interesting observations explaining
why Semi models work better. The first type of
observation is that the Semi models tend to pre-
dict more correct scope tokens, which improves
results at scope level and token level. The second
type is that Semi models recover some missing re-
mote partial scope, which shows the importance
of capturing long distance dependencies. For in-
stance, in the first example of Figure 3, the Semi
models recover the subject phrase “This person” as
the first partial scope. The third type happens on
discontinuous cues as well as multiple short gaps
as shown in the second example in Figure 3. The
Linear model fails to predict “Mr. Waren ,” and “I
,’’ as two pieces of partial scope between three cue
words which are also gaps. These observations in-
dicate that Semi models are capable of capturing
long distance features and can correct some wrong
predictions made by the Linear model.

Similarly, by analyzing predictions that are in-
correct in Linear model that are correct in the La-
tent models, we observe that Latent models tend
to make more accurate predictions. We found that
there is only 1 incorrect prediction from the La-
tent io that is corrected by the Linear model. This
indicates that the Latent io model is able to fix er-

System
Abstract Full Paper Clinical

F1T F1A PCS F1T F1A PCS F1T F1A PCS

Li et al. (2010) - - 81.8 - - 64.0 - - 89.8
Velldal et al. (2012) - 74.4 - - 70.2 - - 90.7 -
Zou et al. (2013) - - 76.9 - - 61.2 - - 85.3
Qian et al. (2016) 89.9 - 77.1 83.5 - 55.3 94.4 - 89.7
Linear 90.3 90.3 82.3 80.8 74.0 58.8 96.4 96.6 93.3
Semi io 92.1 91.3 84.1 83.1 75.1 60.1 97.5 97.1 94.4
Latent io 91.5 90.8 83.2 79.5 71.0 55.1 97.3 97.0 94.1

Table 3: Results on BioScope datasets.

rors for the Linear model without producing other
wrong predictions. This analysis implies that the
Latent models are able to capture some latent pat-
terns to some extent. The performance of the La-
tent o model is lower than the performance of La-
tent io and Latent i, indicating that latent vari-
ables on tag I captures more information.

Let us focus on the token-level performance of
our model. We obtained satisfactory precision
scores, but comparatively low recall scores. Mean-
while, at the scope level, our precision scores are
comparable to the previous works, but our recall
scores are consistently better, indicating our mod-
els are capable of successfully recovering more
gold scope information from the test data. Our
further analysis shows that our models tend to
predict negation scope that is significantly shorter
than the gold scope for those instances that involve
some long negation scope. We find that around
1/3 of the word tokens appearing inside any nega-
tion scope come from such instances. These facts
make token-level recall of our models compara-
tively low.

In addition, we inspect the top 200 features with
highest feature weights, and we find that around
45% of them are related to POS tags with label
transition (the string form concatenating current
tag and next tag), indicating POS tag features play
an important role in the learning process for our
models.

4.3 Experiments on Model Robustness

To understand the robustness of our model, we ad-
ditionally conducted two sets of experiments.

BioScope
The BioScope corpus (Szarvas et al., 2008) con-
tains three data collections from medical domains:
Abstract, Full Paper and Clinical. NLTK (Bird
and Loper, 2004) is used to perform tokeniza-
tion and POS tagging for preprocessing. Follow-
ing (Morante and Daelemans, 2009; Qian et al.,
2016), we perform 10-fold cross validation on Ab-
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System
Product Review

F1T F1A F1B PCS

(Zou et al., 2015) - - - 60.93
Linear 89.60 81.86 69.39 69.39
Semi io 90.78 83.49 71.69 71.69
Latent io 90.60 83.95 72.43 72.43

Table 4: Results on Product Review from CNeSP.

stract, whereas the results on Full Paper and Clin-
ical are obtained by training on the full Abstract
dataset and testing on Full Paper and Clinical re-
spectively. The latter experiment can help us un-
derstand the robustness of the model by applying
the learned model to different types of text within
the same domain.

The Semi io model mostly outperforms the
other models. Comparing against all the prior
works, our models are able to achieve better results
on Abstract under both token-level and scope-level
F1 as well as PCS 2. Moreover, we also ob-
tain significantly higher results in terms of scope-
level F1 on Full Paper and Clinical, indicating
the good robustness of our approaches. Note that
the PCS score on Full Paper is not as satisfac-
tory as on Clinical. This is largely because the
model is trained on Abstract, but Full Paper con-
tains much longer sentences with longer negation
scope, which presents a challenge for our model
as discussed in the previous sections. On the other
hand, the baseline systems (Li et al., 2010; Velldal
et al., 2012) adopt features from syntactic trees,
which allow them to capture long-distance syntac-
tic dependencies.

CNeSP
To understand how well our model works on
another language other than English, we also
conducted an experiment on the Product Review
collection from the CNeSP corpus (Zou et al.,
2015). We used Jieba (Sun, 2012) and Stanford
tagger (Toutanova and Manning, 2000) to per-
form Chinese word segmentation and POS tag-
ging. Following the data splitting scheme de-
scribed in (Zou et al., 2015), we performed 10-
fold cross-validation and the results are shown in
Table 4. Our model obtains a significantly higher
PCS score than the model reported in (Zou et al.,
2015). The results further confirm the robustness
of our model, showing it is language independent.

2PCS is defined as percentage of correct scope which is
the same as the recall score.

5 Related Work

The negation scope extraction task has been stud-
ied within the NLP community through the Bio-
Scope corpus (Szarvas et al., 2008) in biomed-
ical domain, usually together with the negation
cue detection task. The negation scope detection
task has mostly been regarded as a boundary de-
tection task. Morante et al. (2008) and Morante
and Daelemans (2009) tackled the task by build-
ing classifiers based on k-nearest neighbors algo-
rithm (Cover and Hart, 1967), SVM (Cortes and
Vapnik, 1995) as well as CRF (Lafferty et al.,
2001) on each token to determine if it is inside
the scope. Li et al. (2010) incorporated more
syntactic features such as parse tree information
by adopting shallow semantic parsing (Gildea and
Palmer, 2002; Punyakanok et al., 2005) for build-
ing an SVM classifier. With similar motivation,
Apostolova et al. (2011) proposed a rule-based
method to extract lexico-syntactic patterns to iden-
tify the scope boundaries. To further investigate
the syntactic features, Zou et al. (2013) extracted
more syntactic information from constituency and
dependency trees obtained from parsers to feed
into the SVM classifier. Qian et al. (2016)
adopted a convolutional neural network based ap-
proach (LeCun et al., 1989) to extract position fea-
tures and syntactic path features encoding the path
from the cue to the candidate token along the con-
stituency trees. They also captured relative posi-
tion information between the words in the scope
and the cue as features in their model.

In order to resolve the corpus scarcity issue in
different languages for the negation scope extrac-
tion task, Zou et al. (2015) constructed a Chinese
corpus CNeSP analogous to the BioScope corpus.
They again tackled the negation scope extraction
task using CRF with rich syntactic features ex-
tracted from constituency and dependency trees.

6 Conclusion

We explored several approaches based on CRF
to capture some useful features for solving the
task of extracting negation scope based on a given
negation cue in a sentence. We conducted exten-
sive experiments on a standard dataset, and the re-
sults show that our models are able to achieve sig-
nificantly better results than various previous ap-
proaches. We also demonstrated the robustness of
our approaches through extensive analysis as well
as additional experiments on other datasets.
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Abstract

This work deals with SCITAIL, a nat-
ural entailment challenge derived from
a multi-choice question answering prob-
lem. The premises and hypotheses in
SCITAIL were generated with no aware-
ness of each other, and did not specif-
ically aim at the entailment task. This
makes it more challenging than other
entailment data sets and more directly
useful to the end-task – question an-
swering. We propose DEISTE (deep
explorations of inter-sentence interactions
for textual entailment) for this entail-
ment task. Given word-to-word inter-
actions between the premise-hypothesis
pair (P , H), DEISTE consists of: (i) a
parameter-dynamic convolution to make
important words in P and H play a domi-
nant role in learnt representations; and (ii)
a position-aware attentive convolution to
encode the representation and position in-
formation of the aligned word pairs. Ex-
periments show that DEISTE gets ≈5%
improvement over prior state of the art
and that the pretrained DEISTE on SCI-
TAIL generalizes well on RTE-5.1

1 Introduction

Textual entailment (TE) is a fundamental prob-
lem in natural language understanding and has
been studied intensively recently using multiple
benchmarks – PASCAL RTE challenges (Dagan
et al., 2006, 2013), Paragraph-Headline (Burger
and Ferro, 2005), SICK (Marelli et al., 2014)
and SNLI (Bowman et al., 2015). In particular,
SNLI – while much easier than earlier datasets

1https://github.com/yinwenpeng/SciTail

Premise P
Pluto rotates once on its axis every 6.39 Earth days. 0
Once per day, the earth rotates about its axis. 1
It rotates on its axis once every 60 Earth days. 0
Earth orbits Sun, and rotates once per day about axis. 1

Table 1: Examples of four premises for the hy-
pothesis “Earth rotates on its axis once times in
one day” in SCITAIL dataset. Right column (la-
bel): “1” means entail, “0” otherwise.

– has generated much work based on deep neu-
ral networks due to its large size. However, these
benchmarks were mostly derived independently
of any NLP problems.2 Therefore, the premise-
hypothesis pairs were composed under the con-
straint of predefined rules and the language skills
of humans. As a result, while top-performing sys-
tems push forward the state-of-the-art, they do not
necessarily learn to support language inferences
that emerge commonly and naturally in real NLP
problems.

In this work, we study SCITAIL (Khot et al.,
2018), an end-task oriented challenging entail-
ment benchmark. SCITAIL is reformatted from
a multi-choice question answering problem. All
hypotheses H were obtained by rewriting (ques-
tion, correct answer) pairs; all premises P are rel-
evant web sentences collected by an Information
retrieval (IR) method; then (P , H) pairs are an-
notated via crowdsourcing. Table 1 shows exam-
ples. By this construction, a substantial perfor-
mance gain on SCITAIL can be turned into bet-
ter QA performance (Khot et al., 2018). Khot
et al. (2018) report that SCITAIL challenges neu-
ral entailment models that show outstanding per-
formance on SNLI, e.g., Decomposable Attention
Model (Parikh et al., 2016) and Enhanced LSTM
(Chen et al., 2017).

We propose DEISTE for SCITAIL. Given
word-to-word inter-sentence interactions between

2RTE-{5,6,7} is an exception to this rule.
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more likely less likely

premise

hypothesis 1 hypothesis 2

entail

Figure 1: The motivation of considering alignment
positions in TE. The same color in (premise, hy-
pothesis) means the two words are best aligned.

pi hj

i

j

Given : I = interactions(P,H)

(1) : importance of
1.0

1.0 + max(I[i, :])
pi

(2) H ⋅ softmax(I[i, :]) : soft best match of pi

(3) argmax(I[i, :]) : hard location of best match of pi

Learn :

P H

I

Figure 2: The basic principles of DEISTE in mod-
eling the pair (P , H)

the pair (P , H), DEISTE pursues three deep ex-
ploration strategies of these interactions. (a) How
to express the importance of a word, and let it
play a dominant role in learnt representations. (b)
For any word in one of (P , H), how to find the
best aligned word in the other sentence, so that
we know their connection is indicative of the final
decision. (c) For a window of words in P or H ,
whether the locations of their best aligned words in
the other sentence provides clues. As Figure 1 il-
lustrates, the premise “in this incident, the cop (C)
shot (S) the thief (T )” is more likely to entail the
hypothesis “Ĉ . . . Ŝ . . . T̂ ” than “T̂ . . . Ŝ . . . Ĉ”
where X̂ is the word that best matches X .

Our model DEISTE is implemented in convo-
lutional neural architecture (LeCun et al., 1998).
Specifically, DEISTE consists of (i) a parameter-
dynamic convolution for exploration strategy (a)
given above; and (ii) a position-aware atten-
tive convolution for exploration strategies (b)
and (c). In experiments, DEISTE outperforms
prior top systems by ≈5%. Perhaps even more
interestingly, the pretrained model over SCI-
TAIL generalizes well on RTE-5.

pi

mi

P H

aligned
hidden state

attentive
convolution

rpos

row-wise
max-pooling

Representation for pair  (P, H)

p̃i

pi

zi

position  
embedding

Figure 3: Position-aware attentive convolution in
modeling the pair (P , H)

2 Method

To start, a sentence S (S ∈ {P,H}) is represented
as a sequence of ns hidden states, e.g., pi,hi ∈
Rd (i = 1, 2, . . . , |np/h|), forming a feature map
S ∈ Rd×|ns|, where d is the dimensionality of hid-
den states. Figure 2 depicts the basic principle of
DEISTE in modeling premise-hypothesis pair (P ,
H) with feature maps P and H, respectively.

First, P and H have fine-grained interactions
I ∈ Rnp×nh by comparing any pair of (pi,hj):

I[i, j] = cosine(pi,hj) (1)

We now elaborate DEISTE’s exploration strategies
(a), (b) and (c) of the interaction results I.

2.1 Parameter-dynamic convolution

Intuitively, important words should be expressed
more intensively than other words in the learnt
representation of a sentence. However, the impor-
tance of words within a specific sentence might
not depend on the sentence itself. E.g., Yin and
Schütze (2017b) found that in question-aware an-
swer sentence selection, words well matched are
more important; while in textual entailment, words
hardly matched are more important.

In this work, we try to make the semantics of
those important words dominate in the output rep-
resentations of a convolution encoder.

Given a local window of hidden states in the
feature map P, e.g., three adjacent ones pi−1,
pi and pi+1, a conventional convolution learns a
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higher-level representation r for this trigram:

r = tanh(W · [pi−1,pi,pi+1] + b) (2)

where W ∈ Rd×3d and b ∈ Rd.
For simplicity, we neglect the bias term b and

split the multiplication of big matrices – W ·
[pi−1,pi,pi+1] – into three parts, then r can be
formulated as:

r = tanh(W−1 · pi−1 ⊕W0 · pi ⊕W+1 · pi+1)

= tanh(p̂i−1 ⊕ p̂i ⊕ p̂i+1)

where ⊕ means element-wise addition; W−1,
W0, W+1 ∈ Rd×d, and their concatenation
equals to the W in Equation 2; p̂i is set to be
W0 · pi, so p̂i can be seen as the projection of
pi in a new space by parameters W0; finally the
three projected outputs contribute equally in the
addition: p̂i−1 ⊕ p̂i ⊕ p̂i+1.

The convolution encoder shares parameters
[W−1, W0, W+1] in all trigrams, so we cannot
expect those parameters to express the importance
of p̂i−1, p̂i or p̂i+1 in the output representation r.
Instead, we formulate the idea as follows:

mi = tanh(αi−1p̂i−1 ⊕ αip̂i ⊕ αi+1p̂i+1)

in which the three scalars αi−1, αi and αi+1 indi-
cate the importance scores of p̂i−1, p̂i and p̂i+1

respectively. In our work, we adopt:

αi =
1.0

1.0 + max(I[i, :])
(3)

Since αip̂i = αiW
0 ·pi = W0,i ·pi, we notice

that the original shared parameter W0 is mapped
to a dynamic parameter W0,i, which is specific
to the input pi. We refer to this as parameter-
dynamic convolution, which enables our system
DEISTE to highlight important words in higher-
level representations.

Finally, a max-pooling layer is stacked over
{mi} to get the representation for the pair (P , H),
denoted as rdyn.

2.2 Position-aware attentive convolution
Our position-aware attentive convolution, shown
in Figure 3, aims to encode the representations as
well as the positions of the best word alignments.

Representation. Given the interaction scores
in I, the representation p̃i of all soft matches for
hidden state pi in P is the weighted average of all
hidden states in H:

p̃i =
∑

j

softmax(I[i, :])j · hj (4)

methods dev test
Majority Class 50.4 60.4
Hypothesis only 66.9 65.1
Premise only 72.6 73.4
NGram model 65.0 70.6
ESIM-600D 70.5 70.6
Decomp-Att 75.4 72.3
DGEM 79.6 77.3
AttentiveConvNet 79.3 78.1
DEISTE 82.4 82.1

w/o dyn-conv 80.2 79.1
w/o representation 76.3 74.9
w/o position 82.1 81.3

Table 2: DEISTE vs. baselines on SCITAIL

Position. For a trigram [pi−1, pi, pi+1] in P ,
knowing where its best-matched words are located
in H is helpful in TE, as discussed in Section 1.

For pi, we first retrieve the index xi of the best-
matched word in H by:

xi = argmax(I[i, :]) (5)

then embed the concrete {xi} into randomly-
initialized continuous space:

zi = M[xi] (6)

where M ∈ Rnh×dm ; nh is the length of H; dm is
the dimensionality of position embeddings.

Now, the three positions [i − 1, i, i + 1] in
P concatenate vector-wisely original hidden states
[pi−1, pi, pi+1] with position embeddings [zi−1,
zi, zi+1], getting a new sequence of hidden states:
[ci−1, ci, ci+1]. As a result, a position i in P
has hidden state ci, left context ci−1, right context
ci+1 and the representation of soft-aligned words
in H , i.e., p̃i. Then a convolution works at posi-
tion i in P as:

ni = tanh(W · [ci−1, ci, ci+1, p̃i] + b) (7)

As Figure 3 shows, the position-aware attentive
convolution finally stacks a standard max-pooling
layer over {ni} to get the representation for the
pair (P , H), denoted as rpos.

Overall, our DEISTE will generate a represen-
tation rdyn through the parameter-dynamic convo-
lution, and generate a representation rpos through
the position-aware attentive convolution. Finally
the concatenation – [rdyn, rpos] – is fed to a logis-
tic regression classifier.
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methods acc.
Majority Class 34.3
Premise only 33.5
Hypothesis only 68.7
ESIM 86.7
Decomp-Att 86.8
AttentiveConvNet 86.3
DEISTESCITAIL 84.7
DEISTEtune 87.1
State-of-the-art 88.7

Table 3: DEISTE vs. baselines on SNLI.
DEISTESCITAIL has exactly the same system layout
and hyperparameters as the one reported on SCI-
TAIL in Table 2; DEISTEtune: tune hyperparame-
ters on SNLI dev. State-of-the-art refers to (Peters
et al., 2018). Ensemble results are not considered.

3 Experiments

Dataset. SCITAIL3 (Khot et al., 2018) is for tex-
tual entailment in binary classification: entailment
or neutral. Accuracy is reported.

Training setup. All words are initialized by
300D Word2Vec (Mikolov et al., 2013) embed-
dings, and are fine-tuned during training. The
whole system is trained by AdaGrad (Duchi et al.,
2011). Other hyperparameter values include:
learning rate 0.01, dm=50 for position embeddings
M, hidden size 300, batch size 50, filter width 3.

Baselines. (i) Decomposable Attention Model
(Decomp-Att) (Parikh et al., 2016): Develop at-
tention mechanisms to decompose the problem
into subproblems to solve in parallel. (ii) En-
hanced LSTM (ESIM) (Chen et al., 2017): En-
hance LSTM by encoding syntax and semantics
from parsing information. (iii) Ngram Overlap:
An overlap baseline, considering unigrams, one-
skip bigrams and one-skip trigrams. (iv) DGEM
(Khot et al., 2018): A decomposed graph entail-
ment model, the current state-of-the-art. (v) At-
tentiveConvNet (Yin and Schütze, 2017a): Our
top-performing textual entailment system on SNLI
dataset, equipped with RNN-style attention mech-
anism in convolution.4

In addition, to check if SCITAIL can be eas-
ily resolved by features from only premises or
hypotheses (like the problem of SNLI shown by
Gururangan et al. (2018)), we put a vanilla CNN
(convolution&max-pooling) over merely hypothe-
sis or premise to derive the pair label.

3Please refer to (Khot et al., 2018) for more details.
4https://github.com/yinwenpeng/Attentive Convolution

Table 2 presents results on SCITAIL. (i) Our
model DEISTE has a big improvement (∼ 5%)
over DGEM, the best baseline. Interestingly, At-
tentiveConvNet performs very competitively, sur-
passing DGEM by 0.8% on test. These two results
show the effectiveness of attentive convolution.
DEISTE, equipped with a parameter-dynamic
convolution and a more advanced position-aware
attentive convolution, clearly gets a big plus. (ii)
The ablation shows that all three aspects we ex-
plore from the inter-sentence interactions con-
tribute; “position” encoding is less important than
“dyn-conv” and “representation”. Without “repre-
sentation”, the system performs much worse. This
is in line with the result of AttentiveConvNet base-
line.

To further study the systems and datasets, Table
3 gives performance of DEISTE and baselines on
SNLI. We see that DEISTE gets competitive per-
formance on SNLI.

Comparing Tables 2 and 3, the baselines “hy-
pothesis only” and “premise only” show anal-
ogous while different phenomena between SCI-
TAIL and SNLI. On one hand, both SNLI and
SCITAIL can get a relatively high number by
looking at only one of {premise, hypothesis} –
“premise only” gets 73.4% accuracy on SCITAIL,
even higher than two more complicated baselines
(ESIM-600D and Decomp-Att), and “hypothesis
only” gets 68.7% accuracy on SNLI which is
more than 30% higher than the “majority” and
“premise only” baselines. Notice the contrast:
SNLI “prefers” hypothesis, SCITAIL “prefers”
premise. For SNLI, this is not surprising as the
crowd-workers tend to construct the hypotheses in
SNLI by some regular rules (Gururangan et al.,
2018). The phenomenon in SCITAIL is left to ex-
plore in future work.

Error Analysis. Table 4 gives examples of er-
rors. We explain them as follows.

Language conventions: The pair #1 uses dash
“–” to indicate a definition sentence for “Front”;
The pair #2 has “A (or B)” to denote the equiva-
lence between A and B. This challenge is expected
to be handled by rules.

Ambiguity: The pair #3 looks like having a sim-
ilar challenge with the pair #2. We guess the anno-
tators treat “· · · a vertebral column or backbone”
and “ · · · the backbone (or vertebral column)” as
the same convention, which may be debatable.

Complex discourse relation: The premise in
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# (Premise P , Hypothesis H) Pair G/P Challenge

1 (P ) Front – The boundary between two different air masses. 1/0 language
conventions(H) In weather terms, the boundary between two air masses is called front.

2 (P ) . . . the notochord forms the backbone (or vertebral column). 1/0 language
conventions(H) Backbone is another name for the vertebral column.

3 (P ) · · · animals with a vertebral column or backbone and animals without one. 1/0 ambiguity(H) Backbone is another name for the vertebral column.

4
(P ) Heterotrophs get energy and carbon from living plants or animals ( consumers
) or from dead organic matter ( decomposers ). 0/1 discourse

relation(H) Mushrooms get their energy from decomposing dead organisms.

5
(P ) Ethane is a simple hydrocarbon, a molecule made of two carbon and six
hydrogen atoms. 0/1 discourse

relation(H) Hydrocarbons are made of one carbon and four hydrogen atoms.

6 (P ) . . . the SI unit. . . for force is the Newton (N) and is defined as (kg·m/s−2 ). 0/1 beyond text(H) Newton (N) is the SI unit for weight.

Table 4: Error cases of DEISTE in SCITAIL. “· · · ”: truncated text. “G/P”: gold/predicted label.

dev test
Majority baseline 50.0 50.0
State-of-the-art – 73.5
training data
SNLI 47.1 46.0
SCITAIL 60.5 60.2

Table 5: Train on different TE datasets, test accu-
racy on two-way RTE-5. State-of-the-art refers to
(Iftene and Moruz, 2009)

the pair #4 has an “or” structure. In the pair
#5, “a molecule made of · · · ” defines the con-
cept “Ethane” instead of the “hydrocarbon”. Both
cases require the model to be able to comprehend
the discourse relation.

Knowledge beyond text: The main challenge in
the pair #6 is to distinguish between “weight” and
“force”, which requires more physical knowledge
that is beyond the text described here and beyond
the expressivity of word embeddings.

Transfer to RTE-5. One main motivation of
exploring this SCITAIL problem is that this is an
end-task oriented TE task. A natural question
thus is how well the trained model can be trans-
ferred to other end-task oriented TE tasks. In
Table 5, we take the models pretrained on SCI-
TAIL and SNLI and test them on RTE-5. Clearly,
the model pretrained on SNLI has not learned any-
thing useful for RTE-5 – its performance of 46.0%
is even worse than the majority baseline. The
model pretrained on SCITAIL, in contrast, demon-
strates much more promising generalization per-
formance: 60.2% vs. 46.0%.

4 Related Work

Learning automatically inter-sentence word-to-
word interactions or alignments was first stud-
ied in recurrent neural networks (Elman, 1990).

Rocktäschel et al. (2016) employ neural word-to-
word attention for SNLI task. Wang and Jiang
(2016) propose match-LSTM, an extension of the
attention mechanism in (Rocktäschel et al., 2016),
by more fine-grained matching and accumulation.
Cheng et al. (2016) present a new LSTM equipped
with a memory tape. Other work following this
attentive matching idea includes Bilateral Multi-
Perspective Matching model (Wang et al., 2017),
Enhanced LSTM (Chen et al., 2016) etc.

In addition, convolutional neural networks (Le-
Cun et al., 1998), equipped with attention mecha-
nisms, also perform competitively in TE. Yin et al.
(2016) implement the attention in pooling phase
so that important hidden states will be pooled with
higher probabilities. Yin and Schütze (2017a) fur-
ther develop the attention idea in CNNs, so that a
RNN-style attention mechanism is integrated into
the convolution filters. This is similar with our
position-aware attentive convolution. We instead
explored a way to make use of position informa-
tion of alignments to do reasoning.

Attention mechanisms in both RNNs and CNNs
make use of sentence interactions. Our work
achieves a deep exploration of those interactions,
in order to guide representation learning in TE.

5 Summary

This work proposed DEISTE to deal with an end-
task oriented textual entailment task – SCITAIL.
Our model enables a comprehensive utilization of
inter-sentence interactions. DEISTE outperforms
competitive systems by big margins.

Acknowledgments. We thank all the review-
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FA8750-13-2-0008, and by a gift from Google.
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Abstract

A homographic pun is a form of wordplay
in which one signifier (usually a word)
suggests two or more meanings by exploit-
ing polysemy for an intended humorous
or rhetorical effect. In this paper, we fo-
cus on the task of pun location, which
aims to identify the pun word in a given
short text. We propose a sense-aware neu-
ral model to address this challenging task.
Our model first obtains several WSD re-
sults for the text, and then leverages a bidi-
rectional LSTM network to model each se-
quence of word senses. The outputs at
each time step for different LSTM net-
works are then concatenated for predic-
tion. Evaluation results on the benchmark
SemEval 2017 dataset demonstrate the ef-
ficacy of our proposed model.

1 Introduction

There exists a class of language constructs known
as puns in natural language utterances and texts,
and the speaker or writer intends for a certain word
or other lexical item to be interpreted as simulta-
neously carrying two or more separate meanings.
Though puns are an important feature in many dis-
course types, they have attracted relatively little at-
tention in the area of natural language processing.

A pun is a form of wordplay in which a word
suggests two or more meanings by exploiting pol-
ysemy, homonymy, or phonological similarity to
another word, for an intended humorous or rhetor-
ical effect (Miller et al., 2017). Puns where the two
meanings share the same pronunciation are known
as homographic puns, which are the focus of this
study. For example, the following punning joke
exploits contrasting meanings of the word “inter-
est” and it is a homographic pun.

I used to be a banker but I lost interest.
Since the pun word plays the key role in form-

ing a pun, it is very important and meaningful to
identify the pun word in a given text. The task
of identifying the pun word is known as pun lo-
cation, which is defined in SemEval 2017 Task
71. In order to address this special task, various
approaches have been attempted, including rule
based approach (Vechtomova, 2017), knowledge-
based approach (Indurthi and Oota, 2017; Xiu
et al., 2017) and supervised approach (Pramanick
and Das, 2017; Mikhalkova and Karyakin, 2017).
However, these approaches do not achieve good
results, and the best F1 score for homographic pun
location is just 0.6631, which is achieved by the
Idiom Savant system with a knowledge based ap-
proach (Doogan et al., 2017). The results demon-
strate that pun location is a very challenging task.

In order to address this challenging task and
improve the state-of-the-art results, we propose a
sense-aware neural model in this study. Our model
first obtains several WSD (Word Sense Disam-
biguation) results for the text, and leverages a bidi-
rectional LSTM network to model each sequence
of word senses. The outputs at each time step for
different LSTM networks are then concatenated
for pun word prediction. Evaluation results of
cross-validation on the benchmark SemEval 2017
dataset demonstrate the efficacy of our proposed
model.

The contributions of this paper are summarized
as follows:

• We propose a novel sense-aware neural model
to address the pun location task.

• Our proposed model outperforms several base-
line neural models and achieves the state-of-the-
art performance.

1http://alt.qcri.org/semeval2017/task7/
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2 Related Work

Pun detection aims to determine whether a given
short text contains a pun (Miller et al., 2017).
Various methods have been proposed to address
this task, including WSD based methods (Ped-
ersen, 2017), PMI-based methods (Sevgili et al.,
2017) supervised methods (Xiu et al., 2017; In-
durthi and Oota, 2017; Pramanick and Das, 2017;
Mikhalkova and Karyakin, 2017; Vadehra, 2017).
More specifically, the bi-directional RNN has been
used in (Indurthi and Oota, 2017), and vote-based
ensemble classifier is used by (Vadehra, 2017).

Pun location is a more challenging task than
pun detection, because it aims to find the actual
pun word in the given text. Previous works find
some clues about puns in the texts. For example,
pun is more likely appeared towards the end of
sentences (Pedersen, 2017; Miller and Turković,
2016). Many puns have a particularly strong asso-
ciations with other words in the contexts (Sevgili
et al., 2017). A variety of methods have been pro-
posed to locate the pun words. For example, UWa-
terloo system constructs a rule-based pun locator
that scores candidate words according to eleven
simple heuristics (Vechtomova, 2017). BuzzSaw
system attempts to locate the pun in a sentence by
selecting the polysemous word with the two most
dissimilar senses (Oele and Evang, 2017). Du-
luth system identifies the last word which changed
senses between different word sense disambigua-
tion results (Pedersen, 2017). Fermi system uses
Bi-directional RNN to learn a classification model
(Indurthi and Oota, 2017). Idiom Savant system
uses n-grams features, and only content words in-
cluding nouns, verbs, adverbs and adjectives are
considered as candidate words (Doogan et al.,
2017). Pun interpretation is considered a subse-
quent step for pun location, and it aims to annotate
the two meanings of the given pun by reference to
WordNet sense keys. In the work of (Miller and
Gurevych, 2015), traditional language-agnostic
WSD approaches are adapted to “disambiguate”
puns, and rather to identify their double meanings.

Word Sense Disambiguation (WSD) is also re-
lated to our work. Some prior works compute
overlaps of glosses between the target word and
its context (Lesk, 1986). These approaches de-
rive information from some lexicon thesauruses
for WSD, including WordNet (Fellbaum, 1998)
and BabelNet (Navigli and Ponzetto, 2012). Su-
pervised models, including neural models, have

been successfully applied to WSD (Yuan et al.,
2016; Raganato et al., 2017).

3 Baseline Neural Model (BM)

The task of pun location needs to locate the ex-
act pun word in each short text or sentence. We
regard pun location as a word-level classification
task, and attempt to train a model that can predict
whether a word in a sentence is a pun or not. A
word will be regarded as a pun word with high
probability when it is a noun, verb, adjective or
adverb, therefore, we only try to make prediction
of one word when it has one of the four kinds of
parts of speech tags.

Our baseline model for pun word prediction is
similar to (Indurthi and Oota, 2017) and it adopts
a bi-directional LSTM network to accomplish this
task. The neural network architecture of the model
is shown in Figure 1. The input to the net-
work is the embeddings of words, and we use the
pre-trained word embeddings by using word2vec
(Mikolov et al., 2013) on the Wikipedia corpus
whose size is over 11G. The hidden state of the
forward LSTM and the hidden state of the back-
ward LSTM are concatenated at each time step
(word), and we get the concatenated hidden vec-
tors for all words: h1, ..., hn. The vector hi for
each word having one of the four kinds of POS
tags is then sent to a two-layer feed-forward neu-
ral network with tanh as activation function, and
the output is a real number oi. We then use the sig-
moid function σ on oi to make prediction. Since in
the experimental data there is only one pun word
in each sentence, we will take the k-th word as pun
word if and only if ok is the largest number out of
all oi, i = 1, ..., n, and σ(ok) > 0.5. We use the
cross-entropy loss in this model.

4 Sense-Aware Neural Model (SAM)

The baseline neural model is built on the word
level and the word senses can only be implicitly
captured by the model. Moreover, a pun word
usually has two senses in the sentence, while the
baseline neural model cannot disambiguate them.
In order to improve the prediction performance,
we propose a sense-award neural model which is
built on WSD results. Two or more WSD results
are obtained by using different WSD algorithms or
different configurations, and the WSD results may
be different. The sequence of word senses cor-
responding to each WSD result is modeled by a
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Figure 1: Baseline neural model with bidirectional
LSTMs

bi-directional LSTM network and the outputs of
different LSTM networks are then concatenated
for prediction. In this way, the different senses of
words can be well captured by our model.

Different from the Duluth system (Peder-
sen, 2017) which identifies the last word which
changed senses between different runs of the
WordNet::SenseRelate::AllWords disambiguation
algorithm, we do not use the WordNet-based WSD
results. Furthermore, we do not heuristically iden-
tify the pun word but propose a neural model to
achieve this goal.

4.1 Word Sense Disambiguation and Sense
Embedding

In order to obtain sense inventory and the sense
embeddings for each word, we choose SenseGram
(Pelevina et al., 2016). The SenseGram toolkit
is available online2, and it can take as an input
the word embeddings and split different senses of
the input words. For instance, the vector for the
word “table” will be split into “table (data)” and
“table (furniture)”. SenseGram induces sense in-
ventory from existing word embeddings via clus-
tering of ego-networks of related words. In our
work, the Wikipedia corpus is used to train word
embeddings (together with contextual embeddings
of words) by using word2vec and then the word
embeddings are used by SenseGram for inducing
sense inventory and sense embeddings. The word
similarity graph used by SenseGram is built based
on the similarity between word embeddings. Note

2https://github.com/tudarmstadt-lt/sensegram

that we do not use WordNet as sense inventory be-
cause the sense inventory is too fine-grained and
many words are not included in WordNet.

Given each target word ω and its context words
C = {c1, ..., ck} in the sentence, we want to as-
sign a sense vector to ω from the set of its sense
vectors S = {s1, ..., sm}. We use two simple
WSD methods for achieving this. The first WSD
strategy is based on the sigmoid function. cc is the
mean of the contextual embeddings of words in C
and the sense embedding of ω is chosen as

s∗ = argmax
si∈S

1

1 + e−cc·si
(1)

Let cw be the mean of the word embeddings of
words in C, which is different from cc. The sec-
ond disambiguation strategy is based on the cosine
similarity function.

s∗ = argmax
si∈S

cw · si
‖cw‖ · ‖si‖

(2)

For each WSD strategy, we can set different
window sizes of 3 and 50 (the maximum sentence
length in the corpus) as different configurations.
By obtaining different WSD results, we expect
to well capture the characteristics of homographic
puns.

4.2 Neural Model Details

The proposed sense-aware neural model differs
from the baseline neural model in that it mod-
els multiple sequences of word senses correspond-
ing to different WSD results. In other words, the
sense-aware model works on the sense level, but
the baseline model works on the word level.

The architecture of the sense-aware model is il-
lustrated in Figure 2, which contains several bi-
directional LSTM networks. For each WSD result,
the sequence of sense embeddings is taken as input
for a bi-directional LSTM network. Assuming we
haveK WSD results, the outputs hji (j = 1, ...,K)
by K different bi-directional LSTM networks for
the same i-th word (i.e., the i-th time step) are then
concatenated into one vector, and the vector is sent
to a two-layer feed-forward neural network and a
sigmoid function for prediction. The loss func-
tion is the same as that of the baseline model. Our
sense-aware model can be considered as applying
the baseline model on different WSD results and
then combining the outputs for prediction.
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Figure 2: Sense-aware neural model with bidirec-
tional LSTMs

4.3 Model Training

We use stochastic gradient descent to train the neu-
ral models with a batch size of 225 and 512 hidden
units, and the learning rate is 0.0001 and the size
of embeddings and hidden vectors is 300.

5 Experiments

5.1 Dataset

We use the benchmark dataset from SemEval 2017
Task 7. There are a total of 2250 sentences in the
dataset, 1607 of which contain a pun. For Pun
Location, we only use sentences with pun words
for evaluation, the same as the task setting. Since
no training data is provided, so we test our mod-
els with 10-fold cross validation. We combine the
output results on each test set of all 10 folds and
then calculate precision, recall and F-score on the
combined set. Thus the scores are comparable to
the official results based on the whole test set.

5.2 Word Sense Disambiguation

As is mentioned in section 4.1, we can obtain four
WSD results with two different strategies and two
different window sizes. We make three groups
based on four WSD results: Group 1 (G1) contains
two WSD results with the first WSD strategy with
two window sizes of 3 and 50; Group 2 (G2) con-
tains two WSD results with the second WSD strat-
egy with two window sizes; Group 3 (G3) contains
all results in Group 1 and Group 2.

5.3 Evaluation Results

We compared our proposed SAM model (w/ three
groups of WSD results) with the baseline model
BM. We also apply the bi-directional LSTM
model on the sequence of senses for each single
WSD result and thus get BiLSTM-WSD1 through
BiLSTM-WSD4. Moreover, we apply SVM and
CRF models with various features (e.g., ngram,
POS tagging, word location, word similarity, etc.)
on this task.

Table 1 shows the results. In the table, we
also present the results of the best participating
system Idiom Savant, and two official baselines
(last word and max. polysemy). We can see that
the baseline BM model does not perform well,
while the CRF model performs very well. The re-
sults of BiLSTM-WSD1 through BiLSTM-WSD4
are much better than the BM model, which indi-
cates that the sense-level prediction is more suit-
able than the word-level prediction. Our proposed
SAM model with different groups of WSD results
can further improve the performance, because dif-
ferent WSD results may provide complementary
information for pun location. The SAM model
with G1 performs the best, even outperforming the
SAM model with more WSD results (G3), which
indicates the necessity for choosing proper WSD
results.

6 Conclusion

In this work, we apply the neural network mod-
els to the pun location task. We proposed a novel
sense-aware neural model to leveraging multiple
WSD results. Evaluation results on the benchmark
SemEval 2017 dataset demonstrate the efficacy of
our proposed model. In future work, we will test
with more advanced WSD algorithms and try to
address the pun interpretation task.
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Method Precision Recall F-Score
SVM 0.717 0.717 0.717
CRF 0.759 0.759 0.759
BM 0.751 0.617 0.677

BiLSTM-WSD1 0.751 0.742 0.746
BiLSTM-WSD2 0.754 0.745 0.750
BiLSTM-WSD3 0.735 0.726 0.730
BiLSTM-WSD4 0.742 0.732 0.737

SAM-G1 0.815 0.747 0.780
SAM-G2 0.828 0.731 0.776
SAM-G3 0.804 0.745 0.773

Idiom Savant 0.664 0.663 0.663
last word 0.470 0.470 0.470

max. polysemy 0.180 0.180 0.180

Table 1: Comparison results.
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Abstract

Word Embeddings (WE) have recently im-
posed themselves as a standard for rep-
resenting word meaning in NLP. Seman-
tic similarity between word pairs has be-
come the most common evaluation bench-
mark for these representations, with vec-
tor cosine being typically used as the only
similarity metric. In this paper, we report
experiments with a rank-based metric for
WE, which performs comparably to vec-
tor cosine in similarity estimation and out-
performs it in the recently-introduced and
challenging task of outlier detection, thus
suggesting that rank-based measures can
improve clustering quality.1

1 Introduction
“All happy families resemble one another, but
each unhappy family is unhappy in its own way.”
Anna Karenina, Leo Tolstoy

Distributional Semantic Models (DSMs) have re-
ceived an increasing attention in the NLP com-
munity, as they constitute an efficient data-driven
method for creating word representations and
measuring their semantic similarity by computing
their distance in the vector space (Turney and Pan-
tel, 2010).

The most popular similarity metric in DSMs is
the vector cosine. Compared to Euclidean dis-
tances, vector cosine scores are normalized on
each dimension and hence are robust to the scaling
effect. On the other hand, one limitation of this
metric is that it regards each dimension equally,
without taking into account the fact that some di-
mensions might be more relevant for characteriz-

1Enrico Santus and Hongmin Wang equally contributed to
this work, which was started while they were both affiliated
to the Singapore University of Technology and Design.

ing the semantic content of a word. Such a lim-
itation led to the introduction of alternative met-
rics based on feature ranking, which have been re-
ported to outperform vector cosine in several sim-
ilarity tasks (Santus et al., 2016a,b).

Recently, the focus of the research on word rep-
resentations has been shifting onto the so-called
word embeddings (WE), which are dense vec-
tors obtained by means of neural network train-
ing that achieved significant improvements in sev-
eral similarity-related tasks (Mikolov et al., 2013a;
Baroni et al., 2014). Although the representation
type of the embeddings was helpful for reducing
the sparsity of traditional count vectors, their na-
ture does not sensibly differ (Levy et al., 2015).
Most research works involving WE still adopt vec-
tor cosine for similarity estimation, yet little ex-
perimentation has been done on alternative met-
rics for comparing dense representations (excep-
tions include Camacho-Collados et al. (2015)).

Some attempts to directly transfer rank-based
measures from traditional DSMs to WE have
faced difficulties (see, for example, Jebbara et al.
(2018)). In this paper, we suggest a possible
solution to this problem by adapting APSyn, a
rank-based similarity metric originally proposed
for sparse vectors (Santus et al., 2016b,a), to
low-dimensional word embeddings. This goal is
achieved by removing the parameterN (the extent
of the feature overlap to be taken into account) and
adding a smoothing parameter that is proven to be
constant under multiple settings, therefore making
the measure unsupervised.
Our experiments show performance improve-
ments both in similarity estimation and in the more
challenging outlier detection task (Camacho-
Collados and Navigli, 2016), which consists in
cluster and outlier identification.2

2Code and vectors used for the experiments are available
at https://github.com/esantus/Outlier Detection.
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2 Similarity, Relatedness and
Dissimilarity: Current Issues in the
Evaluation of DSMs

A classical benchmark for DSMs is represented
by the estimation of word similarity: evaluation
datasets are built by asking human subjects to rate
the degree of semantic similarity of word pairs,
and the performance is assessed in terms of the
correlation between the average scores assigned to
the pairs by the subjects and the cosines of the cor-
responding vectors (similary estimation task).

Similarity as modeled by DSMs has been under
debate, as its definition is underspecified. It in fact
includes an ambiguity with the more generic no-
tion of semantic relatedness, which is present also
in many popular datasets (i.e. the concepts of cof-
fee and cup are certainly related, but there is very
little similarity about them), as opposed to ‘gen-
uine’ semantic similarity (i.e. the relation holding
between concepts such as coffee and tea) (Agirre
et al., 2009; Hill et al., 2015; Gladkova and Drozd,
2016). Therefore, when testing a DSM, it is im-
portant to pay attention to what type of seman-
tic relation is actually modeled by the evaluation
dataset. Moreover, researchers pointed out that
similarity estimation alone does not constitute a
strong benchmark, as the inter-annotator agree-
ment is relatively low in all datasets and the per-
formance of several automated systems is already
above the upper bound (Batchkarov et al., 2016).
As a consequence, workshops such as RepEval
have been organized with the explicit purpose of
finding alternative evaluation tasks for DSMs.

A recent proposal is the challenging outlier
detection task (Camacho-Collados and Navigli,
2016; Blair et al., 2016), which consists in the
recognition of cluster membership, as well as of a
relative degree of semantic dissimilarity. The task
is described as follows: given a group of words,
identify the outlier, namely the word that does not
belong to the group (i.e. the one that is less simi-
lar to the others). On top of its potential applica-
tions (e.g. ontology learning), detecting outliers in
clusters is a goal that poses a more strict quality
requirement on the distributional representations
compared to tests based simply on pairwise com-
parisons, as it is required that similar words group
into semantically meaningful clusters. Clearly, the
task involves the identification of discriminative
semantic dimensions, which could set the clus-
ter members apart from non-members. Outliers

are not necessarily unrelated to the other words:
rather, they have a lower degree of similarity with
respect to some prominent property of the cluster
(e.g. the case of Los Angeles Lakers as an out-
lier in a cluster of football teams). In our view, a
similarity metric has to exploit such discriminative
dimensions to form cohesive clusters.

3 A Rank-Based Metric for Embeddings

We use cosine as a baseline and we test an adapta-
tion of a rank-based measure to the dense features
of the word embeddings.

Vector cosine computes the correlation between
all the vector dimensions, independently of their
relevance for a given word pair or for a seman-
tic cluster, and this could be a limitation for dis-
cerning different degrees of dissimilarity. The al-
ternative rank-based measure is based on the hy-
pothesis that similarity consists of sharing many
relevant features, whereas dissimilarity can be de-
scribed as either the non-sharing of relevant fea-
tures or the sharing of non-relevant features (San-
tus et al., 2014, 2016b).

This hypothesis could turn out to be very help-
ful for a task like the outlier detection, where
prominent features might be the key to improve
clustering quality: semantic dimensions that are
shared by many of the cluster elements should be
weighted more, as they are likely to be useful for
setting the outliers apart. In fact, a cohesive clus-
ter should be mostly characterized by the same
‘salient’ dimensions, and thus, basing word com-
parisons on such dimensions should lead to more
reliable estimates of cluster membership.

In our contribution, we propose to adapt
APSyn, a metric originally proposed by San-
tus et al. (2016a,b), to dense word embeddings
representations.3 APSyn was shown to perform
well on both synonymy detection and similarity
estimation tasks, and it was recently adapted to
achieve state-of-the-art results in thematic fit esti-
mation (Santus et al., 2017). The original APSyn
formula is shown in equation 1.

APSyn(wx, wy) =

i=N∑

i=0

1

AV G(rsx(fi), rssy (fi))
(1)

For every feature fi in the intersection between
the top N features of two vectors wx and wy, we

3The number of dimensions in word embeddings is in the
scale of hundreds, and thus the dimensionality is way lower
than in the original DSMs used by Santus and colleagues.
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add the inverse of the average rank of such fea-
ture, rsx(fx) and rsy(fy), in the two decreasingly
value-sorted vectors sx and sy (in traditional vec-
tors, often the parameter N ≥ 1000, but in WE
N = |f |). APSyn scores low if the features of
the two vectors are inversely ranked and high if
they are similarly ranked.
APSyn maps the average feature ranks to a

non-linear function, emphasizing the contribution
of top-ranked features. Its direct application to
dense embeddings would shrink too much the con-
tribution of lower ranks (see Figure 1), with the
score mostly affected by the top ∼ 25 features.
While this is reasonable for the traditional vectors
derived from co-occurrence counts, where thou-
sands of smaller contributions can still affect the
final score, dense vectors need a smoother curve.
While preserving the idea of the non-linear weight
allocation across the average feature ranks during
the summation, we modify the original APSyn
formula by taking the exponential of the feature
ranks to a power of a constant value ranging be-
tween 0 and 1 (excluded), as shown in equation 2,
such that now the number of ranks contributing
to the final score is widen to all features (see the
smoother curve of APSynPower in Figure 1).
We name this variant APSynPower or, shortly,
APSynP .

APSynP (wx, wy) =

i=|f |∑

i=0

1

AV G(rsx(fi)
p, rsy (fi)

p)

(2)

The power p added toAPSynP formula is a train-
able parameter. We trained it on the similarity
subset of WordSim dataset, obtaining the optimal
value of p = 0.1, which has been successfully
used in all evaluations, under all settings (i.e. em-
bedding types and training corpora). Such reg-
ularity allows us to consider p = 0.1 as a con-
stant, therefore dropping p. Since in WE we can
drop also the parameter N by defining N = |f |,
APSynP can be not parametrized at all.

4 Evaluation Settings

4.1 Embeddings
For our experiments, we used two popular word
embeddings architectures: the Skip-Gram with
negative sampling (Mikolov et al., 2013a,b) and
the GloVe vectors (Pennington et al., 2014) (stan-
dard hyperparameter settings: 300 dimensions,

Figure 1: Comparison of weight per feature rank
inAPSyn andAPSynP (p = 0.1) across feature
ranks ranging from 1 to 300.

context size of 10 and negative sampling).4

For comparison with Camacho-Collados and
Navigli (2016) on outlier detection, we used the
same training corpora: the UMBC (Han et al.,
2013) and the English Wikipedia.5

4.2 Datasets
As for the similarity estimation task, we eval-
uate the Spearman correlation between system-
generated scores and human judgments. We
used three popular benchmark datasets: WordSim-
353 (Finkelstein et al., 2001), MEN (Bruni et al.,
2014) and SimLex-999 (Hill et al., 2015). It is im-
portant to point out that SimLex-999 is the only
one specifically built for targeting genuine seman-
tic similarity, while the others tend to mix similar-
ity and relatedness scores.

As for outlier detection, we evaluate our DSMs
on the 8-8-8 dataset (Camacho-Collados and Nav-
igli, 2016). The dataset consists of eight clusters,
each one with a different topic and consisting in
turn of eight lexical items belonging to the clus-
ter and eight outliers (with four degrees of relat-
edness to the cluster members: C1, C2, C3, C4).
In total, the dataset includes 64 sets of 8 words
+ 1 outlier for the evaluation. For each word w
of a cluster W of n words, the authors defined a
compactness score c(w) corresponding to the av-
erage of all pairwise similarities of the words in
W \ {w}. On the basis of the compactness score,
they proposed two evaluation metrics: Outlier Po-
sition (OP) and Outlier Detection (OD). Given a
set W of n + 1 words, OP is the rank of the out-
lier wn + 1 according to the compactness score.
Ideally, the rank of the outlier should be n, mean-

4We also performed experiments with CBOW embed-
dings (Mikolov et al., 2013b), but results were irregular and
inconsistent. We leave therefore their analysis to future work.

5Dump of Nov. 2014, approx. 1.7 billion words.
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Skip-Gram GloVe
WordSim-353 MEN Simlex-999 WordSim-353 MEN Simlex-999

Cosine 0.736 0.758 0.364 0.511 0.640 0.311
APSyn 0.599 0.643 0.343 0.356 0.393 0.174
APSynP 0.710 0.737 0.369 0.607 0.670 0.335

Table 1: Similarity Estimation, Spearman Correlation by Setting. Embeddings trained on Wikipedia.

Skip-Gram GloVe
UMBC Wiki UMBC Wiki

OPP Acc. OPP Acc. OPP Acc. OPP Acc.
CC − Cos 92.6 64.1 93.8 70.3 81.6 40.6 91.8 56.3

Pairwise
APSyn 93.0 67.2 94.0 68.8 78.7 40.6 89.3 53.1
APSynP 94.0 68.8 94.5 73.4 81.8 42.2 92.8 61.0

Prototype
PT − Cos 93.4 65.6 93.8 68.8 80.3 40.6 90.6 54.7
APSyn 92.6 70.3 91.0 62.5 81.6 40.6 88.7 54.7
APSynP 94.0 70.3 94.9 73.4 82.2 43.8 92.0 60.9

Table 2: Outlier Detection, Performance by Setting. CC-Cos refers to Camacho-Collados and Navigli
(2016)’s pairwise method, while PT-Cos refers to the prototype-based one. In bold, best scores per
method; in bold and underlined, best scores per corpus-embedding combination.

ing that it has the lowest average similarity with
the other cluster elements. The second metric,
Outlier Detection (OD), is indeed defined as 1 iff
OP (wn + 1) = n, 0 otherwise. Finally, the per-
formance on a dataset composed of |D| sets of
words was estimated in terms of Outlier Position
Percentage (OPP , Eq. 3) and Accuracy (Eq. 4):

OPP =

∑
W∈D

OP (W )
|W |−1

D
× 100 (3)

Accuracy =

∑
W∈D OD(W )

D
× 100 (4)

4.3 Pairwise and Prototype Approaches to
Outlier Detection

While for the similarity task scores are always cal-
culated pairwise, for spotting the outlier two dif-
ferent methods were tested: the pairwise compar-
isons and the cluster prototype.

In the first case, we reimplemented the method
of Camacho-Collados and Navigli (2016): (i)
compute the average similarity score of each word
with the other words in the cluster; (ii) pick as the
outlier the word with the lowest average score. An
alternative consists in creating a cluster prototype:
(i) for a cluster of N words, we create N prototype
vectors by excluding each time one of the words
and averaging the vectors of the other ones; (ii)
we pick as the outlier the word with the lowest

similarity score with the prototype built out of the
vectors of the other words in the cluster.

5 Results and Discussion

Table 1 summarizes the correlations for the sim-
ilarity task. APSynP outperforms both vector
cosine and APSyn in all the datasets described
in 4.2 when GloVe embeddings are used. The
advantage is statistically significant over the co-
sine on the MEN dataset (p < 0.05) and over
APSyn on all datasets (p < 0.01).6 With Skip-
Gram embeddings, APSynP performs compara-
bly to vector cosine for relatedness, dominant in
WordSim and MEN, while retaining a significant
advantage overAPSyn on the same datasets (p <
0.05). It also performs slightly better than co-
sine in SimLex-999, and this complies with previ-
ous findings of Santus et al. (2016a), who showed
that APSyn performs better on genuine similar-
ity datasets. Apparently, the top-ranked vector
dimensions (those contributing more to APSyn
scores) are more often shared by similar words,
than by simply related ones.

Table 2 shows the results for the outlier detec-
tion task. The line CC-Cos contains the scores
by Camacho-Collados and Navigli (2016) as a
baseline. The models are divided into pair-
wise comparison and cluster prototype (see Sec-
tion 4.3).

As it can be easily noticed by looking at the bold

6p-values computed with Fisher’s r-to-z transformation.
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line, APSynP outperforms the baselines in all
settings for both Skip-Gram and GloVe, obtaining
higher accuracies and OPPs. Not only APSynP
is better at identifying the outlier, but when it is
not able to do so, its error is minimum (e.g. the
outlier is eventually the second ranked candidate).
The best accuracy (73.4 vs. SOA of 70.3) and the
best OPP (94.9 vs. SOA of 93.8) are both obtained
by APSynP with the prototype approach, using
the Skip-Gram trained on Wikipedia. We also
tested the significance of the accuracy improve-
ments with the χ2 test but, also given the small
size of the 8-8-8 dataset, the result was negative.

Finally, we observe that the two approaches de-
scribed in 4.3 do not lead to sensitively different
results. The major factors of difference can be
found instead in the embeddings (with Skip-Gram
outperforming Glove) and in the training corpus
(the smaller Wikipedia, 1.7B words, outperforms
the bigger UMBC, 3B words).

5.1 Error Analysis

In Table 3, we report the 5 outliers that were
most difficult to detect by APSynP . Most of
them are related to the German Car Manufactur-
ers topic, which was ambiguous and populated by
rare terms. All outliers in the Months and in the
South American countries clusters (except for the
two South-American cities Rio de Janeiro and Bo-
gotá) are successfully identified under all experi-
mental settings. Finally, the reader can notice that
most errors belong to C1 and C2, which are the
most challenging classes in the dataset, as these
outliers are either very related or very similar to
other cluster members.

Cluster Outlier Class
GCM Bridgestone C1
AJC Mary C1
GCM Michael Schumacher C3
SSP Moon C1
GCM Samsung C2
BC dolphin C2
ITC software C3
BC dog C1
GCM Michelin C1
ITC Adidas C2

Table 3: Outlier Detection: Top 10 common errors
across settings and their difficulty class (i.e. C1,
C2, C3 and C4). (GCM: German Car Manufac-
turers; AJC: Apostles of Jesus Christ; SSP: Solar
System Planets; BC: Big Cats; ITC: IT Compa-
nies).

6 Conclusions

We have introduced APSynP , an adaptation of
the rank-based similarity measure APSyn (San-
tus et al., 2016a,b) for word embeddings. This
adaptation introduces a power parameter p, which
is shown to be constant in multiple tasks (i.e.
p = 0.1). The stability of this parameter, to-
gether with the possibility of dropping the pa-
rameter N of APSyn when using WE by setting
N = |f |, makes the measure unsupervised. We
have tested it on the tasks of similarity estima-
tion and outlier detection, obtaining similar or bet-
ter performances than vector cosine and the orig-
inal APSyn. APSynP performs more consis-
tently on SimLex-999, showing a preference for
genuine similarity, as already noticed by Santus
et al. (2016a). We also introduced a new approach
to the outlier detection task, based on a cluster
prototype. The prototype method is competitive
and computationally less expensive than pairwise
comparisons.

We leave to future work a systematic compari-
son of APSynP and other rank-based measures.
Pilot tests have shown that other rank-based met-
rics (e.g. Spearman’s Rho) also outperform vector
cosine in multiple settings and tasks.
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Abstract

Word embeddings are crucial to many nat-
ural language processing tasks. The qual-
ity of embeddings relies on large non-
noisy corpora. Arabic dialects lack large
corpora and are noisy, being linguistically
disparate with no standardized spelling.
We make three contributions to address
this noise. First, we describe simple but
effective adaptations to word embedding
tools to maximize the informative content
leveraged in each training sentence. Sec-
ond, we analyze methods for representing
disparate dialects in one embedding space,
either by mapping individual dialects into
a shared space or learning a joint model of
all dialects. Finally, we evaluate via dic-
tionary induction, showing that two met-
rics not typically reported in the task en-
able us to analyze our contributions’ ef-
fects on low and high frequency words. In
addition to boosting performance between
2-53%, we specifically improve on noisy,
low frequency forms without compromis-
ing accuracy on high frequency forms.

1 Introduction

Many natural language processing tasks require
word embeddings as inputs, yet quality embed-
dings require large, non-noisy corpora. Dialectal
Arabic (DA), the low register of highly diglossic
Arabic (Ferguson, 1959), is problematically noisy.
While the high register, Modern Standard Arabic
(MSA), is uniform across educated circles in the
Arab World, many varieties of DA are not even
mutually intelligible (Chiang et al., 2006). The
lexical correspondences across four Arab city di-

alects in Table 11 demonstrate that this variation is
not limited to sound change among cognate forms,
but involves significant lexical changes due to bor-
rowing, semantic shift, etc.

Rabat Cairo Beirut Doha MSA Gloss�é ���
¢Ó �é£ñ�̄ �èPðY	JK. Ñ£AÒ£ Ñ£AÒ£ tomato
mTyšh̄ qwTh̄ bndwrh̄ TmATm TmATm�éÊJ.£ �è 	Q�
K. Q£ �éËðA£ �éËðA£ �èYKAÓ table
Tblh̄ Trbyzh̄ TAwlh̄ TAwlh̄ mAŷdh̄
YK
YË ñÊg I. J
£

	YK

	YË 	YK


	YË declicious
ldyd Hlw Tyb lðyð lðyð

Table 1: Lexical correspondences between four ur-
ban Arabic dialects and MSA.

Seldom written previously, DA is becoming the
dominant form of Arabic on social media, yet an-
notated data are still scarce (Muhammad Abdul-
Mageed and Elaraby, 2018; Israa Alsarsour and
Elsayed, 2018; Kareem Darwish and Kallmeyer,
2018). While complex morphology contributes
to sparsity in both MSA and DA (Habash, 2010),
noise from inter-dialect variation and unstandard-
ized spelling further reduces token-to-type ratios
in DA. This limits opportunities to learn accurate
vector representations for any given word. Table
2 shows that the MSA token-to-type ratio is over
three times larger than DA, controlling for corpus
size. This is still not nearly as large as English due
to English’s morphological simplicity.2 Further-
more, the percentage of tokens belonging to low
frequency types is three times greater in DA.

Many previous works ignore inter-dialect vari-
ation, training dialect agnostic embeddings, yet
we show that modeling dialects individually yields

1Examples are drawn from the MADAR lexicon
(Bouamor et al., 2018). Arabic script follows CODA guide-
lines (Habash et al., 2018) and transliteration is presented in
the HSB scheme (Habash et al., 2007).

2Our DA corpora are described in Section 3 whereas the
MSA and English sentences are randomly drawn from the
parallel corpus described in Almahairi et al. (2016).
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Egyptian Levantine MSA English
Tokens per type 20 19 68 128
Tokens with type
frequency < 5

6% 6% 2% 1%

Table 2: Token and type based comparisons be-
tween two dialects of Arabic, MSA, and English
in corpora of 13 million words each.

strong performances in a dictionary induction task
when noise is systematically addressed. To that
end, we make three contributions. First, we de-
scribe simple but effective adaptations to word
embedding tools to maximize the informative con-
tent leveraged in each training sentence. Second,
we compare methods for representing disparate di-
alects in one embedding space, by mapping in-
dividual dialects into shared space or learning a
joint model of all dialects. Finally, we evaluate our
techniques via dictionary induction, showing that
two metrics not typically reported are quite infor-
mative. In addition to improving accuracy 2-53%,
our adaptations specifically boost performance on
noisy, low frequency forms without compromising
accuracy on high frequency forms.

2 Related Work

Common monolingual embedding models are
trained to predict either the target word given
the context (Continuous Bag of Words) or ele-
ments of the context given the target (SkipGram)
(Mikolov et al., 2013a). These have been adapted
to incorporate word order (Trask et al., 2015) or
subword information (Bojanowski et al., 2016) to
model syntax, morphology, etc.

Bilingual embeddings are vector representa-
tions of two languages mapped into shared space,
such that translated word pairs have similar vec-
tors (Gouws et al., 2015; Luong et al., 2015).
They facilitate applications from parallel sentence
extraction (Grover and Mitra, 2017) to machine
translation (Zou et al., 2013; Cholakov and Kor-
doni, 2016; Artetxe et al., 2017b) and can be used
to improve monolingual embeddings (Faruqui and
Dyer, 2014). Bilingual embeddings are learned
via one of three methods: mapping both spaces
into a shared space (Mikolov et al., 2013b), mono-
lingual adaptation of one language’s embedding
space into another’s (Zou et al., 2013), or bilin-
gually training both embeddings simultaneously
(AP et al., 2014; Pham et al., 2015). We com-
pare implementations of two state-of-the-art mod-

els for mapping embeddings that use the monolin-
gual adaptation technique, as these best suited our
data and resources: VECMAP (Artetxe et al., 2016,
2017a) and MUSE (Conneau et al., 2017). Both
are equipped to learn either via supervision or by
iteratively mapping with little or no supervision.
Recently, another unsupervised approach lever-
aging local neighborhood structures was evalu-
ated on French, English, and MSA (Aldarmaki
et al., 2017). Such approaches address seed data
scarcity, but have not previously been applied
to sparse corpora lacking standardized spelling.
While we address unstandardized spelling indi-
rectly by learning better embeddings for low fre-
quency types, Zalmout et al. (2018), Abidi and
Smaïli (2018), and Dasigi and Diab (2011) attempt
to map DA spelling variants to each other.

We are the first to use embeddings for multiple
specific DA dialects, though DA embeddings are
often used for sentiment analysis (Al Sallab et al.,
2015; Altowayan and Tao, 2016). One such work,
Dahou et al. (2016), uses pre-built dictionaries to
deterministically identify phrases in mixed MSA-
DA data before training embeddings. In MSA,
embeddings have been used in additional tasks
like morphological analysis (Zalmout and Habash,
2017) and POS tagging (Darwish et al., 2017).

3 Data

We adopt Zaidan and Callison-Burch (2011)’s
4-way coarse-grained dialect distinction of Gulf
(GLF), Maghrebi (MAG), Egyptian (EGY), and
Levantine (LEV). We collect corpora for each di-
alect by concatenating the relevant dialect identi-
fied portion of the following corpora: Almeman
and Lee (2013)’s web crawl of forums, comments
and blogs, Khalifa et al. (2016)’s Gumar corpus of
internet novels,3 the Broad Operational Language
Translation corpus of primarily blogs described in
Zbib et al. (2012), the dialectal Arabic travel cor-
pus of Bouamor et al. (2018), Zaidan and Callison-
Burch (2011)’s online news commentary corpus,
and Jarrar et al. (2014)’s corpus of subtitles and
tweets. This results in 1.7 million sentences of
EGY, 1.5 million GLF, 1.3 million LEV, and 1.1
million MAG. These corpora are each about 200
times smaller than MSA’s single-domain Giga-
word (Parker et al., 2011), with lack of standard-

3Gumar’s GLF portion is huge, making the GLF corpus
less comparable to other dialects. Thus, we removed GLF
Gumar as its inclusion did not help performance.
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ized spelling and internal domain inconsistency
compounding scarcity with noise.

To map dialects’ embeddings into shared spaces
and evaluate dictionary induction, we generate
seed and test dictionaries similar to Artetxe et al.
(2016). We use MGIZA (Koehn et al., 2007)
to align 8,000 sentences from Bouamor et al.
(2018)’s travel corpus. It contains 12,000 five-
way parallel sentences between the DA varieties
of Beirut (LEV), Cairo (EGY), Doha (GLF), Tu-
nis (MAG), and Rabat (MAG), but we collapse
Tunis and Rabat to match Zaidan and Callison-
Burch (2011)’s granularity and hold out 4,000
sentences for development on downstream tasks.
After alignment, we extract unigram translations
from 2,000 sentences to form a bidialectal evalu-
ation dictionary. This yields between 2,500 and
4,000 word pairs, with 1.3 to 1.7 average trans-
lations per word depending on the dialect pair.
Lastly we realign the remaining 6,000 training
sentences and extract a seed dictionary. Three an-
notators jointly evaluated 400 unigram pairs from
the LEV–EGY evaluation dictionary. 89% were ac-
ceptable translations.

4 Word Embedding Models

We consider the following models for training
word embeddings:

FT refers to a FASTTEXT (Bojanowski et al.,
2016) implementation of SkipGram with 200 di-
mensions and a context window of 5 tokens on ei-
ther side of the target word. A word’s vector is the
sum of its SkipGram vector and that of all its com-
ponent character n-grams between length 2 and 6.
Since short vowels are not typically written in Ara-
bic, many affixes only consist of a word start/end
token and one character. Thus, these character n-
gram parameters outperformed the range of 3 to
6 proposed by Bojanowski et al. (2016) for other
languages. In preliminary experiments, FT out-
performed WORD2VEC models (Mikolov et al.,
2013a; Řehůřek and Sojka, 2010) which lack sub-
word information and hence struggle with Ara-
bic’s morphological complexity. We also com-
pared FT to variant implementations with larger
and smaller context windows, though FT consis-
tently performed the same or better.

EXT refers to an extended FT model where wide
and narrow windowed embeddings, sizes 5 and 1
respectively, are trained separately. Resulting vec-

tors are concatenated to build a 400 dimensional
model. Given much work demonstrating that nar-
row context windows capture more syntactic infor-
mation and wide windows, semantic information
(Pennington et al., 2014; Trask et al., 2015; Gold-
berg, 2016; Tu et al., 2017), component vectors
should complement each other, giving the concate-
nated vector access to a wider range of linguistic
information. To ensure that the improvement came
from vector concatenation and not simply from
having higher dimensional vectors, we built 400
dimension FT models to compare to EXT, but they
did not outperform 200 dimensional FT, likely due
to sparsity.

PP+EXT refers to an EXT model trained on
a preprocessed corpus where phrases have been
probabilistically identified. To identify phrases,
we recurse over each sentence R times, each
time forming bigram phrases from component un-
igrams (which could have been longer n-grams in
previous iterations) depending on the frequencies
of the relevant unigrams and bigrams. We im-
plement this step exactly as described in Mikolov
et al. (2013c), but then we copy each output sen-
tenceC times and probabilistically decompose the
deterministically identified phrases into smaller n-
grams.4 More precisely, for each deterministi-
cally identified n-gram phrase, we progress from
the first to the (n − 1)th gram, randomly splitting
the phrase at that point with probability en∑R

r=1
er

.

The final result of the probabilistic phrase iden-
tification is C potentially unique copies of each
sentence containing identified n-gram phrases of
length n ≤ 2R. We experimented with linear dis-
tributions in addition to the exponential one used
for phrase splitting, but the exponential performed
better. The exponential distribution means that it is
less likely to separate at any given potential break
point in longer n-grams than in shorter ones.

Like Mikolov et al. (2013c)’s deterministic
identification of phrases, PP+EXT avoids training
vectors on individual words in non-compositional
phrases, yet PP+EXT’s probabilistic nature lets
the model learn from multiple perspectives of ev-
ery word/phrase’s context, with more informative
phrase distributions more likely to appear more
frequently. Interestingly, identifying phrases can

4Using a development set, we found performance to
plateau around R=5 and C=15 and thus adopt these param-
eters, though higher values of C could in theory marginally
boost performance at the expense of runtime.
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be harmful, as our evaluation is performed on uni-
grams. We implemented a deterministic version of
PP+EXT but it did not outperform the baseline FT
as too many unigrams were lost in longer phrases.
Thus, identifying phrases probabilistically is cru-
cial to PP+EXT’s high performance.

In preliminary experiments, probabilistic phrase
identification improved the FT model without ex-
tending vectors, yet the performance did not ex-
ceed EXT. Hence, we only report PP+EXT scores,
as the technique is far more effective when cou-
pled with EXT. The combination of techniques is
actually designed to be complementary: FT lever-
ages morphology, EXT combines syntax with se-
mantics, and probabilistic phrase identification in-
creases the number of meaningful contexts used
for training. These enable the model to learn bet-
ter representations for noisy, low frequency forms
without requiring additional data.

5 Multidialectal Embedding Space

We consider two options for generating multidi-
alectal embeddings for DA: (a) a dialect agnostic
model trained on all DA corpora, and (b) training
individual dialect models separately before map-
ping them into a shared embedding space. While
(b) leverages less data per model, (a) is subject
to more noise and ambiguity, as many words are
unique to certain dialects or have disparate mean-
ings in different dialects. (b) can be seeded with
a bidialectal dictionary or parallel sentences. We
found the dictionary approach to perform better.

ALLDA is a PP+EXT model trained on a com-
bined corpus of all dialects. To avoid code switch-
ing issues, ALLDA assigns words only to those di-
alects for which its relative frequency in that di-
alect’s corpus is greater than 5% of its maximum
relative frequency in any dialect. Thus, a word as-
signed to multiple dialects will take the same vec-
tor in each dialect and be its own nearest neighbor
for any dialect pairs where it belongs to both.

VECMAP is Artetxe et al. (2016, 2017a)’s tool
that uses a seed dictionary (or shared numerals)
to learn a mapping function which minimizes dis-
tances between seed dictionary unigram pairs. In
data scarce settings, the function can be learned
iteratively, inducing a larger seed dictionary each
round, yet the noise in our DA corpora prevents
this process from getting off the ground, produc-
ing scores of zero after a few iterations.

MUSE is Conneau et al. (2017)’s tool, using
adversarial learning (and optionally a seed) to
identify similarly behaving high frequency anchor
words, bootstrapping into fine tuning the mapping
of less frequent words. MUSE is specifically de-
signed for data scarce and unsupervised settings.
It assumes shared embedding structures to be iden-
tifiable, and the authors demonstrate that domain
differences can strain this assumption.

6 Experiments and Results

To evaluate the quality of our DA word embed-
dings, we use the task of dictionary induction.
Given source dialect words from the evaluation
dictionary, we attempt to recall appropriate trans-
lations in the target dialect based on cosine dis-
tance in multidialectal embedding space. The
standard metric for this task is precision@k=1
(P@1) (Artetxe et al., 2016, 2017a; Conneau et al.,
2017), measuring the fraction of source words in
the evaluation dictionary for which the nearest tar-
get dialect neighbor matches any of the possible
translations in the evaluation dictionary.

We, however, are also concerned with how
well multiple translations are recalled, as many
words become polysemous in DA with short vow-
els omitted and spelling not standardized. For this
reason, many words appearing both in the seed
and evaluation dictionaries do not map to the ex-
act same set of possible translations in each. Thus,
many precision errors may be forgiveable, so we
focus on recall, reporting the metric recall@k=5
(R@5). Lastly, because types appear in a Zipfian
distribution and type-based metrics disproportion-
ately reflect accuracy in the tail, we report a fre-
quency weighted recall@k=5 (WR@5) as well.5

Considering both R@5 and WR@5 avoids the risk
of improving performance on high or low fre-
quency types at the expense of the other.

In Table 3, models FT, EXT, and PP+EXT are
trained on individual dialects, then mapped us-
ing supervised SVECMAP into bidialectal embed-
ding spaces. We experimented with all combina-
tions of mapping algorithms and embedding mod-
els, yet SVECMAP consistently outperformed the
other mapping algorithms. We also report results
for unsupervised UMUSE leveraging PP+EXT em-
beddings. ID is an identity dictionary mapping

5R@5 and WR@5 are normalized by the score of an ora-
cle that correctly recalls up to 5 translations of every source
word, but no more should more exist. Thus, the maximum
score for these metrics is 1, making them comparable to P@1.
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SVECMAP ALLDA UMUSE
Metric ID FT EXT PP+EXT PP+EXT PP+EXT

MAG WR@5 28.9 35.3 42.2 47.0 32.6 26.8
⇓ R@5 24.9 36.2 40.4 51.1 26.2 14.9

LEV P@1 33.6 35.3 39.7 54.0 33.7 12.2
MAG WR@5 37.5 46.9 49.7 50.8 40.5 42.3
⇓ R@5 30.4 36.9 41.2 45.2 29.0 25.4

GLF P@1 35.0 31.1 37.9 40.0 29.6 19.1
MAG WR@5 42.4 48.2 48.3 47.9 45.8 43.1
⇓ R@5 30.7 34.5 39.4 42.9 34.0 25.5

EGY P@1 36.0 29.4 38.0 36.6 36.3 20.9
EGY WR@5 42.9 51.3 51.3 52.8 47.8 40.5
⇓ R@5 40.9 48.2 49.9 52.8 38.4 33.1

GLF P@1 47.7 43.3 48.5 48.3 41.7 24.0
LEV WR@5 43.2 50.6 50.4 51.7 48.5 40.9
⇓ R@5 33.6 37.8 38.9 46.4 31.8 24.7

GLF P@1 39.0 34.1 37.5 41.7 33.1 20.0
LEV WR@5 44.0 50.3 49.8 52.4 50.6 48.1
⇓ R@5 33.0 27.6 39.6 42.3 36.5 31.1

EGY P@1 39.6 33.8 38.8 37.7 39.2 25.9

Table 3: Dictionary induction results comparing
various multidialectal embedding models mapped
via supervised (SVECMAP) and unsupervised
(ALLDA, UMUSE) techniques.

all source words to themselves, thus represent-
ing dialect similarity. PP+EXT or EXT always
outperform the baseline FT, with PP+EXT be-
ing the best model in all but one instance ac-
cording to WR@5 and R@5. PP+EXT success-
fully addresses noise as its gains are larger on
non-frequency weighted R@5 than WR@5; i.e.,
it improves on low frequency words without com-
promising high frequency word accuracy. Addi-
tionally, the consistency in results for WR@5 and
R@5 as compared to P@1 suggests the small k is
contributing to noise in the P@1 metric.

While ALLDA generally performs worse than
the supervised mapping approaches, it typically
performs slightly better on words which were not
found in their seed dictionaries according to R@5,
likely because it can leverage more data to learn
better representations for non-ambiguous, low fre-
quency shared forms. Depending on the intended
application, system combination could be ideal,
querying ALLDA for low frequency forms appear-
ing in multiple dialects, but not the seed.

SVECMAP SMUSE UMUSE ALLDA
WR@5 0.70 0.97 0.90 0.99

R@5 0.24 0.48 0.89 0.86
P@1 0.03 0.18 0.68 0.78

Table 4: Correlation between mapping perfor-
mance and dialect similarity, i.e., the ID baseline,
using PP+EXT embeddings.

As for supervised mapping algorithms, Table 4
shows that, depending on the dialect pair in ques-

tion, SMUSE’s adversarial learning approach cor-
relates with ID’s metric of dialect similarity 20-
30% more strongly than SVECMAP, which takes
greater advantage of seed–evaluation domain sim-
ilarity. Accordingly, SVECMAP beats SMUSE on
in-seed forms by 3-23%. That said, SMUSE is
more robust to seed coverage, slightly outperform-
ing SVECMAP on out-of-seed forms and UMUSE

successfully bootstraps without supervision, un-
like UVECMAP. Still, the best performing option
in the unsupervised set up is ALLDA. UMUSE’s
performance does not approach that of supervised
alternatives as reported in Conneau et al. (2017).
This is likely because they (as do Artetxe et al.
(2017a)) impose bilingual data scarcity constraints
on high resource languages but do not consider the
sparsity effects of noise common in low resource
languages. They use large quantities of domain
consistent, spelling standardized monolingual data
which are not available for DA.

7 Conclusion and Future Work

We presented techniques for generating multidi-
alectal word embeddings from noisy DA corpora.
Due to linguistic differences, modeling dialects in-
dependently and mapping embeddings into multi-
dialectal space generally outperformed training di-
alect agnostic embeddings on combined corpora.
Our novel techniques include concatenating nar-
row and wide windowed vectors and probabilis-
tically identifying phrases before training embed-
dings. These techniques improved performance
on bidialectal dictionary induction 2-53% over
a state-of-the-art baseline, with most of the im-
provement realized on noisy, low frequency word
forms. Our approach can easily be applied to
other, similarly noisy corpora. In future work, we
will improve the handling of orthographically am-
biguous words, which are very prevalent in DA,
and we will evaluate on the downstream appli-
cations of machine translation and morphological
disambiguation.
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Asuncion Moreno, Jan Odijk, Stelios Piperidis, and
Takenobu Tokunaga, editors, Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018). European
Language Resources Association (ELRA), Paris,
France.

Salam Khalifa, Nizar Habash, Dana Abdulrahim, and
Sara Hassan. 2016. A large scale corpus of Gulf
Arabic. arXiv preprint arXiv:1609.02960 .

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions. As-
sociation for Computational Linguistics, pages 177–
180.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings the
North American Chapter of the Association for
Computational Linguistics/Human Language Tech-
nologies Conference (HLT-NAACL15). pages 151–
159.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for ma-

chine translation. arXiv preprint arXiv:1309.4168
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Hassan Alhuzali Muhammad Abdul-Mageed and Mo-
hamed Elaraby. 2018. You tweet what you
speak: A city-level dataset of arabic dialects.
In Nicoletta Calzolari (Conference chair), Khalid
Choukri, Christopher Cieri, Thierry Declerck, Sara
Goggi, Koiti Hasida, Hitoshi Isahara, Bente Mae-
gaard, Joseph Mariani, HÃl’lÃĺne Mazo, Asuncion
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Université Paris-Saclay,
Orsay, France
pz@limsi.fr

Abstract

Negative sampling is an important com-
ponent in word2vec for distributed word
representation learning. We hypothesize
that taking into account global, corpus-
level information and generating a differ-
ent noise distribution for each target word
better satisfies the requirements of nega-
tive examples for each training word than
the original frequency-based distribution.
In this purpose we pre-compute word co-
occurrence statistics from the corpus and
apply to it network algorithms such as ran-
dom walk. We test this hypothesis through
a set of experiments whose results show
that our approach boosts the word anal-
ogy task by about 5% and improves the
performance on word similarity tasks by
about 1% compared to the skip-gram neg-
ative sampling baseline.

1 Introduction

Negative sampling, as introduced by Mikolov
et al. (2013b), is used as a standard compo-
nent in both the CBOW and skip-gram models
of word2vec. For practical reasons, instead of
using a softmax function, earlier work explored
different alternatives which approximate the soft-
max in a computationally efficient way. These
alternative methods can be roughly divided into
two categories: softmax-based approaches (hier-
archical softmax (Morin and Bengio, 2005), dif-
ferentiated softmax (Chen et al., 2015) and CNN-
softmax (Kim et al., 2016)) and sampling-based
approaches (importance sampling (Bengio et al.,
2003), target sampling (Jean et al., 2014), noise
contrastive estimation (Mnih and Teh, 2012) and
negative sampling Mikolov et al. (2013b)). Gener-
ally speaking, among all these methods, negative

sampling is the best choice for distributed word
representation learning (Ruder, 2016).

Negative sampling replaces the softmax with bi-
nary classifiers. For instance, in the skip-gram
model, word representations are learned by pre-
dicting a training word’s surrounding words given
this training word. When training, correct sur-
rounding words provide positive examples in con-
trast to a set of sampled negative examples (noise).
To find these negative examples, a noise distribu-
tion is empirically defined as the unigram distribu-
tion of the words to the 3/4th power:

Pn(w) = U(w)
3
4 /

|vocab|∑

i=1

U(wi)
3
4 (1)

Although this noise distribution is widely used and
significantly improves the distributed word repre-
sentation quality, we believe there is still room for
improvement in the two following aspects: First,
the unigram distribution only takes into account
word frequency, and provides the same noise dis-
tribution when selecting negative examples for dif-
ferent target words. Labeau and Allauzen (2017)
already showed that a context-dependent noise
distribution could be a better solution to learn a
language model. But they only use information on
adjacent words. Second, unlike the positive target
words, the meaning of negative examples remain
unclear: For a training word, we do not know what
a good noise distribution should be, while we do
know what a good target word is (one of its sur-
rounding words).

Our contributions: To address these two prob-
lems, we propose a new graph-based method to
calculate noise distribution for negative sampling.
Based on a word co-occurrence network, our noise
distribution is targeted to training words. Besides,
through our empirical exploration of the noise dis-
tribution, we get a better understanding of the
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meaning of ‘negative’ and of the characteristics of
good noise distributions.

The rest of the paper is organized as follows:
Section 2 defines the word co-occurrence network
concepts and introduces our graph-based negative
sampling approach. Section 3 shows the experi-
mental settings and results, then discusses our un-
derstanding of the good noise distributions. Fi-
nally, Section 4 draws conclusions and mentions
future work directions.

2 Graph-based Negative Sampling

We begin with the word co-occurrence network
generation (Section 2.1). By comparing it with the
word2vec models, we show the relation between
the stochastic matrix of the word co-occurrence
network and the distribution of the training word
contexts in word2vec. We introduce three methods
to generate noise distributions for negative sam-
pling based on the word co-occurrence network:

• Directly using the training word context
distribution extracted from the word co-
occurrence network (Section 2.2)

• Calculating the difference between the orig-
inal unigram distribution and the training
word context distribution (Section 2.3)

• Performing t-step random walks on the word
co-occurrence network (Section 2.4)

We finally insert our noise distribution into the
word2vec negative sampling training (Sec. 2.5).

2.1 Word Co-occurrence Network and
Stochastic Matrix

A word co-occurrence network is a graph of
word interactions representing the co-occurrence
of words in a corpus. An undirected edge
can be created when two words co-occur within
a sentence; these words are possibly non-
adjacent, with a maximum distance defined by
a parameter dmax (Ferrer-i-Cancho and Solé,
2001). Given two words wiu and wjv that
co-occur within a sentence at positions i and
j (i, j ∈ {1 . . . l}), we define the distance
d(wiu, w

j
v) = |j − i| and the co-occurrence of

wu and wv at a distance δ as cooc (δ, wu, wv) =∣∣{ (wiu, wjv
) ∣∣ d

(
wiu, w

j
v

)
= δ

}∣∣. We define the
weight w(dmax, wu, wv) of an edge (wu, wv) as
the total number of co-occurrences of wu and wv

with distances δ ≤ dmax:

w (dmax, wu, wv) =
dmax∑
δ=1

cooc(δ, wu, wv).

An undirected weighted word co-occurrence
network can also be represented as a symmetric
adjacency matrix (Mihalcea and Radev, 2011), a
square matrix A of dimension |W | × |W |. In our
case, W is the set of words used to generate the
word co-occurrence network, and the matrix ele-
ments Auv and Avu have the same value as the
weight of the edge w(dmax, wu, wv). Then each
row of the adjacency matrix A can be normalized
(i.e., so that each row sums to 1), turning it into a
right stochastic matrix S.

Negative sampling, in the skip-gram model,
uniformly draws at random for each training word
one of its surrounding words as the (positive) tar-
get word. This range is determined by the size of
the training context c. In other words, a surround-
ing word ws of the training word wt must satisfy
the following condition: d(wit, w

j
s) ≤ c.

For the same corpus, let us set dmax equal to
c in word2vec and generate a word co-occurrence
network of the whole corpus. Then element Suv
in the adjacency matrix extracted from the net-
work represents the probability that word wv be
selected as the target word for training word wu
(Pbigram(wu, wv) in Eq. 2). Row Su thus shows
the distribution of target words for training word
wu after training the whole corpus. Note that no
matter how many training iterations are done over
the corpus, this distribution will not change.

Pbigram(wu, wv) =

dmax∑
δ=1

cooc(δ, wu, wv)

|vocab|∑
i=1

dmax∑
δ=1

cooc(δ, wu, wi)

= Suv

(2)
Networks and matrices are interchangeable.

The adjacency matrix of the word co-occurrence
network can also be seen as the matrix of word-
word co-occurrence counts calculated in a statis-
tical way as in GloVe (Pennington et al., 2014).
But unlike Glove, where the matrix is used for fac-
torization, we use word co-occurrence statistics to
generate a network, then use network algorithms.

2.2 Training-Word Context Distribution

As discussed in Section 2.1, the stochastic ma-
trix S of the word co-occurrence network repre-
sents the context distribution of the training words.
Here, we use S directly as one of the three types
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of bases for noise distribution matrix calculation.

The idea behind this is to perform nonlinear
logistic regression to differentiate the observed
data from some artificially generated noise. This
idea was introduced by Gutmann and Hyvärinen
(2010) with the name Noise Contrastive Estima-
tion (NCE). Negative sampling (NEG) can be con-
sidered as a simplified version of NCE that follows
the same idea and uses the unigram distribution as
the basis of the noise distribution. We attempt to
improve this by replacing the unigram distribution
with a bigram distribution (word co-occurrence,
not necessarily contiguous) to make the noise dis-
tribution targeted to the training word (see Eq. 2).

Compared to the word-frequency-based uni-
gram distribution, the word co-occurrence based
bigram distribution is sparser. With the unigram
distribution, for any training word, all the other
vocabulary words can be selected as noise words
because of their non-zero frequency. In con-
trast, with the bigram distribution, some vocabu-
lary words may never co-occur with a given train-
ing word, which makes them impossible to be se-
lected for this training word. To check the influ-
ence of this zero co-occurrence case, we also pro-
vide a modified stochastic matrix S′ smoothed by
replacing all zeros in matrix S with the minimum
non-zero value of their corresponding rows.

2.3 Difference Between the Unigram
Distribution and the Training Words
Contexts Distribution

Contrary to the hypothesis underlying the previous
section, here we take into account the positive tar-
get words distribution in the training word context
distribution. Starting from the ‘white noise’ uni-
gram distribution, for each training word wu, we
subtract from it the corresponding context distri-
bution of this training word. Elements in this new
basis matrix Sdifferenceu,v of noise distribution are:

Pdifference(wu, wv) = Pn(wu)− Suv (3)

where wv is one of the negative examples of wu,
Pn is the unigram distribution defined in Eq. 1 and
S is the stochastic matrix we used in Section 2.2.
For zeros and negative values in this matrix, we
reset them to the minimum non-zero value of the
corresponding row Pdifference(wu).

2.4 Random Walks on the Word
Co-occurrence Network

After generating the word co-occurrence network,
we apply random walks (Aldous and Fill, 2002)
to it to obtain yet another noise distribution matrix
for negative sampling.

Let us define random walks on the co-
occurrence network: Starting from an initial ver-
tex wu , at each step we can cross an edge attached
to wu that leads to another vertex, say wv. For a
weighted word co-occurrence network, we define
the transition probability P (wu, wv) from vertex
wu to vertex wv as the ratio of the weight of the
edge (wu, wv) over the sum of weights on all ad-
jacency edges of vertex wu. Using the adjacency
matrix A and the right stochastic matrix S pre-
sented in Section 2.1, Pu,v can be calculated by:

P (wu, wv) = Auv/
|Au|∑
i=1

Aui = Suv.

As we want to learn transition probabilities for
all training words, we apply random walks on all
vertices by making each training word an initial
vertex of one t-step random walk at the same time.

The whole set of transition probabilities can be
represented as a transition matrix, which is ex-
actly the right stochastic matrix S of the word co-
occurrence network in our case. We found that the
self-loops (edges that start and end at the same ver-
tex: the main diagonal of an adjacency matrix or
a stochastic matrix) in matrix S represent the oc-
currence of a word in its own context, which may
happen in repetitions. We hypothesize they con-
stitute spurious events and therefore test the t-step
random walk both on matrix S and its smoothed
version R′ in which the self-loops are removed.
To see the effect of the self-loops, we perform the
t-step random walk on both matrices S and R′.

Based on that, the elements of the t-step random
walk transition matrix can be calculated by:

Prandom-walk (wu, wv) = Stuv or (R
′)tuv (4)

Ferrer-i-Cancho and Solé (2001) showed that a
word co-occurrence network is highly connected.
For such networks, random walks converge to a
steady state in just a few steps. Steady state means
that no matter which vertex one starts with, the
distribution of the destination vertex probabilities
remains the same. In other words, all St columns
will have the same value. So we set the maximum
step number tmax to 4. We will use these t-step
random walk transition matrices as the basis for
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one of our noise distributions matrices for negative
sampling.

2.5 Noise Distribution Matrix

Starting from the basic noise distribution matrix,
we use the power function to adjust the distribu-
tion. Then we normalize all rows of this adjusted
matrix to let each row sum to 1. Finally, we get:

Pn(wu, wv) = (Buv)
p/

|Bu|∑

i=1

(Bui)
p (5)

where B is the basic noise distribution calculated
according to Eq. 2, 3 or 4 and p is the power.

When performing word2vec training with neg-
ative sampling, for each training word, we use the
corresponding row in our noise distribution matrix
to replace the original unigram noise distribution
for the selection of noise candidates.

3 Experiments and Results

3.1 Set-up and Evaluation Methods

We use the skip-gram negative sampling model
with window size 5, vocabulary size 10000, vec-
tor dimension size 200, number of iterations 5
and negative examples 5 to compute baseline word
embeddings. Our three types of graph-based skip-
gram negative sampling models share the parame-
ters of the baseline. In addition to these common
parameters, they have their own parameters: the
maximum distance dmax for co-occurrence net-
works generation, a Boolean replace zeros to con-
trol whether or not to replace zeros with the mini-
mum non-zero values, a Boolean no self loops to
control whether or not to remove the self-loops,
the number of random walk steps t (Eq. 4) and the
power p (Eq. 5).

All four models are trained on an English
Wikipedia dump from April 2017 of three sizes:
about 19M tokens, about 94M tokens (both are
for detailed analyses and non-common parameters
grid search in each of the three graph-based mod-
els) and around 2.19 billion tokens (for four mod-
els comparison). During corpus preprocessing, we
use CoreNLP (Manning et al., 2014) for sentence
segmentation and word tokenization, then convert
tokens to lowercase, replace all expressions with
numbers by 0 and replace rare tokens with UNKs.

We perform a grid search on the ∼19M to-
kens corpus, with dmax ∈ {2, . . . 10}, t ∈
{1, . . . 4}, p ∈ {−2,−1, 0.01, 0.25, 0.75, 1, 2}

and True, False for the two Boolean parameters.
We retain the best parameters obtained by this grid
search and perform a tighter grid search around
them on the ∼94M tokens corpus. Then based on
the two grid search results, we select the final pa-
rameters for the entire Wikipedia dump test. We
evaluate the resulting word embeddings on word
similarity tasks using WordSim-353 (Finkelstein
et al., 2001) and SimLex-999 (Hill et al., 2014)
(correlation with humans), and on the word anal-
ogy task of Mikolov et al. (2013a) (% correct).
Therefore, we use the correlation coefficients be-
tween model similarity judgments and human sim-
ilarity judgments for WordSim-353 and SimLex-
999 tasks and the accuracy of the model prediction
with gold standard for the word analogy task (the
metrics in Table 1) as objective functions for these
parameter tuning processes.

3.2 Results

The best grid search parameters are shown in Ta-
ble 2, final evaluation results on the entire English
Wikipedia in Table 1. The results show that graph-
based negative sampling boosts the word analogy
task by about 5% and improves word similarity by
about 1%.

As vocabulary size is set to 10000, not all data
in evaluation datasets is used. We report here the
sizes of the datasets and of the subsets that con-
tained no unknown word, that we used for eval-
uation: WordSim-353: 353; 261; SImLex-999:
999; 679; Word Analogy: 19544; 6032. We also
computed the statistical significance of the differ-
ences between our models and the baseline model.
Both word similarity tasks use correlation coeffi-
cients, so we computed Steiger’s Z tests (Steiger,
1980) between the correlation coefficients of each
of our models (bigram distribution, difference dis-
tribution and random walk distribution) versus
the word2vec skip-gram negative sampling base-
line. For WordSim-353, differences are signif-
icant (2-tailed p < 0.05) for difference distribu-
tion and random walk distribution for both Pear-
son and Spearman correlation coefficients; differ-
ences are not significant for bigram distribution.
For SimLex-999, no difference is significant (all
2-tailed p > 0.05). The word analogy task uses
accuracy, we tested statistical significance of the
differences by approximate randomization (Yeh,
2000). Based on 10000 shuffles, we confirmed
that all differences between the accuracies of our
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WordSim-353 SimLex-999 Word Analogy
Pearson Spearman Pearson Spearman Semantic Syntactic Total

baseline word2vec 66.12% 69.60% 37.36% 36.33% 73.00% 70.67% 71.37%
bigram distr. (Eq. 2) 66.10% 69.77% 38.05% 37.18% 77.36%† 75.55%† 76.09%†

difference distr. (Eq. 3) 67.71%† 71.51%† 37.65% 36.58% 77.14%† 75.98%† 76.33%†

random walk (Eq. 4) 66.94%† 70.70%† 37.73% 36.74% 77.75%† 74.86%† 75.73%†

Table 1: Evaluation results on WordSim-353, SimLex-999 and the word analogy task for the plain
word2vec model and our three graph-based noise distributions on the entire English Wikipedia dump. A
dagger† marks a statistically significant difference to the baseline word2vec.

distribution dmax p others
bigram 3 0.25 replace zeros=T
difference 3 0.01
random walk 5 0.25 t = 2, no self loops=T

Table 2: Best parameters

models and the accuracy of word2vec skip-gram
are statistically significant (p < 0.0001).

The time complexity when using our modified
negative sampling distribution is similar to that of
the original skip-gram negative sampling except
that the distribution from which negative exam-
ples are sampled is different for each token. We
pre-compute this distribution off-line for each to-
ken so that the added complexity is proportional
to the size of the vocabulary. Specifically, pre-
computing the co-occurrences and graphs using
corpus2graph (Zhang et al., 2018) takes about 2.5
hours on top of 8 hours for word2vec alone on the
entire Wikipedia corpus using 50 logical cores on
a server with 4 Intel Xeon E5-4620 processors :
the extra cost is not excessive.

Let us take a closer look at each graph-based
model. First, the word context distribution based
model: we find that all else being equal, replac-
ing zero values gives better performance. We be-
lieve a reason may be that for a training word, all
the other words should have a probability to be se-
lected as negative examples—the job of noise dis-
tributions is to assign these probabilities. We note
that for SimLex-999, all combinations of param-
eters in our grid search outperform the baseline.
But unfortunately the differences are not signifi-
cant. Initially it sounds contradictory that directly
using the word context distribution S as the noise
distribution: a higher probability denotes that the
word wv is more likely to be the target word of
wu (i.e., positive example). So we tried assigning
different negative powers to adjust the distribution

S (Section 2.5) so as to make lower co-occurrence
frequencies lead to higher probability of being se-
lected as negative examples. But all these perform
poorly for all three tasks.

Second, the difference model: the word analogy
task results show a strong dependency on power p:
the lower the power p, the higher the performance.

Third, the random-walk model: we observe that
all top 5 combinations of parameters in the grid
search do random walks after removing self-loops.

4 Conclusion

We presented in this paper three graph-based neg-
ative sampling models for word2vec. Experiments
show that word embeddings trained by using these
models can bring an improvement to the word
analogy task and to the word similarity task.

We found that pre-computing graph informa-
tion extracted from word co-occurrence networks
is useful to learn word representations. Possible
extensions would be to test whether using this in-
formation to select target words (positive exam-
ples) could improve training quality, and whether
using it to reorder training words could improve
training efficiency.
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Abstract

This paper presents the first study aimed
at capturing stylistic similarity between
words in an unsupervised manner. We
propose extending the continuous bag of
words (CBOW) model (Mikolov et al.,
2013a) to learn style-sensitive word vectors
using a wider context window under the
assumption that the style of all the words
in an utterance is consistent. In addition,
we introduce a novel task to predict lexical
stylistic similarity and to create a bench-
mark dataset for this task. Our experiment
with this dataset supports our assumption
and demonstrates that the proposed exten-
sions contribute to the acquisition of style-
sensitive word embeddings.

1 Introduction

Analyzing and generating natural language texts
requires the capturing of two important aspects of
language: what is said and how it is said. In the
literature, much more attention has been paid to
studies on what is said. However, recently, captur-
ing how it is said, such as stylistic variations, has
also proven to be useful for natural language pro-
cessing tasks such as classification, analysis, and
generation (Pavlick and Tetreault, 2016; Niu and
Carpuat, 2017; Wang et al., 2017).

This paper studies the stylistic variations of
words in the context of the representation learning
of words. The lack of subjective or objective defi-
nitions is a major difficulty in studying style (Xu,
2017). Previous attempts have been made to de-
fine a selected aspect of the notion of style (e.g.,
politeness) (Mairesse and Walker, 2007; Pavlick
and Nenkova, 2015; Flekova et al., 2016; Preotiuc-
Pietro et al., 2016; Sennrich et al., 2016; Niu et al.,
2017); however, it is not straightforward to create

Figure 1: Word vector capturing stylistic and syn-
tactic/semantic similarity.

strict guidelines for identifying the stylistic profile
of a given text. The systematic evaluations of style-
sensitive word representations and the learning of
style-sensitive word representations in a supervised
manner are hampered by this. In addition, there
is another trend of research forward controlling
style-sensitive utterance generation without defin-
ing the style dimensions (Li et al., 2016; Akama
et al., 2017); however, this line of research consid-
ers style to be something associated with a given
specific character, i.e., a persona, and does not aim
to capture the stylistic variation space.

The contributions of this paper are three-fold.
(1) We propose a novel architecture that acquires
style-sensitive word vectors (Figure 1) in an un-
supervised manner. (2) We construct a novel
dataset for style, which consists of pairs of style-
sensitive words with each pair scored accord-
ing to its stylistic similarity. (3) We demon-
strate that our word vectors capture the stylis-
tic similarity between two words successfully.
In addition, our training script and dataset are
available on https://jqk09a.github.io/
style-sensitive-word-vectors/.

2 Style-sensitive Word Vector

The key idea is to extend the continuous bag of
words (CBOW) (Mikolov et al., 2013a) by distin-
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guishing nearby contexts and wider contexts under
the assumption that a style persists throughout ev-
ery single utterance in a dialog. We elaborate on it
in this section.

2.1 Notation

Letwt denote the target word (token) in the corpora
and Ut = {w1, . . . , wt−1, wt, wt+1, . . . , w|Ut|} de-
note the utterance (word sequence) including wt.
Here, wt+d or wt−d ∈ Ut is a context word of wt
(e.g., wt+1 is the context word next to wt), where
d ∈ N>0 is the distance between the context words
and the target word wt.

For each word (token) w, bold face vw and ṽw
denote the vector of w and the vector predicting
the word w. Let V denote the vocabulary.

2.2 Baseline Model (CBOW-NEAR-CTX)

First, we give an overview of CBOW, which is our
baseline model. CBOW predicts the target word
wt given nearby context words in a window with
width δ:

Cnearwt
:= {wt±d ∈ Ut | 1 ≤ d ≤ δ} (1)

The set Cnearwt
contains in total at most 2δ words, in-

cluding δ words to the left and δ words to the right
of a target word. Specifically, we train the word
vectors ṽwt and vc (c ∈ Cnearwt

) by maximizing the
following prediction probability:

P (wt|Cnearwt
) ∝ exp

(
ṽwt ·

1

|Cnearwt
|
∑

c∈Cnearwt

vc

)
. (2)

The CBOW captures both semantic and syntactic
word similarity through the training using nearby
context words. We refer to this form of CBOW
as CBOW-NEAR-CTX. Note that, in the imple-
mentation of Mikolov et al. (2013b), the window
width δ is sampled from a uniform distribution;
however, in this work, we fixed δ for simplicity.
Hereafter, throughout our experiments, we turn off
the random resizing of δ.

2.3 Learning Style with Utterance-size
Context Window (CBOW-ALL-CTX)

CBOW is designed to learn the semantic and syn-
tactic aspects of words from their nearby con-
text (Mikolov et al., 2013b). However, an inter-
esting problem is determining the location where
the stylistic aspects of words can be captured. To
address this problem, we start with the assumption
that a style persists throughout each single utter-

ance in a dialog, that is, the stylistic profile of a
word in an utterance must be consistent with other
words in the same utterance. Based on this assump-
tion, we propose extending CBOW to use all the
words in an utterance as context,

Callwt
:= {wt±d ∈ Ut | 1 ≤ d}, (3)

instead of only the nearby words. Namely, we
expand the context window from a fixed width
to the entire utterance. This training strategy is
expected to lead to learned word vectors that are
more sensitive to style rather than to other aspects.
We refer to this version as CBOW-ALL-CTX.

2.4 Learning the Style and
Syntactic/Semantic Separately

To learn the stylistic aspect more exclusively, we
further extended the learning strategy.

Distant-context Model (CBOW-DIST-CTX)
First, remember that using nearby context is effec-
tive for learning word vectors that capture semantic
and syntactic similarities. However, this means that
using the nearby context can lead the word vectors
to capture some aspects other than style. Therefore,
as the first extension, we propose excluding the
nearby context Cnearwt

from all the context Callwt
. In

other words, we use the distant context words only:

Cdistwt
:= Callwt

\ Cnearwt
= {wt±d ∈ Ut | δ < d}. (4)

We expect that training with this type of context
will lead to word vectors containing the style-
sensitive information only. We refer to this method
as CBOW-DIST-CTX.

Separate Subspace Model (CBOW-SEP-CTX)
As the second extension to distill off aspects other
than style, we use both nearby and all contexts
(Cnearwt

and Callwt
). As Figure 2 shows, both the vector

vw and ṽw of each word w ∈ V are divided into
two vectors:

vw = xw ⊕ yw, ṽw = x̃w ⊕ ỹw, (5)

where ⊕ denotes vector concatenation. Vectors
xw and x̃w indicate the style-sensitive part of vw
and ṽw respectively. Vectors yw and ỹw indicate
the syntactic/semantic-sensitive part of vw and
ṽw respectively. For training, when the context
words are near the target word (Cnearwt

), we update
both the style-sensitive vectors (x̃wt , xc) and the
syntactic/semantic-sensitive vectors (ỹwt

, yc), i.e.,
ṽwt , vc. Conversely, when the context words are
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Figure 2: The architecture of CBOW-SEP-CTX.

far from the target word (Cdistwt
), we only update

the style-sensitive vectors (x̃wt , xc). Formally, the
prediction probability is calculated as follows:

P1(wt|Cnearwt
) ∝ exp

(
ṽwt ·

1

|Cnearwt
|
∑

c∈Cnearwt

vc

)
, (6)

P2(wt|Cdistwt
) ∝ exp

(
x̃wt ·

1

|Cdistwt
|
∑

c∈Cdistwt

xc

)
. (7)

At the time of learning, two prediction probabili-
ties (loss functions) are alternately computed, and
the word vectors are updated. We refer to this
method using the two-fold contexts separately as
the CBOW-SEP-CTX.

3 Experiments

We investigated which word vectors capture the
stylistic, syntactic, and semantic similarities.

3.1 Settings
Training and Test Corpus We collected
Japanese fictional stories from the Web to construct
the dataset. The dataset contains approximately
30M utterances of fictional characters. We sepa-
rated the data into a 99%–1% split for training and
testing. In Japanese, the function words at the end
of the sentence often exhibit style (e.g., desu+wa,
desu+ze1;) therefore, we used an existing lexicon
of multi-word functional expressions (Miyazaki
et al., 2015). Overall, the vocabulary size |V| was
100K.

Hyperparameters We chose the dimensions of
both the style-sensitive and the syntactic/semantic-
sensitive vectors to be 300, and the dimensions
of the baseline CBOWs were 300. The learn-
ing rate was adjusted individually for each part
in {xw,yw, x̃w, ỹw} such that “the product of the

1These words mean the verb be in English.

learning rate and the expectation of the number of
updates” was a fixed constant. We ran the optimizer
with its default settings from the implementation of
Mikolov et al. (2013a). The training stopped after
10 epochs. We fixed the nearby window width to
δ = 5.

3.2 Stylistic Similarity Evaluation

3.2.1 Data Construction

To verify that our models capture the stylistic simi-
larity, we evaluated our style-sensitive vector xwt

by comparing to other word vectors on a novel
artificial task matching human stylistic similarity
judgments. For this evaluation, we constructed a
novel dataset with human judgments on the stylis-
tic similarity between word pairs by performing
the following two steps. First, we collected only
style-sensitive words from the test corpus because
some words are strongly associated with stylistic
aspects (Kinsui, 2003; Teshigawara and Kinsui,
2011) and, therefore, annotating random words for
stylistic similarity is inefficient. We asked crowd-
sourced workers to select style-sensitive words
in utterances. Specifically, for the crowdsourced
task of picking “style-sensitive” words, we pro-
vided workers with a word-segmented utterance
and asked them to pick words that they expected
to be altered within different situational contexts
(e.g., characters, moods, purposes, and the back-
ground cultures of the speaker and listener.). Then,
we randomly sampled 1, 000 word pairs from the
selected words and asked 15 workers to rate each
of the pairs on five scales (from −2: “The style
of the pair is different” to +2: “The style of the
pair is similar”), inspired by the syntactic/semantic
similarity dataset (Finkelstein et al., 2002; Gerz
et al., 2016). Finally, we picked only word pairs
featuring clear worker agreement in which more
than 10 annotators rated the pair with the same
sign, which consisted of random pairs of highly
agreeing style-sensitive words. Consequently, we
obtained 399 word pairs with similarity scores. To
our knowledge, this is the first study that created an
evaluation dataset to measure the lexical stylistic
similarity.

In the task of selecting style-sensitive words, the
pairwise inter-annotator agreement was moderate
(Cohen’s kappa κ is 0.51). In the rating task, the
pairwise inter-annotator agreement for two classes
({−2,−1} or {+1,+2}) was fair (Cohen’s kappa
κ is 0.23). These statistics suggest that, at least
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Model ρstyle ρsem
SYNTAXACC

@5 @10
CBOW-NEAR-CTX 12.1 27.8 86.3 85.2
CBOW-ALL-CTX 36.6 24.0 85.3 84.1
CBOW-DIST-CTX 56.1 15.9 59.4 58.8
CBOW-SEP-CTX

x (Stylistic) 51.3 28.9 68.3 66.2
y (Syntactic/semantic) 9.6 18.1 88.0 87.0

Table 1: Results of the quantitative evaluations.

in Japanese, native speakers share a sense of style-
sensitivity of words and stylistic similarity between
style-sensitive words.

3.2.2 Stylistic Sensitivity
We used this evaluation dataset to compute the
Spearman rank correlation (ρstyle) between the co-
sine similarity scores between the learned word
vectors cos(vw,vw′) and the human judgements.
Table 1 shows the results on its left side. First,
our proposed model, CBOW-ALL-CTX outper-
formed the baseline CBOW-NEAR-CTX. Further-
more, the x of CBOW-DIST-CTX and CBOW-SEP-
CTX demonstrated better correlations for stylis-
tic similarity judgments (ρstyle = 56.1 and 51.3,
respectively). Even though the x of CBOW-
SEP-CTX was trained with the same context win-
dow as CBOW-ALL-CTX, the style-sensitivity was
boosted by introducing joint training with the near
context. CBOW-DIST-CTX, which uses only the
distant context, slightly outperforms CBOW-SEP-
CTX. These results indicate the effectiveness of
training using a wider context window.

3.3 Syntactic and Semantic Evaluation
We further investigated the properties of each
model using the following criterion: (1) the
model’s ability to capture the syntactic aspect was
assessed through a task predicting part of speech
(POS) and (2) the model’s ability to capture the
semantic aspect was assessed through a task cal-
culating the correlation with human judgments for
semantic similarity.

3.3.1 Syntactic Sensitivity
First, we tested the ability to capture syntactic sim-
ilarity of each model by checking whether the POS
of each word was the same as the POS of a neigh-
boring word in the vector space. Specifically, we
calculated SYNTAXACC@N defined as follows:

1

|V|N
∑

w∈V

∑

w′∈N (w)

I[POS(w)=POS(w′)], (8)

where I[condition] = 1 if the condition is true and
I[conditon] = 0 otherwise, the function POS(w)
returns the actual POS tag of the wordw, andN (w)
denotes the set of the N top similar words {w′} to
w w.r.t. cos(vw,vw′) in each vector space.

Table 1 shows SYNTAXACC@N with N = 5
and 10. For both N , the y (the syntactic/semantic
part) of CBOW-NEAR-CTX, CBOW-ALL-CTX

and CBOW-SEP-CTX achieved similarly good. In-
terestingly, even though the x of CBOW-SEP-CTX

used the same context as that of CBOW-ALL-CTX,
the syntactic sensitivity of x was suppressed. We
speculate that the syntactic sensitivity was distilled
off by the other part of the CBOW-SEP-CTX vector,
i.e., y learned using only the near context, which
captured more syntactic information. In the next
section, we analyze CBOW-SEP-CTX for the dif-
ferent characteristics of x and y.

3.3.2 Semantic and Topical Sensitivities
To test the model’s ability to capture the se-
mantic similarity, we also measured correla-
tions with the Japanese Word Similarity Dataset
(JWSD) (Sakaizawa and Komachi, 2018), which
consists of 4,000 Japanese word pairs annotated
with semantic similarity scores by human workers.
For each model, we calculate and show the Spear-
man rank correlation score (ρsem) between the co-
sine similarity score cos(vw,vw′) and the human
judgements on JWSD in Table 12. CBOW-DIST-
CTX has the lowest score (ρsem=15.9); however,
surprisingly, the stylistic vector xwt has the high-
est score (ρsem=28.9), while both vectors have a
high ρstyle. This result indicates that the proposed
stylistic vector xwt captures not only the stylistic
similarity but also the captures semantic similarity,
contrary to our expectations (ideally, we want the
stylistic vector to capture only the stylistic similar-
ity). We speculate that this is because not only the
style but also the topic is often consistent in single
utterances. For example, “サンタ (Santa Clause)”
and “トナカイ (reindeer)” are topically relevant
words and these words tend to appear in a single
utterance. Therefore, stylistic vectors {xw} using
all the context words in an utterance also capture
the topic relatedness. In addition, JWSD contains
topic-related word pairs and synonym pairs; there-
fore the word vectors that capture the topic similar-
ity have higher ρsem. We will discuss this point in

2Note that the low performance of our baseline (ρsem =
27.8 for CBOW-NEAR-CTX) is unsurprising comparing to
English baselines (cf., Taguchi et al. (2017)).
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Word w The top similar words {w′} to w w.r.t. cosine similarity
cos(xw,xw′) (stylistic half) cos(yw,yw′) (syntactic/semantic half)

Ja
pa

ne
se

俺 (I; male, colloquial) おまえ (you; colloquial, rough), 僕 (I; male, colloquial, childish),
あいつ (he/she; colloquial, rough), あたし (I; female, childish),
ねーよ (not; colloquial, rough, male) 私 (I; formal)

拙者 (I; classical∗) でござる(be; classical), 僕 (I; male, childish),
∗ e.g., samurai, ninja ござる(be; classical), 俺 (I; male, colloquial),

ござるよ(be; classical) 私 (I; formal)
かしら (wonder; female) わね (QUESTION; female), かな (wonder; childish),

ないわね (not; female), でしょうか (wonder; fomal),
わ (SENTENCE-FINAL; female) かしらね (wonder; female)

サンタ (Santa Clause; shortened) サンタクロース (Santa Clause; -), お客 (customer; little polite),
トナカイ (reindeer; -), プロデューサー (producer; -),
クリスマス (Christmas; -) メイド (maid; shortened)

E
ng

lis
h shit fuckin, fuck, goddamn shitty, crappy, sucky

hi hello, bye, hiya, meet goodbye, goodnight, good-bye
guys stuff, guy, bunch boys, humans, girls
ninja shinobi, genin, konoha shinobi, pirate, soldier

Table 2: The top similar words for the style-sensitive and syntactic/semantic vectors learned with proposed
model, CBOW-SEP-CTX. Japanese words are translated into English by the authors. Legend: (translation;
impression).

the next section.

3.4 Analysis of Trained Word Vectors
Finally, to further understand what types of features
our CBOW-SEP-CTX model acquired, we show
some words3 with the four most similar words in
Table 2. Here, for English readers, we also report a
result for English4. The English result also shows
an example of the performance of our model on
another language. The left side of Table 2 (for
stylistic vector x) shows the results. We found that
the Japanese word “拙者 (I; classical)” is similar
to “ござる (be; classical)” or words containing it
(the second row of Table 2). The result looks rea-
sonable, because words such as “拙者 (I; classical)”
and “ござる (be; classical)” are typically used by
Japanese Samurai or Ninja. We can see that the vec-
tors captured the similarity of these words, which
are stylistically consistent across syntactic and se-
mantic varieties. Conversely, the right side of the
table (for the syntactic/semantic vector y) shows
that the word “拙者 (I; classical)” is similar to the
personal pronoun (e.g., “僕 (I; male, childish)”).
We further confirmed that 15 the top similar words
are also personal pronouns (even though they are
not shown due to space limitations). These results
indicate that the proposed CBOW-SEP-CTX model
jointly learns two different types of lexical similar-

3We arbitrarily selected style-sensitive words from our
stylistic similarity evaluation dataset.

4We trained another CBOW-SEP-CTX model on an En-
glish fan-fiction dataset that was collected from the Web
(https://www.fanfiction.net/).

ities, i.e., the stylistic and syntactic/semantic simi-
larities in the different parts of the vectors. How-
ever, our stylistic vector also captured the topic
similarity, such as “サンタ (Santa Clause)” and
“トナカイ (reindeer)” (the fourth row of Table 2).
Therefore, there is still room for improvement in
capturing the stylistic similarity.

4 Conclusions and Future Work

This paper presented the unsupervised learning of
style-sensitive word vectors, which extends CBOW
by distinguishing nearby contexts and wider con-
texts. We created a novel dataset for style, where
the stylistic similarity between word pairs was
scored by human. Our experiment demonstrated
that our method leads word vectors to distinguish
the stylistic aspect and other semantic or syntactic
aspects. In addition, we also found that our training
cannot help confusing some styles and topics. A
future direction will be to addressing the issue by
further introducing another context such as a docu-
ment or dialog-level context windows, where the
topics are often consistent but the styles are not.
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Abstract

Attention-based long short-term memory
(LSTM) networks have proven to be use-
ful in aspect-level sentiment classifica-
tion. However, due to the difficulties
in annotating aspect-level data, existing
public datasets for this task are all rela-
tively small, which largely limits the ef-
fectiveness of those neural models. In
this paper, we explore two approaches
that transfer knowledge from document-
level data, which is much less expensive
to obtain, to improve the performance of
aspect-level sentiment classification. We
demonstrate the effectiveness of our ap-
proaches on 4 public datasets from Se-
mEval 2014, 2015, and 2016, and we
show that attention-based LSTM benefits
from document-level knowledge in multi-
ple ways.

1 Introduction

Given a sentence and an opinion target (also called
an aspect term) occurring in the sentence, aspect-
level sentiment classification aims to determine
the sentiment polarity in the sentence towards the
opinion target. An opinion target or target for short
refers to a word or a phrase describing an aspect of
an entity. For example, in the sentence “This little
place has a cute interior decor but the prices are
quite expensive”, the targets are interior decor and
prices, and they are associated with positive and
negative sentiment respectively.

A sentence may contain multiple sentiment-
target pairs, thus one challenge is to separate
different opinion contexts for different targets.
For this purpose, state-of-the-art neural meth-
ods (Wang et al., 2016; Liu and Zhang, 2017; Chen
et al., 2017) adopt attention-based LSTM net-
works, where the LSTM aims to capture sequen-
tial patterns and the attention mechanism aims

to emphasize target-specific contexts for encod-
ing sentence representations. Typically, LSTMs
only show their potential when trained on large
datasets. However, aspect-level training data re-
quires the annotation of all opinion targets in a
sentence, which is costly to obtain in practice. As
such, existing public aspect-level datasets are all
relatively small. Insufficient training data limits
the effectiveness of neural models.

Despite the lack of aspect-level labeled data,
enormous document-level labeled data are eas-
ily accessible online such as Amazon reviews.
These reviews contain substantial linguistic pat-
terns and come with sentiment labels naturally.
In this paper, we hypothesize that aspect-level
sentiment classification can be improved by em-
ploying knowledge gained from document-level
sentiment classification. Specifically, we ex-
plore two transfer methods to incorporate this
sort of knowledge – pretraining and multi-task
learning. In our experiments, we find that
both methods are helpful and combining them
achieves significant improvements over attention-
based LSTM models trained only on aspect-level
data. We also illustrate by examples that ad-
ditional knowledge from document-level data is
beneficial in multiple ways. Our source code
can be obtained from https://github.com/
ruidan/Aspect-level-sentiment.

2 Related Work

Various neural models (Dong et al., 2014; Nguyen
and Shirai, 2015; Vo and Zhang, 2015; Tang et al.,
2016a,b; Wang et al., 2016; Zhang et al., 2016;
Liu and Zhang, 2017; Chen et al., 2017) have been
proposed for aspect-level sentiment classification.
The main idea behind these works is to develop
neural architectures that are able to learn continu-
ous features and capture the intricate relation be-
tween a target and context words. However, to
sufficiently train these models, substantial aspect-
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level annotated data is required, which is expen-
sive to obtain in practice.

We explore both pretraining and multi-task
learning for transferring knowledge from docu-
ment level to aspect level. Both methods are
widely studied in the literature. Pretraining is a
common technique used in computer vision where
low-level neural layers can be usefully transferred
to different tasks (Krizhevsky and Sutskever,
2012; Zeiler and Fergus, 2014). In natural lan-
guage processing (NLP), some efforts have been
initiated on pretraining LSTMs (Dai and Le, 2015;
Zoph et al., 2016; Ramachandran et al., 2017)
for sequence-to-sequence models in both super-
vised and unsupervised settings, where promising
results have been obtained. On the other hand,
multi-task learning simultaneously trains on sam-
ples in multiple tasks with a combined objec-
tive (Collobert and Weston, 2008; Luong et al.,
2015a; Liu et al., 2016), which has improved
model generalization ability in certain cases. In
the work of Mou et al. (2016), the authors investi-
gated the transferability of neural models in NLP
applications with extensive experiments, showing
that transferability largely depends on the seman-
tic relatedness of the source and target tasks. For
our problem, we hypothesize that aspect-level sen-
timent classification can be improved by employ-
ing knowledge gained from document-level senti-
ment classification, as these two tasks are highly
related semantically.

3 Models

3.1 Attention-based LSTM

We first describe a conventional implementation
of an attention-based LSTM model for this task.
We use it as a baseline model and extend it with
pretraining and multi-task learning approaches for
incorporating document-level knowledge.

The inputs are a sentence s = (w1, w2, ..., wn)
consisting of n words, and an opinion target x =
(x1, x2, ..., xm) occurring in the sentence consist-
ing of a subsequence of m words from s. Each
word is associated with a continuous word embed-
ding ew (Mikolov et al., 2013) from an embedding
matrix E ∈ RV×d, where V is the vocabulary size
and d is the embedding dimension.

LSTM is used to capture sequential informa-
tion, and outputs a sequence of hidden vectors:

[h1, ...,hn] = LSTM([ew1 , ..., ewn ], θlstm) (1)

An attention layer assigns a weight αi to each
word in the sentence. The final target-specific rep-
resentation of the sentence s is then given by:

z =
n∑

i=1

αihi (2)

And αi is computed as follows:

αi =
exp(βi)∑n
j=1 exp(βj)

(3)

βi = fscore(hi, t) = tanh(hTi Wat) (4)

t =
1

m

m∑

i=1

exi (5)

where t is the target representation computed as
the averaged word embedding of the target. fscore
is a content-based function that captures the se-
mantic association between a word and the target,
for which we adopt the formulation used in (Lu-
ong et al., 2015b; He et al., 2017) with parameter
matrix Wa ∈ Rd×d.

The sentence representation z is fed into an out-
put layer to predict the probability distribution p
over sentiment labels on the target:

p = softmax(Woz+ bo) (6)

We refer to this baseline model as LSTM+ATT. It
is trained via cross entropy minimization:

J = −
∑

i∈D
logpi(ci) (7)

whereD denotes the overall training corpus, ci de-
notes the true label for sample i, and pi(ci) de-
notes the probability of the true label.

3.2 Transfer Approaches
LSTM+ATT is used as our aspect-level
model with parameter set θaspect =
{E, θlstm,Wa,Wo,bo}. We also build a
standard LSTM-based classifier based on
document-level training examples. This network
is the same as the LSTM+ATT apart from the
lack of the attention layer. The training ob-
jective is also cross entropy minimization as
shown in equation (7) and the parameter set is
θdoc = {E′, θ′lstm,W′

o,b
′
o}.

Pretraining (PRET): In this setting, we first train
on document-level examples. The last hidden vec-
tor from the LSTM outputs is used as the doc-
ument representation. We initialize the relevant
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Dataset Pos Neg Neu

D1 Restaurant14-Train 2164 807 637
Restaurant14-Test 728 196 196

D2 Laptop14-Train 994 870 464
Laptop14-Test 341 128 169

D3 Restaurant15-Train 1178 382 50
Restaurant15-Test 439 328 35

D4 Restaurant16-Train 1620 709 88
Restaurant16-Test 597 190 38

Table 1: Dataset description.

parameters E, θlstm,Wo,bo of LSTM+ATT with
the pretrained weights, and train it on aspect-level
examples to fine tune those weights and learn Wa

which is randomly initialized.

Multi-task Learning (MULT): This approach si-
multaneously trains two tasks – document-level
and aspect-level classification. In this setting, the
embedding layer (E) and the LSTM layer (θlstm)
are shared by both tasks, and a document is rep-
resented as the mean vector over LSTM outputs.
The other parameters are task-specific. The over-
all loss function is then given by:

L = J + λU (8)

where U is the loss function of document-level
classification. λ ∈ (0, 1) is a hyperparameter that
controls the weight of U .

Combined (PRET+MULT): In this setting, we
first perform PRET on document-level exam-
ples. We use the pretrained weights for parame-
ter initialization for both aspect-level model and
document-level model, and then perform MULT
as discussed above.

4 Experiments

4.1 Datasets and Experimental Settings
We run experiments on four benchmark aspect-
level datasets, taken from SemEval 2014 (Pontiki
et al., 2014), SemEval 2015 (Pontiki et al., 2015),
and SemEval 2016 (Pontiki et al., 2016). Fol-
lowing previous work (Tang et al., 2016b; Wang
et al., 2016), we remove samples with conflicting
polarities in all datasets1. Statistics of the resulting
datasets are presented in Table 1.

We derived two document-level datasets from
Yelp2014 (Tang et al., 2015) and the Amazon
Electronics dataset (McAuley et al., 2015) respec-
tively. The original reviews were rated on a 5-
point scale. We consider 3-class classification and

1We remove samples in the 2015/6 datasets if an opinion
target is associated with different sentiment polarities.

thus label reviews with rating< 3,> 3, and = 3 as
negative, positive, and neutral respectively. Each
sampled dataset contains 30k instances with ex-
actly balanced class labels. We pair up an aspect-
level dataset and a document-level dataset when
they are from a similar domain – the Yelp dataset
is used by D1, D3, and D4 for PRET and MULT,
and the Electronics dataset is only used by D2.

In all experiments, 300-dimension GloVe vec-
tors (Pennington et al., 2014) are used to initialize
E and E′ when pretraining is not conducted for
weight initialization. These vectors are also used
for initializing E′ in the pretraining phase. Val-
ues for hyperparameters are obtained from experi-
ments on development sets. We randomly sample
20% of the original training data from the aspect-
level dataset as the development set and only use
the remaining 80% for training. For all experi-
ments, the dimension of LSTM hidden vectors is
set to 300, λ is set to 0.1, and we use dropout with
probability 0.5 on sentence/document representa-
tions before the output layer. We use RMSProp
as the optimizer with the decay rate set to 0.9 and
the base learning rate set to 0.001. The mini-batch
size is set to 32.

4.2 Model Comparison

Table 2 shows the results of LSTM, LSTM+ATT,
PRET, MULT, PRET+MULT, and four representa-
tive prior works (Tang et al., 2016a,b; Wang et al.,
2016; Chen et al., 2017). Significance tests are
conducted for testing the robustness of methods
under random parameter initialization. Both accu-
racy and macro-F1 are used for evaluation as label
distribution is unbalanced. The reported numbers
are obtained as the average value over 5 runs with
random initialization for each method.

We observe that PRET is very helpful, and con-
sistently gives a 1–3% increase in accuracy over
LSTM+ATT across all datasets. The improve-
ments in macro-F1 scores are even more, espe-
cially on D3 and D4 where the labels are ex-
tremely unbalanced. MULT gives similar perfor-
mance as LSTM+ATT on D1 and D2, but im-
provements can be clearly observed for D3 and
D4. The combination (PRET+MULT) overall
yields better results.

There are two main reasons why the improve-
ments of macro-F1 scores are more significant on
D3 and D4 than on D1: (1) D1 has much more
neutral examples in the training set. A classifier
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Methods D1 D2 D3 D4
Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

Tang et al. (2016a) 75.37 64.51 68.25 65.96 76.39 58.70 82.16 54.21
Wang et al. (2016) 78.60 67.02 68.88 63.93 78.48 62.84 83.77 61.71
Tang et al. (2016b) 76.87 66.40 68.91 62.79 77.89 59.52 83.04 57.91
Chen et al. (2017) 78.48 68.54 72.08 68.43 79.98 60.57 83.88 62.14
LSTM 75.23 64.21 66.79 64.02 75.28 54.10 81.95 58.11
LSTM+ATT 76.83 66.48 68.07 64.82 77.38 60.52 82.73 59.12
Ours: PRET 78.28 68.55 71.32 68.53 80.67 68.31 84.87 70.73
Ours: MULT 77.41 66.68 68.65 64.57 81.05 65.69 83.27 64.56
Ours: PRET+MULT 79.11 69.73∗ 71.15 67.46 81.30∗ 68.74∗ 85.58∗ 69.76∗

Table 2: Average accuracies and Macro-F1 scores over 5 runs with random initialization. The best results
are in bold. ∗ indicates that PRET+MULT is significantly better than Tang et al. (2016a), Wang et al.
(2016), Tang et al. (2016b), Chen et al. (2017), LSTM, and LSTM+ATT with p < 0.05 according to
one-tailed unpaired t-test.

Settings D1 D2 D3 D4
Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

LSTM only 78.09 67.85 71.04 66.80 78.95 65.30 83.85 67.11
Embeddings only 77.12 67.19 69.12 65.06 80.13 67.04 84.12 70.11
Output layer only 76.88 66.81 69.63 66.07 78.30 64.49 82.55 62.83
Without LSTM 77.45 67.25 69.82 66.63 80.27 68.02 84.80 70.27
Without embeddings 77.97 67.96 70.59 67.16 79.08 65.56 83.94 68.79
Without output layer 78.36 68.06 71.10 67.87 80.82 67.68 84.71 70.48

Table 3: PRET with different transferred layers. Averaged results over 5 runs are reported.

without any external knowledge might still be able
to learn some neutral-related features on D1 but it
is very hard to learn from D3 and D4. (2) The
numbers of neutral examples in the test sets of
D3 and D4 are very small. Thus, the precision
and recall on neutral class will be largely affected
by even a small prediction difference (e.g., with 5
more neutral examples correctly identified, recall
is increased by more than 10% on both datasets).
As a result, the macro-F1 scores on D3 and D4 are
affected more.

4.3 Ablation Tests

Table 2 indicates that a large percentage of the per-
formance gain comes from PRET. To better un-
derstand the transfer effects of different layers –
embedding layer (E), LSTM layer (θlstm), and
output layer (Wo,bo) – we conduct ablation tests
on PRET with different layers transfered from the
document-level model to the aspect-level model.
Results are presented in Table 3. “LSTM only”
denotes the setting where only the LSTM layer is
transferred, and “Without LSTM” denotes the set-
ting where only the embedding and output layers
are transferred (excluding the LSTM layer). The
key observations are: (1) Transfer is helpful in
all settings. Improvements over LSTM+ATT are
observed even when only one layer is transferred.
(2) Overall, transfers of the LSTM and embedding

layer are more useful than the output layer. This
is what we expect, since the output layer is nor-
mally more task-specific. (3) Transfer of the em-
bedding layer is more helpful on D3 and D4. One
possible explanation is that the label distribution is
extremely unbalanced on these two datasets. Sen-
timent information is not adequately captured by
GloVe word embeddings. Therefore, with a small
number of training examples in the negative and
neutral classes, the embeddings trained by aspect-
level classification still do not effectively capture
the true semantics of the relevant opinion words.
Transfer of the embedding layer can greatly help
in this case.

4.4 Analysis

To show that aspect-level classification indeed
benefits from document-level knowledge, we
conduct experiments to vary the percentage of
document-level training examples from 0.0 to 1.0
for PRET+MULT. The changes of accuracies and
macro-F1 scores on the four datasets are shown in
Figure 1. The improvements on accuracies with
increasing number of document examples are sta-
ble across all datasets. For macro-F1 scores, the
improvements on D1 and D2 are stable. We ob-
serve sharp increases in the macro-F1 scores of
D3 and D4 when changing the percentage from
0 to 0.4. This may be related to their extremely
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Figure 1: Results of PRET+MULT vs. percentage
of document-level training data.

unbalanced label distribution. In such cases, with
the knowledge gained from a small number of bal-
anced document-level examples, aspect-level pre-
dictions on neutral examples can be significantly
improved.

To better understand in which conditions the
proposed method is helpful, we analyze a sub-
set of test examples that are correctly classi-
fied by PRET+MULT but are misclassified by
LSTM+ATT. We find that the benefits brought by
document-level knowledge are typically shown in
four ways.

First of all, to our surprise, LSTM+ATT made
obvious mistakes on some instances with common
opinion words. Below are two examples where the
target is enclosed in [] with its true sentiment indi-
cated in the subscript:

1. “I was highly disappointed in the [food]neg.”
2. “This particular location certainly uses sub-

standard [meats]neg.”
In the above examples, LSTM+ATT does attend

to the right opinion words, but makes the wrong
predictions. One possible reason is that the word
embeddings from GloVe without PRET do not
effectively capture sentiment information, while
the aspect-level training samples are not sufficient
to capture that for certain words. PRET+MULT
eliminates this kind of errors.

Another finding is that our method helps to
better capture domain-specific opinion words due
to additional knowledge from documents that are

from a similar domain:
1. “The smaller [size]pos was a bonus because

of space restrictions.”
2. “The [price]pos is 200 dollars down.”
LSTM+ATT attends on smaller correctly for the

first example but makes the wrong prediction as
smaller can be negative in many cases. It does not
even capture down in the second example.

Thirdly, we find that LSTM+ATT made a num-
ber of errors on sentences with negation words:

1. I have experienced no problems, [works]pos
as anticipated.

2. [Service]neg not the friendliest to our party!
LSTMs typically only show their potential on

large datasets. Without sufficient training exam-
ples, it may not be able to effectively capture
various sequential patterns. Pretraining the net-
work on larger document-level corpus addresses
this problem.

Lastly, PRET+MULT makes fewer errors on
recognizing neutral instances. This can also be ob-
served from the macro-F1 scores in Table 2. The
lack of training examples makes the prediction
of neutral instances very difficult for all previous
methods. Knowledge from document-level exam-
ples with balanced labels compensates for this dis-
advantage.

5 Conclusion

The effectiveness of existing aspect-level neural
models is limited due to the difficulties in obtain-
ing training data in practice. Our work is the first
attempt to incorporate knowledge from document-
level corpus for training aspect-level sentiment
classifiers. We have demonstrated the effective-
ness of our proposed approaches and analyzed the
major benefits brought by the knowledge transfer.
The proposed approaches can be potentially in-
tegrated with other aspect-level neural models to
further boost their performance.
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Abstract

Humor is one of the most attractive parts
in human communication. However, au-
tomatically recognizing humor in text is
challenging due to the complex character-
istics of humor. This paper proposes to
model sentiment association between dis-
course units to indicate how the punch-
line breaks the expectation of the setup.
We found that discourse relation, senti-
ment conflict and sentiment transition are
effective indicators for humor recognition.
On the perspective of using sentiment re-
lated features, sentiment association in
discourse is more useful than counting the
number of emotional words.

1 Introduction

Humor can be recognized as a cognitive process,
which provokes laughter and provides amusement.
It not only promotes the success of human inter-
action, but also has a positive impact on human
mental and physical health (Martineau, 1972; An-
derson and Arnoult, 1989; Lefcourt and Martin,
2012). To some extent, humor reflects a kind of
intelligence.

However, from both theoretical and computa-
tional perspectives, it is hard for computers to
build a mechanism for understanding humor like
human beings. First, humor is generally loosely
defined. Thus it is impossible to construct rules
to identify humor. Second, humor is context and
background dependent that it expects to break the
reader’s common sense within a specific situation.
Finally, the study of humor involves multiple dis-
ciplines like psychology, linguistics and computer
science. Recently, humor recognition has drawn
more attention (Mihalcea and Strapparava, 2005;

∗corresponding author

[My weight is perfect for my height,]EDU1 [but your height is late for weight.]EDU2

Discourse relation: contrast

Sentiment polarity: positive Sentiment polarity: negative

Sentiment conflict: True

Sentiment transition:
positive-contrast-negative

Figure 1: An example of RST style discourse pars-
ing, sentiment polarity analysis and the features
we consider in this paper.

Friedland and Allan, 2008; Zhang and Liu, 2014;
Yang et al., 2015). The main trend is to design
interpretable and computable features that can be
well explained by humor theories and easy to be
implemented in practice.

In this paper, we propose a novel idea to exploit
sentiment analysis for humor recognition. Con-
sidering superiority theory (Gruner, 1997) and re-
lief theory (Rutter, 1997), sentiment information
should be common in humorous texts to express
comparisons between good and bad or the emo-
tion changes.

Existing work mainly considers statistical senti-
ment information such as the number of emotional
words. We argue that modeling sentiment asso-
ciation at discourse unit level should be a better
option for exploiting sentiment information. Such
sentiment association in some extent can be used
as sentiment patterns to describe the expectedness
or unexpectedness, which is the main idea of in-
congruity theory (Suls, 1972).

To incorporate discourse information, we ex-
ploit RST(Rhetorical Structure Theory) style dis-
course parsing (Mann and Thompson, 1988) to
get discourse units and relations. Combining with
sentiment analysis, we derive discourse relation,
sentiment conflict and sentiment transition fea-
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tures for humor recognition as shown in Figure
1. The experimental results show that our method
can improve the performance of humor recog-
nition on the dataset provided in (Mihalcea and
Strapparava, 2005) and exploiting sentiment infor-
mation at discourse unit level is a better option
compared with simply using the number of emo-
tional words as features.

2 Humor Recognition

Humor recognition is typically viewed as a clas-
sification problem (Mihalcea and Strapparava,
2005). The main goal is to identify whether a
given text contains humorous expressions. Humor
is a cognitive process. Thus the interpretability of
models is important. Most existing work focuses
on designing features motivated by humor theories
from different perspectives.

2.1 Humor Theories

The highly recognized theories include superiority
theory, relief theory and incongruity theory.

Superiority theory expresses that we laugh be-
cause some types of situations make us feel supe-
rior to other people (Gruner, 1997). For example,
in some jokes, people appear stupid because they
have misunderstood an obvious situation or made
a stupid mistake.

Relief theory says that humor is the release
of nervous energy. The nervous energy relieved
through laughter is the energy of emotions that
have been found to be inappropriate (Spencer
et al., 1860; Rutter, 1997).

Incongruity theory says that humor is the per-
ception of something incongruous, something that
violates our common sense and expectations (Suls,
1972) . It is now the dominant theory of humor in
philosophy and psychology.

2.2 Baseline Features

Motivated by the humor theories, many re-
searchers design features to describe the charac-
teristics of humor. We mainly follow the recent
work of Yang et al. (2015) to build baseline fea-
tures. The features are summarized as follows.

Incongruity Structure. Inconsistency is con-
sidered as an important factor in causing laugh-
ter. Following the work of Yang et al. (2015), we
describe inconsistency through the following two
features:

• The largest semantic distance between word
pairs in a sentence

• The smallest semantic distance between word
pairs in a sentence

The semantic distance is measured by comput-
ing cosine similarity between word embeddings.

Ambiguity. Ambiguity of semantic is a crucial
part of humor (Miller and Gurevych, 2015), be-
cause ambiguity often causes incongruity, which
comes from different understandings of the inten-
tion expressed by the author (Bekinschtein et al.,
2011). The computation of ambiguity features
is based on WordNet (Fellbaum, 2012). We use
WordNet to obtain all senses of each word w in an
instance s and measure the possibility of ambigu-
ity by computing log

∏
w∈s num of sense(w),

which is used as the value of an ambiguity feature.
We also compute the sense farmost and sense clos-
est features as described in (Yang et al., 2015).

Interpersonal Effect. In addition to the com-
monly used linguistic cues, interpersonal effect
may serve an important role in humor (Zhang
and Liu, 2014). It is believed that texts containing
emotional words and subjective words are more
likely to express humor. Therefore, we use the fol-
lowing features based on the resources in (Wilson
et al., 2005).

• The number of words with positive polarity

• The number of words with negative polarity

• The number of subjective words

Phonetic Style. Phonetics can also create
comic effects. Following (Mihalcea and Strappa-
rava, 2005), we build a feature set which includes
alliteration chain and rhyme chain by using CMU
speech dictionary1. An alliteration chain is a set
of words that have the same first phoneme. Simi-
larly, a rhyme chain includes words with the same
last syllable. The features are:

• The number of alliteration chains

• The number of rhyme chains

• The length of the longest alliteration chain

• The length of the longest rhyme chain

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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KNN. The KNN feature set contains the labels
of the top 5 instances in the training data, which
are closest to the target instance.

The above five feature sets are denoted as Hu-
mor Centric Features(HCF).

Word2Vec Features. Averaged word embed-
dings are used as sentence representations for clas-
sification.

3 Modeling Sentiment Association in
Discourse

As described in humor theories and baseline fea-
tures, emotional words are viewed as important in-
dicators of humorous expressions, which trigger
the subjective opinions and sentiment. Previous
work only considers the number of words with dif-
ferent sentiment polarity, but ignores the sentiment
association in discourse.

Consider the example in Figure 1 again. The
first clause expresses a positive sentiment, while
the second clause reveals a negative sentiment.
The different sentiment polarity forms a kind of
contrast or comparison.

Such sentiment association can be explained
with main humor theories. For example, superi-
ority theory says humor is the result of suddenly
feeling superior when compared with others who
are infirm or unfortunate. There are usually two
objects, one of the objects is a laugher who feel
better than the other, a weak person. The senti-
ment association between the perfect weight and
the late height highlights such a comparison.

There are also other cases that may have senti-
ment association between negatively nervous and
positively relief or from expected sentiment to un-
expected sentiment, which can be explained with
relief theory (Rutter, 1997) and incongruity the-
ory (Suls, 1972; Ritchie, 1999).

Therefore, sentiment association should be a
useful representation to reveal the nature of hu-
mor. In this paper, we utilize a discourse parser to
get comparable text units and measure sentiment
association among them.

3.1 Discourse Parsing

A well-written text is organized by text units
which are connected to express the author’s inten-
tions through certain discourse relations.

We use the discourse parser implemented by
Feng and Hirst (2012) to automatically recog-
nize RST style discourse relations. RST struc-

ture builds a hierarchical structure over the whole
text (Mann and Thompson, 1988). A coher-
ent text is represented as a discourse tree, whose
leaf nodes are individual text units called elemen-
tary discourse unites (EDUs).These independent
EDUs can be connected through their relations.
The parser can automatically separate a sentence
into EDUs and gives discourse relations between
EDUs. One of its advantage over others is that it
can identify implicit relations, when no discourse
marker is given.2 There are about 77% of sen-
tences in our dataset that don’t have explicit con-
nective.

Our goals of using discourse parsing include
two aspects: First, we want to investigate whether
humorous texts prefer any discourse relations to
realize or enhance the effect. Second, EDUs can
be used as comparable text units and enable us to
measure sentiment association among them. As a
result, we derive three types of features.

3.2 Discourse Relation Features

For each instance, we recognize EDUs and the re-
lations connecting them. Then, we design boolean
features to indicate the occurrence of discourse re-
lations. The main idea is that some discourse rela-
tions such as contrast usually indicate a topic tran-
sition, which may be used to achieve the effect of
unexpectedness.

3.3 Sentiment Conflict Feature

The sentiment conflict we proposed is a specific
and descriptive feature to model a kind of incon-
gruity. After dividing an instance into EDUs, we
check the sentiment polarity of each EDU using
the TextBlob toolkit3. The sentiment polarity is
either positive, negative or neutral. The sentiment
conflict feature is a boolean feature. If there are
at least two EDUs and their polarity are opposite
(positive vs. negative), the feature is set as True.

3.4 Sentiment Transition Features

Besides the heuristically designed sentiment con-
flict feature, we integrate sentiment polarity and
discourse relations. We thought that the expected
sentiment might be dependent on the discourse re-
lation. For example, if two clauses have a se-
quence relation, their sentiment polarity may be

2PDTB-style (Prasad et al., 2008) discourse parsers can
be used here as well. But we didn’t find proper toolkits that
can deal with implicit relations well.

3http://textblob.readthedocs.io/en/dev
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expected to be the same, while if their relation is
contrast, their polarity might be different.

For two EDUs with a discourse relation
R, we get their sentiment polarity respec-
tively, namely E1 and E2, where E∗ ∈
{positive, negative, neutral}. We design a fea-
tureE1◦R◦E2, where ◦ indicates a concatenation
operation and E1 and E2 are ordered according to
the order in which they appear in the instance. For
sentence with more than two EDUs, we do this re-
cursively and set a True value for every extracted
features.

4 Experiments

4.1 Research Questions

We are interested in the following research ques-
tions:

• Whether the proposed features are useful for
humor recognition?

• Whether the way we manipulate sentiment is
more effective compared with previous ap-
proaches?

4.2 Settings

We conducted experiments on the dataset used by
(Mihalcea and Strapparava, 2005). The dataset
contains 10,200 humorous short texts and 10000
non-humorous short texts coming from Reuters
titles and Proverbs and British National Cor-
pus(RPBN).

We used the pre-trained word embeddings that
are learned using the Word2Vec toolkit (Mikolov
et al., 2013) on Google News dataset.4 We used
the implementation of Random Forest in Scikit-
learn (Pedregosa et al., 2011) as the classifier. We
ran 10-fold cross-validation on the dataset and the
average performance would be reported.

4.3 Baselines

• HCF. The method includes the incongruity
structure, ambiguity, interpersonal effect,
phonetic style features and KNN features.

• HCF w/o KNN. Since KNN features used
in HCF are content dependent. We remove
KNN features from HCF to have a content
free baseline.

4https://code.google.com/archive/p/
word2vec/

Acc. P R F1

Base1: HCF 0.787 0.779 0.815 0.797
KNN 0.756 0.733 0.821 0.775
Base2: HCF w/o KNN 0.71 0.706 0.745 0.725
Base3: Word2Vec 0.77 0.775 0.774 0.775
Base4: Base1+Base3 0.808 0.81 0.816 0.813
Base1+SA 0.799 0.789 0.828 0.808
Base2+SA 0.75 0.747 0.774 0.76
Base3+SA 0.783 0.788 0.787 0.788
Base4+SA 0.814 0.812 0.828 0.82

Table 1: Humor recognition results. Base1 to
Base4 correspond to four baseline settings and SA
represents sentiment association features.

• Word2Vec. As described in Section 2.2, this
method exploits semantic representations of
sentences. It is also content dependent but
has better generalization capability.

• HCF+Word2Vec. This method combines
HCF and Word2Vec and is the strongest set-
ting as reported in (Yang et al., 2015).

4.4 System Comparisons

Table 1 shows the results, reported with accu-
racy(Acc.), precision (P), recall (R) and F1 score.
We add sentiment association features (SA) to four
baseline settings. In all cases, the performance is
improved.

Base2 only uses features that are motivated by
humor theories without content features. After
adding SA features, Base2 achieves a significant
improvement of 4% in accuracy and 3.5% in F1

score. Since SA features have good interpretabil-
ity, they complement previous features very well
both in theory and practice.

Base1, Base3 and Base4 all consider content
features and their performance is significantly bet-
ter than Base2. However, since the negative in-
stances in the dataset include news titles, it is very
likely that the model matches specific topics of the
data, rather than capturing the nature of humor.
We can see that the KNN method that is based
on content similarity only can achieve high scores,
which is unreasonable. Even so, SA features still
benefit the three baseline settings, although the im-
provements become small. The results indicate
that sentiment association features are useful for
humor recognition, especially when domain spe-
cific information is not considered.
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Acc. P R F1

Base2 0.71 0.706 0.745 0.725
Base2-EWC 0.709 0.705 0.742 0.723
Base2-EWC+SA 0.748 0.744 0.773 0.758
Base4 0.808 0.81 0.816 0.813
Base4-EWC 0.808 0.808 0.818 0.813
Base4-EWC+SA 0.812 0.812 0.823 0.817

Table 2: Comparing the ways of utilizing senti-
ment information. Base2 doesn’t consider content;
Base4 utilizes full information; SA: sentiment as-
sociation, EWC: emotional word count.

4.5 Comparing with Emotional Word Count
Previous work also considers sentiment informa-
tion but in a different way. Among interpersonal
effect features, the numbers of emotional words
are used as features, noted as emotional word
count, EWC for short. We want to compare the
sentiment association features with EWC.

We compare them in two conditions. First, we
replace EWC features with SA features in Base2,
which doesn’t use content information. Second,
we replace EWC features with SA features in
Base4, which considers all available information.
As shown inTable 2, in both conditions, SA fea-
tures are more effective, indicating the usefulness
of analyzing sentiment polarity at EDU level.

4.6 Discussion of Sentiment Association
Table 3 shows the results of adding individual sen-
timent association features on the basis of Base2
and Base4. All three features are shown to be use-
ful for humor recognition. Sentiment transition is
most useful. Again, when removing content fea-
tures (Base2), the improvements are large. In con-
trast, if considering content features (Base4), the
improvements become small. This is because the
content features are already very strong for distin-
guishing two classes.

Discourse Relation. By analyzing the data, we
found that 79% of the humorous instances contain
more than one EDU, while 38% of non-humorous
messages contain more than one EDU. This means
that humorous texts may have more complex sen-
tence structures. The most frequent discourse re-
lations in humorous data include condition, back-
ground and Contrast. In contrast, non-humorous
texts contain same-unit and attribution more. The
most discriminative relation is condition, which
accounts for 4.5% in humorous instances and 2%
in non-humorous instances. This may be ex-
plained with the incongruity theory, where the

Acc. P R F1

Base2 0.71 0.706 0.745 0.725
Base2+DR 0.741 0.737 0.768 0.752
Base2+SC 0.738 0.734 0.764 0.749
Base2+ST 0.748 0.743 0.775 0.759
Base4 0.808 0.81 0.816 0.813
Base4+DR 0.813 0.813 824 0.818
Base4+SC 0.811 0.812 0.82 0.816
Base4+ST 0.813 0.814 0.823 0.818

Table 3: Comparing sentiment association fea-
tures. Base2 doesn’t consider content; Base4 uti-
lizes full information; DR: discourse relation, SC:
sentiment conflict, ST: sentiment transition.

setup of the text prepares an expectation for the
readers, while the punchline breaks the expecta-
tion. Condition relation is often used to connect
the setup and the punchline.

Sentiment polarity in Humor. According to
the automatic sentiment analysis tool we use, 57%
of humorous instances have non-neutral polarity,
while 47% of non-humorous instances have non-
neutral polarity. This means that humor truly has
a positive correlation with sentiment polarities and
sentiment analysis should be a useful complement
to semantic analysis for measuring incongruity. In
addition, as we have shown, measuring sentiment
at discourse level should be more important. Com-
bining discourse relations and sentiment polarity
performs best.

5 Conclusion

In this paper, we have studied humor recogni-
tion from a novel perspective: modeling senti-
ment association in discourse. We integrate dis-
course parsing and sentiment analysis to get senti-
ment association patterns and measure incongruity
in a new angle. The proposed idea can be ex-
plained with major humor theories. Experimental
results also demonstrate the effectiveness of pro-
posed features. This indicates that sentiment asso-
ciation could be a better representation compared
with simply analyzing the distribution of senti-
ment polarity for humor recognition.

Acknowledgements

The research work is funded by the Na-
tional Natural Science Foundation of China
(No.61402304), Beijing Municipal Education
Commission (KM201610028015, Connotation
Development) and Beijing Advanced Innovation
Center for Imaging Technology.

590



References
Craig A. Anderson and Lynn H. Arnoult. 1989. An

examination of perceived control, humor, irrational
beliefs, and positive stress as moderators of the rela-
tion between negative stress and health. Basic and
Applied Social Psychology 10(2):101–117.

T. A. Bekinschtein, M. H. Davis, J. M. Rodd, and A. M.
Owen. 2011. Why clowns taste funny: the relation-
ship between humor and semantic ambiguity. Jour-
nal of Neuroscience the Official Journal of the Soci-
ety for Neuroscience 31(26):9665.

Christiane Fellbaum. 2012. WordNet. Blackwell Pub-
lishing Ltd.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
discourse parsing with rich linguistic features. In
Meeting of the Association for Computational Lin-
guistics: Long Papers. pages 60–68.

Lisa Friedland and James Allan. 2008. Joke retrieval:
recognizing the same joke told differently. In ACM
Conference on Information and Knowledge Man-
agement. pages 883–892.

Charles R Gruner. 1997. The game of humor: A com-
prehensive theory of why we laugh.. Transaction
PUblishers.

Herbert M. Lefcourt and Rod A. Martin. 2012. Humor
and life stress. Springer Berlin .

W Mann and Sandra Thompson. 1988. Rhetorical
structure theory : Toward a functional theory of text
organization. Text 8(3):243–281.

William H. Martineau. 1972. A Model of the Social
Functions of Humor. The Psychology of Humor.

Rada Mihalcea and Carlo Strapparava. 2005. Making
computers laugh: investigations in automatic humor
recognition. In Conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing. pages 531–538.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of english puns. Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing 1:719–
729.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K. Joshi, and Bon-
nie L. Webber. 2008. The penn discourse treebank
2.0. In International Conference on Language Re-
sources and Evaluation, Lrec 2008, 26 May - 1 June
2008, Marrakech, Morocco. pages 2961–2968.

Graeme Ritchie. 1999. Developing the incongruity-
resolution theory. Proceedings of the Aisb Sympo-
sium on Creative Language pages 78–85.

Jason. Rutter. 1997. Stand-up as interaction : perfor-
mance and audience in comedy venues. University
of Salford 33(4):1 – 2.

Herbert Spencer et al. 1860. The physiology of laugh-
ter. Macmillans Magazine pages 395–402.

Jerry M. Suls. 1972. A two-stage model for
the appreciation of jokes and cartoons: An
information-processing analysis. Psychology of Hu-
mor 331(6019):81–100.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing. Associ-
ation for Computational Linguistics, pages 347–354.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy.
2015. Humor recognition and humor anchor extrac-
tion. In Conference on Empirical Methods in Natu-
ral Language Processing. pages 2367–2376.

Renxian Zhang and Naishi Liu. 2014. Recognizing hu-
mor on twitter. In ACM International Conference
on Conference on Information and Knowledge Man-
agement. pages 889–898.

591



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 592–598
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Double Embeddings and CNN-based Sequence Labeling
for Aspect Extraction

Hu Xu1, Bing Liu1, Lei Shu1 and Philip S. Yu1,2

1Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
2Institute for Data Science, Tsinghua University, Beijing, China

{hxu48, liub, lshu3, psyu}@uic.edu

Abstract

One key task of fine-grained sentiment
analysis of product reviews is to extract
product aspects or features that users have
expressed opinions on. This paper fo-
cuses on supervised aspect extraction us-
ing deep learning. Unlike other highly so-
phisticated supervised deep learning mod-
els, this paper proposes a novel and yet
simple CNN model 1 employing two types
of pre-trained embeddings for aspect ex-
traction: general-purpose embeddings and
domain-specific embeddings. Without us-
ing any additional supervision, this model
achieves surprisingly good results, outper-
forming state-of-the-art sophisticated ex-
isting methods. To our knowledge, this
paper is the first to report such double em-
beddings based CNN model for aspect ex-
traction and achieve very good results.

1 Introduction

Aspect extraction is an important task in sentiment
analysis (Hu and Liu, 2004) and has many applica-
tions (Liu, 2012). It aims to extract opinion targets
(or aspects) from opinion text. In product reviews,
aspects are product attributes or features. For ex-
ample, from “Its speed is incredible” in a laptop
review, it aims to extract “speed”.

Aspect extraction has been performed using su-
pervised (Jakob and Gurevych, 2010; Chernyshe-
vich, 2014; Shu et al., 2017) and unsupervised ap-
proaches (Hu and Liu, 2004; Zhuang et al., 2006;
Mei et al., 2007; Qiu et al., 2011; Yin et al., 2016;
He et al., 2017). Recently, supervised deep learn-
ing models achieved state-of-the-art performances
(Li and Lam, 2017). Many of these models use

1The code of this paper can be found at https://www.
cs.uic.edu/˜hxu/.

handcrafted features, lexicons, and complicated
neural network architectures (Poria et al., 2016;
Wang et al., 2016, 2017; Li and Lam, 2017). Al-
though these approaches can achieve better per-
formances than their prior works, there are two
other considerations that are also important. (1)
Automated feature (representation) learning is al-
ways preferred. How to achieve competitive per-
formances without manually crafting features is an
important question. (2) According to Occam’s ra-
zor principle (Blumer et al., 1987), a simple model
is always preferred over a complex model. This is
especially important when the model is deployed
in a real-life application (e.g., chatbot), where a
complex model will slow down the speed of infer-
ence. Thus, to achieve competitive performance
whereas keeping the model as simple as possible
is important. This paper proposes such a model.

To address the first consideration, we propose a
double embeddings mechanism that is shown cru-
cial for aspect extraction. The embedding layer is
the very first layer, where all the information about
each word is encoded. The quality of the em-
beddings determines how easily later layers (e.g.,
LSTM, CNN or attention) can decode useful infor-
mation. Existing deep learning models for aspect
extraction use either a pre-trained general-purpose
embedding, e.g., GloVe (Pennington et al., 2014),
or a general review embedding (Poria et al., 2016).
However, aspect extraction is a complex task that
also requires fine-grained domain embeddings.
For example, in the previous example, detecting
“speed” may require embeddings of both “Its” and
“speed”. However, the criteria for good embed-
dings for “Its” and “speed” can be totally differ-
ent. “Its” is a general word and the general em-
bedding (trained from a large corpus) is likely to
have a better representation for “Its”. But, “speed”
has a very fine-grained meaning (e.g., how many
instructions per second) in the laptop domain,
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whereas “speed” in general embeddings or general
review embeddings may mean how many miles
per second. So using in-domain embeddings is im-
portant even when the in-domain embedding cor-
pus is not large. Thus, we leverage both general
embeddings and domain embeddings and let the
rest of the network to decide which embeddings
have more useful information.

To address the second consideration, we use a
pure Convolutional Neural Network (CNN) (Le-
Cun et al., 1995) model for sequence labeling. Al-
though most existing models use LSTM (Hochre-
iter and Schmidhuber, 1997) as the core building
block to model sequences (Liu et al., 2015; Li and
Lam, 2017), we noticed that CNN is also success-
ful in many NLP tasks (Kim, 2014; Zhang et al.,
2015; Gehring et al., 2017). One major draw-
back of LSTM is that LSTM cells are sequentially
dependent. The forward pass and backpropaga-
tion must serially go through the whole sequence,
which slows down the training/testing process 2.
One challenge of applying CNN on sequence la-
beling is that convolution and max-pooling opera-
tions are usually used for summarizing sequential
inputs and the outputs are not well-aligned with
the inputs. We discuss the solutions in Section 3.

We call the proposed model Dual Embeddings
CNN (DE-CNN). To the best of our knowledge,
this is the first paper that reports a double embed-
ding mechanism and a pure CNN-based sequence
labeling model for aspect extraction.

2 Related Work

Sentiment analysis has been studied at document,
sentence and aspect levels (Liu, 2012; Pang and
Lee, 2008; Cambria and Hussain, 2012). This
work focuses on the aspect level (Hu and Liu,
2004). Aspect extraction is one of its key tasks,
and has been performed using both unsupervised
and supervised approaches. The unsupervised ap-
proach includes methods such as frequent pattern
mining (Hu and Liu, 2004; Popescu and Etzioni,
2005), syntactic rules-based extraction (Zhuang
et al., 2006; Wang and Wang, 2008; Qiu et al.,
2011), topic modeling (Mei et al., 2007; Titov
and McDonald, 2008; Lin and He, 2009; Moghad-
dam and Ester, 2011), word alignment (Liu et al.,

2We notice that a GPU with more cores has no training
time gain on a low-dimensional LSTM because extra cores
are idle and waiting for the other cores to sequentially com-
pute cells.

2013) and label propagation (Zhou et al., 2013;
Shu et al., 2016).

Traditionally, the supervised approach (Jakob
and Gurevych, 2010; Mitchell et al., 2013; Shu
et al., 2017) uses Conditional Random Fields
(CRF) (Lafferty et al., 2001). Recently, deep
neural networks are applied to learn better fea-
tures for supervised aspect extraction, e.g., us-
ing LSTM (Williams and Zipser, 1989; Hochre-
iter and Schmidhuber, 1997; Liu et al., 2015)
and attention mechanism (Wang et al., 2017; He
et al., 2017) together with manual features (Poria
et al., 2016; Wang et al., 2016). Further, (Wang
et al., 2016, 2017; Li and Lam, 2017) also pro-
posed aspect and opinion terms co-extraction via
a deep network. They took advantage of the gold-
standard opinion terms or sentiment lexicon for as-
pect extraction. The proposed approach is close
to (Liu et al., 2015), where only the annotated
data for aspect extraction is used. However, we
will show that our approach is more effective even
compared with baselines using additional supervi-
sions and/or resources.

The proposed embedding mechanism is related
to cross domain embeddings (Bollegala et al.,
2015, 2017) and domain-specific embeddings (Xu
et al., 2018a,b). However, we require the domain
of the domain embeddings must exactly match the
domain of the aspect extraction task. CNN (LeCun
et al., 1995; Kim, 2014) is recently adopted for
named entity recognition (Strubell et al., 2017).
CNN classifiers are also used in sentiment analysis
(Poria et al., 2016; Chen et al., 2017). We adopt
CNN for sequence labeling for aspect extraction
because CNN is simple and parallelized.

3 Model

The proposed model is depicted in Figure 1. It
has 2 embedding layers, 4 CNN layers, a fully-
connected layer shared across all positions of
words, and a softmax layer over the labeling space
Y = {B, I,O} for each position of inputs. Note
that an aspect can be a phrase and B, I indicate
the beginning word and non-beginning word of an
aspect phrase and O indicates non-aspect words.

Assume the input is a sequence of word indexes
x = (x1, . . . , xn). This sequence gets its two
corresponding continuous representations xg and
xd via two separate embedding layers (or embed-
ding matrices) W g and W d. The first embedding
matrix W g represents general embeddings pre-
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Figure 1: Overview of DE-CNN: red vectors are
zero vectors; purple triangles are CNN filters.

trained from a very large general-purpose corpus
(usually hundreds of billions of tokens). The sec-
ond embedding matrixW d represents domain em-
beddings pre-trained from a small in-domain cor-
pus, where the scope of the domain is exactly the
domain that the training/testing data belongs to.
As a counter-example, if the training/testing data
is in the laptop domain, then embeddings from
the electronics domain are considered to be out-of-
domain embeddings (e.g., the word “adapter” may
represent different types of adapters in electronics
rather than exactly a laptop adapter). That is, only
laptop reviews are considered to be in-domain.

We do not allow these two embedding layers
trainable because small training examples may
lead to many unseen words in test data. If em-
beddings are tunable, the features for seen words’
embeddings will be adjusted (e.g., forgetting use-
less features and infusing new features that are re-
lated to the labels of the training examples). And
the CNN filters will adjust to the new features ac-
cordingly. But the embeddings of unseen words
from test data still have the old features that may
be mistakenly extracted by CNN.

Then we concatenate two embeddings x(1) =
xg ⊕ xd and feed the result into a stack of 4 CNN
layers. A CNN layer has many 1D-convolution fil-
ters and each (the r-th) filter has a fixed kernel size
k = 2c+1 and performs the following convolution

Description Training Testing
#S./#A. #S./#A.

SemEval-14 Laptop 3045/2358 800/654
SemEval-16 Restaurant 2000/1743 676/622

Table 1: Dataset description with the number of
sentences(#S.) and number of aspect terms(#A.)

operation and ReLU activation:

x
(l+1)
i,r = max

(
0, (

c∑

j=−c
w

(l)
j,rx

(l)
i+j) + b(l)r

)
, (1)

where l indicates the l-th CNN layer. We apply
each filter to all positions i = 1 : n. So each fil-
ter computes the representation for the i-th word
along with 2c nearby words in its context. Note
that we force the kernel size k to be an odd num-
ber and set the stride step to be 1 and further pad
the left c and right c positions with all zeros. In
this way, the output of each layer is well-aligned
with the original input x for sequence labeling
purposes. For the first (l = 1) CNN layer, we
employ two different filter sizes. For the rest 3
CNN (l ∈ {2, 3, 4}) layers, we only use one fil-
ter size. We will discuss the details of the hyper-
parameters in the experiment section. Finally, we
apply a fully-connected layer with weights shared
across all positions and a softmax layer to com-
pute label distribution for each word. The out-
put size of the fully-connected layer is |Y| = 3.
We apply dropout after the embedding layer and
each ReLU activation. Note that we do not apply
any max-pooling layer after convolution layers be-
cause a sequence labeling model needs good rep-
resentations for every position and max-pooling
operation mixes the representations of different
positions, which is undesirable (we show a max-
pooling baseline in the next section).

4 Experiments

4.1 Datasets
Following the experiments of a recent aspect ex-
traction paper (Li and Lam, 2017), we conduct
experiments on two benchmark datasets from Se-
mEval challenges (Pontiki et al., 2014, 2016) as
shown in Table 4.1. The first dataset is from the
laptop domain on subtask 1 of SemEval-2014 Task
4. The second dataset is from the restaurant do-
main on subtask 1 (slot 2) of SemEval-2016 Task
5. These two datasets consist of review sentences
with aspect terms labeled as spans of characters.
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We use NLTK3 to tokenize each sentence into a
sequence of words.

For the general-purpose embeddings, we use the
glove.840B.300d embeddings (Pennington et al.,
2014), which are pre-trained from a corpus of 840
billion tokens that cover almost all web pages.
These embeddings have 300 dimensions. For
domain-specific embeddings, we collect a laptop
review corpus and a restaurant review corpus and
use fastText (Bojanowski et al., 2016) to train do-
main embeddings. The laptop review corpus con-
tains all laptop reviews from the Amazon Review
Dataset (He and McAuley, 2016). The restaurant
review corpus is from the Yelp Review Dataset
Challenge 4. We only use reviews from restaurant
categories that the second dataset is selected from
5. We set the embedding dimensions to 100 and
the number of iterations to 30 (for a small embed-
ding corpus, embeddings tend to be under-fitted),
and keep the rest hyper-parameters as the defaults
in fastText. We further use fastText to compose
out-of-vocabulary word embeddings via subword
N-gram embeddings.

4.2 Baseline Methods

We perform a comparison of DE-CNN with three
groups of baselines using the standard evaluation
of the datasets6 7. The results of the first two
groups are copied from (Li and Lam, 2017). The
first group uses single-task approaches.

CRF is conditional random fields with basic
features8 and GloVe word embedding(Pennington
et al., 2014).

IHS RD (Chernyshevich, 2014) and NLANGP
(Toh and Su, 2016) are best systems in the original
challenges (Pontiki et al., 2014, 2016).

WDEmb (Yin et al., 2016) enhanced CRF with
word embeddings, linear context embeddings and
dependency path embeddings as input.

LSTM (Liu et al., 2015; Li and Lam, 2017) is a
vanilla BiLSTM.

BiLSTM-CNN-CRF (Reimers and Gurevych,
2017) is the state-of-the-art from the Named En-
tity Recogntion (NER) community. We use this

3http://www.nltk.org/
4https://www.yelp.com/dataset/

challenge
5http://www.cs.cmu.edu/˜mehrbod/RR/

Cuisines.wht
6http://alt.qcri.org/semeval2014/task4
7http://alt.qcri.org/semeval2016/task5
8http://sklearn-crfsuite.readthedocs.

io/en/latest/tutorial.html

baseline9 to demonstrate that a NER model may
need further adaptation for aspect extraction.

The second group uses multi-task learning
and also take advantage of gold-standard opinion
terms/sentiment lexicon.

RNCRF (Wang et al., 2016) is a joint model
with a dependency tree based recursive neural net-
work and CRF for aspect and opinion terms co-
extraction. Besides opinion annotations, it also
uses handcrafted features.

CMLA (Wang et al., 2017) is a multi-layer
coupled-attention network that also performs as-
pect and opinion terms co-extraction. It uses gold-
standard opinion labels in the training data.

MIN (Li and Lam, 2017) is a multi-task learn-
ing framework that has (1) two LSTMs for jointly
extraction of aspects and opinions, and (2) a third
LSTM for discriminating sentimental and non-
sentimental sentences. A sentiment lexicon and
high precision dependency rules are employed to
find opinion terms.

The third group is the variations of DE-CNN.
GloVe-CNN only uses glove.840B.300d to

show that domain embeddings are important.
Domain-CNN does not use the general embed-

dings to show that domain embeddings alone are
not good enough as the domain corpus is limited
for training good general words embeddings.

MaxPool-DE-CNN adds max-pooling in the
last CNN layer. We use this baseline to show that
the max-pooling operation used in the traditional
CNN architecture is harmful to sequence labeling.

DE-OOD-CNN replaces the domain embed-
dings with out-of-domain embeddings to show
that a large out-of-domain corpus is not a good
replacement for a small in-domain corpus for do-
main embeddings. We use all electronics reviews
as the out-of-domain corpus for the laptop and all
the Yelp reviews for restaurant.

DE-Google-CNN replaces the glove embed-
dings with GoogleNews embeddings10, which are
pre-trained from a smaller corpus (100 billion to-
kens). We use this baseline to demonstrate that
general embeddings that are pre-trained from a
larger corpus performs better.

DE-CNN-CRF replaces the softmax activation
with a CRF layer11. We use this baseline to

9https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf

10https://code.google.com/archive/p/
word2vec/

11https://github.com/allenai/allennlp
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Model Laptop Restaurant
CRF 74.01 69.56

IHS RD 74.55 -
NLANGP - 72.34
WDEmb 75.16 -
LSTM 75.25 71.26

BiLSTM-CNN-CRF 77.8 72.5
RNCRF 78.42 -
CMLA 77.80 -
MIN 77.58 73.44

GloVe-CNN 77.67 72.08
Domain-CNN 78.12 71.75

MaxPool-DE-CNN 77.45 71.12
DE-LSTM 78.73 72.94

DE-OOD-CNN 80.21 74.2
DE-Google-CNN 78.8 72.1

DE-CNN-CRF 80.8 74.1
DE-CNN 81.59* 74.37*

Table 2: Comparison results in F1 score: numbers
in the third group are averaged scores of 5 runs as
in (Li and Lam, 2017). * indicates the result is
statistical significant at the level of 0.05.

demonstrate that CRF may not further improve the
challenging performance of aspect extraction.

4.3 Hyper-parameters

We hold out 150 training examples as validation
data to decide the hyper-parameters. The first
CNN layer has 128 filters with kernel sizes k = 3
(where c = 1 is the number of words on the left
(or right) context) and 128 filters with kernel sizes
k = 5 (c = 2). The rest 3 CNN layers have 256
filters with kernel sizes k = 5 (c = 2) per layer.
The dropout rate is 0.55 and the learning rate of
Adam optimizer (Kingma and Ba, 2014) is 0.0001
because CNN training tends to be unstable.

4.4 Results and Analysis

Table 4.3 shows that DE-CNN performs the best.
The double embedding mechanism improves the
performance and in-domain embeddings are im-
portant. We can see that using general embeddings
(GloVe-CNN) or domain embeddings (Domain-
CNN) alone gives inferior performance. We fur-
ther notice that the performance on Laptops and
Restaurant domains are quite different. Lap-
tops has many domain-specific aspects, such as
“adapter”. So the domain embeddings for Lap-
tops are better than the general embeddings. The
Restaurant domain has many very general aspects
like “staff”, “service” that do not deviate much
from their general meanings. So general embed-

dings are not bad. Max pooling is a bad op-
eration as indicated by MaxPool-DE-CNN since
the max pooling operation loses word positions.
DE-OOD-CNN’s performance is poor, indicating
that making the training corpus of domain embed-
dings to be exactly in-domain is important. DE-
Google-CNN uses a much smaller training corpus
for general embeddings, leading to poorer perfor-
mance than that of DE-CNN. Surprisingly, we no-
tice that the CRF layer (DE-CNN-CRF) does not
help. In fact, the CRF layer can improve 1-2%
when the laptop’s performance is about 75%. But
it doesn’t contribute much when laptop’s perfor-
mance is above 80%. CRF is good at modeling
label dependences (e.g., label I must be after B),
but many aspects are just single words and the ma-
jor types of errors (mentioned later) do not fall in
what CRF can solve. Note that we did not tune
the hyperparameters of DE-CNN-CRF for practi-
cal purpose because training the CRF layer is ex-
tremely slow.

One important baseline is BiLSTM-CNN-CRF,
which is markedly worse than our method. We
believe the reason is that this baseline leverages
dependency-based embeddings(Levy and Gold-
berg, 2014), which could be very important for
NER. NER models may require further adapta-
tions (e.g., domain embeddings) for opinion texts.

DE-CNN has two major types of errors. One
type comes from inconsistent labeling (e.g., for
the restaurant data, the same aspect is sometimes
labeled and sometimes not). Another major type
of errors comes from unseen aspects in test data
that require the semantics of the conjunction word
“and” to extract. For example, if A is an aspect
and when “A and B” appears, B should also be ex-
tracted but not. We leave this to future work.

5 Conclusion

We propose a CNN-based aspect extraction model
with a double embeddings mechanism without
extra supervision. Experimental results demon-
strated that the proposed method outperforms
state-of-the-art methods with a large margin.
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Abstract

The process of obtaining high quality la-
beled data for natural language under-
standing tasks is often slow, error-prone,
complicated and expensive. With the vast
usage of neural networks, this issue be-
comes more notorious since these net-
works require a large amount of labeled
data to produce satisfactory results. We
propose a methodology to blend high qual-
ity but scarce labeled data with noisy but
abundant weak labeled data during the
training of neural networks. Experiments
in the context of topic-dependent evidence
detection with two forms of weak labeled
data show the advantages of the blending
scheme. In addition, we provide a manu-
ally annotated data set for the task of topic-
dependent evidence detection.

1 Introduction

In recent years, neural networks have been widely
used for natural language understanding tasks.
Such networks demand a considerable amount of
labeled data for each specific task. However, for
many tasks, the process of obtaining high quality
labeled data is slow, expensive, and complicated
(Habernal et al., 2018). In this work, we propose
a method for improving network training when a
small amount of labeled data is available.

Several works have suggested methods for gen-
erating weak labeled data (WLD) whose quality
for the task of interest is low, but that can be eas-
ily obtained. One approach for gathering WLD is
to apply heuristics to a large corpus. For example,
Hearst (1992) considered a noun to be the hyper-
nym of another noun if they are connected by the
is a pattern in a sentence.

Distant supervision is another form of WLD
used in various tasks such as relation extraction
(Mintz et al., 2009; Surdeanu et al., 2012) and sen-
timent analysis (Go et al., 2009). Other works use
emojis or hashtags as weak labels describing the
texts in which they appear (e.g., Davidov et al.
(2010) in the context of sarcasm detection).

WLD can be freely obtained, however it comes
with a price: it is often very noisy. Therefore, sys-
tems trained only on WLD are at a serious disad-
vantage compared to systems trained on high qual-
ity labeled data, which we term henceforth strong
labeled data (SLD). However, we suggest that the
easily accessible WLD is still useful when used
alongside SLD, which is naturally limited in size.

In this work we propose a method for blend-
ing WLD and SLD in the training of neural net-
works. Focusing on the argumentation mining
field, we create and release a data set for the task
of topic-dependent evidence detection. Our evalu-
ation shows that such blending improves the accu-
racy of the network compared to not using WLD
or not blending it. This improvement is even more
evident when SLD is not abundantly available.

We believe that blending WLD and SLD is a
general notion that may be applicable to many lan-
guage understanding tasks, and can especially as-
sist researchers who wish to train a network but
have a small amount of SLD for their task of inter-
est.

2 Background

2.1 WLD and networks

In the field of neural networks, WLD has mainly
been employed for pre-training networks. This
was done in related fields such as information
retrieval (Dehghani et al., 2017b) and sentiment
analysis (Severyn and Moschitti, 2015; Deriu
et al., 2017). Contrary to those works, we ex-
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plore a way to utilize WLD together with SLD and
throughout the training process.

Most similar to our work, Dehghani et al.
(2017a) use WLD and SLD together, for senti-
ment classification. They train two separate net-
works, one with WLD only, and another with SLD
only. They control the magnitude of the gradient
updates to the network trained on WLD, using the
scores provided by the network trained on SLD.
Differently, we blend the two types of labeled data
in a single network.

2.2 Argumentation mining
Argumentation mining is attracting a lot of atten-
tion (Lippi and Torroni, 2016). One line of re-
search focuses on identifying arguments (claims
and evidence/premises) within a text (Stab and
Gurevych, 2014; Habernal and Gurevych, 2015;
Persing and Ng, 2016; Eger et al., 2017). An-
other line of work seeks to mine arguments rel-
evant for a given topic or claim, either from a
pre-built argument repository where arguments are
collected from online debate portals (Wachsmuth
et al., 2017), or from unrestricted large scale cor-
pora (Levy et al., 2014; Rinott et al., 2015; Levy
et al., 2017). Our work falls into the latter cate-
gory of corpus wide topic-dependent argumenta-
tion mining.

Previous work by Rinott et al. (2015) presented
the task of detecting evidence texts that are rele-
vant for claims of a given topic. They search in a
preselected set of articles, in which the likelihood
to find an evidence is considerably higher than in
an arbitrary article from the corpus. In this work,
we detect evidence directly supporting or contest-
ing the topic (without an intermediate claim), and
we search in the entire corpus, with no need for
pre-selecting a small set of relevant articles.

2.3 SLD and WLD in argumentation mining
Publicly available strong labeled data (SLD) for
argument mining is usually only a couple of thou-
sand instances in size (e.g., Stab and Gurevych
(2017) present one of the largest, with around
6,000 annotated positive instances). Recently,
Habernal et al. (2018) have commented about
the difficulty to collect valuable SLD from crowd
sourcing for such tasks.

Several works utilize WLD for argumentation
mining; Webis-Debate-16 (Al-Khatib et al., 2016)
use the structure of online debates as distant su-
pervision for the task of argument classification.

Sentences from the first paragraph are considered
as non-argumentative and the rest of the sentences
are considered as argumentative.

For the topic-dependent claim detection task,
Levy et al. (2017) showed that retrieving sentences
with the word that followed by the concept repre-
senting the topic, yields candidates that are more
likely to contain a claim for that topic than arbi-
trary sentences which contain the topic concept.

3 BlendNet

We present BlendNet, a neural network that is
trained on a blend of WLD and SLD.

3.1 Network description

Our network is a bi-directional LSTM (Graves and
Schmidhuber, 2005) with an additional attention
layer (Yang et al., 2016).

The models are all trained with a dropout of
0.85, using a single dropout mask across all time-
steps as proposed by Gal and Ghahramani (2016).
The cell size in the LSTM layers is 128, and
the attention layer is of size 100. We use the
Adam method as an optimizer (Kingma and Ba,
2015) with a learning rate of 0.001, and apply gra-
dient clipping with a maximum global norm of
1.0. Words are represented using the 300 dimen-
sional GloVe embeddings learned on 840B Com-
mon Crawl tokens and are left untouched during
training (Pennington et al., 2014).

We note that even though we chose this net-
work architecture, there is nothing in the blending
method we propose which is restricted to it, and
blending can be easily applied to other networks.

3.2 WLD blending

WLD is a pair of disjoint sets, WLDpos and
WLDneg. The two sets are constructed such that
the probability of finding positive instances in
WLDpos is significantly higher than that of finding
them in WLDneg. This difference in probabilities
is the source of the signal WLD provides. Impor-
tantly, the probability in WLDpos can still be rather
low.

As mentioned in Section 2.1, using WLD to pre-
train neural networks has been proven to be ef-
fective. We extend this idea by allowing the use
of WLD alongside SLD during the entire training
process of the network. Our intuition is that even
though WLD signal is noisy, there is potential in
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its additional massive amount, and integrating it
can improve training when SLD is limited in size.

In every epoch (a pass through the entire SLD),
the training data is enriched with WLD. However,
since WLD is noisy, an exponentially decreasing
fraction of it is blended into the network at each
epoch.

Formally, we have m initialization epochs us-
ing the entire WLD with no SLD. After this
pre-training phase, we continue with n blending
epochs, in each using all the available SLD, and
a fraction of the WLD which is determined by a
blend factor α∈ [0..1]. In the kth blending epoch
(k ∈ [0..n−1]) we blend αk of the WLD with the
SLD, and feed the data in a random order to the
network. Consequently, the first blending epoch
uses full SLD and full WLD, and in every subse-
quent epoch the amount of WLD decays by a fac-
tor of α. The stopping point n will typically be
empirically determined. We set it to a number that
will guarantee that the last couple of epochs will
be composed of mainly SLD, since eventually, this
is the better signal for training.

One can come up with different methods for
blending WLD and SLD. For instance, start train-
ing with all available SLD and gradually blend
more and more WLD, or use all available WLD
and SLD during the entire training. In Section 5
we refer to some alternatives and show that they
do not achieve better results than the one presented
above. However, we do not claim that our blend-
ing method is the only option or even the best one.
The goal of this work is to suggest one method
which works.

4 Data sets

We created a data set of 5,785 sentences with man-
ual annotations for the task of topic-dependent ev-
idence detection (this will serve as our SLD). It is
available on the IBM Debater Datasets webpage.1

We use it for training and for evaluation and de-
scribe it next. In Section 4.2 we describe two
methods for freely obtaining weak labeled data for
our task.

4.1 SLD annotation

Our strong labeled data (SLD) consists of pairs of
a topic and a sentence. Topics were extracted from
several sources, such as Debatepedia, an online

1See http://www.research.ibm.com/haifa/
dept/vst/debating_data.shtml

encyclopedia dedicated to debates and argumen-
tation. The data set includes 118 diverse topics,
from domains such as politics, science and edu-
cation. The topics generally deal with one clearly
identifiable concept.

The sentences were extracted from Wikipedia
and were annotated by crowd-sourcing. We used
10 annotators for each pair of topic and sentence;
each annotator either confirms or rejects the sen-
tence as evidence for the topic. We combine the
annotators’ votes into a binary label by majority.
Ties are resolved as non-evidence.

The guidelines for the task present three criteria
which all have to be met for a positive label. The
sentence must clearly support or contest the topic,
and not simply be neutral. It has to be coherent and
stand mostly on its own. Finally it has to be con-
vincing, something you could use to sway some-
one’s stance on the topic: a claim is not enough, it
has to be backed up.

The annotators agreement is 0.45 by Fleiss’
kappa. This is a typical value in such challeng-
ing labeling tasks, comparable to previous reports
in the literature, e.g., (Aharoni et al., 2014; Rinott
et al., 2015). In addition, for 85% of the labeled
instances, the majority vote included at least 70%
of the annotators, further supporting the quality of
the released data.

The 118 topics were randomly split into two
sets: 83 topics for training (4,066 sentences), and
35 topics for testing (1,719 sentences). No sen-
tences of the same topic appear in both sets. The
prior for positive, i.e., an evidence instance, is
about 40% for both sets. In addition, every occur-
rence of the topic concept in the candidate is re-
placed with a common token, to keep the training
topic-independent. The topic concept is detected
by an in-house wikification tool, similar to TagMe
(Ferragina and Scaiella, 2010). The README,
provided with this paper, includes additional infor-
mation about the data set and the pre-processing.

4.2 WLD generation

Next we describe two sources of WLD we use in
our experiments. For the first source, we use the
method described by Levy et al. (2017) for un-
supervised topic dependent claim detection. Fol-
lowing them, we construct the set of WLDpos by
retrieving sentences from Wikipedia which match
the query “that + topic concept”, i.e. sentences
which contain the word “that” followed by the
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concept of the topic (not necessarily adjacent).
The WLDneg set is constructed by retrieving sen-
tences that contain the topic concept and are not
part of WLDpos. Levy et al. (2017) showed that
the likelihood of claims in WLDpos is double the
likelihood in WLDneg.

We believe that the query “that + topic concept”
is indicative of argumentative content in general,
and not just of claims. It is therefore a good fit
for constructing WLD for the topic-dependent ev-
idence detection task. Indeed, in the data set, de-
scribed in Section 4.1, the prior for positive in the
entire training set is close to 40%, but among the
candidates that match the query, it is much higher
– 52%. Applying this WLD method we were
able to extract 253, 352 sentences from Wikipedia
which contain the topic concept, 25% of them also
contain “that” before the topic concept, and they
are our WLDpos.

For the second source of WLD, we use the
Webis-Debate-16 corpus (Al-Khatib et al., 2016),
using their argumentative vs. non-argumentative
division. This division was automatically cre-
ated by mapping the specific structure of ide-
bate.org pages – introduction, points for/against,
point/counterpoint – to the two classes. The sen-
tences of the introduction are labeled by them
as non-argumentative, under the assumption that
they neutrally present the topic. We use them as
our WLDneg. The other sentences are labeled in
Webis-Debate-16 as argumentative, thus we use
them as our WLDpos. Out of 16, 402 total in-
stances, 66% are in WLDpos. This data set doubly
deserves the status of WLD in our task because
the labels do not exactly match the evidence/non-
evidence classification, and in addition it is pro-
duced automatically based on a coarse-grained
mapping that is bound to introduce noise.

5 Experimental setup and results

We use the data set described in Section 4, train-
ing the network on the train set and evaluating its
accuracy on the test set. We empirically explore
several blending configurations and evaluate their
impact on the accuracy of the network. To vali-
date our assumption that WLD contribution would
be more prominent when SLD is limited, we test
each configuration with varying sizes of SLD be-
tween 500 and 4,000.

Following some preliminary exploration, on a
different data set, we noticed that the parameter

m, the number of initialization epochs, does not
make a significant difference, and we set it to be 1
(trying m>1 resulted in slightly worse accuracy).

As mentioned in Section 3.2, our stopping cri-
terion was set to ensure that in any configuration,
we have four blending epochs in which the input
for the network is mostly SLD, i.e. it is at least
95% of the data seen by the network.

For the blending factor we tried α ∈
{0, 0.05, 0.2}, and quickly learned that choosing
a blending factor value larger than 0.05 is typi-
cally ineffective. Since the blending factor deter-
mines the numbers of epochs in which the WLD is
significant, and since it is reasonable to limit this
number due to the noisy nature of the WLD, it is
not surprising that a small value of α is preferable.
We note that setting α = 0 means WLD is only
used in the initialization epochs.

Finally, to keep results reliable, as SLD size can
get quite small, we repeat each configuration run
five times with different SLD slices to reduce vari-
ance. For each run we record the best accuracy
out of all its epochs and report the micro average
of the best accuracies of the five runs.

Figure 1 depicts our results. Blending WLD
throughout several epochs of training (the thick
green curve with round dots), improves perfor-
mance over using it only for initialization, as most
previous works do (the dashed red curve), and
over not using WLD at all (the blue curve with
triangles). This effect is significantly more no-
table as we use less SLD. For example, in the left
plot, which presents the usage of Webis-Debate-
16 as WLD, we see that using 1,000 instances of
SLD with WLD yields results comparable to using
2,500 SLD instances. Similarly, 2,000 SLD in-
stances plus WLD, are comparable to using 3,000
SLD instances. The effect is smaller when the
WLD is based on the “that + topic concept” query,
but the trend is similar.

One may claim that the signal in WLD is
stronger than we hypothesized and therefore the
performance improves simply because we are
adding labeled data for training. To test this claim
we train the network with all available WLD and
only it. The single triangles on the Y-axis of each
plot show that the accuracy of the network with
such training is much lower than using the entire
SLD, reflecting the inferior quality of the WLD.
In addition, we note that the accuracy on the test
set of the “that + topic concept” query, which was
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Figure 1: Micro-averaged accuracy on the SLD test set for the different sizes of SLD training data. A
single asterisk (*) indicates significant results in comparison to SLD only and double asterisks indicate
significant results also in comparison to blend factor 0 (unpaired student t-test with p<0.05).

used to collect one of our WLD types, is only 17%.
Another claim may be that just by utilizing

WLD in addition to SLD the accuracy improves,
and that there is no need for any blending method.
To answer that, we unify the WLD and the SLD,
without applying any blending method (single
squares on the right border of each plot). For
the WLD constructed by the “that + topic con-
cept” query the accuracy is well below the accu-
racy achieved when using SLD alone, as can be
seen in the right plot. On the left plot, we see that
unifying the WLD with the SLD does not help nor
harm compared to using the SLD alone.

We conclude that even though WLD is not
nearly as accurate as SLD, it has the potential to
improve performance, if blended correctly.

We also tried gradually increasing the amount
of WLD in each blending epoch, instead of de-
creasing it. We tested several increasing factors
on both types of WLD. Results were similar to the
proposed blending method.

6 Conclusions

Neural networks have become widely useful in
natural language understanding tasks. It is often
the case that there is not enough high quality la-
beled data for the target task, leading to significant
drops in network performance. On the other hand,
for many tasks, weak labeled data can be easily
obtained but is usually noisy.

In this work we explore a way to enable a net-
work to take advantage of the large size of WLD
without overriding the high quality of SLD.

In the method we present, training starts with
initialization epochs in which only the WLD is
used. It continues with blending epochs in which
the data fed to the network is a dynamic mix-
ture of WLD and SLD. The blending method we
presented, assigns higher importance to the vast
amount of WLD at the beginning of the training
and decreases its impact as training progresses.

We evaluate our blending method on the task
of topic-dependent evidence detection, leveraging
two WLD sources, and show that it improves per-
formance for each source. The impact of blending
increases as the amount of SLD decreases.

Additionally, we release a data set of 5,785
manually labeled sentences to encourage repro-
ducibility and further work on evidence detection.

The impact of the two WLD we tried is evi-
dently different: the Webis corpus seems to help
more than the “that + topic concept” query. This
calls for future work of understanding what makes
a good fit between WLD and SLD. The amount of
WLD does not seem to be an important factor, as
we see that blending the smaller WLD of the two
achieves better performance. It is probably highly
related to the quality of the WLD. Sentences re-
trieved from Wikipedia are of many forms and do-
mains, while the Webis corpus is composed of sen-
tences from debates, which might explain why the
network is able to leverage it better.

For future work we intend to examine ways to
find better WLD and to make better use of it. For
example, instead of choosing one type of WLD,
we can combine several WLD types together.
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Abstract

We propose a tri-modal architecture to pre-
dict Big Five personality trait scores from
video clips with different channels for au-
dio, text, and video data. For each channel,
stacked Convolutional Neural Networks
are employed. The channels are fused both
on decision-level and by concatenating
their respective fully connected layers. It is
shown that a multimodal fusion approach
outperforms each single modality channel,
with an improvement of 9.4% over the best
individual modality (video). Full backprop-
agation is also shown to be better than a
linear combination of modalities, meaning
complex interactions between modalities
can be leveraged to build better models.
Furthermore, we can see the prediction rel-
evance of each modality for each trait. The
described model can be used to increase the
emotional intelligence of virtual agents.

1 Introduction

Automatic prediction of personality is important
for the development of emotional and empathetic
virtual agents. Humans are very quick to assign
personality traits to each other, as well as to virtual
characters (Nass et al., 1995). People infer per-
sonality from different cues, both behavioral and
verbal, hence a model to predict personality should
take into account multiple modalities including lan-
guage, speech and visual cues.

Personality is typically modeled with the Big
Five personality descriptors (Goldberg, 1990). In
this model an individual’s personality is defined as
a collection of five scores in range [0, 1] for per-
sonality traits Extraversion, Agreeableness, Con-
scientiousness, Neuroticism and Openness to Ex-
perience. These score are usually calculated by

each subject filling in a specific questionnaire. The
biggest effort to predict personality, as well as
to release a benchmark open-domain personality
corpus, was given by the ChaLearn 2016 shared
task challenge (Ponce-López et al., 2016). All
the best performing teams used neural network
techniques. They extracted traditional audio fea-
tures (zero crossing rate, energy, spectral features,
MFCCs) and then fed them into the neural net-
work (Subramaniam et al., 2016; Gürpınar et al.,
2016; Zhang et al., 2016). A deep neural network
should however be able to extract such features
itself. Güçlütürk et al. (2016) took a different ap-
proach by feeding the raw audio and video samples
to the network. However they mostly designed the
network for computer vision, and used the same
architecture to audio input without any adaptation
or considerations to merge modalities. The chal-
lenge was in general aimed at the computer vision
community (many only used facial features), thus
not many looked into what their deep network was
learning regarding other modalities.

In this paper, we are interested in predicting per-
sonality from speech, language and video frames
(facial features). We first consider the different
modalities separately, in order to have more un-
derstanding of how personality is expressed and
which modalities contribute more to the personal-
ity definition. Then we design and analyze fusion
methods to effectively combine the three modali-
ties in order to obtain a performance improvement
over each individual modality. The readers can re-
fer to the survey by Baltrušaitis et al. (2018) for
more information on multi-modal approaches.

2 Methodology

Our multimodal deep neural network architecture
consists of three separate channels for audio, text,
and video. The channels are fused both in decision-
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level fusion and inside the neural network. The
three channels are trained in a multiclass way, in-
stead of separate models for each trait (Farnadi
et al., 2016). The full architecture is trained end-
to-end, which refers to models that are completely
trained from the most raw input representation to
the desired output, with all the parameters learned
from data (Muller et al., 2006). Automatic fea-
ture learning has the capacity to outperform feature
engineering, as these learned features are automati-
cally tuned to the task at hand. The full neural net-
work architecture with the three channels is shown
in Fig. 1.

2.1 Audio channel
The audio channel looks at acoustic and prosodic
(i.e. non-verbal) information of speech. It takes
raw waveforms as input instead of commonly used
spectrograms or traditional feature sets, as CNNs
are able to autonomously extract relevant features
directly from audio (Bertero et al., 2016).

Input audio samples are first downscaled to a
uniform sampling rate of 8 kHz before fed to the
model. During each training iteration (but not dur-
ing evaluation), for each input audio sample we
randomize the amplitude (volume) through an ex-
ponential random coefficient α = 10U(−1.5,1.5),
where U(−1.5, 1.5) is a uniform random variable,
to avoid any bias related to recording volumes.

We split the input signal into two feature chan-
nels as input for the CNN: the raw waveform as-is,
and the signal with squared amplitude (aimed at
capturing the energy component of the signal). A
stack of four convolutional layers is applied to the
input to perform feature extraction from short over-
lapping windows, analyze variations over neigh-
boring regions of different sizes, and combine all
contributions throughout the sample.

We used global average pooling operation over
the output of each layer to capture globally ex-
pressed personality characteristics over the entire
audio frame and to combine the contributions of
the convolutional layer outputs. After obtaining the
overall vector by weighted-average of each convo-
lutional layer output, it is fed to a fully connected
layer with final sigmoid layer to perform the final
regression operation to map this representation to a
score in range [0, 1] for each of the five traits.

2.2 Text channel
The transcriptions for the ChaLearn dataset, pro-
vided by the challenge organizers, were obtained

by using a professional human transcription ser-
vice 1 to ensure maximum quality for the ground
truth annotations. For this channel we extract
word2vec word embeddings from transcriptions
and feed those into a CNN. The embeddings have
a dimensionality of k = 300 and were pre-trained
on Google News data (around 300 billion words).
This enables us to take into account much more
contextual information than available in just the
corpus at hand.

Transcriptions per sample were split up into dif-
ferent sentences. We normalized the text in order
to align our corpus with the embedding dictionary.
We fed the computed matrix into a CNN, whose
architecture is inspired by Kim (2014). Three con-
volutional windows of size three, four, and five
words are slid over the sentence, taking steps of
one word each time. These windows are expected
to extract compact n-grams from sentences. After
this layer, a max-pooling is taken for the outcome
of each of the kernels separately to get a final sen-
tence encoding. The representation is then mapped
through a fully connected layer with sigmoid acti-
vation, to the final Big Five personality traits.

2.3 Video channel

In the video channel, we first take a random frame
from each of the videos, which leads to personal-
ity recognition from only appearance. We did not
use Long Short Term Memory (LSTM) networks
because we only need appearance information, not
temporal and movement information. Although
many works in the ChaLearn competition align
faces manually using the famous Viola-Jones algo-
rithm (Viola and Jones, 2004) and crop them from
frames (Gürpınar et al., 2016), here we choose not
to in order to prevent excessive preprocessing. It
has also been found and shown that deep archi-
tectures can automatically learn to focus on the
face (Gucluturk et al., 2017).

We extract representations from the images us-
ing the VGG-face CNN model (Parkhi et al., 2015),
with pre-trained VGG-16 weights (Simonyan and
Zisserman, 2014). Input images are fed into the
model with their three channels (blue, red, and
green). Several convolutional layers combined
with max-pooling and padding layers follow. We
use two final fully connected layers, followed by
sigmoid activation to map to the five traits. We
only train these two final layers. Fine-tuning pre-

1http://www.rev.com
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Figure 1: Diagram of the tri-modal architecture for prediction of Big Five traits from audio, text and
video input. Concatenating output of the three individual modalities results in an output layer with size of
64+64+512=640.

trained models as such is a common way to lever-
age on training on large outside datasets and thus
the model doesn’t need to learn extracting visual
features itself (Esteva et al., 2017).

2.4 Multimodal fusion

Humans infer personality from different cues and
this motivates us to predict personality by using
multiple modalities simultaneously. We look at
three different fusing methods to find how to com-
bine modalities best.

The first method is a decision-level fusion ap-

proach, done through an ensemble (voting) method.
The three channels are copies of the fully trained
models described above. We want to know the
linear combination weights for each modality, for
each trait (15 weights in total). The final pre-
dictions from our tri-modal model then become
p̂i =

∑N
j=1wi,j p̂i,j , where pi represents the en-

semble estimator for the score of trait i, j repre-
sents the modality (with N = 3 the number of
modalities), and wi,j and p̂i,j the weights and esti-
mates respectively for trait i for modality j. The
weights were found by minimizing the Mean Ab-
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solute Error (MAE) on the development set. We
choose to have weights per trait because the uni-
modal results show that some modalities are better
at predicting some traits than others. An important
advantage of using this fusion method is that we
can read the relevance of the modalities for each of
the traits , from the weights.

In the other fusion methods we propose, we first
merge the modalities by truncating the final fully
connected layers from each of the channels. We
then concatenate the previous fully connected lay-
ers, to obtain shared representations of the input
data. Finally we add two extra fully connected lay-
ers on top. For the second method, all layers in the
separate channels are frozen, so we basically want
the model to learn what combination (could still be
a linear one) of channel outputs is optimal. For the
third method, we again train this exact architecture,
but now we also update the parameters of both the
audio and text channels, thus enabling fully end-
to-end backpropagation. This enables the model
to learn more complex interaction between the dif-
ferent channels. The architecture is illustrated in
Fig. 1. The layers in the dashed boxes are frozen
(non-trainable) for limited backpropation model,
and trainable for full backpropagation model.

3 Experiments

3.1 Corpus

We used the ChaLearn First Impressions Dataset,
which consists of YouTube vlogs clips of around 15
seconds (Ponce-López et al., 2016). The speaker in
each video is annotated with Big Five personality
scores. The ChaLearn dataset was divided into a
training set of 6,000 clips and 20% of the training
set was taken as validation set during training to
tune the hyperparameter, the early stopping condi-
tions and the ensemble method training. We used
pre-defined ChaLearn Validation Set of 2,000 clips
as the test set.

3.2 Setup

For the audio CNN, we used a window size of 200
(i.e. 25ms) for the first layer, and a stride of 100
(i.e. 12.5ms). In the following convolutional layers
we set the window size and stride is set to 8 and 2
respectively. The number of filters was kept at 512
for each layer. In the text CNN instead we used a
filter size of 128, and apply dropout (p = 0.5) to
the last layer. In the video CNN we used again 512
filters for each layer.

We trained our model using Adam optimizer
(Kingma and Ba, 2014). All models were imple-
mented with Keras (Chollet et al., 2015). We train
all models parameters with a regression cost func-
tion by iteratively minimizing the average over five
traits of the Mean Square Error (MSE) between
model predictions and ground truth labels. We also
use the MSE with the ground truth to evaluate the
performance over the test set.

3.3 Results
Our aim is to investigate the contribution of differ-
ent modalities for personality detection task. Ta-
ble 1 includes the optimal weights learned for the
decision-level fusion approach. From this table we
can read contribution of each of the modalities to
the prediction of each trait.

Big Five Personality Traits

Model E A C N O

Audio 0.44 0.32 0.27 0.45 0.54
Text -0.03 0.22 0.13 0.03 -0.06
Video 0.59 0.46 0.60 0.52 0.52

Table 1: Optimal weights learned for combining
the three modalities for each trait. E, A, C, N, and
O stand for Extraversion, Agreeableness, Conscien-
tiousness, Neuroticism and Openness, respectively.

Table 2 displays the tri-modal regression (MAE)
performance, individual modalities, multimodal
decision-level fusion and the two neural network
fusion methods. We also report the average trait
scores from the training set labels as a baseline
(Mairesse et al., 2007). The neural network fusion
with full backpropagation works best with an aver-
age MSE score of 0.0938, around 2.9% improve-
ment over the last-layer backpropagation only, and
9.4% over the best separate modality (video). Both
in separate and ensemble methods, the results we
obtain are lower than just estimating the average
from the training set.

The main target in this work is to investigate
the effect of audio, visual, and text modalities, and
different fusion methods in personality recognition,
rather than proposing the method with the best ac-
curacy. However, we still repeat the accuracy of the
reported methods in Table 2 and two winners of the
ChaLearn 2016 competition DCC (Güçlütürk et al.,
2016) and evolgen (Subramaniam et al., 2016) in
Table 3. It can be seen that the result for out tri-
modal method with fully back-propagation is com-
parable to the winners.
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MAE Big Five Personality Traits

Model Mean E A C N O

Audio .1059 .1080 .0953 .1160 .1077 .1024
Text .1132 .1177 .0977 .1206 .1167 .1135
Video .1035 .1040 .0960 .1087 .1064 .1024
DLF .0967 .0970 .0893 .1049 .0979 .0947
NNLB .0966 .0970 .0896 .1038 .0973 .0951
NNFB .0938 .0958 .0907 .0922 .0964 .0938

Train labels avg .1165 .1194 .1009 .1261 .1209 .1153

Table 2: MAE for each individual modality, fusion
approaches and average of training set labels. DLF
refers to decision-level fusion, NNLB and NNFB
refer to neural network limited backprop and full
back respectively.

Mean Acc Big Five Personality Traits

Model Mean E A C N O

Audio .8941 .8920 .9047 .8840 .8923 .8976
Text .8868 .8823 .9023 .8794 .8833 .8865
Video .8965 .8960 .9040 .8913 .8936 .8976
DLF .9033 .9030 .9107 .8951 .9021 .9053
NNLB .9034 .9030 .9104 .8962 .9027 .9049
NNFB .9062 .9042 .9093 .9078 .9036 .9062
DCC .9121 .9104 .9154 .9130 .9097 .9119
evolgen .9133 .9145 .9157 .9135 .9098 .9130

Train labels avg .8835 .8806 .8991 .8739 .8791 .8847

Table 3: Mean accuracy for each individual
modality, fusion approaches, two winners of the
ChaLearn 2016 competition (DCC and evolgen),
and average of training set labels.

3.4 Discussion

Looking at the results obtained from various fusion
methods in Table 2, we can see that for decision-
level and last-layer backpropagation, Neuroticism
and Extraversion are the easiest traits to predict, fol-
lowed by Conscientiousness and Openness. Agree-
ableness is significantly harder. We also see that the
last-layer fusion yields very similar performance
as the decision-level approach. It is likely that the
limited backpropagation method learns something
similar to a linear combination of channels, just like
the decision-level method. On the other hand, the
full backpropagation method yields significantly
higher results for all traits except Agreeableness.

From Table 1 we can also see which modalities
carry more information. The text modality is not
adding much value to traits other than Agreeable-
ness and Conscientiousness. Extraversion can, on
the other hand, be quite easily recognized from tone
of voice and appearance. Having said this, we must
be careful in deciding which modalities are most
suitable for individual traits, since certain traits (e.g.
Extraversion) are more evident from a short slice
and some (e.g. Openness) need longer temporal in-

formation (Aran and Gatica-Perez, 2013). Polzehl
et al. (2010) have proposed a method for person-
ality recognition in speech modality on a different
corpus. The method is not based on neural network
architecture, but they provide a similar analysis that
supports our conclusions.

Since the full backpropagation experiments
yields much better results than the linear combina-
tion model, we can conclude that different modal-
ities interact with each other in a non-trivial man-
ner. Moreover, we can observe that simply adding
features from different modalities (represented as
concatenating a final representation without full
backpropagation) does not yield optimal perfor-
mance.

Our tri-modal approach is quite extensive and
there are more modalities such as nationality, cul-
tural background, age, gender, and personal inter-
ests that can be added. All Big Five traits have
been found to have a correlation with age (Donnel-
lan and Lucas, 2008). Extraversion and Openness
have a negative correlation with age, Agreeableness
have a positive correlation, and Conscientiousness
scores peak for middle age subjects.

4 Conclusion

We proposed a fusion method, based on deep neural
networks, to predict personality traits from audio,
language and appearance. We have seen that each
of the three modalities contains a signal relevant for
personality prediction, that using all three modali-
ties combined greatly outperforms using individual
modalities, and that the channels interact with each
other in a non-trivial fashion. By combining the
last network layers and fine-tuning the parameters
we have obtained the best result, average among all
traits, of 0.0938 Mean Square Error, which is 9.4%
better than the performance of the best individual
modality (visual). Out of all modalities, language
or speech pattern seems to be the least relevant.
Video frames (appearance) are slightly more rele-
vant than audio information (i.e. non-verbal parts
of speech).
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Yağmur Güçlütürk, Umut Güçlü, Marcel AJ van Ger-
ven, and Rob van Lier. 2016. Deep impres-
sion: audiovisual deep residual networks for mul-
timodal apparent personality trait recognition. In
Computer Vision–ECCV 2016 Workshops. Springer,
pages 349–358.

Furkan Gürpınar, Heysem Kaya, and Albert Ali Salah.
2016. Combining deep facial and ambient features
for first impression estimation. In Computer Vision–
ECCV 2016 Workshops. Springer, pages 372–385.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, pages 1746–1751.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

François Mairesse, Marilyn A Walker, Matthias R
Mehl, and Roger K Moore. 2007. Using linguistic
cues for the automatic recognition of personality in
conversation and text. Journal of artificial intelli-
gence research 30:457–500.

Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and
Yann L Cun. 2006. Off-road obstacle avoidance
through end-to-end learning. In Advances in neural
information processing systems. pages 739–746.

Clifford Nass, Youngme Moon, BJ Fogg, Byron
Reeves, and Chris Dryer. 1995. Can computer per-
sonalities be human personalities. In Conference
companion on Human factors in computing systems.
ACM, pages 228–229.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
et al. 2015. Deep face recognition. In BMVC. vol-
ume 1, page 6.

Tim Polzehl, Sebastian Moller, and Florian Metze.
2010. Automatically assessing personality from
speech. In Semantic Computing (ICSC), 2010 IEEE
Fourth International Conference on. IEEE, pages
134–140.
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Abstract

This paper investigates the construction
of a strong baseline based on general
purpose sequence-to-sequence models for
constituency parsing. We incorporate sev-
eral techniques that were mainly devel-
oped in natural language generation tasks,
e.g., machine translation and summariza-
tion, and demonstrate that the sequence-
to-sequence model achieves the current
top-notch parsers’ performance without
requiring explicit task-specific knowledge
or architecture of constituent parsing.

1 Introduction

Sequence-to-sequence (Seq2seq) models have
successfully improved many well-studied NLP
tasks, especially for natural language genera-
tion (NLG) tasks, such as machine translation
(MT) (Sutskever et al., 2014; Cho et al., 2014)
and abstractive summarization (Rush et al., 2015).
Seq2seq models have also been applied to con-
stituency parsing (Vinyals et al., 2015) and pro-
vided a fairly good result. However one obvi-
ous, intuitive drawback of Seq2seq models when
they are applied to constituency parsing is that
they have no explicit architecture to model latent
nested relationships among the words and phrases
in constituency parse trees, Thus, models that di-
rectly model them, such as RNNG (Dyer et al.,
2016), are an intuitively more promising approach.
In fact, RNNG and its extensions (Kuncoro et al.,
2017; Fried et al., 2017) provide the current state-
of-the-art performance. Sec2seq models are cur-
rently considered a simple baseline of neural-
based constituency parsing.

After the first proposal of an Seq2seq con-
stituency parser, many task-independent tech-
niques have been developed, mainly in the NLG

research area. Our aim is to update the Seq2seq
approach proposed in Vinyals et al. (2015) as a
stronger baseline of constituency parsing. Our
motivation is basically identical to that described
in Denkowski and Neubig (2017). A strong base-
line is crucial for reporting reliable experimental
results. It offers a fair evaluation of promising new
techniques if they solve new issues or simply re-
solve issues that have already been addressed by
current generic technology. More specifically, it
might become possible to analyze what types of
implicit linguistic structures are easier or harder to
capture for neural models by comparing the out-
puts of strong Seq2seq models and task-specific
models, e.g., RNNG.

The contributions of this paper are summarized
as follows: (1) a strong baseline for constituency
parsing based on general purpose Seq2seq mod-
els1, (2) an empirical investigation of several
generic techniques that can (or cannot) contribute
to improve the parser performance, (3) empiri-
cal evidence that Seq2seq models implicitly learn
parse tree structures well without knowing task-
specific and explicit tree structure information.

2 Constituency Parsing by Seq2seq

Our starting point is an RNN-based Seq2seq
model with an attention mechanism that was ap-
plied to constituency parsing (Vinyals et al., 2015).
We omit detailed descriptions due to space limita-
tions, but note that our model architecture is iden-
tical to the one introduced in Luong et al. (2015a)2.

A key trick for applying Seq2seq models to
constituency parsing is the linearization of parse

1Our code and experimental configurations for reproduc-
ing our experiments are publicly available:
https://github.com/nttcslab-nlp/strong s2s baseline parser

2More specifically, our Seq2seq model fol-
lows the one implemented in seq2seq-attn
(https://github.com/harvardnlp/seq2seq-attn), which is
the alpha-version of the OpenNMT tool (http://opennmt.net).
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Original input John has a dog .
Output: S-exp. (S (NP NNP ) (VP VBZ (NP DT NN ) ) . )
Linearized form (S (NP NNP )NP (VP VBZ (NP DT NN )NP )VP . )S
w/ POS normalized (S (NP XX )NP (VP XX (NP XX XX )NP )VP . )S

Table 1: Examples of linearization and POS-tag
normalization (Vinyals et al., 2015)

trees (Vinyals et al., 2015). Roughly speaking, a
linearized parse tree consists of open, close brack-
eting and POS-tags that correspond to a given in-
put raw sentence. Since a one-to-one mapping ex-
ists between a parse tree and its linearized form
(if the linearized form is a valid tree), we can
recover parse trees from the predicted linearized
parse tree. Vinyals et al. (2015) also introduced
the part-of-speech (POS) tag normalization tech-
nique. They substituted each POS tag in a lin-
earized parse tree to a single XX-tag3, which al-
lows Seq2seq models to achieve a more compet-
itive performance range than the current state-of-
the-art parses4. Table 1 shows an example of a
parse tree to which linearization and POS-tag nor-
malization was applied.

3 Task-independent Extensions

This section describes several generic techniques
that improve Seq2seq performance5. Table 2 lists
the notations used in this paper for a convenient
reference.

3.1 Subword as input features
Applying subword decomposition has recently be-
come a leading technique in NMT literature (Sen-
nrich et al., 2016; Wu et al., 2016). Its primary
advantage is a significant reduction of the serious
out-of-vocabulary (OOV) problem. We incorpo-
rated subword information as an additional feature
of the original input words. A similar usage of
subword features was previously proposed in Bo-
janowski et al. (2017).

Formally, the encoder embedding vector at en-
coder position i, namely, ei, is calculated as fol-
lows:

ei = Exk +
∑

k′∈ψ(wi)

Fsk′ , (1)

3We did not substitute POS-tags for punctuation symbols
such as “.”, and “,”.

4Several recently developed neural-based constituency
parsers ignore POS tags since they are not evaluated in the
standard evaluation metric of constituency parsing (Bracket-
ing F-measure).

5Figure in the supplementary material shows the brief
sketch of the method explained in the following section.

D : dimension of the embeddings
H : dimension of the hidden states
i : index of the (token) position in input sentence
j : index of the (token) position in output linearized format of parse tree
V(e) : vocabulary of word for input (encoder) side
V(s) : vocabulary of subword for input (encoder) side

E : encoder embedding matrix for V(e), where E ∈ RD×|V(e)|

F : encoder embedding matrix for V(s), where F ∈ RD×|V(s)|

wi : i-th word (token) in the input sentence, wi ∈ V(e)

xk : one-hot vector representation of the k-th word in V(e)

sk : one-hot vector representation of the k-th subword in V(s)

u : encoder embedding vector of unknown token
φ(·) : function that returns the index of given word in the vocabulary V(e)

ψ(·) : function that returns a set of indices in the subword vocabulary V(s)

generated from the given word. e.g., k ∈ ψ(wi)
ei : encoder embedding vector at position i in encoder
V(d) : vocabulary of output with POS-tag normalization
V(q) : vocabulary of output without POS-tag normalization

W (o) : decoder output matrix for V(d), where W (o) ∈ R|V(o)|×H

W (q) : decoder output matrix for V(q), where W (q) ∈ R|V(q)|×H

zj : final hidden vector calculated at the decoder position j
oj : final decoder output scores at decoder position j
qj : output scores of auxiliary task at decoder position j
b : additional bias term in the decoder output layer for mask
pj : vector format of output probability at decoder position j
A : number of models for ensembling
C : number of candidates generating for LM-reranking

Table 2: List of notations used in this paper.

where k = φ(wi). Note that the second term
of RHS indicates our additional subword features,
and the first represents the standard word em-
bedding extraction procedure. Among several
choices, we used the byte-pair encoding (BPE) ap-
proach proposed in Sennrich et al. (2016) applying
1,000 merge operations6.

3.2 Unknown token embedding as a bias
We generally replace rare words, e.g., those ap-
pearing less than five times in the training data,
with unknown tokens in the Seq2seq approach.
However, we suspect that embedding vectors,
which correspond to unknown tokens, cannot be
trained well for the following reasons: (1) the
occurrence of unknown tokens remains relatively
small in the training data since they are obvi-
ous replacements for rare words, and (2) Seq2seq
is relatively ineffective for training infrequent
words (Luong et al., 2015b). Based on these ob-
servations, we utilize the unknown embedding as
a bias term b of linear layer (Wx + b) when ob-
taining every encoder embeddings for overcoming
infrequent word problem. Then, we modify Eq. 2
as follows:

ei = (Exk + u) +
∑

k′∈ψ(wi)

(Fsk′ + u). (2)

Note that if wi is unknown token, then Eq. 2 be-
comes ei = 2u+

∑
k′∈ψ(wi)

(Fsk′ + u).

6https://github.com/rsennrich/subword-nmt
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3.3 Multi-task learning
Several papers on the Seq2seq approach (Luong
et al., 2016) have reported that the multi-task
learning extension often improves the task perfor-
mance if we can find effective auxiliary tasks re-
lated to the target task. From this general knowl-
edge, we re-consider jointly estimating POS-tags
by incorporating the linearized forms without the
POS-tag normalization as an auxiliary task. In
detail, the linearized forms with and without the
POS-tag normalization are independently and si-
multaneously estimated as oj and qj , respectively,
in the decoder output layer by following equation:

oj = W (o)zj , and qj = W (q)zj . (3)

3.4 Output length controlling
As described in Vinyals et al. (2015), not all the
outputs (predicted linearized parse trees) obtained
from the Seq2seq parser are valid (well-formed) as
a parse tree. Toward guaranteeing that every out-
put is a valid tree, we introduce a simple extension
of the method for controlling the Seq2seq output
length (Kikuchi et al., 2016).

First, we introduce an additional bias term b in
the decoder output layer to prevent the selection of
certain output words:

pj = softmax(oj + b). (4)

If we set a large negative value at them-th element
in b, namely bm≈−∞, then the m-th element in
pj becomes approximately 0, namely pj,m ≈ 0,
regardless of the value of the k-th element in oj .
We refer to this operation to set value −∞ in b
as a mask. Since this naive masking approach is
harmless to GPU-friendly processing, we can still
exploit GPU parallelization.

We set b to always mask the EOS-tag and
change b when at least one of the following con-
ditions is satisfied: (1) if the number of open and
closed brackets generated so far is the same, then
we mask the XX-tags (or the POS-tags) and all
the closed brackets. (2) if the number of predicted
XX-tags (or POS-tags) is equivalent to that of the
words in a given input sentence, then we mask
the XX-tags (or all the POS-tags) and all the open
brackets. If both conditions (1) and (2) are satis-
fied, then the decoding process is finished. The
additional cost for controlling the mask is to count
the number of XX-tags and the open and closed
brackets so far generated in the decoding process.

Dim. of embeddingD 300 Dim. of hidden stateH 200
Encoder RNN unit bi-LSTM Num. of layers L 2
Decoder RNN unit LSTM with attention Dropout rate 0.3

Optimizer SGD Gradient clippingG 1.0
Learning rate decay 0.9 (after 50 epoch) Initial learning rate 1.0
Mini-batch sizeM 16 (shuffled at each epoch)
Stopping criterion 100 epochs (w/o early stopping)

Beam size (at Test)B 5

Table 3: List of model and optimization configu-
rations (hyper-parameters) in our experiments

3.5 Pre-trained word embeddings

The pre-trained word embeddings obtained from
a large external corpora often boost the final task
performance even if they only initialize the input
embedding layer. In constituency parsing, several
systems also incorporate pre-trained word embed-
dings, such as Vinyals et al. (2015); Durrett and
Klein (2015). To maintain as much reproducibil-
ity of our experiments as possible, we simply ap-
plied publicly available pre-trained word embed-
dings, i.e., glove.840B.300d7, as initial val-
ues of the encoder embedding layer.

3.6 Model ensemble

Ensembling several independently trained models
together significantly improves many NLP tasks.
In the ensembling process, we predict the out-
put tokens using the arithmetic mean of predicted
probabilities computed by each model:

pj =
1

A

∑A

a=1
p
(a)
j , (5)

where p
(a)
j represents the probability distribution

at position j predicted by the a-th model.

3.7 Language model (LM) reranking

Choe and Charniak (2016) demonstrated that
reranking the predicted parser output candidates
with an RNN language model (LM) significantly
improves performance. We refer to this reranking
process as LM-rerank. Following their success, we
also trained RNN-LMs on the PTB dataset with
their published preprocessing code8 to reproduce
the experiments in Choe and Charniak (2016) for
our LM-rerank. We selected the current state-
of-the-art LM (Yang et al., 2018)9 as our LM-
reranker, which is a much stronger LM than was
used in Choe and Charniak (2016).

7https://nlp.stanford.edu/projects/glove/
8https://github.com/cdg720/emnlp2016
9We used the identical hyper-parameters introduced in

their site: https://github.com/zihangdai/mos.
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Development Data (PTB Sec.22) Test Data (PTB Sec.23)
Bracketing F1 (Bra.F) Complete match (CM) Bra.F CM Bra.F CM

ID Method category ave. ±stdev min / max ave. ±stdev min / max ave. ±stdev ave. ±stdev (dev.max model)
(a) Seq2seq w/ attn (+post-proc for valid parse tree) 88.08±0.41 87.27 / 88.72 35.80±0.78 34.88 / 37.41 88.13±0.22 35.05±0.79 88.39 35.97
(b) (a) + Dec.control (§3.4) dec. mask. 88.35±0.37 87.70 / 88.83 35.89±0.80 34.94 / 37.47 – – – –
(c) (b) + Subword (§3.1) enc. feature 89.76±0.23 89.40 / 90.03 39.79±0.79 38.47 / 40.88 – – – –
(d) (c) + Unk bias (§3.2) enc. featture 90.10±0.24 89.77 / 90.54 40.98±0.82 39.59 / 42.18 – – – –
(e) (d) + Pos (§3.3) dec. multitask 90.21±0.20 89.85 / 90.48 41.09±0.98 39.35 / 42.82 90.38±0.28 40.76±0.74 90.62 41.39
(f) (a) + Pre-trained emb. (§3.5) enc. initialization 89.99±0.17 89.75 / 90.34 40.69±0.83 39.41 / 41.76 90.14±0.12 40.40±0.44 90.32 40.89
(g) (f) + Dec.control (§3.4) dec. mask. 90.28±0.15 90.10 / 90.55 40.78±0.84 39.53 / 41.88 – – – –
(h) (g) + Subword (§3.1) enc. feature 90.34±0.10 90.20 / 90.53 41.19±0.64 40.12 / 42.06 – – – –
(i) (h) + Unk bias (§3.2) enc. feature 90.92±0.17 90.67 / 91.17 43.38±0.57 42.47 / 44.29 – – – –
(j) (i) + Pos (§3.3) dec. multitask 90.93±0.14 90.68 / 91.07 42.76±0.38 42.00 / 43.18 91.18±0.12 42.39±0.68 91.36 43.50

Table 4: Results on English PTB data: Results were average (ave), worst (min), and best (max) per-
formance of ten models independently trained with distinct random initial values. Test data was only
evaluated on baseline and our best setting ((a), (e), (f) and (j)) to prevent over-tuning to the test
data. We confirmed that all our results contained no malformed parse trees.

Dev. Test
ID Method Bra.F CM Bra.F CM
(k) (e) + ensembleA = 8 (§3.6) 92.32 45.76 92.18 45.90
(l) (k) + LM-rerank C = 80 (§3.7) 94.31 53.59 94.14 52.69
(m) (j) + ensembleA = 8 (§3.6) 92.90 47.85 92.74 47.27
(n) (m) + LM-rerank C = 80 (§3.7) 94.30 54.12 94.32 52.81

Table 5: Ensembling and reranking results

(a) Mini-batch sizeM (b) Gradient clippingG
method Bra.F CM

(j) M = 16 90.93 42.76
M = 64 89.85 40.94
M = 256 89.41 40.41

method Bra.F CM
(j) G = 1 90.93 42.76

G = 5 87.36 36.71

(c) Hidden dimH and layer L (d) Beam sizeB
method Bra.F CM

(j) H = 200, L = 2 90.93 42.76
H = 200, L = 3 90.75 43.00
H = 200, L = 4 90.55 42.84
H = 512, L = 2 90.59 43.38

method Bra.F CM
B = 1 90.55 42.49

(j) B = 5 90.93 42.76
B = 20 90.98 42.76
B = 50 91.01 42.76

(e) usage of subword information (feature or split)
method Bra.F CM

(h) word split with 1K subword feature 90.93 42.76
8K subword split 87.39 33.62
16K subword split 87.20 31.21

Table 6: Impact of hyper-parameter selections. We
only evaluated the development data (PTB Sec.
22) to prevent over-tuning to the test data.

4 Experiments

Our experiments used the English Penn Treebank
data (Marcus et al., 1994), which are the most
widely used benchmark data in the literature. We
used the standard split of training (Sec.02–21),
development (Sec.22), and test data (Sec.23) and
strictly followed the instructions for the evalua-
tion settings explained in Vinyals et al. (2015).
For data pre-processing, all the parse trees were
transformed into linearized forms, which include
standard UNK replacement for OOV words and
POS-tag normalization by XX-tags. As explained
in Vinyals et al. (2015), we did not apply any parse
tree binarization or special unary treatment, which
were used as common techniques in the literature.

Table 3 summarizes the model configurations
and the optimization settings used in our experi-

System (Brief description) Bra.F
[Trained (strictly) from PTB only, no additional resources]

(Kamigaito et al., 2017) Seq2seq, sup.attention 89.5
(Cross and Huang, 2016a) Shift-reduce 89.95
Ours; Seq2seq 90.62
(Watanabe and Sumita, 2015) Shift-reduce 90.68
(Shindo et al., 2012) 91.1
(Cross and Huang, 2016b) Shift-reduce 91.3
(Kamigaito et al., 2017) Seq2seq, sup.attention, ensemble 91.5
(Dyer et al., 2016) Shift-reduce, discriminative 91.7
(Liu and Zhang, 2017) Shift-reduce 91.7
(Stern et al., 2017a) Top-down 91.79
Ours; Seq2seq, ensemble 92.18
(Shindo et al., 2012) ensemble 92.4
(Stern et al., 2017b) Top-down, rerank 92.56
(Choe and Charniak, 2016) CKY, LM-rerank 92.6
(Dyer et al., 2016) Shift-reduce, generative 93.3
(Kuncoro et al., 2017) Shift-reduce, rerank 93.6
Ours; Seq2seq, ensemble, LM-rerank(80) 94.14
(Fried et al., 2017) Shift-reduce, ensemble, rerank 94.25
[PTB only, but utilizing pre-trained emb. from external corpus for init.]

(Vinyals et al., 2015) Seq2seq 88.3
(Vinyals et al., 2015) Seq2seq, ensemble 90.5
(Durrett and Klein, 2015) CKY 91.1
Ours; Seq2seq 91.36
Ours; Seq2seq, ensemble 92.74
Ours best; Seq2seq, ensemble, LM-rerank(80) 94.32

[Trained from PTB and other external silver data]
(Choe and Charniak, 2016) CKY, LM-rerank 93.8
(Fried et al., 2017) Shift-reduce, ensemble, rerank 94.66

Table 7: List of bracketing F-measures on test data
(PTB Sec.23) reported in recent top-notch sys-
tems: scores with bold font represent our scores.

ments unless otherwise specified.

4.1 Results

Table 4 shows the main results of our experiments.
We reported the Bracketing F-measures (Bra.F)
and the complete match scores (CM) evaluated
by the EVALB tool10. The averages (ave), stan-
dard deviations (stdev), lowest (min), and high-
est (max) scores were calculated from ten inde-
pendent runs of each setting trained with different
random initialization values. This table empiri-
cally reveals the effectiveness of individual tech-
niques. Each technique gradually improved the
performance, and the best result (j) achieved ap-

10http://nlp.cs.nyu.edu/evalb/
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proximately 3 point gain from the baseline con-
ventional Seq2seq model (a) on test data Bra.F.

One drawback of Seq2seq approach is that it
seems sensitive to initialization. Comparing only
with a single result for each setting may produce
inaccurate conclusions. Therefore, we should
evaluate the performances over several trials to im-
prove the evaluation reliability.

The baseline Seq2seq models, (a) and (f),
produced the malformed parse trees. We post-
processed such malformed parse trees by simple
rules introduced in (Vinyals et al., 2015). On the
other hand, we confirmed that all the results apply-
ing the technique explained in Sec. 3.4 produced
no malformed parse trees.
Ensembling and Reranking: Table 5 shows the
results of our models with model ensembling and
LM-reranking. For ensemble, we randomly se-
lected eight of the ten Seq2seq models reported
in Table 4. For LM-reranking, we first generated
80 candidates by the above eight ensemble models
and selected the best parse tree for each input in
terms of the LM-reranker. The results in Table 5
were taken from a single-shot evaluation, unlike
the averages of ten independent runs in Table 4.
Hyper-parameter selection: We empirically in-
vestigated the impact of the hyper-parameter se-
lections. Table 6 shows the results. The follow-
ing observations appear informative for building
strong baseline systems: (1) Smaller mini-batch
size M and gradient clipping G provided the bet-
ter performance. Such settings lead to slower
and longer training, but higher performance. (2)
Larger layer size, hidden state dimension, and
beam size have little impact on the performance;
our setting, L = 2, H = 200, and B = 5 looks
adequate in terms of speed/performance trade-off.
Input unit selection: As often demonstrated in
the NMT literature, using subword split as input
token unit instead of standard tokenized word unit
has potential to improve the performance. Table 6
(e) shows the results of utilizing subword splits.
Clearly, 8K and 16K subword splits as input to-
ken units significantly degraded the performance.
It seems that the numbers of XX-tags in output and
tokens in input should keep consistent for better
performance since Seq2seq models look to some-
how learn such relationship, and used it during
the decoding. Thus, using subword information as
features is one promising approach for leveraging
subword information into constituency parsing.

4.2 Comparison to current top systems

Table 7 lists the reported constituency parsing
scores on PTB that were recently published in the
literature. We split the results into three categories.
The first category (top row) contains the results
of the methods that were trained only from the
pre-defined training data (PTB Sec.02–21), with-
out any additional resources. The second category
(middle row) consists of the results of methods
that were trained from the pre-defined PTB train-
ing data as well as those listed in the top row, but
incorporating word embeddings obtained from a
large-scale external corpus to initialize the encoder
embedding layer. The third category (bottom row)
shows the performance of the methods that were
trained using high-confidence, auto-parsed trees in
addition to the pre-defined PTB training data.

Our Seq2seq approach successfully achieved
the competitive level as the current top-notch
methods: RNNG and its variants. Note here that,
as described in Dyer et al. (2016), RNNG uses
Berkeley parser’s mapping rules for effectively
handling singleton words in the training corpus.
In contrast, we demonstrated that Seq2seq models
have enough power to achieve a competitive state-
of-the-art performance without leveraging such
task-dependent knowledge. Moreover, they need
no explicit information of parse tree structures,
transition states, stacks, (Stanford or Berkeley)
mapping rules, or external silver training data dur-
ing the model training except general purpose
word embeddings as initial values. These obser-
vations from our experiments imply that recently
developed Seq2seq models have enough ability to
implicitly learn parsing structures from linearized
parse trees. Our results argue that Seq2seq models
can be a strong baseline for constituency parsing.

5 Conclusion

This paper investigated how well general purpose
Seq2seq models can achieve the higher perfor-
mance of constituency parsing as a strong baseline
method. We incorporated several generic tech-
niques to enhance Seq2seq models, such as incor-
porating subword features, and output length con-
trolling. We experimentally demonstrated that by
applying ensemble and LM-reranking techniques,
a general purpose Seq2seq model achieved almost
the same performance level as the state-of-the-art
constituency parser without any task-specific or
explicit tree structure information.
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Abstract

How to make the most of multiple hetero-
geneous treebanks when training a mono-
lingual dependency parser is an open ques-
tion. We start by investigating previously
suggested, but little evaluated, strategies
for exploiting multiple treebanks based on
concatenating training sets, with or with-
out fine-tuning. We go on to propose a
new method based on treebank embed-
dings. We perform experiments for several
languages and show that in many cases
fine-tuning and treebank embeddings lead
to substantial improvements over single
treebanks or concatenation, with average
gains of 2.0–3.5 LAS points. We argue
that treebank embeddings should be pre-
ferred due to their conceptual simplicity,
flexibility and extensibility.

1 Introduction

In this paper we investigate how to train mono-
lingual parsers in the situation where several tree-
banks are available for a single language. This is
quite a common occurrence; in release 2.1 of the
Universal Dependencies (UD) treebanks (Nivre
et al., 2017), 25 languages have more than one
treebank. These treebanks can differ in several
respects: they can contain material from differ-
ent language variants, domains, or genres, and
written or spoken material. Even though the UD
project provides guidelines for consistent annota-
tion, treebanks can still differ with respect to an-
notation choices, consistency and quality of anno-
tation. Some treebanks are thoroughly checked by
human annotators, whereas others are based en-
tirely on automatic conversions. All this means
that it is often far from trivial to combine multiple
treebanks for the same language.

The 2017 CoNLL Shared Task on Universal De-
pendency Parsing (Zeman et al., 2017) included
15 languages with multiple treebanks. An addi-
tional parallel test set of 1000 sentences, PUD,
was also made available for a selection of lan-
guages. Most of the participating teams did not
take advantage of the multiple treebanks, however,
and simply trained one model per treebank instead
of one model per language. There were a few ex-
ceptions to this rule, but these teams typically did
not investigate the effect of their proposed strate-
gies in detail.

In this paper we begin by performing a thorough
investigation of previously proposed strategies for
training with multiple treebanks for the same lan-
guage. We then propose a novel method, based on
treebank embeddings. Our new technique has the
advantage of producing a single flexible model for
each language, regardless of the number of tree-
banks. We show that this method leads to sub-
stantial improvements for many languages. Of the
competing methods, training on the concatenation
of treebanks, followed by fine-tuning for each tree-
bank, also performed well, but this method results
in longer training times and necessitates multiple
unwieldy models per language.

2 Training with Multiple Treebanks

The most obvious way to combine treebanks for
a particular language, provided that they use the
same annotation scheme, is simply to concatenate
the training sets. This has the advantage that it
does not require any modifications to the parser
itself, and it produces a single model that can be
directly used for any input from the language in
question. Björkelund et al. (2017) and Das et al.
(2017) used this strategy to parse the PUD test sets
in the 2017 CoNLL Shared Task. Little details are
given on the results, but while it was successful on
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dev data for most languages, results were mixed
on the actual PUD test sets. For the two Nor-
wegian language variants, concatenation has been
proposed (Velldal et al., 2017), but it hurts results
unless combined with machine translation.

Training on concatenated treebanks can be im-
proved by a subsequent fine-tuning step. In this
set-up, after training the model on concatenated
data, it is refined for each treebank by training only
on its own training set for a few additional epochs.
This enables the models to learn differences be-
tween treebanks, but it requires more training,
and results in separate models for each treebank.
When the parser is applied to new data, there is
thus a choice of which fine-tuned version to use.
This approach was used by Che et al. (2017) and
Shi et al. (2017) for languages with multiple tree-
banks in the CoNLL 2017 Shared Task. Che et al.
(2017) apply fine-tuning to all but the largest tree-
bank for each language, and show average gains of
1.8 LAS for a subset of nine treebanks. Shi et al.
(2017) show that the choice of treebank for pars-
ing the PUD test set is important, but do not have
any specific evaluation of the effect of fine-tuning.

Another approach, not explored in this paper,
is shared gated adversarial networks, proposed by
Sato et al. (2017) for the CoNLL 2017 Shared
Task. They use treebank prediction as an adver-
sarial task. In this model, treebank-specific BiL-
STMs are constructed for all treebanks in addition
to a shared BiLSTM which is used both for parsing
and for the adversarial task. This method requires
knowing at test time which treebank the input be-
longs to. Sato et al. (2017) show that this strat-
egy can give substantial improvements, especially
for small treebanks. For large treebanks, however,
there are mostly no or only minor improvements.

Our approach for taking advantage of multiple
treebanks is to use a treebank embedding to repre-
sent the treebank to which a sentence belongs. In
our proposed model, all parameters of the model
are shared; the treebank embedding facilitates soft
sharing between treebanks at the word level, and
allows the parser to learn treebank-specific phe-
nomena. At test time, a treebank identifier has
to be given for the input data. A key benefit of
using treebank embeddings is that we can train
a single model for each language using all avail-
able data while remaining sensitive to the differ-
ences between treebanks. The addition of treebank
embeddings requires only minor modifications to

the parser (see section 3.1). To the best of our
knowledge this approach is novel when applied
to the monolingual case as treebank embeddings.
The most similar approach we have found in the
literature is Lim and Poibeau (2017), who used
one-hot treebank representations to combine data
for improving monolingual parsing for three tiny
treebanks, with improvements of 0.6–1.9 LAS. It
is also related to work on domain embeddings
for machine translation (Kobus et al., 2017), and
language embeddings for parsing (Ammar et al.,
2016).

We previously used a similar architecture for
combining languages with very small training sets
with additional languages (de Lhoneux et al.,
2017a). Language embeddings have also been ex-
plored for other cross-lingual tasks such as lan-
guage modeling (Tsvetkov et al., 2016; Östling
and Tiedemann, 2017) and POS-tagging (Bjerva
and Augenstein, 2018). Cross-lingual parsing,
however, often requires substantially more com-
plex models. They typically include features such
as multilingual word embeddings (Ammar et al.,
2016), linguistic re-write rules (Aufrant et al.,
2016), or machine translation (Tiedemann, 2015).
Unlike much work on cross-lingual parsing, we do
not focus on a low-resource scenario.

3 Experimental Setup

We perform experiments for 24 treebanks from
9 languages, using UUParser (de Lhoneux et al.,
2017a,b). We compare concatenation (CONCAT),
concatenation with fine-tuning (C+FT), and tree-
bank embeddings (TB-EMB). In addition we com-
pare these results to using only single treebanks
for training (SINGLE). While some of these meth-
ods were previously suggested in the literature, no
proper evaluation and comparison between them
has been performed. For the PUD test data, there
is no corresponding training set, so we need to
choose a model or set a treebank embedding based
on some other treebank. We call this a proxy tree-
bank.

For evaluation we use labeled attachment score
(LAS). Significance testing is performed using
a randomization test, with the script from the
CoNLL 2017 Shared Task.1

1https://github.com/udapi/
udapi-python/blob/master/udapi/block/
eval/conll17.py
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3.1 The Parser
We use UUParser2 (de Lhoneux et al., 2017a),
which is based on the transition-based parser of
Kiperwasser and Goldberg (2016), and adapted
to UD. It uses the arc-hybrid transition system
from Kuhlmann et al. (2011) extended with a
SWAP transition and a static-dynamic oracle, as
described in de Lhoneux et al. (2017b). This
model allows the construction of non-projective
dependency trees (Nivre, 2009).

A configuration c is represented by a feature
function φ(·) over a subset of its elements and,
for each configuration, transitions are scored by
a classifier. In this case, the classifier is a multi-
layer perceptron (MLP) and φ(·) is a concatena-
tion of the BiLSTM vectors vi of words on top of
the stack and at the beginning of the buffer. The
MLP scores transitions together with the arc labels
for transitions that involve adding an arc.

For an input sentence of length n with words
w1, . . . , wn, the parser creates a sequence of vec-
tors x1:n, where the vector xi representing wi is
the concatenation of a word embedding e(wi) and
a character vector, obtained by running a BiLSTM
over the m characters ch1, . . . , chm of wi:

xi = e(wi) ◦ BILSTM(ch1:m)

Note that no POS-tags or morphological features
are used in this parser.

In the TB-EMB setup, we also concatenate a
treebank embedding tb(wi) to the representation
of wi:

xi = e(wi) ◦ BILSTM(ch1:m) ◦ tb(wi)

Finally, each input element is represented by a
BiLSTM vector, vi:

vi = BILSTM(x1:n, i)

All embeddings are initialized randomly, and
trained together with the BiLSTMs and MLP. For
hyperparameter settings we used default values
from de Lhoneux et al. (2017a). The dimension
of the treebank embedding is set to 12 in our ex-
periments; we saw only small and inconsistent
changes when varying the number of dimensions.
We train the parser for 30 epochs per setting. For
C+FT we apply fine-tuning for an additional 10
epochs for each treebank. We pick the best epoch

2https://github.com/UppsalaNLP/
uuparser

based on LAS score on the dev set, using average
dev scores when training on more than one tree-
bank, and apply the model from this epoch to the
test data.

3.2 Data

We performed all experiments on UD version 2.1
treebanks (Nivre et al., 2017), using gold sentence
and word segmentation. We selected 9 languages,
based on the criteria that they should have at least
two treebanks with fully available training data
and a PUD test set. The sizes of the training cor-
pora for the 9 languages are shown in Table 1.
The situation is quite different across languages
with either treebanks of roughly the same size,
as for Spanish, or very skewed data sizes with a
mix of large and small treebanks, as for Czech.
In all cases we use all available data, except for
Czech, where we randomly choose a maximum of
15,000 sentences per treebank per epoch for effi-
ciency reasons.

4 Results

Table 1 shows the results on the test sets of each
training treebank and on the PUD test sets. Over-
all we observe substantial gains when using either
C+FT or TB-EMB. On average both C+FT and TB-
EMB beat SINGLE by 3.5 LAS points and CON-
CAT by over 2.0 LAS points when testing on the
test sets of the treebanks used for training, and
both methods beat both baselines by over 2.0 LAS
points for the PUD test set, if we consider the best
proxy treebank.

We see positive gains across many scenarios
when using C+FT and TB-EMB. First, there are
gains for both balanced and unbalanced data sizes,
as in the cases of Spanish and French, respectively.
Secondly, there are cases with different language
variants, as for Portuguese, and different domains,
as for Finnish where FTB only contains grammar
examples and TDT contains a mix of domains.
There are also cases of known differences in an-
notation choices, as for the Swedish treebanks.

When the data is very skewed, as for Russian,
the effect of adding a small treebank to a large
one is minor, as expected. While our results are
not directly comparable to the adversarial learning
in Sato et al. (2017) who used a different parser
and test set, the improvements of C+FT and TB-
EMB are typically at least on par with and often
larger than their improvements. While our im-
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Same treebank test set PUD test set
Language Treebank Size SINGLE CONCAT C+FT TB-EMB SINGLE CONCAT C+FT TB-EMB

Czech

PDT 68495 86.7 87.5+ 88.3∗ 87.2+ 81.7

81.7

81.6 81.2
CAC 23478 86.0 87.8+ 88.1+ 88.5+ 75.0 81.3 81.1
FicTree 10160 84.3 89.3+ 89.5+ 89.2+ 66.1 79.8 80.3
CLTT 860 72.5 86.2+ 86.9+ 86.0+ 42.1 80.8 80.9

English
EWT 12543 82.2 82.1 82.5 83.0 80.7

80.0
81.7∗ 81.9∗

LinES 2738 72.1 76.7+ 77.3+ 77.3+ 62.6 75.9 74.5
ParTUT 1781 80.5 83.5+ 85.4+ 85.7+ 68.0 78.1 76.9

Finnish FTB 14981 76.4× 74.4 80.1∗ 80.6∗ 46.7 73.0 54.6 53.1
TDT 12217 78.1× 70.6 80.6∗ 80.3∗ 78.6× 81.3∗ 80.9∗

French

FTB 14759 83.2 83.2 83.9∗ 84.1∗ 72.0

79.4

76.7 74.1
GSD 14554 84.5 84.1 85.3 85.6× 79.1 80.2∗ 80.3∗

Sequoia 2231 84.0 86.0+ 89.8∗ 89.1∗ 69.5 78.1 77.6
ParTUT 803 79.8 80.5 89.1∗ 90.3∗ 63.4 78.8 77.5

Italian
ISDT 12838 87.7 87.9 87.7 87.6 85.4

86.0
85.7 86.0

PoSTWITA 2808 71.4 76.7+ 76.8+ 77.0+ 68.5 85.7 85.3
ParTUT 1781 83.4 89.2+ 89.3+ 88.8+ 77.4 85.8+ 86.1+

Portuguese GSD 9664 88.3 87.3 89.0∗ 89.1∗ 74.0 76.8+ 75.2 74.9
Bosque 8331 84.7 84.2 86.2× 86.3∗ 75.2 77.5+ 77.6+

Russian SynTagRus 48814 90.2× 89.4 90.4× 90.4× 66.0 68.7 66.3 66.4
GSD 3850 74.7× 73.4 79.8∗ 80.8∗ 70.1× 77.6∗ 78.0∗

Spanish AnCora 14305 87.2× 86.2 87.5× 87.6× 75.2 79.9 77.7 76.4
GSD 14187 84.7 83.0 85.8× 86.2∗ 79.8 80.8+ 80.9∗

Swedish Talbanken 4303 79.6 79.1 80.2 80.6× 70.3 72.0+ 73.2∗ 73.6∗

LinES 2738 74.3 76.8 77.3+ 77.1+ 64.0 70.0 69.0
Average 81.4 82.7+ 84.9∗ 84.9∗ 77.9 77.5 80.0∗ 80.1∗

Table 1: LAS scores when testing on the training treebank and on the PUD test set with training treebank
as proxy. For each test set, the best result is marked with bold. Treebank size is given as number of
sentences in the training data. Statistically significant differences, at the 0.05-level, from SINGLE are
marked with +, from CONCAT with × and from both these systems with *. For clarity, significance for
PUD is only shown for the proxy treebank with the highest score.

provements are, unsurprisingly, largest for smaller
treebanks, we do also see some improvements for
large treebanks, in contrast to Sato et al. (2017).

Some variation can be observed between lan-
guages. In two cases, Italian ISDT and Czech
PUD, CONCAT performs marginally better than
the more advanced methods, but these differences
are not statistically significant. In several cases,
especially for small treebanks, CONCAT helps no-
ticeably over SINGLE, whereas it actually hurts for
Finnish and Russian. It is, however, nearly always
better to combine treebanks in some way than to
use only a single treebank. The differences be-
tween the two best methods, C+FT and TB-EMB

are typically small and not statistically significant,
with the exception of Czech PDT, and for some of
the small proxy treebanks for PUD.

The PUD test set can be seen as an example
of applying the proposed models to unseen data,
without matching training data. For all languages,
except Czech, the results for C+FT and TB-EMB

with the best proxy treebank are significantly bet-
ter than the equivalent result for SINGLE, and for

six of the nine languages, TB-EMB performs sig-
nificantly better than CONCAT. It is clear that
some treebanks are bad fits to PUD, most notably
Finnish FTB and Russian SynTagRus. However,
even when a treebank is a bad fit, TB-EMB and
C+FT can still improve substantially over using
only the single model for the treebank with the
best fit, as for Russian where there is a gain of
nearly 8 LAS points for TB-EMB over SINGLE,
when using GSD as a proxy. For some languages,
however, most notably Italian, the choice of proxy
treebank makes little difference for TB-EMB and
C+FT. It is also interesting to see that in many
cases it is not the largest treebank that is the best
proxy for PUD. The large difference in results for
PUD, depending on which treebank was used as
proxy, also seems to point at potential inconsisten-
cies in the UD annotation for several languages.

5 Error Analysis

To complement the LAS scores, we performed a
small manual error analysis for Swedish, looking
at the results for the PUD data, when translated
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Ett vittne berättade för polisen att offret hade attackerat den misstänkte i april .
A witness related for the-police that the-victim had attacked the suspected in April .

det nsubj case
obl

mark
nsubj

aux

ccomp

acl:relcl

det
obj

case

obl

punct

Figure 1: Example sentence from the Swedish PUD treebank with parsing error represented by dashed
arc. Translation: “A witness told the police that the victim had attacked the suspect in April.”

using different methods and proxy treebanks. The
two Swedish treebanks, Talbanken and LinES,
are known to differ in the annotation of a few
constructions, notably relative clauses and prepo-
sitions that take subordinate clauses as comple-
ments. The error analysis reveals that the treebank
embedding approach allows the model to learn the
distinctive “style” of each treebank, while con-
catenation, even with fine-tuning, results in more
inconsistencies in the output. A typical example
is shown in Figure 1. When trained with tree-
bank embeddings (and Talbanken as the proxy
treebank), the parser produces the correct tree de-
picted above the sentence. When trained with fine-
tuning instead, the parser incorrectly analyzes the
subordinate clause as a relative clause (as shown
by the dashed arc below the sentence), because
the mark relation is also used for relative pronouns
in the LinES treebank, despite the fact that such
structures never occur in Talbanken.

6 Conclusion and Future Work

We have conducted the first large-scale study on
how best to combine multiple treebanks for a sin-
gle language, when all treebanks use the same an-
notation scheme but may be heterogeneous with
respect to domain, genre, size, language variant,
annotation style, and quality, as is the case for
many languages in the UD project. We propose
using treebank embeddings, which represent the
treebank a sentence comes from. This method is
simple, effective, and flexible, and performs on par
with a previously suggested method of using con-
catenation in combination with fine-tuning, which,
however, requires longer training, and produces
more models.

We show that both these methods give substan-
tial gains for a variety of languages, including dif-
ferent scenarios with respect to the mix of avail-
able treebanks. Our results are also at least on

par with a previously proposed, but more complex
model, based on adversarial learning (Sato et al.,
2017). To improve parsing accuracy, it is cer-
tainly worth combining multiple treebanks, when
available, for a language, using more sophisticated
methods than simple concatenation. We recom-
mend the treebank embedding model due to its
simplicity.

The proposed methods work well with a
transition-based parser with BiLSTM feature ex-
tractors without POS-tags or pre-trained embed-
dings. In future work, we want to investigate how
these methods interact with other parsers, and if
the combination methods are useful also for tasks
like POS-tagging and morphology prediction.

We did not yet investigate methods for choos-
ing a proxy treebank when parsing new data. The
results on the PUD test set could indicate which
treebank is likely to be the best proxy for the lan-
guages explored here. Other factors that could be
taken into account when making this choice in-
clude degree of domain match and treebank qual-
ity. The user may also simply choose the de-
sired annotation style by selecting the correspond-
ing proxy treebank. For the TB-EMB approach, in-
terpolation of the various treebank embeddings is
another possibility.

In the current paper, we explore only the mono-
lingual case, using several treebanks for a sin-
gle language. Preliminary experiments show that
we can combine treebank and language embed-
dings and add other languages to the mix. Includ-
ing closely related languages typically gives addi-
tional gains, which we will explore in future work.
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Samardžić, Manuela Sanguinetti, Baiba Saulı̄te, Se-
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Abstract

Chart constraints, which specify at which
string positions a constituent may begin or
end, have been shown to speed up chart
parsers for PCFGs. We generalize chart
constraints to more expressive grammar
formalisms and describe a neural tagger
which predicts chart constraints at very
high precision. Our constraints accelerate
both PCFG and TAG parsing, and combine
effectively with other pruning techniques
(coarse-to-fine and supertagging) for an
overall speedup of two orders of magni-
tude, while improving accuracy.

1 Introduction

Effective and high-precision pruning is essential for
making statistical parsers fast and accurate. Exist-
ing pruning techniques differ in the source of pars-
ing complexity they tackle. Beam search (Collins,
2003) bounds the number of entries in each cell of
the parse chart; supertagging (Bangalore and Joshi,
1999; Clark and Curran, 2007; Lewis et al., 2016)
bounds the number of lexicon entries for each input
token; and coarse-to-fine parsing (Charniak et al.,
2006) blocks chart cells that were not useful when
parsing with a coarser-grained grammar.

One very direct method for limiting the chart
cells the parser considers is through chart con-
straints (Roark et al., 2012): a tagger first identifies
string positions at which constituents may begin or
end, and the chart parser may then only fill cells
which respect these constraints. Roark et al. found
that begin and end chart constraints accelerated
PCFG parsing by up to 8x. However, in their orig-
inal form, chart constraints are limited to PCFGs
and cannot be directly applied to more expressive
formalisms, such as tree-adjoining grammar (TAG,
Joshi and Schabes (1997)).

Chart constraints prune the ways in which
smaller structures can be combined into bigger
ones. Intuitively, they are complementary to su-
pertagging, which constrains lexical ambiguity in
lexicalized grammar formalisms such as TAG and
CCG, and has been shown to drastically improve
efficiency and accuracy for these (Bangalore et al.,
2009; Lewis et al., 2016; Kasai et al., 2017). For
CCG specifically, Zhang et al. (2010) showed that
supertagging combines favorably with chart con-
straints. To our knowledge, similar results for other
grammar formalisms are not available.

In this paper, we make two contributions. First,
we generalize chart constraints to more expressive
grammar formalisms by casting them in terms of
allowable parse items that should be considered
by the parser. The Roark chart constraints are the
special case for PCFGs and CKY; our view applies
to any grammar formalism for which a parser can
be specified in terms of parsing schemata. Second,
we present a neural tagger which predicts begin
and end constraints with an accuracy around 98%.
We show that these chart constraints speed up a
PCFG parser by 18x and a TAG chart parser by 4x.
Furthermore, chart constraints can be combined
effectively with coarse-to-fine parsing for PCFGs
(for an overall speedup of 70x) and supertagging for
TAG (overall speedup of 124x), all while improving
the accuracy over those of the baseline parsers. Our
code is part of the Alto parser (Gontrum et al.,
2017), available at http://bitbucket.org/
tclup/alto.

2 Generalized chart constraints

Roark et al. define begin and end chart constraints.
A begin constraint B for the string w is a set of
positions in w at which no constituent of width two
or more may start. Conversely, an end constraint E
describes where constituents may not end.

Roark et al. focus on speeding up the standard

626



i

j k

l

x1

v1

x2

v2

xn

vn
...

...

B E B E B E (b)(a)

Figure 1: (a) Chart-constraint tagger; (b) TAG ad-
junction.

CKY parser for PCFGs with chart constraints.
They do this by declaring a cell [i, k] of the CKY
parse chart as closed if i ∈ B or k ∈ E, and modi-
fying the CKY algorithm such that no nonterminals
may be entered into closed cells. They show this
to be very effective for PCFG parsing; but in its
reliance on CKY chart cells, their algorithm is not
directly applicable to other parsing algorithms or
grammar formalisms.

2.1 Allowable items
In this paper, we take a more general perspective
on chart constraints, which we express in terms of
parsing schemata (Shieber et al., 1995). A parsing
schema consists of a set I of items, which are de-
rived from initial items by applying inference rules.
Once all derivable items have been calculated, we
can calculate the best parse tree by following the
derivations of the goal items backwards.

Many parsing algorithms can be expressed in
terms of parsing schemata. For instance, the CKY
algorithm for CFGs uses items of the form [A, i, k]
to express that the substring from i to k can be
derived from the nonterminal A, and derives new
items out of old ones using the inference rule

[B, i, j] [C, j, k] A→ B C

[A, i, k]

The purpose of a chart constraint is to describe
a set of allowable items A ⊆ I. We restrict the
parsing algorithm so that the consequent item of an
inference rule may only be derived if it is allowable.
If all items that are required for the best derivation
are allowable, the parser remains complete, but may
become faster because fewer items are derived.

For the specific case of the CKY algorithm for
PCFGs, we can simulate the behavior of Roark
et al.’s algorithm by defining an item [A, i, k] as
allowable if i 6∈ B and k 6∈ E.

2.2 Chart constraints and binarization
One technical challenge regarding chart constraints
arises in the context of binarization. Chart con-

straints are trained to identify constituent bound-
aries in the original treebank, where nodes may
have more than two children. However, an efficient
chart parser for PCFG can combine only two adja-
cent constituents in each step. Thus, if the original
tree used the rule A → B C D, the parser needs
to first combine B with C, say into the substring
[i, k], and then the result with D (or vice versa).
This intermediate parsing item for [i, k] must be
allowable, even if k ∈ E, because it does not rep-
resent a real constituent; it is only a computation
step on the way towards one.

We solve this problem by keeping track in the
parse items whether they were an intermediate re-
sult caused by binarization, or a complete con-
stituent. This generalizes Roark et al.’s cells that
are “closed to complete constituents”. For instance,
when converting a PCFG grammar to Chomsky
normal form, one can distinguish the “new” non-
terminals generated by the CNF conversion from
those that were already present in the original gram-
mar. We can then let an item [A, i, k] be allowable
if i 6∈ B and either k 6∈ E or A is new.

2.3 Allowable items for TAG parsing
By interpreting chart constraints in terms of allow-
able parse items, we can apply them to a wide
range of grammar formalisms beyond PCFGs. We
illustrate this by defining allowable parse items for
TAG. Parse items for TAG (Shieber et al., 1995;
Kallmeyer, 2010) are of the form [X , i, j, k, l],
where i, l are string positions, and j, k are either
both string positions or both are NULL. X is a
complex representation of a position in an elemen-
tary tree, which we do not go into here; see the
literature for details. The item describes a deriva-
tion of the string from position i to l. If j and k
are NULL, then the derivation starts with an initial
tree and covers the entire substring. Otherwise, it
starts with an auxiliary tree, and there is a gap in
its string yield from j to k. Such an item will later
be adjoined at a node which covers the substring
from j to k using the following inference rule (see
Fig. 1b):

[X , i, j, k, l] [Y, j, r, s, k]
[Y ′, i, r, s, l]

Assuming begin and end constraints as above, we
define allowable TAG items as follows. First, an
item [X , i, j, k, l] is not allowable if i ∈ B or l ∈ E.
Second, if j and k are not NULL, then the item is
not allowable if j ∈ B or k ∈ E (else there will be
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no constituent from j to k at which the item could
be adjoined). Otherwise, the item is allowable.

2.4 Allowable states for IRTG parsing

Allowable items have a particularly direct interpre-
tation when parsing with Interpreted Regular Tree
Grammars (IRTGs, Koller and Kuhlmann (2011)),
a grammar formalism which generalizes PCFG,
TAG, and many others. Chart parsers for IRTG
describe substructures of the input object as states
of a finite tree automaton D. When we encode
a PCFG as an IRTG, these states are of the form
[i, k]; when we encode a TAG grammar, they are
of the form [i, j, k, l]. Thus chart constraints de-
scribe allowable states of this automaton, and we
can prune the chart simply by restricting D to rules
that use only allowable states.

In the experiments below, we use the Alto IRTG
parser (Gontrum et al., 2017), modified to imple-
ment chart constraints as allowable states. We con-
vert the PCFG and TAG grammars into IRTG gram-
mars and use the parsing algorithms of Groschwitz
et al. (2016): “condensed intersection” for PCFG
parsing and the “sibling-finder” algorithm for TAG.
Both of these implement the CKY algorithm and
compute charts which correspond to the parsing
schemata sketched above.

3 Neural chart-constraint tagging

Roark et al. predict the begin and end constraints
for a string w using a log-linear model with man-
ually designed features. We replace this with a
neural tagger (Fig. 1a), which reads the input sen-
tence token by token and jointly predicts for each
string position whether it is in B and/or E.

Technically, our tagger is a two-layer bidirec-
tional LSTM (Kiperwasser and Goldberg, 2016;
Lewis et al., 2016; Kummerfeld and Klein, 2017).
In each time step, it reads as input a pair xi =
(wi, pi) of one-hot encodings of a word wi and a
POS tag pi, and embeds them into dense vectors
(using pretrained GloVe word embeddings (Pen-
nington et al., 2014) for wi and learned POS tag
embeddings for pi). It then computes the proba-
bility that a constituent begins (ends) at position
i from the concatenation vi = vF2

i ◦ vB2
i of the

hidden states vF2 and vB2 of the second forward
and backward LSTM at position i:

P (B | w, i) = softmax(WB · vi + bB)
P (E | w, i) = softmax(WE · vi + bE)

B E
θ acc prec recall acc prec recall
0.5 97.6 97.4 97.8 98.1 98.7 98.7
0.9 96.7 98.8 95.2 97.2 99.4 96.7
0.99 93.7 99.6 87.9 93.0 99.7 90.5

Figure 2: Chart-constraint tagging accuracy.

We let B = {i | P (B|w, i) < 1 − θ}; that is, the
network predicts a begin constraint if the proba-
bility of B exceeds a threshold θ (analogously for
E). The threshold allows us to trade off precision
against recall; this is important because false pos-
itives can prevent the parser from discovering the
best tree.

4 Evaluation

We evaluated the efficacy of chart-constraint prun-
ing for PCFG and TAG parsing. All runtimes are
on an AMD Opteron 6380 CPU at 2.5 GHz, us-
ing Oracle Java version 8. See the Supplementary
Materials for details on the setup.

4.1 PCFG parsing
We trained the chart-constraint tagger on WSJ Sec-
tions 02–21. The tagging accuracy on WSJ Section
23 is shown in Fig. 2. As expected, an increasing
threshold θ increases precision and decreases re-
call. Precision and recall are comparable to Roark
et al.’s log-linear model for E. Our tagger achieves
94% recall for B at a precision of 99%, compared
to Roark et al.’s recall of just over 80% – with-
out the feature engineering effort required by their
system.1

We extracted a PCFG grammar from a right-
binarized version of WSJ Sections 02–21 using
maximum likelihood estimation, applying a hori-
zontal markovization of 2 and using POS tags as
terminal symbols to avoid sparse data issues. We
parsed Section 23 using a baseline parser which
does not prune the chart, obtaining a low f-score of
71, which is typical for such a simple PCFG. We
also parsed Section 23 with parsers which utilize
the chart constraints predicted by the tagger (on the
original sentences and gold POS tags) and the gold
chart constraints from Section 23. The results are
shown in Fig. 3; “time” is the mean time to com-
pute the chart for each sentence, in milliseconds.

Chart constraints by themselves speed the parser
up by factor of 18x at θ = 0.5; higher values of θ
did not increase the parsing accuracy further, but

1Note that the numbers are not directly comparable be-
cause Roark et al. evaluate their tagger on Section 24.
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Parser f-score time speedup % gold
Unpruned 71.0 2599 1.0x 4.4
CC (θ = 0.5) 75.0 143 18.2x 91.8
CC (gold) 77.6 143 18.2x 100.0
CTF 67.6 194 13.4x 20.1
CTF + CC (θ=0.5) 72.4 37 70.1x 94.3
CTF + CC (gold) 75.3 38 68.4x 100.0

Figure 3: Results for PCFG parsing.

yielded smaller speedups. This compares to an 8x
speedup in Roark et al.; the difference may be due
to the higher B recall of our neural tagger. Further-
more, when we combine chart constraints with the
coarse-to-fine parser of Teichmann et al. (2017),
using their threshold of 10−5 for CTF pruning, the
two pruning methods amplify each other, yielding
an overall speedup of up to 70x.2

4.2 TAG parsing

For the TAG experiments, we converted WSJ Sec-
tions 02–21 into a TAG corpus using the method
of Chen and Vijay-Shanker (2004). This method
sometimes adjoins multiple auxiliary trees to the
same node. We removed all but the last adjunction
at each node to make the derivations compatible
with standard TAG, shortening the sentences by
about 40% on average. To combat sparse data, we
replaced all numbers by NUMBER and all words
that do not have a GloVe embedding by UNK.

The neural chart-constraint tagger, trained on the
shortened corpus, achieves a recall of 93% for B
and 98% for E at 99% precision on the (shortened)
Section 00. We chose a value of θ = 0.95 for
the experiments, since in the case of TAG parsing,
false positive chart constraints frequently prevent
the parser from finding any parse at all, and thus
lower values of θ strongly degrade the f-scores.

We read a PTAG grammar (Resnik, 1992) with
4731 unlexicalized elementary trees off of the train-
ing corpus, binarized it, and used it to parse Section
00. This grammar struggles with unseen words,
and thus achieves a rather low f-score (see Fig. 4).
Chart constraints by themselves speed the TAG
parser up by 3.8x, almost matching the perfor-
mance of gold chart constraints. This improvement
is remarkable in that Teichmann et al. (2017) found
that coarse-to-fine parsing, which also prunes the
substrings a finer-grained parser considers, did not
improve TAG parsing performance.

2Our CTF numbers differ slightly from Teichmann et al.’s
because they only parse sentences with up to 40 words and
use a different binarization method.

Parser f-score time speedup % gold

bi
na

ri
ze

d Unpruned 51.4 9483 1.0x 5.3
CC (θ = 0.95) 53.6 2489 3.8x 76.7
CC (gold) 53.9 2281 4.2x 100.0
supertag (k = 3) 77.5 137 69.4x 29.7

un
bi

na
ri

ze
d

supertag (k = 3) 78.5 132 72.0x 30.2
. . . + CC (0.95) 78.4 76 124.3x 91.6
. . . + CC (0.99) 79.2 80 119.2x 86.1
. . . + CC (gold) 78.3 74 127.9x 100.0
. . . + B/E (0.95) 79.2 87 108.9x 74.5
. . . + B/E (0.8) 78.4 84 113.3x 76.9
supertag (k = 10) 79.4 1768 5.4x 1.5
. . . + CC (0.95) 80.6 265 35.8x 71.3
. . . + CC (0.99) 81.0 288 33.0x 60.3
. . . + CC (gold) 81.9 252 37.6x 100.0
. . . + B/E (0.95) 81.1 397 23.9x 35.6
. . . + B/E (0.8) 80.7 386 24.6x 38.6

Figure 4: Results for TAG parsing.

Supertagging. We then investigated the combi-
nation of chart constraints with a neural supertagger
along the lines of Lewis et al. (2016). We modified
the output layer of Fig. 1a such that it predicts the
supertag (= unlexicalized elementary tree) for each
token. Each input token is represented by a 200D
GloVe embedding.

To parse a sentence w of length n, we ran the
trained supertagger on w and extracted the top k
supertags for each token wi of w. We then ran the
Alto PTAG parser on an artificial string “1 2 . . .n”
and a sentence-specific TAG grammar which con-
tains, for each i, the top k elementary trees for wi,
lexicalized with the “word” i and weighted with the
probability of its supertag. This allowed us to use
the unmodified Alto parser, while avoiding the pos-
sible mixing of supertags for multiple occurrences
of the same word. We then obtained the best parse
trees for the original sentence w by replacing each
artificial token i in the parse tree by the original
token wi.

The sentence-specific grammars are so small that
we can parse the test corpus without binarizing
them. As Fig. 4 indicates, supertagging speeds up
the parser by 5x (k = 10) to 70x (k = 3); the
use of word embeddings boosts the coverage to
almost 100% and the f-score to around 80. Adding
chart constraints on top of supertagging further
improves the parser, yielding the best speed (at
k = 3) and accuracy (at k = 10). We achieve an
overall speedup of two orders of magnitude with a
drastic increase in accuracy.

Allowable items for TAG. Instead of requiring
that a TAG chart item is only allowable if neither
the string [i, l] nor its gap [j, k] violate a chart con-
straint (as in Section 2.3), one could instead adopt

629



a simpler definition by which a TAG chart item
is allowable if i and l satisfy the chart constraints,
regardless of the gap.3

We evaluated the original definition from Sec-
tion 2.3 (“CC”) against this baseline definition
(“B/E”). As the results in Fig. 4 indicate, the B/E
strategy achieves higher accuracy and lower pars-
ing speeds than the CC strategy at equal values of θ.
This is to be expected, because CC has more oppor-
tunities to prune chart items early, but false positive
chart constraints can cause it to overprune. When
θ is scaled so both strategies achieve the same ac-
curacy – i.e., B/E θ = 0.8 for CC θ = 0.95, or CC
θ = 0.99 for B/E θ = 0.95 –, CC is faster than
B/E. This suggests that imposing chart constraints
on the gap is beneficial and illustrates the flexibility
and power of the “admissible items” approach we
introduce here.

4.3 Discussion

The effect of using chart constraints is that the
parser considers fewer substructures of the input
object – potentially to the point that the asymptotic
parsing complexity is reduced below that of the
underlying grammar formalism (Roark et al., 2012).
In practice, we observe that the percentage of chart
items whose begin positions and end positions are
consistent with the gold standard tree (“% gold” in
the figures) is increased by CTF and supertagging,
indicating that these suppress the computation of
many spans that are not needed for the best tree.
However, chart constraints prune useless spans out
much more directly and completely, leading to a
further boost in parsing speed.

Because we remove multiple adjunctions in the
TAG experiment, most sentences in the corpus are
shorter than in the original. This might skew the
parsing results in favor of pruning techniques that
work best on short sentences. We checked this
by plotting sentence lengths against mean parsing
times for a number of pruning methods in Fig. 5
(supertagging with k = 10, chart constraints with
θ = 0.95). As the sentence length increases, pars-
ing times of supertagging together with chart con-
straints grows much more slowly than the other
methods. Thus we can expect the relative speedup
to increase for corpora of longer sentences.

3We thank an anonymous reviewer for suggesting this
comparison.

Figure 5: TAG parsing speed as a function of sen-
tence length.

5 Conclusion

Chart constraints, computed by a neural tagger, ro-
bustly accelerate parsers both for PCFGs and for
more expressive formalisms such as TAG. Even
highly effective pruning techniques such as CTF
and supertagging can be further improved through
chart constraints, indicating that they target differ-
ent sources of complexity.

By interpreting chart constraints in terms of al-
lowable chart items, we can apply them to arbi-
trary chart parsers, including ones for grammar
formalisms that describe objects other than strings,
e.g. graphs (Chiang et al., 2013; Groschwitz et al.,
2015). The primary challenge here is to develop
a high-precision tagger that identifies allowable
subgraphs, which requires moving beyond LSTMs.

An intriguing question is to what extent chart
constraints can speed up parsing algorithms that do
not use charts. It is known that chart constraints can
speed up context-free shift-reduce parsers (Chen
et al., 2017). It would be interesting to see how a
neural parser, such as (Dyer et al., 2016), would
benefit from chart constraints calculated by a neural
tagger.
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Abstract

Neural vector representations are ubiq-
uitous throughout all subfields of NLP.
While word vectors have been studied in
much detail, thus far only little light has
been shed on the properties of sentence
embeddings. In this paper, we assess to
what extent prominent sentence embed-
ding methods exhibit select semantic prop-
erties. We propose a framework that gen-
erate triplets of sentences to explore how
changes in the syntactic structure or se-
mantics of a given sentence affect the sim-
ilarities obtained between their sentence
embeddings.

1 Introduction

Neural vector representations have become ubiq-
uitous in all subfields of natural language process-
ing. For the case of word vectors, important prop-
erties of the representations have been studied, in-
cluding their linear substructures (Mikolov et al.,
2013; Levy and Goldberg, 2014), the linear super-
position of word senses (Arora et al., 2016b), and
the nexus to pointwise mutual information scores
between co-occurring words (Arora et al., 2016a).

However, thus far, only little is known about
the properties of sentence embeddings. Sentence
embedding methods attempt to encode a variable-
length input sentence into a fixed length vector. A
number of such sentence embedding methods have
been proposed in recent years (Le and Mikolov,
2014; Kiros et al., 2015; Wieting et al., 2015; Con-
neau et al., 2017; Arora et al., 2017).

Sentence embeddings have mainly been eval-
uated in terms of how well their cosine similar-
ities mirror human judgments of semantic relat-
edness, typically with respect to the SemEval Se-
mantic Textual Similarity competitions. The SICK

dataset (Marelli et al., 2014) was created to better
benchmark the effectiveness of different models
across a broad range of challenging lexical, syn-
tactic, and semantic phenomena, in terms of both
similarities and the ability to be predictive of en-
tailment. However, even on SICK, oftentimes very
shallow methods prove effective at obtaining fairly
competitive results (Wieting et al., 2015). Adi et
al. investigated to what extent different embed-
ding methods are predictive of i) the occurrence
of words in the original sentence, ii) the order of
words in the original sentence, and iii) the length
of the original sentence (Adi et al., 2016, 2017).
Belinkov et al. (2017) inspected neural machine
translation systems with regard to their ability to
acquire morphology, while Shi et al. (2016) inves-
tigated to what extent they learn source side syn-
tax. Wang et al. (2016) argue that the latent repre-
sentations of advanced neural reading comprehen-
sion architectures encode information about pred-
ication. Finally, sentence embeddings have also
often been investigated in classification tasks such
as sentiment polarity or question type classifica-
tion (Kiros et al., 2015). Concurrently with our re-
search, Conneau et al. (2018) investigated to what
extent one can learn to classify specific syntactic
and semantic properties of sentences using large
amounts of training data (100,000 instances) for
each property.

Overall, still, remarkably little is known about
what specific semantic properties are directly re-
flected by such embeddings. In this paper, we
specifically focus on a few select aspects of sen-
tence semantics and inspect to what extent promi-
nent sentence embedding methods are able to cap-
ture them. Our framework generates triplets of
sentences to explore how changes in the syntac-
tic structure or semantics of a given sentence af-
fect the similarities obtained between their sen-
tence embeddings.
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2 Analysis

To conduct our analysis, we proceed by generating
new phenomena-specific evaluation datasets.

Our starting point is that even minor alterations
of a sentence may lead to notable shifts in mean-
ing. For instance, a sentence S such as A rabbit
is jumping over the fence and a sentence S∗ such
as A rabbit is not jumping over the fence diverge
with respect to many of the inferences that they
warrant. Even if sentence S∗ is somewhat less
idiomatic than alternative wordings such as There
are no rabbits jumping over the fence, we never-
theless expect sentence embedding methods to in-
terpret both correctly, just as humans do.

Despite the semantic differences between the
two sentences due to the negation, we still expect
the cosine similarity between their respective em-
beddings to be fairly high, in light of their seman-
tic relatedness in touching on similar themes.

Hence, only comparing the similarity between
sentence pairs of this sort does not easily lend
itself to insightful automated analyses. Instead,
we draw on another key idea. It is common for
two sentences to be semantically close despite dif-
ferences in their specific linguistic realizations.
Building on the previous example, we can con-
struct a further contrasting sentence S+ such as A
rabbit is hopping over the fence. This sentence is
very close in meaning to sentence S, despite minor
differences in the choice of words. In this case, we
would want for the semantic relatedness between
sentences S and S+ to be assessed as higher than
between sentence S and sentence S∗.

We refer to this sort of scheme as sentence
triplets. We rely on simple transformations to gen-
erate several different sets of sentence triplets.

2.1 Sentence Modification Schemes

In the following, we first describe the kinds of
transformations we apply to generate altered sen-
tences. Subsequently, in Section 2.2, we shall con-
sider how to assemble such sentences into sen-
tence triplets of various kinds so as to assess differ-
ent semantic properties of sentence embeddings.

Not-Negation. We negate the original sentence
by inserting the negation marker not before the
first verb of the original sentence A to generate
a new sentence B, including contractions as ap-
propriate, or removing negations when they are al-
ready present, as in:

A: The young boy is climbing the wall made of
rock.

B: The young boy isn’t climbing the wall made
of rock.

Quantifier-Negation. We prepend the quantifier
expression there is no to original sentences begin-
ning with A to generate new sentences.

A: A girl is cutting butter into two pieces.
B: There is no girl cutting butter into two pieces.

Synonym Substitution. We substitute the verb
in the original sentence with an appropriate syn-
onym to generate a new sentence B.

A: The man is talking on the telephone.
B: The man is chatting on the telephone.

Embedded Clause Extraction. For those sen-
tences containing verbs such as say, think with em-
bedded clauses, we extract the clauses as the new
sentence.

A: Octel said the purchase was expected.
B: The purchase was expected.

Passivization. Sentences that are expressed in
active voice are changed to passive voice.

A: Harley asked Abigail to bake some muffins.
B: Abigail is asked to bake some muffins.

Argument Reordering. For sentences matching
the structure “〈somebody〉 〈verb〉 〈somebody〉 to
〈do something〉”, we swap the subject and object
of the original sentence A to generate a new sen-
tence B.

A: Matilda encouraged Sophia to compete in a
match.

B: Sophia encouraged Matilda to compete in a
match.

Fixed Point Inversion. We select a word in the
sentence as the pivot and invert the order of words
before and after the pivot. The intuition here is that
this simple corruption is likely to result in a new
sentence that does not properly convey the origi-
nal meaning, despite sharing the original words in
common with it. Hence, these sorts of corruptions
can serve as a useful diagnostic.

A: A dog is running on concrete and is holding
a blue ball

B: concrete and is holding a blue ball a dog is
running on.

633



2.2 Sentence Triplet Generation

Given the above forms of modified sentences,
we induce five evaluation datasets, consisting of
triplets of sentences as follows.

1. Negation Detection: Original sentence, Syn-
onym Substitution, Not-Negation

With this dataset, we seek to explore how
well sentence embeddings can distinguish
sentences with similar structure and opposite
meaning, while using Synonym Substitution
as the contrast set. We would want the simi-
larity between the original sentence and the
negated sentence to be lower than that be-
tween the original sentence and its synonym
version.

2. Negation Variants: Quantifier-Negation,
Not-Negation, Original sentence

In the second dataset, we aim to investigate
how well the sentence embeddings reflect
negation quantifiers. We posit that the sim-
ilarity between the Quantifier-Negation and
Not-Negation versions should be a bit higher
than between either the Not-Negation or the
Quantifier-Negation and original sentences.

3. Clause Relatedness: Original sentence, Em-
bedded Clause Extraction, Not-Negation

In this third set, we want to explore whether
the similarity between a sentence and its em-
bedded clause is higher than between a sen-
tence and its negation.

4. Argument Sensitivity: Original sentence,
Passivization, Argument Reordering

With this last test, we wish to ascertain
whether the sentence embeddings succeed
in distinguishing semantic information from
structural information. Consider, for in-
stance, the following triplet.

S: Lilly loves Imogen.
S+: Imogen is loved by Lilly.
S∗: Imogen loves Lilly.

Here, S and S+ mostly share the same mean-
ing, whereas S+ and S∗ have a similar word
order, but do not possess the same specific
meaning. If the sentence embeddings focus
more on semantic cues, then the similarity

between S and S+ ought to be larger than
that between S+ and S∗. If the sentence em-
bedding however is easily misled by match-
ing sentence structures, the opposite will be
the case.

5. Fixed Point Reorder: Original sentence, Se-
mantically equivalent sentence, Fixed Point
Inversion

With this dataset, our objective is to explore
how well the sentence embeddings account
for shifts in meaning due to the word order
in a sentence. We select sentence pairs from
the SICK dataset according to their seman-
tic relatedness score and entailment labeling.
Sentence pairs with a high relatedness score
and the Entailment tag are considered seman-
tically similar sentences. We rely on the Lev-
enshtein Distance as a filter to ensure a struc-
tural similarity between the two sentences,
i.e., sentence pairs whose Levenshtein Dis-
tance is sufficiently high are regarded as eli-
gible.

Additionally, we use the Fixed Point In-
version technique to generate a contrastive
sentence. The resulting sentence likely no
longer adequately reflects the original mean-
ing. Hence, we expect that, on average, the
similarity between the original sentence and
the semantically similar sentence should be
higher than that between the original sen-
tence and the contrastive version.

3 Experiments

We now proceed to describe our experimental
evaluation based on this paradigm.

3.1 Datasets

Using the aforementioned triplet generation meth-
ods, we create the evaluation datasets listed in Ta-
ble 1, drawing on source sentences from SICK,
Penn Treebank WSJ and MSR Paraphase cor-
pus. Although the process to modify the sen-
tences is automatic, we rely on human annotators
to double-check the results for grammaticality and
semantics. This is particularly important for syn-
onym substitution, for which we relied on Word-
Net (Fellbaum, 1998). Unfortunately, not all syn-
onyms are suitable as replacements in a given con-
text.
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Table 1: Generated Evaluation Datasets
Dataset # of Sentences

Negation Detection 674
Negation Variants 516
Clause Relatedness 567
Argument Sensitivity 445
Fixed Point Reorder 623

3.2 Embedding Methods
In our experiments, we compare three particularly
prominent sentence embedding methods:

1. GloVe Averaging (GloVe Avg.): The simple
approach of taking the average of the word
vectors for all words in a sentence. Although
this method neglects the order of words en-
tirely, it can fare reasonably well on some of
the most commonly invoked forms of evalua-
tion (Wieting et al., 2015; Arora et al., 2017).
Note that we here rely on regular unweighted
GloVe vectors (Pennington et al., 2014) in-
stead of fine-tuned or weighted word vectors.

2. Concatenated P-Mean Embeddings (P-
Means): Rücklé et al. (2018) proposed
concatenating different p-means of multiple
kinds of word vectors.

3. Sent2Vec: Pagliardini et al. (2018) proposed
a method to learn word and n-gram embed-
dings such that the average of all words and
n-grams in a sentence can serve as a high-
quality sentence vector.

4. The Skip-Thought Vector approach
(SkipThought) by Kiros et al. (2015)
applies the neighbour prediction intuitions
of the word2vec Skip-Gram model at the
level of entire sentences, as encoded and
decoded via recurrent neural networks. The
method trains an encoder to process an
input sentence such that the resulting latent
representation is optimized for predicting
neighbouring sentences via the decoder.

5. InferSent (Conneau et al., 2017) is based on
supervision from an auxiliary task, namely
the Stanford NLI dataset.

3.3 Results and Discussion
Negation Detection. Table 2 lists the results for
the Negation Detection dataset, where S, S+, S∗

refer to the original, Synonym Substitution, and
Not-Negation versions of the sentences, respec-
tively. For each of the considered embedding
methods, we first report the average cosine simi-
larity scores between all relevant sorts of pairings
of two sentences, i.e. between the original and the
Synonym-Substitution sentences (S and S+), be-
tween original and Not-Negated (S and S∗), and
between Not-Negated and Synonym-Substitution
(S+ and S∗). Finally, in the last column, we report
the Accuracy, computed as the percentage of sen-
tence triplets for which the proximity relationships
were as desired, i.e., the cosine similarity between
the original and synonym-substituted versions was
higher than the similarity between that same orig-
inal and its Not-Negation version.

On this dataset, we observe that GloVe Avg. is
more often than not misled by the introduction of
synonyms, although the corresponding word vec-
tor typically has a high cosine similarity with the
original word’s embedding. In contrast, both In-
ferSent and SkipThought succeed in distinguish-
ing unnegated sentences from negated ones.

Table 2: Evaluation of Negation Detection
S ∧ S+ S ∧ S∗ S+ ∧ S∗ Accuracy

Glove Avg 97.42% 98.80% 96.53% 13.06%
P Means 98.49% 99.47% 98.13% 6.82%
Sent2Vec 91.28% 93.50% 85.30% 41.99%
SkipThought 88.34% 81.95% 73.74% 78.19%
Infersent 94.74% 88.64% 85.15% 91.10%

Negation Variants. In Table 3, S, S+, S∗ re-
fer to the original, Not-Negation, and Quantifier-
Negation versions of a sentence, respectively. Ac-
curacy in this problem is defined as percentage of
sentence triples whose similarity between S+ and
S∗ is the higher than similarity between S and S+
and S+ and S∗ The results of both averaging of
word embeddings. and SkipThought are dismal in
terms of the accuracy. InferSent, in contrast, ap-
pears to have acquired a better understanding of
negation quantifiers, as these are commonplace in
many NLI datasets.

Clause Relatedness. In Table 4, S, S+, S∗ re-
fer to original, Embedded Clause Extraction, and
Not-Negation, respectively. Although not particu-
larly more accurate than random guessing, among
the considered approaches, Sent2vec fares best in
distinguishing the embedded clause of a sentence
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Table 3: Evaluation of Negation Variants
S ∧ S+ S ∧ S∗ S+ ∧ S∗ Accuracy

Glove Avg 96.91% 97.99% 97.05% 1.56%
P Means 98.66% 99.07% 98.49% 0.19%
Sent2Vec 90.53% 90.59% 86.87% 1.56%
SkipThought 71.94% 75.40% 73.11% 22.96%
InferSent 84.51% 88.45% 91.63% 85.78%

from a negation of said sentence.
For a detailed analysis, we can divide the sen-

tence triplets in this dataset into two categories as
exemplified by the following examples:

a) Copperweld said it doesn’t expect a pro-
tracted strike. — Copperweld said it expected a
protracted strike. — It doesn’t expect a protracted
strike.

b) ”We made our own decision,” he said. —
”We didn’t make our own decision,” he said. —
We made our own decision.

For cases resembling a), the average
SkipThought similarity between the sentence
and its Not-Negation version is 79.90%, while for
cases resembling b), it is 26.71%. The accuracy
of SkipThought on cases resembling a is 36.90%,
and the accuracy of SkipThought on cases like b
is only 0.75% It seems plausible that SkipThought
is more sensitive to the word order due to the
recurrent architecture. Infersent also achieved
better performance on sentences resembling
a) compared with sentences resembling b), its
accuracy on these two structures is 28.37% and
15.73% respectively.

Table 4: Evaluation of Clause Relatedness
S ∧ S+ S ∧ S∗ S+ ∧ S∗ Accuracy

Glove Avg 94.76% 99.14% 94.03% 4.58%
P Means 97.40% 99.61% 97.08% 2.46%
Sent2Vec 86.62% 92.40% 79.23% 32.92%
SkipThought 54.94% 84.27% 45.48% 19.51%
Infersent 89.47% 95.12% 85.22% 18.45%

Argument Sensitivity. In Table 5, S, S+, S∗

to refer to the original sentence, it Passivization
form, and the Argument Reordering version, re-
spectively. Although recurrent architectures are
able to consider the order of words, unfortu-
nately, none of the analysed approaches prove
adept at distinguishing the semantic information
from structural information in this case.

Fixed Point Reorder. In Table 6, S, S+, S∗

to refer to the original sentence, its semantically

Table 5: Evaluation of Argument Sensitivity
S ∧ S+ S ∧ S∗ S+ ∧ S∗ Accuracy

Glove Avg 96.17% 99.96% 96.17% 0.00%
P Means 97.94% 99.98% 97.94% 0.00%
Sent2Vec 89.11% 99.80% 89.13% 0.00%
SkipThought 83.44% 95.57% 82.32% 4.71%
Infersent 93.70% 97.98% 94.11% 2.24%

equivalent one and Fixed Point Inversion Ver-
sion. As Table 6 indicates, sentence embed-
dings based on means (GloVe averages), weighted
means (Sent2Vec), or concatenation of p-mean
embeddings (P-Means) are unable to distinguish
the fixed point inverted sentence from the se-
mantically equivalent one, as they do not encode
sufficient word order information into the sen-
tence embeddings. Sent2Vec does consider n-
grams but these do not affect the results suffi-
ciently.SkipThought and InferSent did well when
the original sentence and its semantically equiva-
lence share similar structure.

Table 6: Evaluation of Fixed Point Reorder
S ∧ S+ S ∧ S∗ S+ ∧ S∗ Accuracy

Glove avg 97.74% 100.00% 97.74% 0.00%
P-Means 98.68% 100.00% 98.68% 0.00%
Sent2Vec 92.88% 100.00% 92.88% 0.00%
SkipThought 89.83% 39.75% 37.28% 99.84%
InferSent 95.53% 94.26% 90.64% 72.92%

4 Conclusion

This paper proposes a simple method to inspect
sentence embeddings with respect to their se-
mantic properties, analysing three popular embed-
ding methods. We find that both SkipThought
and InferSent distinguish negation of a sentence
from synonymy. InferSent fares better at identi-
fying semantic equivalence regardless of the or-
der of words and copes better with quantifiers.
SkipThoughts is more suitable for tasks in which
the semantics of the sentence corresponds to its
structure, but it often fails to identify sentences
with different word order yet similar meaning. In
almost all cases, dedicated sentence embeddings
from hidden states a neural network outperform a
simple averaging of word embeddings.
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Abstract

We present the Supervised Directional Sim-
ilarity Network (SDSN), a novel neural ar-
chitecture for learning task-specific trans-
formation functions on top of general-
purpose word embeddings. Relying on
only a limited amount of supervision from
task-specific scores on a subset of the vo-
cabulary, our architecture is able to gener-
alise and transform a general-purpose dis-
tributional vector space to model the re-
lation of lexical entailment. Experiments
show excellent performance on scoring
graded lexical entailment, raising the state-
of-the-art on the HyperLex dataset by ap-
proximately 25%.

1 Introduction

Standard word embedding models (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,
2017) are based on the distributional hypothesis
by Harris (1954). However, purely distributional
models coalesce various lexico-semantic relations
(e.g., synonymy, antonymy, hypernymy) into a joint
distributed representation. To address this, previ-
ous work has focused on introducing supervision
into individual word embeddings, allowing them
to better capture the desired lexical properties. For
example, Faruqui et al. (2015) and Wieting et al.
(2015) proposed methods for using annotated lexi-
cal relations to condition the vector space and bring
synonymous words closer together. Mrkšić et al.
(2016) and Mrkšić et al. (2017) improved the op-
timisation function and introduced an additional
constraint for pushing antonym pairs further apart.
While these methods integrate hand-crafted fea-
tures from external lexical resources with distribu-
tional information, they improve only the embed-
dings of words that have annotated lexical relations

in the training resource.
In this work, we propose a novel approach

to leveraging external knowledge with general-
purpose unsupervised embeddings, focusing on the
directional graded lexical entailment task (Vulić
et al., 2017), whereas previous work has mostly
investigated simpler non-directional semantic simi-
larity tasks. Instead of optimising individual word
embeddings, our model uses general-purpose em-
beddings and optimises a separate neural compo-
nent to adapt these to the specific task. In particular,
our neural Supervised Directional Similarity Net-
work (SDSN) dynamically produces task-specific
embeddings optimised for scoring the asymmetric
lexical entailment relation between any two words,
regardless of their presence in the training resource.
Our results with task-specific embeddings indicate
large improvements on the HyperLex dataset, a
standard graded lexical entailment benchmark. The
model also yields improvements on a simpler non-
graded entailment detection task.

2 The Task of Grading Lexical
Entailment

In graded lexical entailment, the goal is to make
fine-grained assertions regarding the directional
hierarchical semantic relationships between con-
cepts (Vulić et al., 2017). The task is grounded in
theories of concept (proto)typicality and category
vagueness from cognitive science (Rosch, 1975;
Kamp and Partee, 1995), and aims at answering the
following question: “To what degree is X a type of
Y ?”. It quantifies the degree of lexical entailment
instead of providing only a binary yes/no decision
on the relationship between the concepts X and Y ,
as done in hypernymy detection tasks (Kotlerman
et al., 2010; Weeds et al., 2014; Santus et al., 2014;
Kiela et al., 2015; Shwartz et al., 2017).

Graded lexical entailment provides finer-grained
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Figure 1: Supervised directional similarity network
(SDSN) for grading lexical relations.

judgements on a continuous scale. For instance, the
word pair (girl → person) has been rated highly
with 9.85/10 by the HyperLex annotators. The
pair (guest→ person) has received a slightly lower
score of 7.22, as a prototypical guest is often a
person but there can be exceptions. In contrast, the
score for the reversed pair (person→ guest) is only
judged at 2.88.

As demonstrated by Vulić et al. (2017) and
Nickel and Kiela (2017), standard general-purpose
representation models trained in an unsupervised
way purely on distributional information are unfit
for this task and unable to surpass the performance
of simple frequency baselines (see also Table 1).
Therefore, in what follows, we describe a novel su-
pervised framework for constructing task-specific
word embeddings, optimised for the graded entail-
ment task at hand.

3 System Architecture

The network architecture can be seen in Figure 1.
The system receives a pair of words as input and
predicts a score that represents the strength of the
given lexical relation. In the graded entailment task,
we would like the model to return a high score for
(biology→ science), as biology is a type of science,
but a low score for (point→ pencil).

We start by mapping both input words to cor-
responding word embeddings w1 and w2. The

embeddings come from a standard distributional
vector space, pre-trained on a large unannotated
corpus, and are not fine-tuned during training. An
element-wise gating operation is then applied to
each word, conditioned on the other word:

g1 = σ(Wg1w1 + bg1) (1)

g2 = σ(Wg2w2 + bg2) (2)

w̃1 = w1 � g2 (3)

w̃2 = w2 � g1 (4)

where Wg1 and Wg2 are weight matrices, bg1 and
bg2 are bias vectors, σ() is the logistic function
and � indicates element-wise multiplication. This
operation allows the network to first observe the
candidate hypernym w2 and then decide which fea-
tures are important when analysing the hyponym
w1. For example, when deciding whether seal is
a type of animal, the model is able to first see the
word animal and then apply a mask that blocks
out features of the word seal that are not related
to nature. During development we found it best to
apply this gating in both directions, therefore we
condition each word based on the other.

Each of the word representations is then passed
through a non-linear layer with tanh activation,
mapping the words to a new space that is more
suitable for the given task:

m1 = tanh(Wm1w̃1 + bm1) (5)

m2 = tanh(Wm2w̃2 + bm2) (6)

where Wm1 , Wm2 , bm1 and bm2 are trainable pa-
rameters. The input embeddings are trained to pre-
dict surrounding words on a large unannotated cor-
pus using the skip-gram objective (Mikolov et al.,
2013), making the resulting vector space reflect
(a broad relation of) semantic relatedness but un-
suitable for lexical entailment (Vulić et al., 2017).
The mapping stage allows the network to learn a
transformation function from the general skip-gram
embeddings to a task-specific space for lexical en-
tailment. In addition, the two weight matrices en-
able asymmetric reasoning, allowing the network
to learn separate mappings for hyponyms and hy-
pernyms.

We then use a supervised composition function
for combining the two representations and return-
ing a confidence score as output. Rei et al. (2017)
described a generalised version of cosine similarity
for metaphor detection, constructing a supervised
operation and learning individual weights for each
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feature. We apply a similar approach here and mod-
ify it to predict a relation score:

d = m1 �m2 (7)

h = tanh(Whd+ bh) (8)

y = S · σ(a(Wyh+ by)) (9)

where Wh, bh, a, Wy and by are trainable parame-
ters. The annotated labels of lexical relations are
generally in a fixed range, therefore we base the
output function on logistic regression, which also
restricts the range of the predicted scores. by allows
for the function to be shifted as necessary and a
controls the slope of the sigmoid. S is the value
of the maximum score in the dataset, scaling the
resulting value to the correct range. The output y
represents the confidence that the two input words
are in a lexical entailment relation.

We optimise the model by minimising the mean
squared distance between the predicted score y and
the gold-standard score ŷ:

L =
∑

i

(yi − ŷi)2 (10)

Sparse Distributional Features (SDF). Word
embeddings are well-suited for capturing distri-
butional similarity, but they have trouble encod-
ing features such as word frequency, or the num-
ber of unique contexts the word has appeared in.
This information becomes important when decid-
ing whether one word entails another, as the system
needs to determine when a concept is more general
and subsumes the other.

We construct classical sparse distributional word
vectors and use them to extract 5 unique features
for every word pair, to complement the features
extracted from neural embeddings:

• Regular cosine similarity between the sparse
distributional vectors of both words.

• The sparse weighted cosine measure, de-
scribed by Rei and Briscoe (2014), comparing
the weighted ranks of different distributional
contexts. The measure is directional and as-
signs more importance to the features of the
broader term. We include this weighted cosine
in both directions.

• The proportion of shared unique contexts,
compared to the number of contexts for one
word. This measure is able to capture whether

one of the words appears in a subset of the
contexts, compared to the other word. This
feature is also directional and is therefore in-
cluded in both directions.

We build the sparse distributional word vectors
from two versions of the British National Corpus
(Leech, 1992). The first counts contexts simply
based on a window of size 3. The second uses a
parsed version of the BNC (Andersen et al., 2008)
and extracts contexts based on dependency rela-
tions. In both cases, the features are weighted us-
ing pointwise mutual information. Each of the five
features is calculated separately for the two vector
spaces, resulting in 10 corpus-based features. We
integrate them into the network by conditioning the
hidden layer h on this vector:

h = tanh(Whd+Wxx+ bh) (11)

where x is the feature vector of length 10 and Wx

is the corresponding weight matrix.

Additional Supervision (AS). Methods such as
retrofitting (Faruqui et al., 2015), ATTRACT-REPEL

(Mrkšić et al., 2017) and Poincaré embeddings
(Nickel and Kiela, 2017) make use of hand-
annotated lexical relations for optimising word rep-
resentations such that they capture the desired prop-
erties (so-called embedding specialisation). We
also experiment with incorporating these resources,
but instead of adjusting the individual word embed-
dings, we use them to optimise the shared network
weights. This teaches the model to find useful
regularities in general-purpose word embeddings,
which can then be equally applied to all words in
the embedding vocabulary.

For hyponym detection, we extract examples
from WordNet (Miller, 1995) and the Paraphrase
Database (PPDB 2.0) (Pavlick et al., 2015). We
use WordNet synonyms and hyponyms as positive
examples, along with antonyms and hypernyms as
negative examples. In order to prevent the network
from biasing towards specific words that have nu-
merous annotated relations, we limit them to a max-
imum of 10 examples per word. From the PPDB
we extract the Equivalence relations as positive
examples and the Exclusion relations as negative
word pairs.

The final dataset contains 102,586 positive pairs
and 42,958 negative pairs. However, only binary la-
bels are attached to all word pairs, whereas the task
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requires predicting a graded score. Initial experi-
ments with optimising the network to predict the
minimal and maximal possible score for these cases
did not lead to improved performance. Therefore,
we instead make use of a hinge loss function that
optimises the network to only push these examples
to the correct side of the decision boundary:

L =
∑

i

max((y − ŷ)2 − (
S

2
−R)2, 0) (12)

where S is the maximum score in the range and
and R is a margin parameter. By minimising Equa-
tion 12, the model is only updated based on ex-
amples that are not yet on the correct side of the
boundary, including a margin. This prevents us
from penalising the model for predicting a score
with slight variations, as the extracted examples
are not annotated with sufficient granularity. When
optimising the model, we first perform one pre-
training pass over these additional word pairs be-
fore proceeding with the regular training process.

4 Evaluation

SDSN Training Setup. As input to the SDSN net-
work we use 300-dimensional dependency-based
word embeddings by Levy and Goldberg (2014).
Layers m1 and m2 also have size 300 and layer h
has size 100. For regularisation, we apply dropout
to the embeddings with p = 0.5. The margin R
is set to 1 for the supervised pre-training stage.
The model is optimised using AdaDelta (Zeiler,
2012) with learning rate 1.0. In order to control
for random noise, we run each experiment with 10
different random seeds and average the results. Our
code and detailed configuration files will be made
available online.1

Evaluation Data. We evaluate graded lexical en-
tailment on the HyperLex dataset (Vulić et al.,
2017) which contains 2,616 word pairs in total
scored for the asymmetric graded lexical entail-
ment relation. Following a standard practice, we
report Spearman’s ρ correlation of the model output
to the given human-annotated scores. We conduct
experiments on two standard data splits for super-
vised learning: random split and lexical split. In the
random split the data is randomly divided into train-
ing, validation, and test subsets containing 1831,
130, and 655 word pairs, respectively. In the lexical

1http://www.marekrei.com/projects/sdsn

Random Lexical
DEV TEST DEV TEST

FR - 0.299 - 0.199
SGNS-DEPS - 0.250 - 0.253

WN-WuP - 0.212 - 0.261
SGNS-DEPS (concat+r) - 0.539 - 0.399
Paragram+CF (cos) - 0.346 - 0.453
Paragram+CF (mul+r) - 0.386 - 0.439

SDSN 0.708 0.658 0.547 0.475
SDSN+SDF 0.722 0.671 0.562 0.495
SDSN+SDF+AS 0.757 0.692 0.577 0.544

Table 1: Graded lexical entailment detection results
on the random and lexical splits of the HyperLex
dataset. We report Spearman’s ρ on both validation
and test sets.

split, proposed by Levy et al. (2015), there is no
lexical overlap between training and test subsets.
This prevents the effect of lexical memorisation,
as supervised models tend to learn an independent
property of a single concept in the pair instead of
learning a relation between the two concepts. In
this setup training, validation, and test sets contain
1133, 85, and 269 word pairs, respectively.2

Since plenty of related research on lexical en-
tailment is still focused on the simpler binary de-
tection of asymmetric relations, we also run ex-
periments on the large binary detection HypeNet
dataset (Shwartz et al., 2016), where the SDSN out-
put is converted to binary decisions. We again
report scores for both random and lexical split.

Results and Analysis. The results on two Hyper-
Lex splits are presented in Table 1, along with the
best configurations reported by Vulić et al. (2017).
We refer the interested reader to the original Hy-
perLex paper (Vulić et al., 2017) for a detailed
description of the best performing baseline models.

The Supervised Directional Similarity Network
(SDSN) achieves substantially better scores than all
other tested systems, despite relying on a much
simpler supervision signal. The previous top ap-
proaches, including the Paragram+CF embeddings,
make use of numerous annotations provided by
WordNet or similarly rich lexical resources, while
for SDSN and SDSN+SDF only use the designated
relation-specific training set and corpus statistics.
By also including these extra training instances
(SDSN+SDF+AS), we can gain additional perfor-

2Note that the lexical split discards all cross-set training-
test word pairs. Consequently, the number of instances in each
subset is lower than with the random split.
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Lexical split Random split
P R F P R F

Dual-T 70.5 78.5 74.3 93.3 82.6 87.6
HypeNet-hybrid 80.9 61.7 70.0 91.3 89.0 90.1
H-feature 70.0 96.4 81.1 92.6 85.0 88.6

SDSN 82.8 84.6 83.7 94.0 86.7 90.2
SDSN+SDF 82.6 86.0 84.2 92.8 88.7 90.7

Table 2: Results on the HypeNet binary hypernymy
detection dataset.

mance and push the correlation to 0.692 on the
random split and 0.544 on the lexical split of Hy-
perLex, an improvement of approximately 25% to
the standard supervised training regime.

In Table 3 we provide some example output from
the final SDSN+SDF+AS model. It is able to success-
fully assign a high score to (captain, officer) and
also identify with high confidence that wing is not
a type of airplane, even though they are semanti-
cally related. As an example of incorrect output,
the model fails to assign a high score to (prince,
royalty), possibly due to the usage patterns of these
words being different in context. In contrast, it as-
signs an unexpectedly high score to (kid, parent),
likely due to the high distributional similarity of
these words.

Glavaš and Ponzetto (2017) proposed a related
dual tensor model for the binary detection of asym-
metric relations (Dual-T). In order to compare our
system to theirs, we train our model on HypeNet
and convert the output to binary decisions. We
also compare SDSN to the best reported models of
Shwartz et al. (2016) and Roller and Erk (2016),
which combine distributional and pattern-based
information for hypernymy detection (HypeNet-
hybrid and H-feature, respectively).3 We do not
include additional WordNet and PPDB examples
in these experiments, as the HypeNet data already
subsumes most of them. As can be seen in Table 2,
our SDSN+SDF model achieves the best results also
on the HypeNet dataset, outperforming previous
models on both data splits.

5 Conclusion

We introduce a novel neural architecture for map-
ping and specialising a vector space based on lim-
ited supervision. While prior work has focused
only on optimising individual word embeddings
available in external resources, our model uses

3For more detail on the baseline models, we refer the
reader to the original papers.

S P

captain officer 8.22 8.17
celery food 9.3 9.43
horn bull 1.12 0.94
wing airplane 1.03 0.84

prince royalty 9.85 4.71
autumn season 9.77 3.69

kid parent 0.52 8.00
discipline punishment 7.7 3.32

Table 3: Example word pairs from the HyperLex
development set. S is the human-annotated score
in the HyperLex dataset. P is the predicted score
using the SDSN+SDF+AS model.

general-purpose embeddings and optimises a sep-
arate neural component to adapt these to the spe-
cific task, generalising to unseen data. The system
achieves new state-of-the-art results on the task
of scoring graded lexical entailment. Future work
could apply the model to other lexical relations or
extend it to cover multiple relations simultaneously.
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Abstract

Intelligent systems require common sense,
but automatically extracting this knowl-
edge from text can be difficult. We
propose and assess methods for extract-
ing one type of commonsense knowledge,
object-property comparisons, from pre-
trained embeddings. In experiments, we
show that our approach exceeds the ac-
curacy of previous work but requires sub-
stantially less hand-annotated knowledge.
Further, we show that an active learning
approach that synthesizes common-sense
queries can boost accuracy.

1 Introduction

Automatically extracting common sense from text
is a long-standing challenge in natural language
processing (Schubert, 2002; Van Durme and Schu-
bert, 2008; Vanderwende, 2005). As argued by
Forbes and Yejin (2017), typical language use
may reflect common sense, but the commonsense
knowledge itself is not often explicitly stated, due
to reporting bias (Gordon and Van Durme, 2013).
Thus, additional human knowledge or annotated
training data are often used to help systems learn
common sense.

In this paper, we study methods for reducing
the amount of human input needed to learn com-
mon sense. Specifically, we focus on learning
relative comparisons of (one-dimensional) object
properties, such as the fact that a cantaloupe is
more round than a hammer. Methods for learn-
ing this kind of common sense have been devel-
oped previously (e.g. Forbes and Choi, 2017), but
the best-performing methods in that previous work
requires dozens of manually-annotated frames for
each comparison property, to connect the property
to how it is indirectly reflected in text—e.g., if

text asserts that “x carries y,” this implies that x
is probably larger than y.

Our architecture for relative comparisons fol-
lows the zero-shot learning paradigm (Palatucci
et al., 2009). It takes the form of a neural network
that compares a projection of embeddings for each
of two objects (e.g. “elephant” and “tiger”) to the
embeddings for the two poles of the target dimen-
sion of comparison (e.g., “big” and ”small” for the
size property). The projected object embeddings
are trained to be closer to the appropriate pole, us-
ing a small training set of hand-labeled compar-
isons. Our experiments reveal that our architec-
ture outperforms previous work, despite using less
annotated data. Further, because our architecture
takes the property (pole) labels as arguments, it
can extend to the zero-shot setting in which we
evaluate on properties not seen in training. We
find that in zero-shot, our approach outperforms
baselines and comes close to supervised results,
but providing labels for both poles of the relation
rather than just one is important. Finally, because
the number of properties we wish to learn is large,
we experiment with active learning (AL) over a
larger property space. We show that synthesizing
AL queries can be effective using an approach that
explicitly models which comparison questions are
nonsensical (e.g., is Batman taller than Democ-
racy?). We release our code base and a new com-
monsense data set to the research community.1

2 Problem Definition and Methods

We define the task of comparing object properties
in two different ways: a three-way classification
task, and a four-way classification task. In the
three-way classification task, we want to estimate
the following conditional probability:

P (L|O1, O2, Property), L ∈ { < , > , ≈ }.

1https://github.com/yangyiben/PCE
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For example, Prob(An elephant is larger than a
dog) can be expressed as P (L = > |O1 =
”elephant”, O2 = ”dog”, Property = ”size”).
The three-way classification task has been ex-
plored in previous work (Forbes and Choi, 2017)
and is only performed on triples where both ob-
jects have the property, so that the comparison is
meaningful. In applications, however, we may not
know in advance which comparisons are meaning-
ful. Thus, we also define a four-way classification
task to include ”not applicable” as the fourth label,
so that inference can be performed on any object-
property triples. In the four-way task, the system
is tasked with identifying the nonsensical compar-
isons. Formally, we want to estimate the following
conditional probability:

P (L|O1, O2, Property), L∈{ < , > , ≈ , N/A }.

2.1 Three-way Model
For each comparison property, we pick an adjec-
tive and its antonym to represent the { < , > }
labels. For example, for the property size, we pick
”big” and ”small”. The adjective ”similar” serves
as the label for ≈ for all properties. Under this
framework, a relative comparison question, for in-
stance, ”Is a dog bigger than an elephant?”, can
be formulated as a quintuple query to the model,
namely {dog, elephant, small, similar, big}. De-
noting the word embeddings for tokens in a quin-
tuple query as X , Y , R<, R≈, R>, our three-way
model is defined as follows:

P (L = s|Q) = softmax(Rs · σ((X ⊕ Y )W )),

for s ∈ {<, >, ≈}, where Q is an quintuple
query, σ(·) is an activation function and W is a
learnable weight matrix. The symbol ⊕ represents
concatenation. We refer to this method as PCE
(Property Comparison from Embeddings) for the
3-way task. We also experiment with generat-
ing label representations from just a single ad-
jective (property) embedding R<, namely R≈ =
σ(R<W2), R> = σ(R<W3). We refer to this
simpler method as PCE(one-pole).

We note that in both the three- and four-way
settings, the question ”A>B?” is equivalent to
”B<A?”. We leverage this fact at test time by
feeding our network a reversed object pair, and
taking the average of the aligned network outputs
before the softmax layer to reduce prediction vari-
ance. We refer to our model without this technique
as PCE(no reverse).

The key distinction of our method is that it
learns a projection from the object word embed-
ding space to the label embedding space. This
allows the model to leverage the property label
embeddings to perform zero-shot prediction on
properties not observed in training. For example,
from a training example ”dogs are smaller than
elephants”, the model will learn a projection that
puts ”dogs” relatively closer to ”small,” and far
from ”big” and ”similar.” Doing so may also re-
sult in projecting ”dog” to be closer to ”light” than
to ”heavy,” such that the model is able to predict
”dogs are lighter than elephants” despite never be-
ing trained on any weight comparison examples.

2.2 Four-way Model
Our four-way model is the same as our three-way
model, with an additional module to learn whether
the comparison is applicable. Keeping the other
output nodes unchanged, we add an additional
component into the softmax layer to output the
probability of ”N/A”:

hx = σ(XWa), hy = σ(Y Wa),

Ai = hi · R> + hi · R<,

P (L = N/A |Q) ∝ exp(Ax + Ay).

2.3 Synthesis for Active Learning
We propose a method to synthesize informative
queries to pose to annotators, a form of active
learning (Settles, 2009). We use the common
heuristic that an informative training example will
have a high uncertainty in the model’s predictive
distribution. We adopt the confidence measure
(Culotta and McCallum, 2005) to access the un-
certainty of a given example:

Uncertainty(x) = 1 − max
y

P (y|x,Dtrain).

Good candidates for acquisition should have
high uncertainty measure, but we also want to
avoid querying outliers. As the vocabulary is fi-
nite, it is possible to evaluate the uncertainty mea-
sures for all possible inputs to synthesize the most
uncertain query. However, such a greedy policy is
expensive and prone to selecting outliers. Hence,
we adopt a sampling based synthesis strategy: at
each round, we generate one random object pair
per property, and query the one that achieves the
highest uncertainty measure.

A classical difficulty faced by synthesis ap-
proaches to active learning is that they may pro-
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duce unnatural queries that are difficult for a hu-
man to label (Baum and Lang, 1992). However,
our task formulation includes ”similar” and ”N/A”
classes that encompass many of the more difficult
or confusing comparisons, which we believe aids
the effectiveness of the synthesis approach.

3 Experiments

We now present our experimental results on both
the three-way and four-way tasks.

3.1 Data Sets

We test our three-way model on the VERB
PHYSICS data set from (Forbes and Choi, 2017).
As there are only 5 properties in VERB PHYSICS,
we also develop a new data set we call PROP-
ERTY COMMON SENSE. We select 32 com-
monsense properties to form our property set (e.g.,
value, roundness, deliciousness, intelligence, etc.).
We extract object nouns from the McRae Feature
Norms dataset (McRae et al., 2005) and add se-
lected named entities to form a object vocabulary
of 689 distinct objects. We randomly generate
3148 object-property triples, label them and re-
serve 45% of the data for the test set. We fur-
ther add 5 manually-selected applicable compar-
ison examples per property to our test set, in order
to make sure each property has some applicable
testing examples. To verify the labeling, we have a
second annotator redundantly label 200 examples
and find a Cohen’s Kappa of 0.64, which indicates
good annotator agreement (we analyze the source
of the disagreements in Section 4.1). The training
set is used for the passive learning and pool-based
active learning, and a human oracle provides la-
bels in the synthesis active learning setting.

3.2 Experimental Setup

We experiment with three types of embeddings:
GloVe, normalized 300-dimensional embeddings
trained on a corpus of 6B tokens (Penning-
ton et al., 2014) (the F&C method (Forbes and
Choi, 2017) uses the 100-dimensional version,
as it achieves the highest validation accuracy
for their methods); Word2vec, normalized 300-
dimensional embeddings trained on 100B tokens
(Mikolov et al., 2013); and LSTM, the normalized
1024-dimensional weight matrix from the softmax
layer of the Google 1B LSTM language model
(Jozefowicz et al., 2016).

For training PCE, we use an identity activa-
tion function and apply 50% dropout. We use the
Adam optimizer with default settings to train the
models for 800 epochs, minimizing cross entropy
loss. For zero-shot learning, we adopt a hold-one-
property-out scheme to test our models’ zero-shot
performance.

Finally, for active learning, we use Word2vec
embeddings. All the models are trained on 200
random training examples to warm up. We train
for 20 epochs after each label acquisition. To
smooth noise, we report the average of 20 differ-
ent runs of random (passive learning) and least
confident (LC) pool-based active learning (Cu-
lotta and McCallum, 2005) baselines. We report
the average of only 6 runs for an expected model
change (EMC) pool-based active learning (Cai
et al., 2013) baseline due to its high computational
cost, and of only 2 runs for our synthesis active
learning approach due to its high labeling cost.
The pool size is 1540 examples.

3.3 Results

In Table 1, we compare the performance of the
three-way PCE model against the existing state
of the art on the VERB PHYSICS data set. The
use of LSTM embeddings in PCE yields the best
accuracy for all properties. Across all embed-
ding choices, PCE performs as well or better
than F&C, despite the fact that PCE does not use
the annotated frames that F&C requires (approx-
imately 188 labels per property). Thus, our ap-
proach matches or exceeds the performance of
previous work using significantly less annotated
knowledge. The lower performance of ”no re-
verse” shows that the simple method of averaging
over the reversed object pair is effective.

Table 2 evaluates our models on properties not
seen in training (zero-shot learning). We compare
against a random baseline, and an Emb-Similarity
baseline that classifies based on the cosine simi-
larity of the object embeddings to the pole label
embeddings (i.e., without the projection layer in
PCE). PCE outperforms the baselines. Although
the one-pole method was shown to perform simi-
larly to the two-pole method for properties seen in
training (Table 1), we see that for zero-shot learn-
ing, using two poles is important.

In Table 3, we show that our four-way mod-
els with different embeddings beat both the ma-
jority and random baselines on the PROPERTY
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Model Development Test
size weight stren rigid speed overall size weight stren rigid speed overall

Majority 0.50 0.54 0.51 0.50 0.53 0.51 0.51 0.55 0.52 0.49 0.50 0.51
F&C 0.75 0.74 0.71 0.68 0.66 0.71 0.75 0.76 0.72 0.65 0.61 0.70

PCE(LSTM) 0.79 0.81 0.75 0.71 0.72 0.76 0.80 0.79 0.76 0.71 0.71 0.76
PCE(GloVe) 0.75 0.75 0.71 0.67 0.69 0.71 0.76 0.75 0.71 0.68 0.68 0.72

PCE(Word2vec) 0.76 0.76 0.73 0.70 0.68 0.73 0.76 0.76 0.73 0.68 0.66 0.72
PCE(one-pole) 0.80 0.81 0.77 0.65 0.72 0.75 0.79 0.79 0.77 0.65 0.72 0.75

PCE(no reverse) 0.72 0.74 0.71 0.67 0.67 0.70 0.73 0.75 0.72 0.65 0.68 0.71

Table 1: Accuracy on the VERB PHYSICS data set. PCE outperforms the F&C model from previous
work. PCE(one-pole) and PCE(no reverse) use LSTM embeddings.

Model Development Test
size weight stren rigid speed size weight stren rigid speed

Random 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Emb-Similarity 0.43 0.55 0.51 0.43 0.35 0.37 0.53 0.48 0.43 0.35
PCE(one-pole) 0.73 0.71 0.67 0.53 0.34 0.74 0.72 0.68 0.53 0.32

PCE 0.76 0.72 0.71 0.62 0.60 0.74 0.73 0.70 0.62 0.58

Table 2: Accuracy of zero-shot learning on the VERB PHYSICS data set(using LSTM embeddings).
PCE outperforms the baselines, and using both poles is important for accuracy.

Model Test
Random 0.25

Majority Class 0.51
PCE(GloVe) 0.63

PCE(Word2vec) 0.67
PCE(LSTM) 0.67

Table 3: Accuracy on the four-way task on the
PROPERTY COMMON SENSE data.

COMMON SENSE data. Here, the LSTM em-
beddings perform similarly to the Word2vec em-
beddings, perhaps because the PROPERTY COM-
MON SENSE vocabulary consists of less fre-
quent nouns than in VERB PHYSICS. Thus, the
Word2vec embeddings are able to catch up due to
their larger vocabulary and much larger training
corpus.

Finally, in Figure 1, we evaluate in the active
learning setting. The synthesis approach performs
best, especially later in training when the train-
ing pool for the pool-based methods has only un-
informative examples remaining. Figure 2 helps
explain the relative advantage of the synthesis ap-
proach: it is able to continue synthesizing infor-
mative (uncertain) queries throughout the entire
training run.

4 Discussion

4.1 Sources of annotator disagreement

As noted above, we found a “good” level of agree-
ment (Cohen’s Kappa of 0.64) for our PROPERTY
COMMON SENSE data, which is lower than one
might expect for task aimed at common sense. We

Figure 1: Test accuracy as a function of the num-
ber of queried training examples. The synthesis
approach performs best.

analyzed the disagreements and found that they
stem from two sources of subjectivity in the task.
The first is that different labelers may have differ-
ent thresholds for what counts as similar—a spi-
der and an ant might be marked similar in size
for one labeler, but not for another labeler. In
our data, 58% of the disagreements are cases in
which one annotator marks similar while the other
says not similar. The second is that different la-
belers have different standards for whether a com-
parison is N/A. For example, in our data set, one
labeler labels that a toaster is physically stronger
than alcohol, and the other labeler says the com-
parison is N/A. 37% of our disagreements are due
to this type of subjectivity. The above two types of
subjectivity account for almost all disagreements
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Figure 2: The uncertainty measure of each queried
training example. As training proceeds, the syn-
thesis approach continues to select more uncertain
examples.

(95%), and the remaining 5% are due to annota-
tion errors (one of the annotators makes mistake).

4.2 Model Interpretation

Since we adopt an identity activation function and
a single layer design, it is possible to simplify the
mathematical expression of our model to make it
more interpretable. After accounting for model
averaging, we have the following equality:

P (L =< |Q) ∝
exp(R< · ((X ⊕ Y )W ) + R> · ((Y ⊕ X)W ))

= exp(RT
<(XW1 + Y W2) + RT

>(Y W1 + XW2))

∝ exp((R< − R>)T (XW1 + XW2)),

where W = W1 ⊕ W2. So we can define a score
of ”R<” for a object with embedding X as the fol-
lowing:

score(X, R<) = (R< − R>)T (XW1 + XW2).

An object with a higher score for R< is more asso-
ciated with the R< pole than the R> one. For ex-
ample, score(”elephant”,”small”) represents how
small an elephant is—a larger score indicates a
smaller object. Table 4 shows smallness scores
for 5 randomly picked objects from the VERB
PHYSICS data set. PCE tends to assign higher
scores to the smaller objects in the set.

4.3 Sensitivity to pole labels

PCE requires labels for the poles of the target ob-
ject property. Table 5 presents a limited sensitivity

Object Smallness
restaurant 0.077

gully 0.416
lung 1.182
bow 4.036

scissors 14.492

Table 4: Scores of smallness for 5 randomly
picked objects in VERB PHYSICS data set

Word choice Trained Zero
fast vs. slow 0.71 0.58
speedy vs. slow 0.71 0.56
fast vs. plodding 0.72 0.48
speedy vs. plodding 0.72 0.51
big vs. small 0.80 0.74
large vs. small 0.80 0.76
big vs. little 0.80 0.71
large vs. little 0.80 0.69

Table 5: Trained and zero-shot accuracies for dif-
ferent word choices

analysis to pole labels, evaluating the test accu-
racy of PCE as the pole label varies among dif-
ferent combinations of synonyms for the size and
speed relations. We evaluate in both the trained
setting (comparable to the results in Table 1) and
the zero-shot setting (comparable to Table 2). We
see that the trained accuracy remains essentially
unchanged for different pole labels. In the zero-
shot setting, all combinations achieve accuracy
that beats the baselines in Table 2, but the accuracy
value is somewhat sensitive to the choice of pole
label. Exploring how to select pole labels and ex-
perimenting with richer pole representations such
as textual definitions are items of future work.

5 Conclusion

In this paper, we presented a method for extracting
commonsense knowledge from embeddings. Our
experiments demonstrate that the approach is ef-
fective at performing relative comparisons of ob-
ject properties using less hand-annotated knowl-
edge than in previous work. A synthesis active
learner was found to boost accuracy, and further
experiments with this approach are an item of fu-
ture work.
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Abstract

We create a new NLI test set that shows
the deficiency of state-of-the-art models in
inferences that require lexical and world
knowledge. The new examples are sim-
pler than the SNLI test set, containing sen-
tences that differ by at most one word
from sentences in the training set. Yet,
the performance on the new test set is sub-
stantially worse across systems trained on
SNLI, demonstrating that these systems
are limited in their generalization ability,
failing to capture many simple inferences.

1 Introduction

Recognizing textual entailment (RTE) (Dagan
et al., 2013), recently framed as natural language
inference (NLI) (Bowman et al., 2015) is a task
concerned with identifying whether a premise sen-
tence entails, contradicts or is neutral with the hy-
pothesis sentence. Following the release of the
large-scale SNLI dataset (Bowman et al., 2015),
many end-to-end neural models have been devel-
oped for the task, achieving high accuracy on the
test set. As opposed to previous-generation meth-
ods, which relied heavily on lexical resources,
neural models only make use of pre-trained word
embeddings. The few efforts to incorporate exter-
nal lexical knowledge resulted in negligible per-
formance gain (Chen et al., 2018). This raises
the question whether (1) neural methods are inher-
ently stronger, obviating the need of external lexi-
cal knowledge; (2) large-scale training data allows
for implicit learning of previously explicit lexical
knowledge; or (3) the NLI datasets are simpler
than early RTE datasets, requiring less knowledge.

1The contradiction example follows the assumption in
Bowman et al. (2015) that the premise contains the most
prominent information in the event, hence the premise can’t
describe the event of a man holding both instruments.

Premise/Hypothesis Label

The man is holding a saxophone
contradiction1

The man is holding an electric guitar

A little girl is very sad. entailmentA little girl is very unhappy.

A couple drinking wine neutralA couple drinking champagne

Table 1: Examples from the new test set.

In this paper we show that state-of-the-art NLI
systems are limited in their generalization ability,
and fail to capture many simple inferences that re-
quire lexical and world knowledge. Inspired by
the work of Jia and Liang (2017) on reading com-
prehension, we create a new NLI test set with ex-
amples that capture various kinds of lexical knowl-
edge (Table 1). For example, that champagne is
a type of wine (hypernymy), and that saxophone
and electric guitar are different musical instru-
ments (co-hyponyms). To isolate lexical knowl-
edge aspects, our constructed examples contain
only words that appear both in the training set and
in pre-trained embeddings, and differ by a single
word from sentences in the training set.

The performance on the new test set is substan-
tially worse across systems, demonstrating that the
SNLI test set alone is not a sufficient measure of
language understanding capabilities. Our results
are in line with Gururangan et al. (2018) and Po-
liak et al. (2018), who showed that the label can
be identified by looking only at the hypothesis and
exploiting annotation artifacts such as word choice
and sentence length.

Further investigation shows that what mostly
affects the systems’ ability to correctly predict
a test example is the amount of similar exam-
ples found in the training set. Given that train-
ing data will always be limited, this is a rather
inefficient way to learn lexical inferences, stress-
ing the need to develop methods that do this more
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effectively. Our test set can be used to evalu-
ate such models’ ability to recognize lexical infer-
ences, and it is available at https://github.
com/BIU-NLP/Breaking_NLI.

2 Background

NLI Datasets. The SNLI dataset (Stanford Nat-
ural Language Inference, Bowman et al., 2015)
consists of 570k sentence-pairs manually labeled
as entailment, contradiction, and neutral. Premises
are image captions from Young et al. (2014), while
hypotheses were generated by crowd-sourced
workers who were shown a premise and asked to
generate entailing, contradicting, and neutral sen-
tences. Workers were instructed to judge the re-
lation between sentences given that they describe
the same event. Hence, sentences that differ by a
single mutually-exclusive term should be consid-
ered contradicting, as in “The president visited Al-
abama” and “The president visited Mississippi”.
This differs from traditional RTE datasets, which
do not assume event coreference, and in which
such sentence-pairs would be considered neutral.

Following criticism on the simplicity of the
dataset, stemming mostly from its narrow domain,
two additional datasets have been collected. The
MultiNLI dataset (Multi-Genre Natural Language
Inference, Williams et al., 2018) was collected
similarly to SNLI, though covering a wider range
of genres, and supporting a cross-genre evaluation.
The SciTail dataset (Khot et al., 2018), created
from science exams, is somewhat different from
the two datasets, being smaller (27,026 examples),
and labeled only as entailment or neutral. The do-
main makes this dataset different in nature from
the other two datasets, and it consists of more fac-
tual sentences rather than scene descriptions.

Neural Approaches for NLI. Following the re-
lease of SNLI, there has been tremendous inter-
est in the task, and many end-to-end neural mod-
els were developed, achieving promising results.2

Methods are divided into two main approaches.
Sentence-encoding models (e.g. Bowman et al.,
2015, 2016; Nie and Bansal, 2017; Shen et al.,
2018) encode the premise and hypothesis individ-
ually, while attention-based models align words
in the premise with similar words in the hypoth-
esis, encoding the two sentences together (e.g.
Rocktäschel et al., 2016; Chen et al., 2017).

2See the SNLI leaderboard for a comprehensive list:
https://nlp.stanford.edu/projects/snli/.

External Lexical Knowledge. Traditional RTE
methods typically relied on resources such as
WordNet (Fellbaum, 1998) to identify lexical in-
ferences. Conversely, neural methods rely solely
on pre-trained word embeddings, yet, they achieve
high accuracy on SNLI.

The only neural model to date that incorpo-
rates external lexical knowledge (from WordNet)
is KIM (Chen et al., 2018), however, gaining only
a small addition of 0.6 points in accuracy on the
SNLI test set. This raises the question whether the
small performance gap is a result of the model not
capturing lexical knowledge well, or the SNLI test
set not requiring this knowledge in the first place.

3 Data Collection

We construct a test set with the goal of evaluating
the ability of state-of-the-art NLI models to make
inferences that require simple lexical knowledge.
We automatically generate sentence pairs (§3.1)
which are then manually verified (§3.2).

3.1 Generating Adversarial Examples
In order to isolate the lexical knowledge aspects,
the premises are taken from the SNLI training set.
For each premise we generate several hypotheses
by replacing a single word within the premise by
a different word. We also allow some multi-word
noun phrases (“electric guitar”) and adapt deter-
miners and prepositions when needed.

We focus on generating only entailment and
contradiction examples, while neutral examples
may be generated as a by-product. Entailment
examples are generated by replacing a word with
its synonym or hypernym, while contradiction ex-
amples are created by replacing words with mu-
tually exclusive co-hyponyms and antonyms (see
Table 1). The generation steps are detailed below.

Replacement Words. We collected the replace-
ment words using online resources for English
learning.3 The newly introduced words are all
present in the SNLI training set: from occur-
rence in a single training example (“Portugal”)
up to 248,051 examples (“man”), with a mean of
3,663.1 and a median of 149.5. The words are
also available in the pre-trained embeddings vo-
cabulary. The goal of this constraint is to isolate
lexical knowledge aspects, and evaluate the mod-
els’ ability to generalize and make new inferences
for known words.

3
www.enchantedlearning.com, www.smart-words.org
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SNLI Test New Test

Instances:
contradiction 3,236 7,164
entailment 3,364 982
neutral 3,215 47
Overall 9,815 8,193

Fleiss κ:
contradiction 0.77 0.61
entailment 0.69 0.90
Overall 0.67 0.61

Estimated human performance:
87.7% 94.1%

Table 2: Statistics of the test sets. 9,815 is the
number of samples with majority agreement in the
SNLI test set, whose full size is 9,824.

Replacement words are divided into topical cat-
egories detailed in Table 4. In several categories
we applied additional processing to ensure that ex-
amples are indeed mutually-exclusive, topically-
similar, and interchangeable in context. We in-
cluded WordNet antonyms with the same part-of-
speech and with a cosine similarity score above a
threshold, using GloVe (Pennington et al., 2014).
In nationalities and countries we focused on coun-
tries which are related geographically (Japan,
China) or culturally (Argentina, Spain).

Sentence-Pairs. To avoid introducing new in-
formation not present in the training data, we sam-
pled premises from the SNLI training set that con-
tain words from our lists, and generated hypothe-
ses by replacing the selected word with its replace-
ment. Some of the generated sentences may be un-
grammatical or nonsensical, for instance, when re-
placing Jordan with Syria in sentences discussing
Michael Jordan. We used Wikipedia bigrams4 to
discard sentences in which the replaced word cre-
ated a bigram with less than 10 occurrences.

3.2 Manual Verification
We manually verify the correctness of the au-
tomatically constructed examples using crowd-
sourced workers in Amazon Mechanical Turk. To
ensure the quality of workers, we applied a quali-
fication test and required a 99% approval rate for
at least 1,000 prior tasks. We assigned each anno-
tation to 3 workers.

Following the SNLI guidelines, we instructed
the workers to consider the sentences as describing
the same event, but we simplified the annotation
process into answering 3 simple yes/no questions:

1. Do the sentences describe the same event?
4
github.com/rmaestre/Wikipedia-Bigram-Open-Datasets

2. Does the new sentence (hypothesis) add new
information to the original sentence (premise)?

3. Is the new sentence incorrect/ungrammatical?
We then discarded any sentence-pair in which

at least one worker answered the third question
positively. If the answer to the first question was
negative, we considered the label as contradiction.
Otherwise, we considered the label as entailment
if the answer to the second question was negative
and neutral if it was positive. We used the major-
ity vote to determine the gold label.

The annotations yielded substantial agreement,
with Fleiss’ Kappa κ = 0.61 (Landis and Koch,
1977). We estimate human performance to 94.1%,
using the method described in Gong et al. (2018),
showing that the new test set is substantially easier
to humans than SNLI. Table 2 provides additional
statistics on the test set.5

4 Evaluation

4.1 Models
Without External Knowledge. We chose 3 rep-
resentative models in different approaches (sen-
tence encoding and/or attention): RESIDUAL-
STACKED-ENCODER (Nie and Bansal, 2017) is
a biLSTM-based single sentence-encoding model
without attention. As opposed to traditional multi-
layer biLSTMs, the input to each next layer is
the concatenation of the word embedding and
the summation of outputs from previous lay-
ers. ESIM (Enhanced Sequential Inference Model,
Chen et al., 2017) is a hybrid TreeLSTM-based
and biLSTM-based model. We use the biL-
STM model, which uses an inter-sentence atten-
tion mechanism to align words across sentences.
Finally, DECOMPOSABLE ATTENTION (Parikh
et al., 2016) performs soft alignment of words
from the premise to words in the hypothesis us-
ing attention mechanism, and decomposes the task
into comparison of aligned words. Lexical-level
decisions are merged to produce the final classifi-
cation. We use the AllenNLP re-implementation,6

which does not implement the optional intra-
sentence attention, and achieves an accuracy of
84.7% on the SNLI test set, comparable to 86.3%
by the original system.

5We note that due to its bias towards contradiction, the
new test set can neither be used for training, nor serve as a
main evaluation set for NLI. Instead, we suggest to use it in
addition to the original test set in order to test a model’s abil-
ity to handle lexical inferences.

6http://allennlp.org/models
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Model Train set SNLI test set New test set ∆

Decomposable Attention
(Parikh et al., 2016)

SNLI 84.7% 51.9% -32.8
MultiNLI + SNLI 84.9% 65.8% -19.1

SciTail + SNLI 85.0% 49.0% -36.0

ESIM (Chen et al., 2017)
SNLI 87.9% 65.6% -22.3

MultiNLI + SNLI 86.3% 74.9% -11.4
SciTail + SNLI 88.3% 67.7% -20.6

Residual-Stacked-Encoder
(Nie and Bansal, 2017)

SNLI 86.0% 62.2% -23.8
MultiNLI + SNLI 84.6% 68.2% -16.8

SciTail + SNLI 85.0% 60.1% -24.9

WordNet Baseline - - 85.8% -
KIM (Chen et al., 2018) SNLI 88.6% 83.5% -5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI,
SciTail), and tested on the original SNLI test set and the new test set.

We chose models which are amongst the best
performing within their approaches (excluding en-
sembles) and have available code. All models
are based on pre-trained GloVe embeddings (Pen-
nington et al., 2014), which are either fine-tuned
during training (RESIDUAL-STACKED-ENCODER

and ESIM) or stay fixed (DECOMPOSABLE AT-
TENTION). All models predict the label using a
concatenation of features derived from the sen-
tence representations (e.g. maximum, mean), for
example as in Mou et al. (2016). We use the rec-
ommended hyper-parameters for each model, as
they appear in the provided code.

With External Knowledge. We provide a sim-
ple WORDNET BASELINE, in which we classify
a sentence-pair according to the WordNet relation
that holds between the original word wp and the
replaced word wh. We predict entailment if wp is
a hyponym of wh or if they are synonyms, neutral
if wp is a hypernym of wh, and contradiction if wp
and wh are antonyms or if they share a common
hypernym ancestor (up to 2 edges). Word pairs
with no WordNet relations are classified as other.

We also report the performance of KIM

(Knowledge-based Inference Model, Chen et al.,
2018), an extension of ESIM with external knowl-
edge from WordNet, which was kindly provided
to us by Qian Chen. KIM improves the attention
mechanism by taking into account the existence
of WordNet relations between the words. The lex-
ical inference component, operating over pairs of
aligned words, is enriched with a vector encoding
the specific WordNet relations between the words.

4.2 Experimental Settings

We trained each model on 3 different datasets: (1)
SNLI train set, (2) a union of the SNLI train set

and the MultiNLI train set, and (3) a union of the
SNLI train set and the SciTail train set. The mo-
tivation is that while SNLI might lack the training
data needed to learn the required lexical knowl-
edge, it may be available in the other datasets,
which are presumably richer.

4.3 Results
Table 3 displays the results for all the models on
the original SNLI test set and the new test set. De-
spite the task being considerably simpler, the drop
in performance is substantial, ranging from 11 to
33 points in accuracy. Adding MultiNLI to the
training data somewhat mitigates this drop in ac-
curacy, thanks to almost doubling the amount of
training data. We note that adding SciTail to the
training data did not similarly improve the perfor-
mance; we conjecture that this stems from the dif-
ferences between the datasets.

KIM substantially outperforms the other neural
models, demonstrating that lexical knowledge is
the only requirement for good performance on the
new test set, and stressing the inability of the other
models to learn it. Both WordNet-informed mod-
els leave room for improvement: possibly due to
limited WordNet coverage and the implications of
applying lexical inferences within context.

5 Analysis

We take a deeper look into the predictions of the
models that don’t employ external knowledge, fo-
cusing on the models trained on SNLI.

5.1 Accuracy by Category
Table 4 displays the accuracy of each model per
replacement-word category. The neural models
tend to perform well on categories which are fre-
quent in the training set, such as colors, and badly
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Dominant
Label

Category Instances Example
Words

Decomposable
Attention ESIM Residual

Encoders
WordNet
Baseline KIM

Cont.

antonyms 1,147 loves - dislikes 41.6% 70.4% 58.2% 95.5% 86.5%
cardinals 759 five - seven 53.5% 75.5% 53.1% 98.6% 93.4%
nationalities 755 Greek - Italian 37.5% 35.9% 70.9% 78.5% 73.5%
drinks 731 lemonade - beer 52.9% 63.7% 52.0% 94.8% 96.6%
antonyms (WN) 706 sitting - standing 55.1% 74.6% 67.9% 94.5% 78.8%
colors 699 red - blue 85.0% 96.1% 87.0% 98.7% 98.3%
ordinals 663 fifth - 16th 2.1% 21.0% 5.4% 40.7% 56.6%
countries 613 Mexico - Peru 15.2% 25.4% 66.2% 100.0% 70.8%
rooms 595 kitchen - bathroom 59.2% 69.4% 63.4% 89.9% 77.6%
materials 397 stone - glass 65.2% 89.7% 79.9% 75.3% 98.7%
vegetables 109 tomato -potato 43.1% 31.2% 37.6% 86.2% 79.8%
instruments 65 harmonica - harp 96.9% 90.8% 96.9% 67.7% 96.9%
planets 60 Mars - Venus 31.7% 3.3% 21.7% 100.0% 5.0%

Ent. synonyms 894 happy - joyful 97.5% 99.7% 86.1% 70.5% 92.1%

total 8,193 51.9% 65.6% 62.2% 85.8% 83.5%

Table 4: The number of instances and accuracy per category achieved by each model.

on categories such as planets, which rarely occur
in SNLI. These models perform better than the
WordNet baseline on entailment examples (syn-
onyms), suggesting that they do so due to high
lexical overlap between the premise and the hy-
pothesis rather than recognizing synonymy. We
therefore focus the rest of the discussion on con-
tradiction examples.

5.2 Accuracy by Word Similarity

The accuracies for ordinals, nationalities and
countries are especially low. We conjecture that
this stems from the proximity of the contradict-
ing words in the embedding space. Indeed, the
Decomposable Attention model—which does not
update its embeddings during training—seems to
suffer the most.

Grouping its prediction accuracy by the cosine
similarity between the contradicting words reveals
a clear trend that the model errs more on contra-
dicting pairs with similar pre-trained vectors:7

Similarity 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Accuracy 46.2% 42.3% 37.5% 29.7% 20.2%

5.3 Accuracy by Frequency in Training

Models that fine-tune the word embeddings may
benefit from training examples consisting of test
replacement pairs. Namely, for a given replace-
ment pair (wp, wh), if many training examples la-
beled as contradiction contain wp in the premise
and wh in the hypothesis, the model may update
their embeddings to optimize predicting contradic-
tion. Indeed, we show that the ESIM accuracy on
test pairs increases with the frequency in which

7We ignore multi-word replacements in §5.2 and §5.3.

their replacement words appear in contradiction
examples in the training data:
Frequency 0 1-4 5-9 10-49 50-99 100+
Accuracy 40.2% 70.6% 91.4% 92.1% 97.5% 98.5%

This demonstrates that the model is capable of
learning lexical knowledge when sufficient train-
ing data is given, but relying on explicit training
examples is a very inefficient way of obtaining
simple lexical knowledge.

6 Conclusion

We created a new NLI test set with the goal of
evaluating systems’ ability to make inferences that
require simple lexical knowledge. Although the
test set is constructed to be much simpler than
SNLI, and does not introduce new vocabulary, the
state-of-the-art systems perform poorly on it, sug-
gesting that they are limited in their generalization
ability. The test set can be used in the future to as-
sess the lexical inference abilities of NLI systems
and to tease apart the performance of otherwise
very similarly-performing systems.

Acknowledgments

We would like to thank Qian Chen for evaluat-
ing KIM on our test set. This work was sup-
ported in part by the German Research Founda-
tion through the German-Israeli Project Coopera-
tion (DIP, grant DA 1600/1-1), an Intel ICRI-CI
grant, Theo Hoffenberg, and the Israel Science
Foundation grants 1951/17 and 1555/15. Vered is
also supported by the Clore Scholars Programme
(2017), and the AI2 Key Scientific Challenges
Program (2017).

654



References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and D. Christopher Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 632–642.
https://doi.org/10.18653/v1/D15-1075.

Samuel R Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers). volume 1, pages 1466–1477.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2018. Neural natural language
inference models enhanced with external knowl-
edge. In The 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). Mel-
bourne, Australia.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, Vancouver,
Canada, pages 1657–1668.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing textual entail-
ment: Models and applications. Synthesis Lectures
on Human Language Technologies 6(4):1–220.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Nat-
ural language inference over interaction space. In
International Conference on Learning Representa-
tions (ICLR).

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R Bowman, and
Noah A Smith. 2018. Annotation artifacts in natural
language inference data. In The 16th Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT). New Orleans,
Louisiana.

Robin Jia and Percy Liang. 2017. Adversarial ex-
amples for evaluating reading comprehension sys-
tems. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics, Copenhagen, Denmark, pages 2021–2031.
https://www.aclweb.org/anthology/D17-1215.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
SciTail: A textual entailment dataset from science
question answering. In The Thirty-Second AAAI

Conference on Artificial Intelligence (AAAI). New
Orleans, Louisiana.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics pages 159–174.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural language inference by
tree-based convolution and heuristic matching. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers). volume 2, pages 130–136.

Yixin Nie and Mohit Bansal. 2017. Shortcut-
stacked sentence encoders for multi-domain infer-
ence. arXiv preprint arXiv:1708.02312 .
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Abstract

Neural Machine Translation (NMT) is no-
torious for its need for large amounts of
bilingual data. An effective approach to
compensate for this requirement is Multi-
Task Learning (MTL) to leverage differ-
ent linguistic resources as a source of
inductive bias. Current MTL architec-
tures are based on the SEQ2SEQ transduc-
tion, and (partially) share different com-
ponents of the models among the tasks.
However, this MTL approach often suffers
from task interference, and is not able to
fully capture commonalities among sub-
sets of tasks. We address this issue by ex-
tending the recurrent units with multiple
blocks along with a trainable routing net-
work. The routing network enables adap-
tive collaboration by dynamic sharing of
blocks conditioned on the task at hand, in-
put, and model state. Empirical evaluation
of two low-resource translation tasks, En-
glish to Vietnamese and Farsi, show +1
BLEU score improvements compared to
strong baselines.

1 Introduction

Neural Machine Translation (NMT) has shown re-
markable progress in recent years. However, it re-
quires large amounts of bilingual data to learn a
translation model with reasonable quality (Koehn
and Knowles, 2017). This requirement can be
compensated by leveraging curated monolingual
linguistic resources in a multi-task learning frame-
work. Essentially, learned knowledge from auxil-
iary linguistic tasks serves as inductive bias for the
translation task to lead to better generalizations.

Multi-Task Learning (MTL) is an effective ap-
proach for leveraging commonalities of related

tasks to improve performance. Various recent
works have attempted to improve NMT by scaf-
folding translation task on a single auxiliary task
(Domhan and Hieber, 2017; Zhang and Zong,
2016; Dalvi et al., 2017). Recently, (Niehues
and Cho, 2017) have made use of several linguis-
tic tasks to improve NMT. Their method shares
components of the SEQ2SEQ model among the
tasks, e.g. encoder, decoder or the attention mech-
anism. However, this approach has two limita-
tions: (i) it fully shares the components, and (ii) the
shared component(s) are shared among all of the
tasks. The first limitation can be addressed using
deep stacked layers in encoder/decoder, and shar-
ing the layers partially (Zaremoodi and Haffari,
2018). The second limitation causes this MTL ap-
proach to suffer from task interference or inabil-
ity to leverages commonalities among a subset of
tasks. Recently, (Ruder et al., 2017) tried to ad-
dress this issue; however, their method is restric-
tive for SEQ2SEQ scenarios and does not consider
the input at each time step to modulate parameter
sharing.

In this paper, we address the task interference
problem by learning how to dynamically control
the amount of sharing among all tasks. We ex-
tended the recurrent units with multiple blocks
along with a routing network to dynamically con-
trol sharing of blocks conditioning on the task at
hand, the input, and model state. Empirical results
on two low-resource translation scenarios, English
to Farsi and Vietnamese, show the effectiveness of
the proposed model by achieving +1 BLEU score
improvement compared to strong baselines.

2 SEQ2SEQ MTL Using Recurrent Unit
with Adaptive Routed Blocks

Our MTL is based on the sequential encoder-
decoder architecture with the attention mecha-
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nism (Luong et al., 2015b; Bahdanau et al., 2014).
The encoder/decoder consist of recurrent units to
read/generate a sentence sequentially. Sharing the
parameters of the recurrent units among differ-
ent tasks is indeed sharing the knowledge for con-
trolling the information flow in the hidden states.
Sharing these parameters among all tasks may,
however, lead to task interference or inability to
leverages commonalities among subsets of tasks.
We address this issue by extending the recurrent
units with multiple blocks, each of which process-
ing its own information flow through the time. The
state of the recurrent unit at each time step is com-
posed of the states of these blocks. The recur-
rent unit is equipped with a routing mechanism to
softly direct the input at each time step to these
blocks (see Fig 1). Each block mimics an expert
in handling different kinds of information, coor-
dinated by the router. In MTL, the tasks can use
different subsets of these shared experts.

(Rosenbaum et al., 2018) uses a routing net-
work for adaptive selection of non-linear func-
tions for MTL. However, it is for fixed-size in-
puts based on a feed-forward architecture, and is
not applicable to SEQ2SEQ scenarios such as MT.
(Shazeer et al., 2017) uses Mixture-of-Experts
(feed-forward sub-networks) between stacked lay-
ers of recurrent units, to adaptively gate state in-
formation vertically. This is in contrast to our ap-
proach where the horizontal information flow is
adaptively modulated, as we would like to min-
imise the task interference in MTL.

Assuming there are n blocks in a recurrent unit,
we share n− 1 blocks among the tasks, and let the
last one to be task-specific1. Task-specific block
receives the input of the unit directly while shared
blocks are fed with modulated input by the routing
network. The state of the unit at each time-step
would be the aggregation of blocks’ states.

2.1 Routing Mechanism
At each time step, the routing network is responsi-
ble to softly forward the input to the shared blocks
conditioning on the input xt, and the previous hid-
den state of the unit ht−1 as follows:

st = tanh(Wx · xt +Wh · ht−1 + bs),
τt = softmax(Wτ · st + bτ ),

where W ’s and b’s are the parameters. Then,
the i-th shared block is fed with the input of the

1multiple recurrent units can be stacked on top of each
other to consist a multi-layer component
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Figure 1: High-level architecture of the proposed
recurrent unit with 3 shared blocks and 1 task-
specific.

unit modulated by the corresponding output of the
routing network x̃(i)

t = τt[i]xt where τt[i] is the
scalar output of the routing network for the i-th
block.

The hidden state of the unit is the concatena-
tion of the hidden state of the shared and task-
specific parts ht = [h

(shared)
t ;h

(task)
t ]. The state

of task-specific part is the state of the correspond-
ing block h(task)

t = h
(n+1)
t , and the state of the

shared part is the sum of states of shared blocks
weighted by the outputs of the routing network
h
(shared)
t =

∑n
i=1 τt[i]h

(i)
t .

2.2 Block Architecture

Each block is responsible to control its own flow of
information via a standard gating mechanism. Our
recurrent units are agnostic to the internal architec-
ture of the blocks; we use the gated-recurrent unit
(Cho et al., 2014) in this paper. For the i-th block
the corresponding equations are as follows:

z
(i)
t = σ(W (i)

z x̃
(i)
t +U (i)

z h
(i)
t−1 + b

(i)
z ),

r
(i)
t = σ(W (i)

r x̃
(i)
t +U (i)

r h
(i)
t−1 + b

(i)
r ),

h̃
(i)
t = tanh(W

(i)
h x̃

(i)
t +U

(i)
h h

(i)
t−1 + b

(i)
h ),

h
(i)
t = z

(i)
t � h

(i)
t−1 + (1− z(i)t )� h̃(i)

t .

2.3 Training Objective and Schedule.

The rest of the model is similar to attentional
SEQ2SEQ model (Luong et al., 2015b) which
computes the conditional probability of the tar-
get sequence given the source Pθθθ(y|x) =∏
j Pθθθ(yj |y<jx). For the case of training M + 1

SEQ2SEQ transduction tasks, each of which is as-
sociated with a training set Dm := {(xi,yi)}Nm

i=1,
the parameters of MTL architecture Θmtl =
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{Θm}Mm=0 are learned by maximizing the follow-
ing objective:

Lmtl(Θmtl) :=

M∑

m=0

γm
|Dm|

∑

(x,y)∈Dm

logPΘm(y|x)

where |Dm| is the size of the training set for them-
th task, and γm is responsible to balance the influ-
ence of tasks in the training objective. We explored
different values in preliminary experiments, and
found that for our training schedule γ = 1 for all
tasks results in the best performance. Generally, γ
is useful when the dataset sizes for auxiliary tasks
are imbalanced (our training schedule handles the
main task).

Variants of stochastic gradient descent (SGD)
can be used to optimize the objective function.
In our training schedule, we randomly select a
mini-batch from the main task (translation) and
another mini-batch from a randomly selected aux-
iliary task to make the next SGD update. Selecting
a mini-batch from the main task in each SGD up-
date ensures that its training signals are not washed
out by auxiliary tasks.

3 Experiments

3.1 Bilingual Corpora
We use two language-pairs, translating from En-
glish to Farsi and Vietnamese. We have chosen
them to analyze the effect of multi-task learning
on languages with different underlying linguistic
structures2. We apply BPE (Sennrich et al., 2016)
on the union of source and target vocabularies for
English-Vietnamese, and separate vocabularies for
English-Farsi as the alphabets are disjoined (30K
BPE operations). Further details about the corpora
and their pre-processing is as follows:

• The English-Farsi corpus has ∼105K sentence
pairs. It is assembled from English-Farsi paral-
lel subtitles from the TED corpus (Tiedemann,
2012), accompanied by all the parallel news
text in LDC2016E93 Farsi Representative Lan-
guage Pack from the Linguistic Data Consor-
tium. The corpus has been normalized using
the Hazm toolkit3. We have removed sentences
with more than 80 tokens in either side (before
applying BPE). 3k and 4k sentence pairs were
held out for the purpose of validation and test.

2English and Vietnamese are SVO, and Farsi is SOV.
3www.sobhe.ir/hazm

• The English-Vietnamese has ∼133K training
pairs. It is the preprocessed version of the
IWSLT 2015 translation task provided by (Lu-
ong and Manning, 2015). It consists of sub-
titles and their corresponding translations of a
collection of public speeches from TED and
TEDX talks. The “tst2012” and “tst2013” parts
are used as validation and test sets, respec-
tively. We have removed sentence pairs which
had more than 300 tokens after applying BPE
on either sides.

3.2 Auxiliary Tasks

We have chosen the following auxiliary tasks to
leverage the syntactic and semantic knowledge to
improve NMT:

Named-Entity Recognition (NER). It is ex-
pected that learning to recognize named-entities
help the model to learn translation pattern by
masking out named-entites. We have used the
NER data comes from the CONLL shared task.4

Sentences in this dataset come from a collection
of newswire articles from the Reuters Corpus.
These sentences are annotated with four types of
named entities: persons, locations, organizations
and names of miscellaneous entities.

Syntactic Parsing. By learning the phrase struc-
ture of the input sentence, the model would be able
to learn better re-ordering. Specially, in the case of
language pairs with high level of syntactic diver-
gence (e.g. English-Farsi). We have used Penn
Tree Bank parsing data with the standard split
for training, development, and test (Marcus et al.,
1993). We cast syntactic parsing to a SEQ2SEQ

transduction task by linearizing constituency trees
(Vinyals et al., 2015).

Semantic Parsing. Learning semantic parsing
helps the model to abstract away the meaning from
the surface in order to convey it in the target trans-
lation. For this task, we have used the Abstract
Meaning Representation (AMR) corpus Release
2.0 (LDC2017T10)5. This corpus contains natu-
ral language sentences from newswire, weblogs,
web discussion forums and broadcast conversa-
tions. We cast this task to a SEQ2SEQ transduc-
tion task by linearizing the AMR graphs (Konstas
et al., 2017).

4https://www.clips.uantwerpen.be/conll2003/ner
5https://catalog.ldc.upenn.edu/LDC2017T10
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English → Farsi English → Vietnamese
Dev Test Dev Test

Method PPL TER BLEU PPL TER BLEU PPL TER BLEU PPL TER BLEU
NMT 55.36 87.9 8.57 56.21 88.2 8.35 18.21 64.92 18.39 16.3 61.37 20.18

(Luong et al., 2015b)
MTL (Full) 47.43 85.92 8.97 48.23 87.3 8.73 14.56 61.52 20.55 12.5 57.6 22.6

(Niehues and Cho, 2017)
MTL (Partial) 42.6 80.16 10.58 43.09 81.94 10.54 13.32 59.55 22.2 11.34 55.84 24.65

(Zaremoodi and Haffari, 2018)
Our 37.95 76.30 12.06 38.57 78.18 11.95 12.38 58.52 23.06 10.52 54.33 25.65MTL (Routing)

Table 1: The performance measures of the baselines vs our MTL architecture on the bilingual datasets.

3.3 Models and Baselines
We have implemented the proposed MTL archi-
tecture along with the baselines in C++ using
DyNet (Neubig et al., 2017) on top of Mantis
(Cohn et al., 2016) which is an implementation
of the attentional SEQ2SEQ NMT model. For our
MTL architecture, we used the proposed recurrent
unit with 3 blocks in encoder and decoder. For the
fair comparison in terms the of number of parame-
ters, we used 3 stacked layers in both encoder and
decoder components for the baselines. We com-
pare against the following baselines:

• Baseline 1: The vanilla SEQ2SEQ model
(Luong et al., 2015a) without any auxiliary
task.

• Baseline 2: The MTL architecture proposed
in (Niehues and Cho, 2017) which fully
shares parameters in components. We have
used their best performing architecture with
our training schedule. We have extended
their work with deep stacked layers for the
sake of comparison.

• Baseline 3: The MTL architecture proposed
in (Zaremoodi and Haffari, 2018) which uses
deep stacked layers in the components and
shares the parameters of the top two/one
stacked layers among encoders/decoders of
all tasks6.

For the proposed MTL, we use recurrent units
with 400 hidden dimensions for each block. The
encoders and decoders of the baselines use GRU
units with 400 hidden dimensions. The attention
component has 400 dimensions. We use Adam
optimizer (Kingma and Ba, 2014) with the initial
learning rate of 0.003 for all the tasks. Learning

6In preliminary experiments, we have tried different shar-
ing scenarios and this one led to the best results.
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Figure 2: Average percentage of block usage for
each task.

rates are halved on the decrease in the performance
on the dev set of corresponding task. Mini-batch
size is set to 32, and dropout rate is 0.5. All mod-
els are trained for 50 epochs and the best models
are saved based on the perplexity on the dev set of
the translation task.

For each task, we add special tokens to the be-
ginning of source sequence (similar to (Johnson
et al., 2017)) to indicate which task the sequence
pair comes from.

We used greedy decoding to generate trans-
lation. In order to measure translation quality,
we use BLEU7 (Papineni et al., 2002) and TER
(Snover et al., 2006) scores.

3.4 Results and analysis

Table 1 reports the results for the baselines and
our proposed method on the two aforementioned
translation tasks. As expected, the performance of
MTL models are better than the baseline 1 (only
MT task). As seen, partial parameter sharing is
more effective than fully parameter sharing. Fur-
thermore, our proposed architecture with adaptive

7Using “multi-bleu.perl” script from Moses (Koehn et al.,
2007).
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sharing performs better than the other MTL meth-
ods on all tasks, and achieve +1 BLEU score im-
provements on the test sets. The improvements in
the translation quality of NMT models trained by
our MTL method may be attributed to less inter-
ference with multiple auxiliary tasks.

Figure 2 shows the average percentage of block
usage for each task in an MTL model with 3 shared
blocks, on the English-Farsi test set. We have ag-
gregated the output of the routing network for the
blocks in the encoder recurrent units over all the
input tokens. Then, it is normalized by dividing
on the total number of input tokens. Based on
Figure 2, the first and third blocks are more spe-
cialized (based on their usage) for the translation
and NER tasks, respectively. The second block is
mostly used by the semantic and syntactic parsing
tasks, so specialized for them. This confirms our
model leverages commonalities among subsets of
tasks by dedicating common blocks to them to re-
duce task interference.

4 Conclusions

We have presented an effective MTL approach
to improve NMT for low-resource languages,
by leveraging curated linguistic resources on the
source side. We address the task interference is-
sue in previous MTL models by extending the re-
current units with multiple blocks along with a
trainable routing network. Our experimental re-
sults on low-resource English to Farsi and Viet-
namese datasets, show +1 BLEU score improve-
ments compared to strong baselines.
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Abstract

Simultaneous interpretation, translation of
the spoken word in real-time, is both
highly challenging and physically de-
manding. Methods to predict interpreter
confidence and the adequacy of the in-
terpreted message have a number of po-
tential applications, such as in computer-
assisted interpretation interfaces or ped-
agogical tools. We propose the task of
predicting simultaneous interpreter perfor-
mance by building on existing methodol-
ogy for quality estimation (QE) of ma-
chine translation output. In experiments
over five settings in three language pairs,
we extend a QE pipeline to estimate in-
terpreter performance (as approximated by
the METEOR evaluation metric) and pro-
pose novel features reflecting interpreta-
tion strategy and evaluation measures that
further improve prediction accuracy.1

1 Introduction

Simultaneous Interpretation (SI) is an inherently
difficult task that carries significant cognitive and
attentional burdens. The role of the simultane-
ous interpreter is to accurately render the source
speech in a given target language in a timely and
precise manner. Interpreters employ a range of
strategies, including generalization and summa-
rization, to convey the source message as effi-
ciently and reliably as possible (He et al., 2016).
Unfortunately, the interpreter is pitched against the
limits of human memory and stamina, and after
only minutes of interpreting, the number of errors
made by an interpreter begins to increase exponen-
tially (Moser-Mercer et al., 1998).

1https://github.com/craigastewart/qe sim interp

Figure 1: Simultaneous interpretation scenarios

We examine the task of estimating simultaneous
interpreter performance: automatically predicting
when interpreters are interpreting smoothly and
when they are struggling. This has several im-
mediate potential applications, one of which being
in Computer-Assisted Interpretation (CAI). CAI is
quickly gaining traction in the interpreting com-
munity, with software products such as Interpret-
Bank (Fantinouli, 2016) deployed in interpreting
booths to provide live and interactive terminology
support. Figure 1(b) shows how this might work;
both the interpreter and the CAI system receive the
source message and the system displays assistive
information in the form of terminology and infor-
mational support.

While this might improve the quality of inter-
preter output, there is a danger that these sys-
tems will provide too much information and in-
crease the cognitive load imposed upon the in-
terpreter (Fantinouli, 2018). Intuitively, the ideal
level of support depends on current interpreter per-
formance. The system can minimize distraction
by providing assistance only when an interpreter
is struggling. This level of support could be mod-
erated appropriately if interpreter performance can
be accurately predicted. Figure 1(c) demonstrates
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how our proposed quality estimation (QE) system
receives and evaluates interpreter output, allowing
the CAI system to appropriately lower the amount
of information passed to the interpreter, maximiz-
ing the quality of interpreter output.

As a concrete method for estimating interpreter
performance, we turn to existing work on QE for
machine translation (MT) systems (Specia et al.,
2010, 2015), which takes in the source sentence
and MT-generated outputs and estimates a mea-
sure of quality. In doing so, we arrive at two natu-
ral research questions:

1. Do existing methods for performing QE on
MT output also allow for accurate estimation
of interpreter performance, despite the
inherent differences between MT and SI?

2. What unique aspects of the problem of in-
terpreter performance estimation, such as the
availability of prosody and other linguistic
cues, can be exploited to further improve the
accuracy of our predictions?

The remainder of the paper describes meth-
ods and experiments on English-Japanese (EN-
JA), English-French (EN-FR), and English-Italian
(EN-IT) interpretation data attempting to answer
these questions.

2 Quality Estimation

Blatz et al. (2004) first proposed the problem of
measuring the quality of MT output as a pre-
diction task, given that existing metrics such as
BLEU (Papineni et al., 2002) rely on the availabil-
ity of reference translations to evaluate MT output
quality, which aren’t always available. As such,
QE has since received widespread attention in the
MT community and since 2012 has been included
as a task in the Workshop on Statistical Machine
Translation (Callison-Burch et al., 2012), using
approaches ranging from linear classifiers (Ueff-
ing and Ney, 2007; Luong et al., 2014) to neural
models (Martins et al., 2016, 2017).

QuEst++ (Specia et al., 2015) is a well-known
QE pipeline that supports word-level, sentence-
level, and document-level QE. Its effectiveness
and flexibility make it an attractive candidate for
our proposed task. There are two main modules to
QuEst++: a feature extractor and a learning mod-
ule. The feature extractor produces an intermedi-
ate representation of the source and translation in

a continuous feature vector. The goal of the learn-
ing module, given a source and translation pair, is
to predict the quality of the translation, either as
a label or as a continuous value. This module is
trained on example translations that have an as-
signed score (such as BLEU) and then predicts the
score of a new example. QuEst++ offers a range of
learning algorithms but defaults to Support Vector
Regression for sentence-level QE.

3 Quality Estimation for Interpretation

The default, out-of-the-box, sentence-level fea-
ture set for QuEst++ includes seventeen features
such as number of tokens in source/target utter-
ances, average token length, n-gram frequency,
etc. (Specia et al., 2015). While this feature set
is effective for evaluation of MT output, SI out-
put is inherently different—full of pauses, hesita-
tions, paraphrases, re-orderings and repetitions. In
the following sections, we describe our methods to
adapt QE to handle these phenomena.

3.1 Interpretation-specific Features
To adapt QE to interpreter output, we augment the
baseline feature set with four additional types of
features that may indicate a struggling interpreter.

Ratio of pauses/hesitations/incomplete words:
Sridhar et al. (2013) propose that interpreters regu-
larly use pauses to gain more time to think and as a
cognitive strategy to manage memory constraints.
An increased number of hesitations or incomplete
words in interpreter output might indicate that an
interpreter is struggling to produce accurate out-
put. In our particular case, both corpora we use in
experiments are annotated for pauses and partial
renditions of words.

Ratio of non-specific words: Interpreters often
compress output by replacing or omitting com-
mon nouns to avoid specific terminology (Sridhar
et al., 2013), either to prevent redundancy or to
ease cognitive load. For example: “The chairman
explained the proposal to the delegates” might be
rendered in a target language as “he explained it to
them.” To capture this, we include a feature that
checks for words from a pre-determined seed list
of pronouns and demonstrative adjectives.

Ratio of ‘quasi-’cognates: In related language
pairs, often words of a similar root are ortho-
graphically similar, for example “artificial”(EN),
“artificiel”(FR) and “artificiale”(IT). Likewise in
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Japanese, words adapted from English are tran-
scribed in katakana script to indicate their foreign
origin. Transliterated words in interpreted speech
could represent facilitated translation by language
proximity, or an attempt to produce an approxima-
tion of a word that the interpreter did not know.
We include a feature that counts the number of
words that share at least 50% identical orthogra-
phy (for EN, FR, IT) or are rendered in the inter-
preter transcript in katakana (JA).

Ratio of number of words: We further include
three features from the bank of features provided
with QuEst++ that compare source and target
length and the amount of transcribed punctuation.
Information about utterance length makes sense in
an interpreting scenario, given the aforementioned
strategies of omission and compression of infor-
mation. A list, for example, may be compressed
to avoid redundancy or may be an erroneous omis-
sion (Barik, 1994).

3.2 Evaluation Metric

Novice interpreters are assessed for accuracy on
the number of omissions, additions and the in-
accurate renditions of lexical items and longer
phrases (Altman, 1994), but recovery of content
and correct terminology are highly valued. While
no large corpus exists that has been manually
annotated with these measures, they align with
the phenomena that MT evaluation tries to solve.
One important design decision is which evalua-
tion metric to target in our QE system. There is
an abundance of evaluation metrics available for
MT including WER (Su et al.), BLEU (Papineni
et al., 2002), NIST (Doddington, 2002) and ME-
TEOR (Denkowski and Lavie, 2014), all of which
compare the similarity between reference transla-
tions and translations. Interpreter output is fun-
damentally different from any reference that we
may use in evaluation because interpreters employ
a range of economizing strategies such as seg-
mentation, omission, generalization, and reformu-
lation (Riccardi, 2005). As such, measuring in-
terpretation quality by some metrics employed in
MT such as BLEU can result in artificially low
scores (Shimizu et al., 2013). To mitigate this, we
use METEOR, a more sophisticated MT evalua-
tion metric that considers paraphrases and content-
function word distinctions, and thus should be bet-
ter equipped to deal with the disparity between
MT and SI. Better handling of these divergences

for evaluation of interpreter output, or fine-grained
evaluation based on measures from interpretation
studies is an interesting direction for future work.

4 Data: Interpretation Corpora

For our EN-JA language data we train the pipeline
on combined data from seven TED Talks taken
from the NAIST TED SI corpus (Shimizu et al.,
2013). This corpus provides human transcribed SI
output from three interpreters of low, intermediate
and high levels of proficiency denoted B-rank, A-
rank and S-rank respectively, with 559 utterances
from each interpreter. The corpus also provides
written translations of the source speech, which
we use as reference translations when evaluating
interpreter output using METEOR.

Our EN-FR and EN-IT data are drawn from
the EPTIC corpus (Bernardini et al., 2016), which
provides source and interpreter transcripts for
speeches from the European Parliament (manu-
ally transcribed to include vocal expressions), as
well as translations of transcripts of the source
speech. The EN-FR and EN-IT datasets contain
739 and 731 utterances respectively. While the
EPTIC translations are accurate, they were created
from an official transcript that differs significantly
in register from the source speech. As a proxy
for our experiments, we generated translations of
the original speech using Google Translate, which
resulted in much more qualitatively reliable ME-
TEOR scores than the EPTIC translations.

5 Interpreter Quality Experiments

To evaluate the quality of our QE system, we use
the Pearson’s r correlation between the predicted
and true METEOR for each language pair (Gra-
ham, 2015). As a baseline, we train QuEst++ on
the out-of-the-box feature set (Section 2).

We use k-fold cross-validation individually on
EN-JA, EN-FR, and EN-IT source-interpreter lan-
guage pairs with a held-out development set and
test set for each fold. For each experiment setting,
we run the experiment for each fold (ten iterations
for each set) and evaluate average Pearson’s r cor-
relation on the development set.

In our baseline setting, we extract features
based on the default QuEst++ sentence-level fea-
ture set (baseline). We ablate baseline features
through cross-validation and remove features re-
lating to bigram and trigram frequency and punc-
tuation frequency in the source utterance, creating
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baseline trimmed proposed

EN-JA(B-rank) 0.514 0.542 0.593
EN-JA(A-rank) 0.487 0.554 0.591
EN-JA(S-rank) 0.325 0.334 0.411
EN-FR 0.631 0.610 0.691
EN-IT 0.569 0.543 0.576

Table 1: Pearson’s r scores for predicted ME-
TEOR for baseline, trimmed and proposed fea-
ture sets on the test set (highest accuracy for each
dataset indicated in bold).

a more effective trimmed model (trimmed).
Subsequently, we add our interpreter features

(Section 3.1) and arrive at our proposed model.
We then repeat each experiment using the test set
data from each fold and compare the resulting av-
erage Pearson’s r scores.

5.1 Results

Table 1 shows our primary results comparing the
baseline, trimmed, and proposed feature sets. Our
first observation is that, even with the baseline fea-
ture set, QE obtains respectable correlation scores,
proving feasible as a method to predict interpreter
performance. Our trimmed feature set performs
moderately better than the baseline for Japanese,
and slightly under-performs for French and Ital-
ian. However, our proposed, interpreter-focused
model out-performs in all language settings with
notable gains in particular for EN-JA(A-Rank)
(+0.104), achieving its highest accuracy on the
EN-FR dataset. Over all datasets, the gain of
the proposed model is statistically significant at
p < 0.05 by the pairwise bootstrap (Koehn, 2004).

5.2 Analysis

We further present two analyses: ablation on the
full feature set and a qualitative comparison. Ta-
ble 2 iteratively reduces the feature set by first re-
moving the ‘quasi-’cognate feature (w/o cog); spe-
cific words (w/o spec); pauses, hesitations, and
incomplete words (w/o fill); and finally sentence
length and punctuation differences (w/o length).

Relative difference in utterance length appears
to aid Japanese and French above other lan-
guages. Cognates are particularly useful in EN-FR
and EN-IT; this may be indicative of the corpus
domain (European Parliament proceedings being
rich in Latinate legalese) or of cognate frequency
in those languages. In Japanese, cognates were

w/o cog w/o spec w/o fill w/o len

EN-JA(B) +0.007 +0.012 +0.016 -0.053
EN-JA(A) -0.006 -0.011 -0.012 -0.031
EN-JA(S) -0.014 +0.001 +0.004 -0.061
EN-FR -0.013 -0.006 +0.007 -0.054
EN-IT -0.020 +0.002 +0.020 +0.005

Average -0.009 -0.001 +0.007 -0.039

Table 2: Relative difference in Pearson’s r scores
for ablated features after removing cognates,
specifics, fillers and length difference (cumulative
ablation, left to right). Omission and addition are
key features distinguishing SI from translation.

more indicative of quality for the more skilled in-
terpreter (S-rank). While pauses and hesitations
seem to aid the model in EN-FR and EN-IT, they
appear to hinder EN-JA.

Below is a qualitative EN-IT example with
a METEOR score of 0.079 (being substantially
lower than the average METEOR score across all
datasets; 0.262). The baseline model prediction
of its score was 0.127, and our proposed model,
0.066:

SOURCE: “Will the Parliament grant President Dilma
Rousseff, on the very first occasion after her groundbaking
groundbreaking election and for no sound formal reason, the
kind of debate that we usually reserve for people like Mu-
gabe? So, I ask you to remove Brazil from the agenda of the
urgencies.”

INTERP: “Ehm il Parlamento... dopo le elezioni... darem-
dar spazio a un dibattito sul ehm sul caso per esempio del
presidente Mugabe invece di mettere il Brasile all’ordine del
giorno?”

GLOSS: “Ehm the Parliament... after the elections... we’ll
gi- will give way to a debate on the ehm on the case for ex-
ample of President Mugabe instead of putting Brazil on the
agenda?”

Our model can better capture the issues in this
example because it has many interpretation spe-
cific qualities (pauses, compression, and omis-
sion). This is an example in which a CAI system
might offer assistance to an interpreter struggling
to produce an accurate rendition.

6 Conclusion

We introduce a novel and effective application of
QE to evaluate interpreter output, which could
be immediately applied to allow CAI systems
to selectively offer assistance to struggling inter-
preters. This work uses METEOR to evaluate in-
terpreter output, but creation of fine-grained mea-
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sures to evaluate various aspects of interpreter per-
formance is an interesting avenue for future work.
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Abstract

Previous approaches to multilingual se-
mantic dependency parsing treat lan-
guages independently, without exploiting
the similarities between semantic struc-
tures across languages. We experiment
with a new approach where we combine
resources from a pair of languages in the
CoNLL 2009 shared task (Hajič et al.,
2009) to build a polyglot semantic role la-
beler. Notwithstanding the absence of par-
allel data, and the dissimilarity in anno-
tations between languages, our approach
results in an improvement in SRL perfor-
mance on multiple languages over a mono-
lingual baseline. Analysis of the poly-
glot model shows it to be advantageous in
lower-resource settings.

1 Introduction

The standard approach to multilingual NLP is to
design a single architecture, but tune and train
a separate model for each language. While this
method allows for customizing the model to the
particulars of each language and the available data,
it also presents a problem when little data is avail-
able: extensive language-specific annotation is re-
quired. The reality is that most languages have
very little annotated data for most NLP tasks.

Ammar et al. (2016a) found that using train-
ing data from multiple languages annotated with
Universal Dependencies (Nivre et al., 2016), and
represented using multilingual word vectors, out-
performed monolingual training. Inspired by this,
we apply the idea of training one model on multi-
ple languages—which we call polyglot training—
to PropBank-style semantic role labeling (SRL).
We train several parsers for each language in the
CoNLL 2009 dataset (Hajič et al., 2009): a tra-

I  think Peter  even  made some deals   with   the gorillas .
O   O    A0  AM-ADV  O     O    A1  AM-ADV  O     O             

Pero  el    suizo   difícilmente atacará a  Rominger     en       la montaña . 
O   O  arg0-agt  argM-adv    O    O  arg1-pat argM-loc  O    O        

Četrans oslovil sedm velkých evropských výrobců nákladních automobilů.
O      O   RSTR   RSTR     RSTR        O        O         PAT     

Figure 1: Example predicate-argument structures
from English, Spanish, and Czech. Note that the
argument labels are different in each language.

ditional monolingual version, and variants which
additionally incorporate supervision from English
portion of the dataset. To our knowledge, this is
the first multilingual SRL approach to combine su-
pervision from several languages.

The CoNLL 2009 dataset includes seven differ-
ent languages, allowing study of trends across the
same. Unlike the Universal Dependencies dataset,
however, the semantic label spaces are entirely
language-specific, making our task more challeng-
ing. Nonetheless, the success of polyglot training
in this setting demonstrates that sharing of statisti-
cal strength across languages does not depend on
explicit alignment in annotation conventions, and
can be done simply through parameter sharing.
We show that polyglot training can result in better
labeling accuracy than a monolingual parser, es-
pecially for low-resource languages. We find that
even a simple combination of data is as effective
as more complex kinds of polyglot training. We
include a breakdown into label categories of the
differences between the monolingual and polyglot
models. Our findings indicate that polyglot train-
ing consistently improves label accuracy for com-
mon labels.
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# sentences
# sentences w/
1+ predicates # predicates

CAT 13200 12876 37444
CES 38727 38579 414133
DEU 36020 14282 17400
ENG 39279 37847 179014
JPN 4393 4344 25712
SPA 14329 13836 43828
ZHO 22277 21073 102827

Table 1: Train data statistics. Languages are indi-
cated with ISO 639-3 codes.

2 Data

We evaluate our system on the semantic role label-
ing portion of the CoNLL-2009 shared task (Hajič
et al., 2009), on all seven languages, namely Cata-
lan, Chinese, Czech, English, German, Japanese
and Spanish. For each language, certain tokens in
each sentence in the dataset are marked as pred-
icates. Each predicate takes as arguments other
words in the same sentence, their relationship
marked by labeled dependency arcs. Sentences
may contain no predicates.

Despite the consistency of this format, there are
significant differences between the training sets
across languages.1 English uses PropBank role la-
bels (Palmer et al., 2005). Catalan, Chinese, En-
glish, German, and Spanish include (but are not
limited to) labels such as “arg0-agt” (for “agent”)
or “A0” that may correspond to some degree to
each other and to the English roles. Catalan and
Spanish share most labels (being drawn from the
same source corpus, AnCora; Taulé et al., 2008),
and English and German share some labels. Czech
and Japanese each have their own distinct sets of
argument labels, most of which do not have clear
correspondences to English or to each other.

We also note that, due to semi-automatic pro-
jection of annotations to construct the German
dataset, more than half of German sentences do
not include labeled predicate and arguments. Thus
while German has almost as many sentences as
Czech, it has by far the fewest training examples
(predicate-argument structures); see Table 1.

1This is expected, as the datasets were annotated indepen-
dently under diverse formalisms and only later converted into
CoNLL format (Hajič et al., 2009).

3 Model

Given a sentence with a marked predicate, the
CoNLL 2009 shared task requires disambiguation
of the sense of the predicate, and labeling all its
dependent arguments. The shared task assumed
predicates have already been identified, hence we
do not handle the predicate identification task.

Our basic model adapts the span-based depen-
dency SRL model of He et al. (2017). This adap-
tation treats the dependent arguments as argument
spans of length 1. Additionally, BIO consistency
constraints are removed from the original model—
each token is tagged simply with the argument la-
bel or an empty tag. A similar approach has also
been proposed by Marcheggiani et al. (2017).

The input to the model consists of a sequence
of pretrained embeddings for the surface forms
of the sentence tokens. Each token embedding is
also concatenated with a vector indicating whether
the word is a predicate or not. Since the part-of-
speech tags in the CoNLL 2009 dataset are based
on a different tagset for each language, we do not
use these. Each training instance consists of the
annotations for a single predicate. These repre-
sentations are then passed through a deep, multi-
layer bidirectional LSTM (Graves, 2013; Hochre-
iter and Schmidhuber, 1997) with highway con-
nections (Srivastava et al., 2015).

We use the hidden representations produced
by the deep biLSTM for both argument labeling
and predicate sense disambiguation in a multitask
setup; this is a modification to the models of He
et al. (2017), who did not handle predicate senses,
and of Marcheggiani et al. (2017), who used a sep-
arate model. These two predictions are made inde-
pendently, with separate softmaxes over different
last-layer parameters; we then combine the losses
for each task when training. For predicate sense
disambiguation, since the predicate has been iden-
tified, we choose from a small set of valid predi-
cate senses as the tag for that token. This set of
possible senses is selected based on the training
data: we map from lemmatized tokens to predi-
cates and from predicates to the set of all senses of
that predicate. Most predicates are only observed
to have one or two corresponding senses, making
the set of available senses at test time quite small
(less than five senses/predicate on average across
all languages). If a particular lemma was not ob-
served in training, we heuristically predict it as
the first sense of that predicate. For Czech and
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Japanese, the predicate sense annotation is sim-
ply the lemmatized token of the predicate, giving
a one-to-one predicate-“sense” mapping.

For argument labeling, every token in the sen-
tence is assigned one of the argument labels, or
NULL if the model predicts it is not an argument
to the indicated predicate.

3.1 Monolingual Baseline

We use pretrained word embeddings as input to
the model. For each of the shared task languages,
we produced GloVe vectors (Pennington et al.,
2014) from the news, web, and Wikipedia text of
the Leipzig Corpora Collection (Goldhahn et al.,
2012).2 We trained 300-dimensional vectors, then
reduced them to 100 dimensions with principal
component analysis for efficiency.

3.2 Simple Polyglot Sharing

In the first polyglot variant, we consider multi-
lingual sharing between each language and En-
glish by using pretrained multilingual embed-
dings. This polyglot model is trained on the union
of annotations in the two languages. We use strati-
fied sampling to give the two datasets equal effec-
tive weight in training, and we ensure that every
training instance is seen at least once per epoch.

Pretrained multilingual embeddings. The ba-
sis of our polyglot training is the use of pretrained
multilingual word vectors, which allow represent-
ing entirely distinct vocabularies (such as the to-
kens of different languages) in a shared represen-
tation space, allowing crosslingual learning (Kle-
mentiev et al., 2012). We produced multilingual
embeddings from the monolingual embeddings
using the method of Ammar et al. (2016b): for
each non-English language, a small crosslingual
dictionary and canonical correlation analysis was
used to find a transformation of the non-English
vectors into the English vector space (Faruqui and
Dyer, 2014).

Unlike multilingual word representations, ar-
gument label sets are disjoint between language
pairs, and correspondences are not clearly de-
fined. Hence, we use separate label representa-
tions for each language’s labels. Similarly, while
(for example) ENG:look and SPA:mira may be se-
mantically connected, the senses look.01 and

2For English we used the vectors provided on the GloVe
website nlp.stanford.edu/projects/glove/.

mira.01 may not correspond. Hence, predicate
sense representations are also language-specific.

3.3 Language Identification

In the second variant, we concatenate a language
ID vector to each multilingual word embedding
and predicate indicator feature in the input repre-
sentation. This vector is randomly initialized and
updated in training. These additional parameters
provide a small degree of language-specificity in
the model, while still sharing most parameters.

3.4 Language-Specific LSTMs

This third variant takes inspiration from the “frus-
tratingly easy” architecture of Daume III (2007)
for domain adaptation. In addition to process-
ing every example with a shared biLSTM as in
previous models, we add language-specific biL-
STMs that are trained only on the examples be-
longing to one language. Each of these language-
specific biLSTMs is two layers deep, and is com-
bined with the shared biSLTM in the input to the
third layer. This adds a greater degree of language-
specific processing while still sharing representa-
tions across languages. It also uses the language
identification vector and multilingual word vectors
in the input.

4 Experiments

We present our results in Table 2. We observe that
simple polyglot training improves over monolin-
gual training, with the exception of Czech, where
we observe no change in performance. The lan-
guages with the fewest training examples (Ger-
man, Japanese, Catalan) show the most improve-
ment, while large-dataset languages such as Czech
or Chinese see little or no improvement (Figure 2).

The language ID model performs inconsis-
tently; it is better than the simple polyglot model
in some cases, including Czech, but not in all. The
language-specific LSTMs model performs best on
a few languages, such as Catalan and Chinese,
but worst on others. While these results may re-
flect differences between languages in the opti-
mal amount of crosslingual sharing, we focus on
the simple polyglot results in our analysis, which
sufficiently demonstrate that polyglot training can
improve performance over monolingual training.

We also report performance of state-of-the-art
systems in each of these languages, all of which
make explicit use of syntactic features, Marcheg-
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Figure 2: Improvement in absolute F1 with poly-
glot training with addition of English. Languages
are sorted in order of increasing number of predi-
cates in the training set.

giani et al. (2017) excepted. While this results in
better performance on many languages, our model
has the advantage of not relying on a syntactic
parser, and is hence more applicable to languages
with lower resources. However, the results suggest
that syntactic information is critical for strong per-
formance on German, which has the fewest pred-
icates and thus the least semantic annotation for
a semantics-only model to learn from. Neverthe-
less, our baseline is on par with the best published
scores for Chinese, and it shows strong perfor-
mance on most languages.

Label-wise results. Table 3 gives the F1 scores
for individual label categories in the Catalan and
Spanish datasets, as an illustration of the larger
trend. In both languages, we find a small but
consistent improvement in the most common label
categories (e.g., arg1 and argM ). Less common la-
bel categories are sensitive to small changes in per-
formance; they have the largest changes in F1 in
absolute value, but without a consistent direction.
This could be attributed to the addition of English
data, which improves learning of representations
that are useful for the most common labels, but
is essentially a random perturbation for the rarer
ones. This pattern is seen across languages, and
consistently results in overall gains from polyglot
training.

One exception is in Czech, where polyglot
training reduces accuracy on several common ar-
gument labels, e.g., PAT and LOC. While the ef-
fect sizes are small (consistent with other lan-
guages), the overall F1 score on Czech decreases
slightly in the polyglot condition. It may be that
the Czech dataset is too large to make use of the
comparatively small amount of English data, or
that differences in the annotation schemes prevent

effective crosslingual transfer.
Future work on language pairs that do not in-

clude English could provide further insights. Cata-
lan and Spanish, for example, are closely related
and use the same argument label set (both being
drawn from the AnCora corpus) which would al-
low for sharing output representations as well as
input tokens and parameters.

Polyglot English results. For each language
pair, we also evaluated the simple polyglot model
on the English test set from the CoNLL 2009
shared task (Table 4). English SRL consistently
benefits from polyglot training, with an increase
of 0.25–0.7 absolute F1 points, depending on the
language. Surprisingly, Czech provides the small-
est improvement, despite the large amount of data
added; the absence of crosslingual transfer in both
directions for the English-Czech case, breaking
the pattern seen in other languages, could there-
fore be due to differences in annotation rather than
questions of dataset size.

Labeled vs. unlabeled F1. Table 5 provides un-
labeled F1 scores for each language pair. As can
be seen here, the unlabeled F1 improvements are
generally positive but small, indicating that poly-
glot training can help both in structure prediction
and labeling of arguments. The pattern of seeing
the largest improvements on the languages with
the smallest datasets generally holds here: the
largest F1 gains are in German and Catalan, fol-
lowed by Japanese, with minimal or no improve-
ment elsewhere.

5 Related Work

Recent improvements in multilingual SRL can be
attributed to neural architectures. Swayamdipta
et al. (2016) present a transition-based stack
LSTM model that predicts syntax and semantics
jointly, as a remedy to the reliance on pipelined
models. Guo et al. (2016) and Roth and Lapata
(2016) use deep biLSTM architectures which use
syntactic information to guide the composition.
Marcheggiani et al. (2017) use a simple LSTM
model over word tokens to tag semantic depen-
dencies, like our model. Their model predicts a
token’s label based on the combination of the to-
ken vector and the predicate vector, and saw bene-
fits from using POS tags, both improvements that
could be added to our model. Marcheggiani and
Titov (2017) apply the recently-developed graph
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Model CAT CES DEU ENG JPN SPA ZHO

Marcheggiani et al. (2017) - 86.00 - 87.60 - 80.30 81.20
Best previously reported 80.32 86.00 80.10 89.10 78.15 80.50 81.20

Monolingual 77.31 84.87 66.71 86.54 74.99 75.98 81.26
+ ENG(simple polyglot) 79.08 84.82 69.97 – 76.00 76.45 81.50
+ ENG(language ID) 79.05 85.14 69.49 – 75.77 77.32 81.42
+ ENG(language-specific LSTMs) 79.45 84.78 68.30 – 75.88 76.86 81.89

Table 2: Semantic F1 scores (including predicate sense disambiguation) on the CoNLL 2009 dataset.
State of the art for Catalan and Japanese is from Zhao et al. (2009), for German and Spanish from Roth
and Lapata (2016), for English and Chinese from Marcheggiani and Titov (2017). Italics indicate use of
syntax.

arg0 arg1 arg2 arg3 arg4 argL argM
Gold label count (CAT) 2117 4296 1713 61 71 49 2968
Monolingual CAT F1 82.06 79.06 68.95 28.89 42.42 39.51 60.85
+ ENG improvement +2.75 +2.58 +4.53 +18.17 +9.81 +1.35 +1.10

Gold label count (SPA) 2438 4295 1677 49 82 46 3237
Monolingual SPA F1 82.44 77.93 70.24 28.89 41.15 22.50 58.89
+ ENG improvement +0.37 +0.43 +1.35 -3.40 -3.48 +4.01 +1.26

Table 3: Per-label breakdown of F1 scores for Catalan and Spanish. These numbers reflect labels for
each argument; the combination is different from the overall semantic F1, which includes predicate sense
disambiguation.

ENG-only +CAT +CES +DEU +JPN +SPA +ZHO

86.54 86.79 87.07 87.07 87.11 87.24 87.10

Table 4: Semantic F1 scores on the English test set for each language pair.

Model CAT CES DEU ENG JPN SPA ZHO

Monolingual 93.92 91.92 87.95 92.87 85.55 93.61 87.93
+ ENG 94.09 91.97 89.01 – 86.17 93.65 87.90

Table 5: Unlabeled semantic F1 scores on the CoNLL 2009 dataset.

convolutional networks to SRL, obtaining state of
the art results on English and Chinese. All of these
approaches are orthogonal to ours, and might ben-
efit from polyglot training.

Other polyglot models have been proposed for
semantics. Richardson et al. (2018) train on mul-
tiple (natural language)-(programming language)
pairs to improve a model that translates API text
into code signature representations. Duong et al.
(2017) treat English and German semantic pars-
ing as a multi-task learning problem and saw im-
provement over monolingual baselines, especially
for small datasets. Most relevant to our work is
Johannsen et al. (2015), which trains a polyglot

model for frame-semantic parsing. In addition to
sharing features with multilingual word vectors,
they use them to find word translations of target
language words for additional lexical features.

6 Conclusion

In this work, we have explored a straightforward
method for polyglot training in SRL: use multi-
lingual word vectors and combine training data
across languages. This allows sharing without
crosslingual alignments, shared annotation, or par-
allel data. We demonstrate that a polyglot model
can outperform a monolingual one for semantic
analysis, particularly for languages with less data.
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Abstract

With the development of several multilin-
gual datasets used for semantic parsing,
recent research efforts have looked into the
problem of learning semantic parsers in a
multilingual setup (Duong et al., 2017; Su-
santo and Lu, 2017a). However, how to
improve the performance of a monolingual
semantic parser for a specific language by
leveraging data annotated in different lan-
guages remains a research question that is
under-explored. In this work, we present
a study to show how learning distributed
representations of the logical forms from
data annotated in different languages can
be used for improving the performance of
a monolingual semantic parser. We ex-
tend two existing monolingual semantic
parsers to incorporate such cross-lingual
distributed logical representations as fea-
tures. Experiments show that our proposed
approach is able to yield improved seman-
tic parsing results on the standard multilin-
gual GeoQuery dataset.

1 Introduction

Semantic parsing, one of the classic tasks in nat-
ural language processing (NLP), has been ex-
tensively studied in the past few years (Zettle-
moyer and Collins, 2005; Wong and Mooney,
2006, 2007; Liang et al., 2011; Kwiatkowski et al.,
2011; Artzi et al., 2015). With the development of
datasets annotated in different languages, learning
semantic parsers from such multilingual datasets
also attracted attention of researchers (Susanto and
Lu, 2017a). However, how to make use of such
cross-lingual data to perform cross-lingual seman-
tic parsing – using data annotated for one language
to help improve the performance of another lan-

QUERY : answer (RIVER)

RIVER: exclude (RIVER, RIVER)

RIVER : traverse (STATE)

STATE : stateid (STATENAME)

STATENAME : (′texas′)

RIVER : state (all)

English: which rivers do not run through texas ?
German: welche flüsse fliessen nicht durch texas ?

Figure 1: An example of two semantically equiv-
alent sentences (below) and their tree-shaped se-
mantic representation (above).

guage remains a research question that is largely
under-explored.

Prior work (Chan et al., 2007) shows that se-
mantically equivalent words coming from differ-
ent languages may contain shared semantic level
information, which will be helpful for certain se-
mantic processing tasks. In this work, we pro-
pose a simple method to learn the distributed rep-
resentations for output structured semantic repre-
sentations which allow us to capture cross-lingual
features. Specifically, following previous work
(Wong and Mooney, 2006; Jones et al., 2012; Su-
santo and Lu, 2017b), we adopt a commonly used
tree-shaped form as the underlying meaning rep-
resentation where each tree node is a semantic
unit. Our objective is to learn for each semantic
unit a distributed representation useful for seman-
tic parsing, based on multilingual datasets. Figure
1 depicts an instance of such tree-shaped seman-
tic representations, which correspond to the two
semantically equivalent sentences in English and
German below it.

For such structured semantics, we consider each
semantic unit separately. We learn distributed rep-
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resentations for individual semantic unit based on
multilingual datasets where semantic representa-
tions are annotated with different languages. Such
distributed representations capture shared infor-
mation cross different languages. We extend two
existing monolingual semantic parsers (Lu, 2015;
Susanto and Lu, 2017b) to incorporate such cross-
lingual features. To the best of our knowledge,
this is the first work that exploits cross-lingual
embeddings for logical representations for seman-
tic parsing. Our system is publicly available at
http://statnlp.org/research/sp/.

2 Related Work

Many research efforts on semantic parsing have
been made, such as mapping sentences into
lambda calculus forms based on CCG (Artzi
and Zettlemoyer, 2011; Artzi et al., 2014;
Kwiatkowski et al., 2011), modeling dependency-
based compositional semantics (Liang et al., 2011;
Zhang et al., 2017), or transforming sentences
into tree structured semantic representations (Lu,
2015; Susanto and Lu, 2017b). With the de-
velopment of multilingual datasets, systems for
multilingual semantic parsing are also developed.
Jie and Lu (2014) employed majority voting to
combine outputs from different parsers for cer-
tain languages to perform multilingual semantic
parsing. Susanto and Lu (2017a) presented an ex-
tension of one existing neural parser, SEQ2TREE

(Dong and Lapata, 2016), by developing a shared
attention mechanism for different languages to
conduct multilingual semantic parsing. Such a
model allows two types of input signals: single
source SL-SINGLE and multi-source SL-MULTI.
However, semantic parsing with cross-lingual fea-
tures has not been explored, while many recent
works in various NLP tasks show the effective-
ness of shared information cross different lan-
guages. Examples include semantic role labeling
(Kozhevnikov and Titov, 2013), information ex-
traction (Wang et al., 2013; Pan et al., 2017; Ni
et al., 2017), and question answering (Joty et al.,
2017), which motivate this work.

Our work involves exploiting distributed out-
put representations for improved structured pre-
dictions, which is in line with works of (Srikumar
and Manning, 2014; Rocktäschel et al., 2014; Xiao
and Guo, 2015). The work of (Rocktäschel et al.,
2014) is perhaps the most related to this research.
The authors first map first-order logical statements

produced by a semantic parser or an information
extraction system into expressions in tensor calcu-
lus. They then learn low-dimensional embeddings
of such statements with the help of a given logical
knowledge base consisting of first-order rules so
that the learned representations are consistent with
these rules. They adopt stochastic gradient de-
scent (SGD) to conduct optimizations. This work
learns distributed representations of logical forms
from cross-lingual data based on co-occurrence in-
formation without relying on external knowledge
bases.

3 Approach

3.1 Semantic Parser

In this work, we build our model and conduct
experiments on top of the discriminative hybrid
tree semantic parser (Lu, 2014, 2015). The parser
was designed based on the hybrid tree represen-
tation (HT-G) originally introduced in (Lu et al.,
2008). The hybrid tree is a joint representation
encoding both sentence and semantics that aims
to capture the interactions between words and se-
mantic units. A discriminative hybrid tree (HT-D)
(Lu, 2014, 2015) learns the optimal latent word-
semantics correspondence where every word in
the input sentence is associated with a semantic
unit. Such a model allows us to incorporate rich
features and long-range dependencies. Recently,
Susanto and Lu (2017b) extended HT-D by attach-
ing neural architectures, resulting in their neural
hybrid tree (HT-D (NN)).

Since the correct correspondence between
words and semantics is not explicitly given in the
training data, we regard the hybrid tree represen-
tation as a latent variable. Formally, for each sen-
tence n with its semantic representation m from
the training set, we assume the joint representation
(a hybrid tree) is h. Now we can define a discrim-
inative log-linear model as follows:

PΛ(m|n) =
∑

h∈H(n,m)

PΛ(m,h|n)

=

∑
h∈H(n,m) e

FΛ(n,m,h)

∑
m′,h′∈H(n,m′) e

FΛ(n,m′,h′))
(1)

FΛ(n,m,h)) = Λ · Φ(n,m,h)) (2)

whereH(n,m) returns the set of all possible joint
representations that contain both n and m exactly,
and F is a scoring function that is calculated as a
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dot product between a feature function Φ defined
over tuple (m, n, h) and a weight vector Λ.

To incorporate neural features, HT-D (NN) de-
fines the following scoring function:

FΛ,Θ(n,m,h)) = Λ · Φ(n,m,h) +GΘ(n,m,h)
(3)

where Θ is the set of parameters of the neural
networks and G is the neural scoring function
over the (n,m,h) tuple (Susanto and Lu, 2017b).
Specifically, the neural features are defined over
a fixed-size window surrounding a word in n
paired with its immediately associated semantic
unit. Following the work (Susanto and Lu, 2017b),
we denote the window size as J ∈ {0, 1, 2}.

3.2 Cross-lingual Distributed Semantic
Representations

A multilingual dataset used in semantic parsing
comes with instances consisting of logical forms
annotated with sentences from multiple different
languages. In this work, we aim to learn one
monolingual semantic parser for each language,
while leveraging useful information that can be
extracted from other languages. Our setup is as
follows. Each time, we train the parser for a tar-
get language and regard the other languages as
auxiliary languages. To learn cross-lingual dis-
tributed semantic representations from such data,
we first combine all data involving all auxiliary
languages to form a large dataset. Next, for each
target language, we construct a semantics-word
co-occurrence matrix M ∈ Rm×n (wherem is the
number of unique semantic units, n is the number
of unique words in the combined dataset). Each
entry is the number of co-occurrences for a partic-
ular (semantic unit-word) pair. We will use this
matrix to learn a low-dimensional cross-lingual
representation for each semantic unit. To do so, we
first apply singular value decomposition (SVD) to
this matrix, leading to:

M = UΣV∗ (4)

where U ∈ Rm×m and V ∈ Rn×m are unitary
matrices, V∗ is the conjugate transpose of V, and
Σ ∈ Rm×m is a diagonal matrix. We truncate the
diagonal matrix Σ and left multiply it with U:

UΣ̃ (5)

where Σ̃ ∈ Rm×d is a matrix that consists of only
the left d columns of Σ, containing the d largest

Rank (d) F Rank (d) F
English 30 88.3 Chinese 10 80.0
Thai 20 85.8 Indonesian 30 88.3
German 30 78.3 Swedish 20 83.3
Greek 10 81.7 Farsi 10 76.7

Table 1: Performance on development set. F : F1-
measure (%).

singular values. We leave the rank d as a hyper-
parameter. Each row in the above matrix is a d-
dimensional vector, giving a low-dimensional rep-
resentation for one semantic unit. Such distributed
output representations can be readily used as con-
tinuous features in Φ(n,m,h).

3.3 Training and Decoding
During the training process, we optimize the ob-
jective function defined over the training set as:

L(Λ,Θ) =
∑

i

log
∑

h∈H(ni,mi)

eFΛ,Θ(ni,mi,h)

−
∑

i

log
∑

m′,h′∈H(ni,m′)

eFΛ,Θ(ni,m
′,h′) (6)

We follow the dynamic programming approach
used in (Susanto and Lu, 2017b) to perform effi-
cient inference, and follow the same optimization
strategy as described there.

In the decoding phase, we are given a new input
sentence n, and find the optimal semantic tree m∗:

m∗ = arg max
m,h∈H(n,m)

FΛ,Θ(n,m,h) (7)

Again, the above equation can be efficiently
computed by dynamic programming (Susanto and
Lu, 2017b).

4 Experiments and Results

4.1 Datasets and Settings
We evaluate our approach on the standard Geo-
Query dataset annotated in eight languages (Wong
and Mooney, 2006; Jones et al., 2012; Susanto and
Lu, 2017b). We follow a standard practice for
evaluations which has been adopted in the liter-
ature (Lu, 2014, 2015; Susanto and Lu, 2017b).
Specifically, to evaluate the proposed model, pre-
dicted outputs are transformed into Prolog queries.
An output is considered as correct if answers that
queries retrieve from GeoQuery database are the
same as the gold ones . The dataset consists of 880
instances. In all experiments, we follow the ex-
perimental settings and procedures in (Lu, 2014,
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English Thai German Greek Chinese Indonesian Swedish Farsi
Acc. F Acc. F Acc. F Acc. F Acc. F Acc. F Acc. F Acc. F

WASP 71.1 77.7 71.4 75.0 65.7 74.9 70.7 78.6 48.2 51.6 74.6 79.8 63.9 71.5 46.8 54.1
HT-G 76.8 81.0 73.6 76.7 62.1 68.5 69.3 74.6 56.1 58.4 66.4 72.8 61.4 70.5 51.8 58.6
UBL-S 82.1 82.1 66.4 66.4 75.0 75.0 73.6 73.7 63.8 63.8 73.8 73.8 78.1 78.1 64.4 64.4
TREETRANS 79.3 79.3 78.2 78.2 74.6 74.6 75.4 75.4 - - - - - - - -
SEQ2TREE† 84.5 - 71.9 - 70.3 - 73.1 - 73.3 - 80.7 - 80.8 - 70.5 -
SL-SINGLE † 83.5 - 72.1 - 69.3 - 74.2 - 74.9 - 79.8 - 77.5 - 72.2 -
HT-D 86.8 86.8 80.7 80.7 75.7 75.7 79.3 79.3 76.1 76.1 75.0 75.0 79.3 79.3 73.9 73.9
HT-D (+O) 86.1 86.1 81.1 81.1 73.6 73.6 81.4 81.4 77.9 77.9 79.6 79.6 79.3 79.3 75.7 75.7

HT-D (NN)
J=0 87.9 87.9 82.1 82.1 75.7 75.7 81.1 81.1 76.8 76.8 76.1 76.1 81.1 81.1 75.0 75.0
J=1 88.6 88.6 84.6 84.6 76.8 76.8 79.6 79.6 75.4 75.4 78.6 78.6 82.9 82.9 76.1 76.1
J=2 90.0 90.0 82.1 82.1 73.9 73.9 80.7 80.7 81.1 81.1 81.8 81.8 83.9 83.9 74.6 74.6

HT-D (NN+O)
J=0 86.1 86.1 83.6 83.6 73.9 73.9 82.1 82.1 77.9 77.9 81.1 81.1 82.1 82.1 74.6 74.6
J=1 86.1 86.1 86.1 86.1 72.5 72.5 80.4 80.4 81.4 81.4 82.5 82.5 82.5 82.5 75.7 75.7
J=2 89.6 89.6 84.6 84.6 72.1 72.1 83.2 83.2 82.1 82.1 83.9 83.9 83.6 83.6 76.8 76.8

Table 2: Performance on multilingual datasets. Acc.: accuracy (%), F : F1-measure (%). +O: including
distributed representations for semantic units as features. († indicates systems that make use of lambda
calculus expressions as meaning representations.)

2015; Susanto and Lu, 2017b). In particular, we
use 600 instances for training and 280 for test and
set the maximum optimization iteration to 150. In
order to tune the rank d, we randomly select 80%
of the training instances for learning and use the
rest 20% for development. We report the value of
d for each language in Table 1 and the F1 scores
on the development set.

4.2 Results
We compare our models against different existing
systems, especially the two baselines HT-D (Lu,
2015) and HT-D (NN) (Susanto and Lu, 2017b)
with different word window sizes J ∈ {0, 1, 2}.

WASP (Wong and Mooney, 2006) is a semantic
parser based on statistical phrase-based machine
translation. UBL-S (Kwiatkowski et al., 2010) in-
duced probabilistic CCG grammars with higher-
order unification that allowed to construct general
logical forms for input sentences. TREETRANS

(Jones et al., 2012) is built based on a Bayesian
inference framework. We run WASP, UBL-S,
HT-G, UBL-S, SEQ2TREE and SL-SINGLE 1 for
comparisons. Note that there exist multiple ver-
sions of logical representations used in the GEO-
QUERY dataset. Specifically, one version is based
on lambda calculus expression, and the other is
based on the variable free tree-shaped represen-

1 Note that in Dong and Lapata (2016), they adopted a
different split – using 680 instances as training examples and
the rest 200 for evaluation. We ran the released source code
for SEQ2TREE (Dong and Lapata, 2016) over eight different
languages. For each language, we repeated the experiments
3 times with different random seed values, and reported the
average results as shown in Table 2 to make comparisons.
Likewise, we ran SL-SINGLE following the same procedure.

tation. We use the latter representation in this
work, while the SEQ2TREE and SL-SINGLE em-
ploy the lambda calculus expression. It was noted
in Kwiatkowski et al. (2010); Lu (2014) that evalu-
ations based on these two versions are not directly
comparable – the version that uses tree-shaped
representations appears to be more challenging.
We do not compare against (Jie and Lu, 2014) due
to their different setup from ours.2

Table 2 shows results that we have conducted
on eight different languages. The highest scores
are highlighted. We can observe that when dis-
tributed logical representations are included, both
HT-D and HT-D (NN) can lead to competitive
results. Specifically, when such features are in-
cluded, evaluation results for 5 out of 8 languages
get improved.

We found that the shared information cross dif-
ferent languages could guide the model so that it
can make more accurate predictions, eliminating
certain semantic level ambiguities associated with
the semantic units. This is exemplified by a real
instance from the English portion of the dataset:

Input: Which states have a river?
Gold: answer(state(loc(river(all))))

Output: answer(state(traverse(river(all))))
Output (+O): answer(state(loc(river(all))))

2 They trained monolingual semantic parsers. In the eval-
uation phase, they fed parallel text from different languages
to each individual semantic parser, then employed a majority
voting based ensemble method to combine predictions. Dif-
ferently, we train monolingual semantic parsers augmented
with cross-lingual distributed semantic information. In the
evaluation phase, we only have one monolingual semantic
parser. Hence, these two efforts are not directly comparable.
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Figure 2: 2-D projection of learned distributed representations for semantics.

Here the input sentence in English is “Which
states have a river?”, and the correct output is
shown below the sentence. Output is the pre-
diction from HT-D (NN) and Output (+O) is the
parsing result given by HT-D (NN+O) where the
learned cross-lingual representations of semantics
are included. We observe that, by introducing our
learned cross-lingual semantic information, the
system is able to distinguish the two semantically
related concepts, loc (located in) and traverse
(traverse), and further make more promising pre-
dictions.

Interestingly, for German, the results become
much lower when such features are included, indi-
cating such features are not helpful in the learning
process when such a language is considered. Rea-
sons for this need further investigations. We note,
however, previously it was also reported in the lit-
erature that the behavior of the performance as-
sociated with this language is different than other
languages in the presence of additional features
(Lu, 2014).

4.3 Visualizing Output Representations
To qualitatively understand how good the learned
distributed representations are, we also visualize
the learned distributed representations for seman-
tic units. In the Figure 2, we plot the embed-
dings of a small set of semantic units which are
learned from all languages other than English.
Each representation is a 30-dimensional vector
and is projected into a 2-dimensional space us-
ing Barnes-Hut-SNE (Maaten, 2013) for visual-
ization. In general, we found that semantic units
expressing similar meanings tend to appear to-

gether. For example, the two semantic units STATE

: smallest one ( density (STATE)) and STATE :
smallest one ( population (STATE)) share simi-
lar representations. However, we also found that
occasionally semantic units conveying opposite
meanings are also grouped together. This reveals
the limitations associated with such a simple co-
occurrence based approach for learning distributed
representations for logical expressions.

5 Conclusions

In this paper, we empirically show that the dis-
tributed representations of logical expressions
learned from multilingual datasets for semantic
parsing can be exploited to improve the perfor-
mance of a monolingual semantic parser. Our
approach is simple, relying on an SVD over
semantics-word co-occurrence matrix for find-
ing such distributed representations for semantic
units. Future directions include investigating bet-
ter ways of learning such distributed representa-
tions as well as learning such distributed represen-
tations and semantic parsers in a joint manner.

Acknowledgments

We would like to thank the three anonymous ACL
reviewers for their thoughtful and constructive
comments. We would also like to thank Raymond
H. Susanto for his help on this work. This work
is supported by Singapore Ministry of Education
Academic Research Fund (AcRF) Tier 2 Project
MOE2017-T2-1-156, and is partially supported by
Singapore Ministry of Education Academic Re-
search Fund (AcRF) Tier 1 SUTDT12015008.

677



References
Yoav Artzi, Dipanjan Das, and Slav Petrov.

2014. Learning compact lexicons for ccg
semantic parsing. In Proc. of EMNLP.
https://doi.org/10.3115/v1/D14-1134.

Yoav Artzi, Kenton Lee, and Luke S. Zettle-
moyer. 2015. Broad-coverage ccg seman-
tic parsing with amr. In Proc. of EMNLP.
https://doi.org/10.18653/v1/D15-1198.

Yoav Artzi and Luke S. Zettlemoyer. 2011. Bootstrap-
ping semantic parsers from conversations. In Proc.
of EMNLP. http://www.aclweb.org/anthology/D11-
1039.

Yee Seng Chan, Hwee Tou Ng, and David Chiang.
2007. Word sense disambiguation improves sta-
tistical machine translation. In Proc. of ACL.
http://www.aclweb.org/anthology/P07-1005.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. In Proc. of ACL.
https://doi.org/10.18653/v1/P16-1004.

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip Cohen, and Mark Johnson. 2017. Mul-
tilingual semantic parsing and code-switching. In
Proc. of CoNLL. https://doi.org/10.18653/v1/K17-
1038.

Zhanming Jie and Wei Lu. 2014. Multilingual se-
mantic parsing : Parsing multiple languages into
semantic representations. In Proc. of COLING.
http://www.aclweb.org/anthology/C14-1122.

Bevan Jones, Mark Johnson, and Sharon
Goldwater. 2012. Semantic parsing with
bayesian tree transducers. In Proc. of ACL.
http://www.aclweb.org/anthology/P12-1051.

Shafiq Joty, Preslav Nakov, Lluı́s Màrquez, and Is-
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Abstract

We propose a novel neural method to ex-
tract drug-drug interactions (DDIs) from
texts using external drug molecular struc-
ture information. We encode textual drug
pairs with convolutional neural networks
and their molecular pairs with graph con-
volutional networks (GCNs), and then we
concatenate the outputs of these two net-
works. In the experiments, we show that
GCNs can predict DDIs from the molecu-
lar structures of drugs in high accuracy and
the molecular information can enhance
text-based DDI extraction by 2.39 percent
points in the F-score on the DDIExtraction
2013 shared task data set.

1 Introduction

When drugs are concomitantly administered to a
patient, the effects of the drugs may be enhanced
or weakened, which may also cause side effects.
These kinds of interactions are called Drug-Drug
Interactions (DDIs). Several drug databases have
been maintained to summarize drug and DDI in-
formation such as DrugBank (Law et al., 2014),
Therapeutic Target database (Yang et al., 2016),
and PharmGKB (Thorn et al., 2013). Automatic
DDI extraction from texts is expected to support
the maintenance of databases with high cover-
age and quick update to help medical experts.
Deep neural network-based methods have recently
drawn a considerable attention (Liu et al., 2016;
Sahu and Anand, 2017; Zheng et al., 2017; Lim
et al., 2018) since they show state-of-the-art per-
formance without manual feature engineering.

In parallel to the progress in DDI extrac-
tion from texts, Graph Convolutional Networks
(GCNs) have been proposed and applied to esti-
mate physical and chemical properties of molec-

ular graphs such as solubility and toxicity (Duve-
naud et al., 2015; Li et al., 2016; Gilmer et al.,
2017).

In this study, we propose a novel method to
utilize both textual and molecular information
for DDI extraction from texts. We illustrate the
overview of the proposed model in Figure 1. We
obtain the representations of drug pairs in molec-
ular graph structures using GCNs and concate-
nate the representations with the representations
of the textual mention pairs obtained by convo-
lutional neural networks (CNNs). We trained
the molecule-based model using interacting pairs
mentioned in the DrugBank database and then
trained the entire model using the labeled pairs
in the text data set of the DDIExtraction 2013
shared task (SemEval-2013 Task 9) (Segura Bed-
mar et al., 2013). In the experiment, we show
GCNs can predict DDIs from molecular graphs in
a high accuracy. We also show molecular informa-
tion can enhance the performance of DDI extrac-
tion from texts in 2.39 percent points in F-score.

The contribution of this paper is three-fold:
• We propose a novel neural method to extract

DDIs from texts with the related molecular
structure information.
• We apply GCNs to pairwise drug molecules

for the first time and show GCNs can predict
DDIs between drug molecular structures in a
high accuracy.
• We show the molecular information is useful

in extracting DDIs from texts.

2 Methods

2.1 Text-based DDI Extraction

Our model for extracting DDIs from texts is based
on the CNN model by Zeng et al. (2014). When
an input sentence S = (w1, w2, · · · , wN ) is given,
We prepare word embedding ww

i of wi and word
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Figure 1: Overview of the proposed model

position embeddings wp
i,1 and wp

i,2 that corre-
spond to the relative positions from the first and
second target entities, respectively. We concate-
nate these embeddings as in Equation (1), and we
use the resulting vector as the input to the subse-
quent convolution layer:

wi = [ww
i ;w

p
i,1;w

p
i,2], (1)

where [; ] denotes the concatenation. We calculate
the expression for each filter j with the window
size kl.

zi,l = [wi−(kl−1)/2, · · · ,wi−(kl+1)/2], (2)

mi,j,l = relu(W conv
j � zi,l + bconv), (3)

mj,l = max
i
mi,j,l, (4)

where L is the number of windows, W conv
j and

bconv are the weight and bias of CNN, and max
indicates max pooling (Boureau et al., 2010).

We convert the output of the convolution layer
into a fixed-size vector that represents a textual
pair as follows:

ml = [m1,l, · · · ,mJ,l], (5)

ht = [m1; . . . ;mL], (6)

where J is the number of filters.
We get a prediction ŷt by the following fully

connected neural networks:

h
(1)
t = relu(W

(1)
t ht + b

(1)
t ), (7)

ŷt = softmax(W
(2)
t h

(1)
t + b

(2)
t ), (8)

where W
(1)
t and W

(2)
t are weights and b

(1)
t and

b
(2)
t are bias terms.

2.2 Molecular Structure-based DDI
Classification

We represent drug pairs in molecular graph struc-
tures using two GCN methods: CNNs for finger-
prints (NFP) (Duvenaud et al., 2015) and Gated
Graph Neural Networks (GGNN) (Li et al., 2016).
They both convert a drug molecule graph G into a
fixed size vector hg by aggregating the represen-
tation hTv of an atom node v in G. We represent
atoms as nodes and bonds as edges in the graph.

NFP first obtains the representation htv by the
following equations (Duvenaud et al., 2015).

mt+1
v = htv +

∑

w∈N(v)

htw, (9)

ht+1
v = σ(H

deg(v)
t mt+1

v ), (10)

where htv is the representation of v in the t-th
step, N(v) is the neighbors of v, and H

deg(v)
t is

a weight parameter. h0
v is initialized by the atom

features of v. deg(v) is the degree of a node v and
σ is a sigmoid function. NFP then acquires the
representation of the graph structure

hg =
∑

v,t

softmax(W thtv), (11)

where W t is a weight matrix.
GGNN first obtains the representation htv by us-

ing Gated Recurrent Unit (GRU)-based recurrent
neural networks (Li et al., 2016) as follows:

mt+1
v =

∑

w∈N(v)

Aevwh
t
w (12)

ht+1
v = GRU([htv;m

t+1
v ]), (13)
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where Aevw is a weight for the bond type of each
edge evw. GGNN then acquires the representation
of the graph structure.

hg =
∑

v

σ(i([hTv ;h
0
v]))� (j(hTv )), (14)

where i and j are linear layers and � is the
element-wise product.

We obtain the representation of a molecular pair
by concatenating the molecular graph representa-
tions of drugs g1 and g2, i.e., hm = [hg1 ;hg2 ].

We get a prediction ŷm as follows:

h(1)
m = relu(W (1)

m hm + b(1)m ), (15)

ŷm = softmax(W (2)
m h(1)

m + b(2)m ), (16)

where W
(1)
m and W

(2)
m are weights and b

(1)
m and

b
(2)
m are bias terms.

2.3 DDI Extraction from Texts Using
Molecular Structures

We realize the simultaneous use of textual and
molecular information by concatenating a text-
based and molecule-based vectors: hall =
[ht;hm]. We normalize molecule-based vectors.
We then use hall instead of ht in Equation 7.

In training, we first train the molecular-based
DDI classification model. The molecular-based
classification is performed by minimizing the loss
function Lm = −∑

ym log ŷm. We then fix the
parameters for GCNs and train text-based DDI ex-
traction model by minimizing the loss function
Lt = −

∑
yt log ŷt.

3 Experimental Settings

In this section, we explain the textual and molecu-
lar data and task settings and training settings.

3.1 Text Corpus and Task Setting
We followed the task setting of Task 9.2 in the
DDIExtraction 2013 shared task (Segura Bedmar
et al., 2013; Herrero-Zazo et al., 2013) for the eval-
uation. This data set is composed of documents
annotated with drug mentions and their four types
of interactions: Mechanism, Effect, Advice and
Int. For the data statistics, please refer to the sup-
plementary materials.

The task is a multi-class classification task, i.e.,
to classify a given pair of drugs into the four inter-
action types or no interaction. We evaluated the
performance with micro-averaged precision (P),

Figure 2: Associating DrugBank entries with texts
and molecular graph structures

recall (R), and F-score (F) on all the interaction
types. We used the official evaluation script pro-
vided by the task organizers.

As preprocessing, we split sentences into words
using the GENIA tagger (Tsuruoka et al., 2005).
We replaced the drug mentions of the target pair
with DRUG1 and DRUG2 according to their or-
der of appearance. We also replaced other drug
mentions with DRUGOTHER. We did not em-
ploy negative instance filtering unlike other exist-
ing methods, e.g., Liu et al. (2016), since our focus
is to evaluate the effect of the molecular informa-
tion on texts.

We linked mentions in texts to DrugBank en-
tries by string matching. We lowercased the men-
tions and the names in the entries and chose the
entries with the most overlaps. As a result, 92.15%
and 93.09% of drug mentions in train and test data
set matched the DrugBank entries.

3.2 Data and Task for Molecular Structures

We extracted 255,229 interacting (positive) pairs
from DrugBank. We note that, unlike text-based
interactions, DrugBank only contains the informa-
tion of interacting pairs; there are no detailed la-
bels and no information for non-interacting (neg-
ative) pairs. We thus generated the same num-
ber of pseudo negative pairs by randomly pairing
drugs and removing those in positive pairs. To
avoid overestimation of the performance, we also
deleted drug pairs mentioned in the test set of the
text corpus. We split positive and negative pairs
into 4:1 for training and test data, and we evaluated
the classification accuracy using only the molecu-
lar information.

To obtain the graph of a drug molecule, we took
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Methods P R F (%)
Liu et al. (2016) 75.29 60.37 67.01
Zheng et al. (2017) 75.9 68.7 71.5
Lim et al. (2018) 74.4 69.3 71.7
Text-only 71.97 68.44 70.16
+ NFP 72.62 71.81 72.21
+ GGNN 73.31 71.81 72.55

Table 1: Evaluation on DDI extraction from texts

as input the SMILES (Weininger, 1988) string en-
coding of the molecule from DrugBank and then
converted it into the graph using RDKit (Landrum,
2016) as illustrated in Figure 2. For the atom
features, we used randomly embedded vectors for
each atoms (i.e., C, O, N, ...). We also used 4 bond
types: single, double, triple, or aromatic.

3.3 Training Settings

We employed mini-batch training using the Adam
optimizer (Kingma and Ba, 2015). We used L2
regularization to avoid over-fitting. We tuned the
bias term b

(2)
t for negative examples in the final

softmax layer. For the hyper-parameters, please
refer to the supplementary materials.

We employed pre-trained word embeddings
trained by using the word2vec tool (Mikolov et al.,
2013) on the 2014 MEDLINE/PubMed baseline
distribution. The vocabulary size was 215,840.
The embedding of the drugs, i.e., DRUG1 and
DRUG2 were initialized with the pre-trained em-
bedding of the word drug. The embeddings of
training words that did not appear in the pre-
trained embeddings were initialized with the av-
erage of all pre-trained word embeddings. Words
that appeared only once in the training data were
replaced with an UNK word during training, and
the embedding of words in the test data set that did
not appear in both training and pre-trained embed-
dings were set to the embedding of the UNK word.
Word position embeddings are initialized with ran-
dom values drawn from a uniform distribution.

We set the molecule-based vectors of un-
matched entities to zero vectors.

4 Results

Table 1 shows the performance of DDI extrac-
tion models. We show the performance with-
out negative instance filtering or ensemble for the
fair comparison. We observe the increase of re-
call and F-score by using molecular information,

DDI Type Mech. Effect Adv. Int (%)
Text-only 69.52 69.27 79.81 48.18
+ NFP 72.70 72.44 79.56 46.98
+ GGNN 73.83 71.03 81.62 45.83

Table 2: Performance on individual DDI types in
F-scores

Methods Accuracy (%)
NFP 94.19
GGNN 98.00

Table 3: Accuracy of binary classification on
DrugBank pairs

Methods P R F Acc. (%)
NFP 15.56 48.93 23.61 45.78
GGNN 15.11 57.10 23.90 37.72

Table 4: Classification of DDIs in texts by molec-
ular structure-based DDI classification model

which results in the state-of-the-art performance
with GGNN.

Both GCNs improvements were statistically
significant (p < 0.05 for NFP and p < 0.005 for
GGNN) with randomized shuffled test.

Table 2 shows F-scores on individual DDI
types. The molecular information improves F-
scores especially on type Mechanism and Effect.

We also evaluated the accuracy of binary clas-
sification on DrugBank pairs by using only the
molecular information in Table 3. The perfor-
mance is high, although the accuracy is evaluated
on automatically generated negative instances.

Finally, we applied the molecular-based DDI
classification model trained on DrugBank to the
DDIExtraction 2013 task data set. Since the Drug-
Bank has no detailed labels, we mapped all four
types of interactions to positive interactions and
evaluated the classification performance. The re-
sults in Table 4 show that GCNs produce higher
recall than precision and the overall performance
is low considering the high performance on Drug-
Bank pairs. This might be because the interactions
of drugs are not always mentioned in texts even if
the drugs can interact with each other and because
hedged DDI mentions are annotated as DDIs in the
text data set. We also trained the DDI extraction
model only with molecular information by replac-
ing hall with hm, but the F-scores were quite low
(< 5%). These results show that we cannot predict
textual relations only with molecular information.
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5 Related Work

Various feature-based methods have been pro-
posed during and after the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013). Kim
et al. (2015) proposed a two-phase SVM-based ap-
proach that employed a linear SVM with rich fea-
tures that consist of word, word pair, dependency
graph, parse tree, and noun phrase-based con-
strained coordination features. Zheng et al. (2016)
proposed a context vector graph kernel to exploit
various types of contexts. Raihani and Laachfoubi
(2017) also employed a two-phase SVM-based ap-
proach using non-linear kernels and they proposed
five groups of features: word, drug, pair of drug,
main verb and negative sentence features. Our
model does not use any features or kernels.

Various neural DDI extraction models have
been recently proposed using CNNs and Recur-
rent Neural Networks (RNNs). Liu et al. (2016)
built a CNN-based model based on word and po-
sition embeddings. Zheng et al. (2017) proposed
a Bidirectional Long Short-Term Memory RNN
(Bi-LSTM)-based model with an input attention
mechanism, which obtained target drug-specific
word representations before the Bi-LSTM. Lim
et al. (2018) proposed Recursive neural network-
based model with a subtree containment feature
and an ensemble method. This model showed the
state-of-the-art performance on the DDIExtraction
2013 shared task data set if systems do not use
negative instance filtering. These approaches did
not consider molecular information, and they can
also be enhanced by the molecular information.

Vilar et al. (2017) focused on detecting DDIs
from different sources such as pharmacovigilance
sources, scientific biomedical literature and social
media. They did not use deep neural networks and
they did not consider molecular information.

Learning representations of graphs are widely
studied in several tasks such as knowledge base
completion, drug discovery, and material sci-
ence (Wang et al., 2017; Gilmer et al., 2017).
Several graph convolutional neural networks have
been proposed such as NFP (Duvenaud et al.,
2015), GGNN (Li et al., 2016), and Molecular
Graph Convolutions (Kearnes et al., 2016), but
they have not been applied to DDI extraction.

6 Conclusions

We proposed a novel neural method for DDI ex-
traction using both textual and molecular informa-

tion. The results show that DDIs can be predicted
with high accuracy from molecular structure in-
formation and that the molecular information can
improve DDI extraction from texts by 2.39 percept
points in F-score on the data set of the DDIExtrac-
tion 2013 shared task.

As future work, we would like to seek the way
to model the textual and molecular representations
jointly with alleviating the differences in labels.
We will also investigate the use of other informa-
tion in DrugBank.
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Abstract
Named Entity Disambiguation (NED) sys-
tems perform well on news articles and
other texts covering a specific time inter-
val. However, NED quality drops when
inputs span long time periods like in
archives or historic corpora. This paper
presents the first time-aware method for
NED that resolves ambiguities even when
mention contexts give only few cues. The
method is based on computing temporal
signatures for entities and comparing these
to the temporal contexts of input mentions.
Our experiments show superior quality on
a newly created diachronic corpus.1

1 Introduction

Problem. Schumacher convinced to win on Sun-
day. When this news headline is fed into modern
tools for Named Entity Disambiguation (NED),
virtually all of them would map the mention
Schumacher onto the former Formula One cham-
pion Michael Schumacher, as the best-fitting en-
tity from a Wikipedia-centric knowledge base
(KB). However, knowing that Sunday refers to
August 14, 1949, i.e., ignoring the surface form
but exploiting normalized information, it becomes
clear that the text actually refers to the German
politician Kurt Schumacher. State-of-the-art NED
methods (see surveys by Hachey et al. (2013),
Ling et al. (2015), Shen et al. (2015)) tend to
miss this because they are designed and trained
for temporally focused input corpora such as cur-
rent news, and do not cope well with longitudi-
nal archives and other diachronic corpora that span
decades. Standard NED benchmarks from CoNLL
and TAC do not reflect this difficulty either.

1The diaNED corpus and the temporal signatures of en-
tities are publicly available: https://www.mpi-inf.
mpg.de/yago-naga/dianed/.

(a) (b) (c)

Figure 1: Temporal signatures of candidate enti-
ties for the following three sample sentences (ver-
tical lines represent temporal contexts):
a) Ronaldo comeback cut to 14 minutes. (2001)
b) Bush to stress domestic issues in speech. (1989)
c) Schumacher convinced to win on Sunday. (1949)

What is needed here is a better way of captur-
ing temporal context, for both the mention Schu-
macher and each of the candidate entities. Fig-
ure 1 illustrates “time profiles” for sample entities
with highly ambiguous names. Normalized tem-
poral information from the input context, such as
Sunday (1949-08-14), can provide additional
cues for proper disambiguation. The problem ad-
dressed in this paper is how to model and capture
temporal contexts and how to enhance NED with
this novel asset.
Contribution. Our approach to this problem is
to compute temporal signatures for entities in the
KB, and to use these as expressive features when
comparing candidate entities against the context of
an input mention. Temporal signatures are embed-
dings that reflect the importance of different years
for entities. They are automatically constructed by
extracting and normalizing temporal expressions
in entity descriptions such as Wikipedia articles.
Analogously, temporal signals are captured in the
contexts of textual mentions and represented by
embeddings.

The time-aware NED method that we devise
with these features can robustly cope with inputs
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from diachronic corpora. We propose a new eval-
uation benchmark, based on the New York Times
Archive, spanning more than 20 years, and the his-
tory collection historynet.com, spanning several
centuries. Our experiments demonstrate that time-
aware NED substantially outperforms some of the
best standard NED tools.

2 Temporal Signatures and Contexts

Better context representation improves disam-
biguation quality (see, e.g., Shen et al. (2015)). As
the underlying entity descriptions (e.g., Wikipedia
articles) are not only textually but also temporally
related to their mentions, we enrich the context
representation with a temporal dimension, which
no prior work handles explicitly.

We model the temporal dimension by embed-
ding vectors. The embeddings represent the tem-
poral signatures of entities in a KB and the tem-
poral contexts of entity mentions in text in a joint
vector space. Then, the similarity between them
quantifies their temporal relatedness.

Temporal vector space. We use 2,050 dimen-
sions (years 1 AD to 2050) to define the vector
space. Coarser and finer granularities than years
could be used, but finer ones (e.g., days) are rarely
needed for NED and coarser granularities (e.g.,
centuries) are too vague.2

Temporal signatures of entities. We use
the temporal tagger HeidelTime (Strötgen and
Gertz, 2010; Strötgen and Gertz, 2015) to ex-
tract and normalize date expressions from an en-
tity’s Wikipedia page3 and aggregate them by
years. This results in a count-based temporal vec-
tor tcbe = (t0001, ..., ti, ..., t2050) where ti is the to-
tal number of temporal expressions extracted from
e’s Wikipedia page referring to year i. Temporal
expressions of finer granularities are mapped to re-
spective years and expressions of coarser granular-
ities than year are currently ignored.

As the count-based vectors may overfit to the
entity descriptions and to avoid discontinuity in
the temporal signatures, we apply exponential
smoothing and get smoothed temporal vectors

2In an analysis of temporal expressions extracted with
HeidelTime from the Wikipedia corpus (August 2016 dump),
we find that there are on average 18.500 expressions per year
value (with year values ranging from 0001 AD to 2050
AD) in contrast to only 9.64 expressions per day value (with
day values ranging from 0001-01-01 to 2050-12-31).
Therefore, using year level identifiers to define our temporal
vector space results in short and non-sparse temporal vectors.

3August 2016 Wikipedia dump

tse = (ts0001, ..., t
s
i , ..., t

s
2050) such that tsi = α ·

tcbi + (1 − α) · tsi−1, for i > 0001 where α is the
smoothing factor with 0 ≤ α ≤ 1. For further
smoothing, this procedure can be recursively ap-
plied n times. In experiments, we set α = 0.2 and
n = 2 based on cross-validation.

Temporal contexts of entity mentions. We ex-
ploit temporal expressions in the surrounding text
of entity mentions and the texts’ publication dates.
In news-style articles, entities are likely to be re-
lated to the document creation time (dct), while
dates in the content are important for other types
of documents (Strötgen and Gertz, 2016).

Temporal vectors for mentions tm are thus a
combination of a one-hot temporal vector tdctm =
(0, ..., ti, ..., 0) where ti=1 if i is the dct’s year, and
tcontentm containing dates extracted by a temporal
tagger in the immediate context of the mention
(e.g., in the same sentence or paragraph), aggre-
gated by year. tdctm and tcontentm are linearly com-
bined as tm = λ · tdctm +(1−λ) · tcontentm where λ
(with 0 ≤ λ ≤ 1) weights the components.

Relatedness. We calculate the temporal relat-
edness between a mention and all candidate enti-
ties as the cosine similarity between tm and te.

3 Time-aware NED

To test the importance of time-awareness for NED,
we use two settings. We enhance a basic NED sys-
tem and a state-of-the-art system by enriching both
with temporal signatures and contexts.

diaNED-1, as basic NED system, uses a
mention-entity prior reflecting entity prominence
and a keyphrase-based language model for the
similarity of mention and entity contexts (as sug-
gested by Hoffart et al. (2011)). These com-
ponents are cast into edge weights for a graph
over which the final disambiguation is computed.
Hyper-parameters for the relative influence of the
two components are tuned using an SVM.

We added the temporal dimension to the feature
set and retrained the model accordingly to get new
feature weights.

diaNED-2 based on Yamada et al. (2016):
This is a learning-to-rank-based model. Besides
mention-entity priors and string-similarity fea-
tures, it uses word and entity embeddings trained
in a joint vector space to model context and coher-
ence. The intuition is that a good candidate entity
vector must be close to the word and entity vectors
appearing in the same context.
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Yamada et al. (2016) measures entity context
by averaging the word vectors of the proper noun
neighbors and calculating the cosine similarity
with each candidate entity. Similarly, the coher-
ence between entities is measured by computing
the cosine similarity between candidates and the
average of the other entities in the neighborhood.

diaNED-2 enhances this model as follows. We
compute the cosine similarity between the men-
tion’s and the candidate entities’ temporal vectors,
and normalize the time relatedness scores across
candidate entities. Finally, all similarity features
are used to train a binary classifier with gradient-
boosted decision trees. The top-ranked candidate
entity in each pool of candidates is assigned to the
mention being evaluated.

4 A Diachronic NED Data Set

Datasets for NED evaluation contain articles pub-
lished within a short period. Consequently, all
mentions share a temporal context making it dif-
ficult to evaluate temporal variability. CoNLL-
AIDA (Hoffart et al., 2011) are newswire articles
from 1996, TAC 2010 (Ji et al., 2010) news and
forum articles from 2004–2007, and Microposts-
2014 (Cano et al., 2014) tweets from 2011.

To account for this limitation, we create a
new diachronic benchmark containing documents
with heterogeneous temporal context. As in
Microposts-2014, we limit documents to sin-
gle sentences and headlines from HistoryNet.com
(HN) and The New York Times corpus (NYT). For
the annotation process, we followed the entity an-
notation guidelines, which have been used for an-
notating CoNLL-AIDA (Hoffart et al., 2011).

HN is an online resource of world history with
information on popular historical topics. Its sec-
tion Today in History contains short texts on what
happened on a specific day with a total of 7,061
facts/events (excluding born today). Using Stan-
ford NER (Finkel et al., 2005), we extracted
13,773 entity mentions and randomly selected 350
of them. We annotated all entity mentions in re-
spective sentences with their Wikipedia ids. Af-
ter removing NER errors and out-of-KB entities,
the dataset contains 865 gold entity mentions in
334 sentences. Examples are: “Conrad II claims
the throne in France” from 1032 or “The Old Pre-
tender, son of James III dies” from 1766.

NYT contains more than 1.5 million documents
published between 1987 and 2007. After apply-

ing the same procedure, the dataset contains 368
manually annotated mentions in 290 news head-
lines. Examples are “Arafat’s Faction is Said to
Avoid Guerrilla Actions” from 1989 or “U.N. Aide
to Meet Milosevic, Angering Some” from 1999.

As HN texts come without further context, en-
tity mentions are rather explicit. Entity mentions
in NYT ’s headlines are more ambiguous as more
information is available in the articles and the en-
tities are mostly, at the time of publication, promi-
nent and obvious to the reader.

Finally, we created a third subset from the 7,061
documents of HistoryNet.com with 13,773 entity
mentions. It contains the sentences with all the
entity mentions which are linked to different en-
tities by diaNED-2 depending on whether it uses
its time-awareness or not, i.e., whether diaNED-
2 is trained with or without the temporal feature.
This set (HN-timediff ) contains 567 manually an-
notated entities from 547 documents. It is the most
challenging subset as all entity mentions are diffi-
cult to disambiguate.

5 Evaluation

To evaluate the importance of temporal infor-
mation in NED, we focus in our analysis on
the newly created diaNED corpus. As standard
NED datasets CoNLL-AIDA and TAC 2010 con-
tain only articles published within a short period
of time, they are not suited for evaluating time-
aware NED (cf. Section 4), and experiments on
these datasets showed no significant differences
between using diaNED-1 and diaNED-2 with or
without their time-awareness features.

Note that the temporal contexts in the HN sen-
tences and the NYT headlines of the diaNED cor-
pus are part of the metadata. Thus, to ensure a
fair comparison among all systems, we added the
temporal contexts in the form of year information
to all documents to allow the non-time-aware sys-
tems to exploit the temporal context in case the re-
spective year number occurs as part of the entities’
textual context.4

5.1 Intra-system Comparison

As described above, we (re-)implemented two
NED systems as diaNED-1 and diaNED-2. To al-

4Disambiguation quality of non-time-aware systems was
generally lower without this additional information. The dia-
NED corpus contains all sentences with and without year in-
formation so that evaluation results can be reproduced for
both settings.
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HN subset NYT subset
Feature set w/o time w time w/o time w time

Prior 72.26 80.48* 38.14 54.24*
Context 63.63 66.10* 48.31 62.71*
* significant over w/o time (Welch’s t-test at level of 0.01)

Table 1: Micro-accuracy of diaNED-1 with and
without time-awareness feature.

HN subset NYT subset
Feature set w/o time w time w/o time w time

Base 89.44 90.23* 85.81 87.36*
String 89.40 90.00* 86.28 87.07*
Context 91.10 91.81* 87.07 88.34*
Coherence 91.16 91.98* 86.83 88.69*
* significant over w/o time (Welch’s t-test at level of 0.01)

Table 2: Micro-accuracy of diaNED-2 with and
without time-awareness feature.

low the systems to adapt to the diachronic corpus
without considering temporal information explic-
itly, we retrained the systems so that appropriate
weights are learnt for each standard feature. Due
to the rather small size of the diaNED corpus, we
use bootstrapping (i.e., train and evaluate on 50
randomly shuffled versions of the corpus) with and
without using the time-awareness feature.

diaNED-1. Table 1 shows micro-accuracy for
our basic NED system on the HN and NYT sets
of diaNED. Significant gains are achieved when
combining the prior and context features with the
time-awareness feature. This demonstrates that
NED systems with standard features can be im-
proved by making them time-aware.

diaNED-2. Table 2 shows micro-accuracy
for our re-implementation of Yamada et al.
(2016)’s initial features with and without the time-
awareness feature. As can be seen in the table,
adding the temporal feature improves the results
significantly in each setting on both sets, which
demonstrates that even state-of-the-art systems
can be improved by making them time-aware.

5.2 Inter-system Comparison
In Table 3, we compare the time-aware NED ap-
proach diaNED-2 to various NED tools available
via GERBIL (v. 1.2.5) (Usbeck et al., 2015) and
to the recent work by Gupta et al. (2017). As all
systems are used with standard settings, we also
trained diaNED-2 on standard NED training data
(CoNLL-AIDA) with the temporal context of en-
tity mentions being the respective article’s year

system HN NYT

xLisa-NGRAM (Zhang and Rettinger, 2014) 87.07 66.30
WAT (Ferragina and Scaiella, 2012) 82.26 70.95
PBOH (Ganea et al., 2016) 90.26 71.75
FREME NER (Dojchinovski and Kliegr, 2013) 48.50 45.27
FRED (Consoli and Recupero, 2015) 23.18 15.44
FOX (Speck and Ngomo, 2014) 77.85 54.25
Dexter (Ceccarelli et al., 2013) 69.66 49.12
DBpedia Spotlight(Mendes et al., 2011) 56.92 61.91
AIDA (Hoffart et al., 2011) 82.35 70.14
AGDISTIS (Usbeck et al., 2014) 70.77 50.14
Gupta et al. (2017) 62.82 43.33

reimpl. of (Yamada et al., 2016) 90.87 72.55
diaNED-2 w time 91.68 76.09

Table 3: F1-scores of various systems on the HN
and NYT subsets of the diaNED benchmark.

overall person location organization

time-agnostic 27.51 9.63 40.07 33.77
time-aware 42.50 39.91 45.22 40.26

Table 4: Micro-accuracy of diaNED-2 on HN-
timediff with and without time-awareness feature.

of publication. However, due to the differences
in what kind of entities the systems consider and
what kind of candidate entity lookup dictionaries
they use, the systems are not directly comparable
and the performance differences should be inter-
preted with a grain of salt. Nevertheless, time-
awareness further increases the distance between
(Yamada et al., 2016) and the second best sys-
tem significantly, which demonstrates its useful-
ness for NED.

5.3 Type-based Analysis

To gain further insights about the importance
of time-awareness, we analyzed the results of
diaNED-2 with and without temporal feature on
the HN-timediff set of our benchmark (Table 4).
On these particularly challenging documents, the
time-awareness feature helps to improve NED
quality for all entity types. While location and
organization entities moderately benefit, there is
a huge performance increase for person entities.
The explanation that person entities benefit most
could be that person entities have comparably
short life spans and are thus most time-sensitive.

6 Related Work

Starting with the early work of Bunescu and
Paşca (2006), Cucerzan (2007), Mihalcea and
Csomai (2007), and Milne and Witten (2008),
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NED methods and tools have been greatly ad-
vanced and become mature. Many systems use a
combination of (i) local features like string sim-
ilarities, lexico-syntactic characteristics and con-
text between mentions and candidate entities and
(ii) global features like the coherence among a
set of selected entities. The inference over this
feature space is typically performed by proba-
bilistic graphical models, learning-to-rank tech-
niques or algorithms related to such models (see,
e.g., Ratinov et al. (2011), Hoffart et al. (2011),
Ferragina and Scaiella (2012), Cheng and Roth
(2013), Guo and Barbosa (2014), Durrett and
Klein (2014), Chisholm and Hachey (2015), Per-
shina et al. (2015), Lazic et al. (2015), Nguyen
et al. (2016), Globerson et al. (2016), Eshel et al.
(2017), and Ganea and Hofmann (2017)). The
GERBIL framework (Usbeck et al., 2015) pro-
vides a unified way of evaluating a wide variety
of NED tools and services.

A recent line of work uses representational
learning to characterize contexts through em-
beddings (e.g., He et al. (2013), Sun et al.
(2015), Francis-Landau et al. (2016), Yamada
et al. (2016), Gupta et al. (2017), Yamada et al.
(2017)). These approaches naturally lend them-
selves towards inference by neural networks such
as LSTMs. In our experiments, the Neural Text-
Entity Encoder by Yamada et al. (2016) serves as
state-of-the-art baseline.

While temporal information was used as a
global feature to compute coherence between en-
tity lifespans (Hoffart et al., 2013), no prior work
on named entity disambiguation made explicit
use of temporal information as a local feature.
However, the value of time has been shown in
a variety of other information extraction tasks,
such as relation extraction (UzZaman et al., 2013;
Mirza and Tonelli, 2016), event extraction (Kuzey
et al., 2016; Spitz and Gertz, 2016), and slot fill-
ing (Ji et al., 2011; Surdeanu et al., 2011; Sur-
deanu, 2013), as well as in the context of informa-
tion retrieval (Berberich et al., 2010; Agarwal and
Strötgen, 2017) and fact checking (Popat et al.,
2017). In this paper, inspired by the importance
of temporal information for many NLP tasks, we
analyzed its value for NED.

7 Conclusions and Ongoing Work

We proposed the first NED method with explicit
consideration of temporal background. As demon-

strated in our experiments, this time-awareness
improves NED quality over diachronic texts that
span long time periods. The diaNED dataset and
the temporal signatures of entities are publicly
available.5

Currently, we integrate a strategy for handling
out-of-KB entities to determine how temporal
affinity may help in the nil detection problem. Fur-
thermore, we plan large-scale experiments with
distant supervision data which will also allow to
evaluate the effectiveness of considering temporal
expressions in the context of the entity mentions as
further temporal context information. Finally, us-
ing a multilingual temporal tagger (Strötgen and
Gertz, 2015), the value of time for NED could be
studied for further languages.
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tin Brümmer, Diego Ceccarelli, Marco Cornolti,
Didier Cherix, Bernd Eickmann, Paolo Ferragina,
Christiane Lemke, Andrea Moro, Roberto Navigli,

692



Francesco Piccinno, Giuseppe Rizzo, Harald Sack,
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Abstract

Many corpora span broad periods of time.
Language processing models trained dur-
ing one time period may not work well
in future time periods, and the best model
may depend on specific times of year
(e.g., people might describe hotels differ-
ently in reviews during the winter ver-
sus the summer). This study investigates
how document classifiers trained on docu-
ments from certain time intervals perform
on documents from other time intervals,
considering both seasonal intervals (inter-
vals that repeat across years, e.g., winter)
and non-seasonal intervals (e.g., specific
years). We show experimentally that clas-
sification performance varies over time,
and that performance can be improved by
using a standard domain adaptation ap-
proach to adjust for changes in time.

1 Introduction

Language, and therefore data derived from lan-
guage, changes over time (Ullmann, 1962). Word
senses can shift over long periods of time
(Wilkins, 1993; Wijaya and Yeniterzi, 2011;
Hamilton et al., 2016), and written language can
change rapidly in online platforms (Eisenstein
et al., 2014; Goel et al., 2016). However, little is
known about how shifts in text over time affect the
performance of language processing systems.

This paper focuses on a standard text process-
ing task, document classification, to provide in-
sight into how classification performance varies
with time. We consider both long-term variations
in text over time and seasonal variations which
change throughout a year but repeat across years.
Our empirical study considers corpora contain-

ing formal text spanning decades as well as user-
generated content spanning only a few years.

After describing the datasets and experiment
design, this paper has two main sections, respec-
tively addressing the following research questions:

1. In what ways does document classification
depend on the timestamps of the documents?

2. Can document classifiers be adapted to per-
form better in time-varying corpora?

To address question 1, we train and test on data
from different time periods, to understand how
performance varies with time. To address ques-
tion 2, we apply a domain adaptation approach,
treating time intervals as domains. We show that
in most cases this approach can lead to improve-
ments in classification performance, even on fu-
ture time intervals.

1.1 Related Work

Time is implicitly embedded in the classification
process: classifiers are often built to be applied to
future data that doesn’t yet exist, and performance
on held-out data is measured to estimate perfor-
mance on future data whose distribution may have
changed. Methods exist to adjust for changes in
the data distribution (covariate shift) (Shimodaira,
2000; Bickel et al., 2009), but time is not typically
incorporated into such methods explicitly.

One line of work that explicitly studies the rela-
tionship between time and the distribution of data
is work on classifying the time period in which
a document was written (document dating) (Kan-
habua and Nørvåg, 2008; Chambers, 2012; Kot-
sakos et al., 2014). However, this task is directed
differently from our work: predicting timestamps
given documents, rather than predicting informa-
tion about documents given timestamps.
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Dataset Time intervals (non-seasonal) Time intervals (seasonal) Size
Reviews (music) 1997-99, 2000-02, 2003-05, 2006-08, 2009-11, 2012-14 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec 653K
Reviews (hotels) 2005-08, 2009-11, 2012-14, 2015-17 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec 78.6K
Reviews (restaurants) 2005-08, 2009-11, 2012-14, 2015-17 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec 1.16M
News (economy) 1950-70, 1971-85, 1986-2000, 2001-14 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec 6.29K
Politics (platforms) 1948-56, 1960-68, 1972-80, 1984-92, 1996-2004, 2008-16 n/a 35.8K
Twitter (vaccines) 2013, 2014, 2015, 2016 Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec 9.83K

Table 1: Descriptions of corpora spanning multiple time intervals. Size is the number of documents.

2 Datasets and Experimental Setup

Our study experiments with six corpora:

• Reviews: Three corpora containing reviews la-
beled with sentiment: music reviews from Ama-
zon (He and McAuley, 2016), and hotel reviews
and restaurant reviews from Yelp.1 We dis-
carded reviews that had fewer than 10 tokens
or a helpfulness/usefulness score of zero. The
reviews with neutral scores were removed.

• Politics: Sentences from the American party
platforms of Republicans and Democrats from
1948 to 2016, available every four years.2

• News: Newspaper articles from 1950-2014, la-
beled with whether the article is relevant to the
US economy.3

• Twitter: Tweets labeled with whether they in-
dicate that the user received an influenza vacci-
nation (i.e., a flu shot) (Huang et al., 2017).

Our experiments require documents to be
grouped into time intervals. Table 1 shows the in-
tervals for each corpus. Documents that fall out-
side of these time intervals were removed. We
grouped documents into two types of intervals:

• Seasonal: Time intervals within a year (e.g.,
January through March) that may be repeated
across years.

• Non-seasonal: Time intervals that do not repeat
(e.g., 1997-1999).

For each dataset, we performed binary clas-
sification, implemented in sklearn (Pedregosa
et al., 2011). We built logistic regression classi-
fiers with TF-IDF weighted n-gram features (n ∈
{1, 2, 3}), removing features that appeared in less
than 2 documents. Except when otherwise speci-
fied, we held out a random 10% of documents as

1https://www.yelp.com/dataset
2https://www.comparativeagendas.net/

datasets_codebooks
3https://www.crowdflower.com/

data-for-everyone/

validation data for each dataset. We used Elas-
tic Net (combined `1 and `2) regularization (Zou
and Hastie, 2005), and tuned the regularization
parameters to maximize performance on the val-
idation data. We evaluated the performance using
weighted F1 scores.

3 How Does Classification Performance
Vary with Time?

We first conduct an analysis of how classifier per-
formance depends on the time intervals in which
it is trained and applied. For each corpus, we train
the classifier on each time interval and test on each
time interval. We downsampled the training data
within each time interval to match the number of
documents in the smallest interval, so that differ-
ences in performance are not due to the size of the
training data.

In all experiments, we train a classifier on a par-
tition of 80% of the documents in the time inter-
val, and repeat this five times on different parti-
tions, averaging the five F1 scores to produce the
final estimate. When training and testing on the
same interval, we test on the held-out 20% of doc-
uments in that interval (standard cross-validation).
When testing on different time intervals, we test
on all documents, since they are all held-out from
the training interval; however, we still train on five
subsets of 80% of documents, so that the training
data is identical across all experiments.

Finally, to understand why performance varies,
we also qualitatively examined how the dis-
tribution of content changes across time inter-
vals. To measure the distribution of content,
we trained a topic model with 20 topics using
gensim (Řehůřek and Sojka, 2010) with default
parameters. We associated each document with
one topic (the most probable topic in the docu-
ment), and then calculated the proportion of each
topic within a time period as the proportion of doc-
uments in that time period assigned to that topic.
We can then visualize the extent to which the dis-
tribution of 20 topics varies by time.
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Figure 1: Document classification performance when training and testing on different times of year
(top) and different years (bottom). Some corpora are omitted for space.

3.1 Seasonal Variability

The top row of Figure 1 shows the test scores from
training and testing on each pair of seasonal time
intervals for four of the datasets. We observe very
strong seasonal variations in the economic news
corpus, with a drop in F1 score on the order of 10
when there is a mismatch in the season between
training and testing. There is a similar, but weaker,
effect on performance in the music reviews from
Amazon and the vaccine tweets. There was vir-
tually no difference in performance in any of the
pairs in both review corpora from Yelp (restau-
rants, not pictured, and hotels).

To help understand why the performance varies,
Figure 2 (left) shows the distribution of topics in
each seasonal interval for two corpora: Amazon
music reviews and Twitter. We observe very lit-
tle variation in the topic distribution across sea-
sons in the Amazon corpus, but some variation in
the Twitter corpus, which may explain the large
performance differences when testing on held-out
seasons in the Twitter data as compared to the
Amazon corpus.

For space, we do not show the descriptions of
the topics, but instead only the shape of the dis-
tributions to show the degree of variability. We
did qualitatively examine the differences in word
features across the time periods, but had diffi-
culty interpreting the observations and were un-
able to draw clear conclusions. Thus, characteriz-
ing the ways in which content distributions vary
over time, and why this affects performance, is
still an open question.

3.2 Non-seasonal Variability

The bottom row of Figure 1 shows the test scores
from training and testing on each pair of non-
seasonal time intervals. A strong pattern emerges
in the political parties corpus: F1 scores can drop
by as much as 40 points when testing on differ-
ent time intervals. This is perhaps unsurprising, as
this collection spans decades, and US party posi-
tions have substantially changed over time. The
performance declines more when testing on time
intervals that are further away in time from the
training interval, suggesting that changes in party
platforms shift gradually over time. In contrast,
while there was a performance drop when testing
outside the training interval in the economic news
corpus, the drop was not gradual. In the Twitter
dataset (not pictured), F1 dropped by an average
of 4.9 points outside the training interval.

We observe an intriguing non-seasonal pattern
that is consistent in both of the review corpora
from Yelp, but not in the music review corpus from
Amazon (not pictured), which is that the classi-
fication performance fairly consistently increases
over time. Since we sampled the dataset so that
the time intervals have the same number of re-
views, this suggests something else changed over
time about the way reviews are written that makes
the sentiment easier to detect.

The right side of Figure 2 shows the topic distri-
bution in the Amazon and Twitter datasets across
non-seasonal intervals. We observe higher levels
of variability across time in the non-seasonal in-
tervals as compared to the seasonal intervals.
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Figure 2: Topic distributions in each time of year (left) and each span of years (right). Topic models are
trained independently in the seasonal vs. non-seasonal settings and are not aligned.

3.3 Discussion
Overall, it is clear that classifiers generally per-
form best when applied to the same time interval
they were trained. Performance diminishes when
applied to different time intervals, although differ-
ent corpora exhibit differ patterns in the way in
which the performance diminishes. This kind of
analysis can be applied to any corpus and could
provide insights into characteristics of the corpus
that may be helpful when designing a classifier.

4 Making Classification Robust to
Temporality

We now consider how to improve classifiers when
working with datasets that span different time in-
tervals. We propose to treat this as a domain adap-
tation problem. In domain adaptation, any par-
tition of data that is expected to have a differ-
ent distribution of features can be treated as a do-
main (Joshi et al., 2013). Traditionally, domain
adaptation is used to adapt models to a common
task across rather different sets of data, e.g., a
sentiment classifier for different types of products
(Blitzer et al., 2007). Recent work has also applied
domain adaptation to adjust for potentially more
subtle differences in data, such as adapting for dif-
ferences in the demographics of authors (Volkova
et al., 2013; Lynn et al., 2017). We follow the same
approach, treating time intervals as domains.

In our experiments, we use the feature augmen-
tation approach of Daumé III (2007) to perform
domain adaptation. Each feature is duplicated
to have a specific version of the feature for ev-
ery domain, as well as a domain-independent ver-
sion of the feature. In each instance, the domain-
independent feature and the domain-specific fea-
ture for that instance’s domain have the same fea-
ture value, while the value is zeroed out for the
domain-specific features for the other domains.

Data (Seasonal) Baseline Adaptation
Reviews (music) .901 .919
Reviews (hotels) .867 .881
Reviews (restaurants) .874 .898
News (economy) .782 .782
Twitter (vaccines) .881 .880

Table 2: F1 scores when treating each seasonal
time interval as a domain and applying domain
adaptation compared to using no adaptation.

This is equivalent to a model where the feature
weights are domain specific but share a Gaus-
sian prior across domains (Finkel and Manning,
2009). This approach is widely used due to its
simplicity, and derivatives of this approach have
been used in similar work (e.g., (Lynn et al.,
2017)). Following Finkel and Manning (2009),
we separately adjust the regularization strength for
the domain-independent feature weights and the
domain-specific feature weights.

4.1 Seasonal Adaptation

We first examine classification performance on
the datasets when grouping the seasonal time in-
tervals (January-March, April-June, July-August,
September-December) as domains and applying
the feature augmentation approach for domain
adaptation. As a baseline comparison, we apply
the same classifier, but without domain adaptation.

Results are shown in Table 2. We see that ap-
plying domain adaptation provides a small boost
in three of the datasets, and has no effect on two of
the datasets. If this pattern holds in other corpora,
then this suggests that it does not hurt performance
to apply domain adaptation across different times
of year, and in some cases can lead to a small per-
formance boost.
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Data (Non-seasonal) Baseline Adaptation Adapt.+seasons
Reviews (music) .895 .924 .910
Reviews (hotels) .886 .892 .920
Reviews (restaurants) .831 .879 .889
News (economy) .763 .780 .859
Politics (platforms) .661 .665 n/a
Twitter (vaccines) .910 .903 .920

Table 3: F1 scores when testing on the final time interval after training on all previous intervals.

4.2 Non-seasonal Adaptation

We now consider the non-seasonal time intervals
(spans of years). In particular, we consider the sce-
nario when one wants to apply a classifier trained
on older data to future data. This requires a mod-
ification to the domain adaptation approach, be-
cause future data includes domains that did not ex-
ist in the training data, and thus we cannot learn
domain-specific feature weights. To solve this, we
train in the usual way, but when testing on future
data, we only include the domain-independent fea-
tures. The intuition is that the domain-independent
parameters should be applicable to all domains,
and so using only these features should lead to bet-
ter generalizability to new domains. We test this
hypothesis by training the classifiers on all but the
last time interval, and testing on the final interval.
For hyperparameter tuning, we used the final time
interval of the training data (i.e., the penultimate
interval) as the validation set. The intuition is that
the penultimate interval is the closest to the test
data and thus is expected to be most similar to it.

Results are shown in the first three columns of
Table 3. We see that this approach leads to a small
performance boost in all cases except the Twitter
dataset. This means that this simple feature aug-
mentation approach has the potential to make clas-
sifiers more robust to future changes in data.

How to apply the feature augmentation tech-
nique to unseen domains is not well understood.
By removing the domain-specific features, as we
did here, the prediction model has changed, and
so its behavior may be hard to predict. Nonethe-
less, this appears to be a successful approach.

4.2.1 Adding Seasonal Features

We also experimented with including the seasonal
features when performing non-seasonal adapta-
tion. In this setting, we train the models with
two domain-specific features in addition to the
domain-independent features: one for the season,

and one for the non-seasonal interval. As above,
we remove the non-seasonal features at test time;
however, we retain the season-specific features in
addition to the domain-independent features, as
they can be reused in future years.

The results of this approach are shown in the
last column of Table 3. We find that combining
seasonal and non-seasonal features together leads
to an additional performance gain in most cases.

5 Conclusion

Our experiments suggest that time can substan-
tially affect the performance of document classi-
fication, and practitioners should be cognizant of
this variable when developing classifiers. A sim-
ple analysis comparing pairs of time intervals can
provide insights into how performance varies with
time, which could be a good practice to do when
initially working with a corpus. Our experiments
also suggest that simple domain adaptation tech-
niques can help account for this variation.4

We make two practical recommendations fol-
lowing the insights from this work. First, evalua-
tion will be most accurate if the test data is as sim-
ilar as possible to whatever future data the classi-
fier will be applied to, and one way to achieve this
is to select test data from the chronological end
of the corpus, rather than randomly sampling data
without regard to time. Second, we observed that
performance on future data tends to increase when
hyperparameter tuning is conducted on later data;
thus, we also recommend sampling validation data
from the chronological end of the corpus.
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Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Association for Computational Linguistics
(ACL).

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2014. Diffusion of lexical change
in social media. PLoS ONE, 9.

Jenny R. Finkel and Christopher D. Manning. 2009.
Hierarchical Bayesian domain adaptation. In North
American Chapter of the Association for Computa-
tional Linguistics (ACL).

Rahul Goel, Sandeep Soni, Naman Goyal, John Pa-
parrizos, Hanna Wallach, Fernando Diaz, and Ja-
cob Eisenstein. 2016. The social dynamics of lan-
guage change in online networks. In The Interna-
tional Conference on Social Informatics (SocInfo).

William L. Hamilton, Jure Leskovec, and Dan Juraf-
sky. 2016. Diachronic word embeddings reveal sta-
tistical laws of semantic change. In Association for
Computational Linguistics (ACL).

Ruining He and Julian McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Pro-
ceedings of the 25th International Conference on
World Wide Web (WWW), pages 507–517. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

Xiaolei Huang, Michael C Smith, Michael J Paul,
Dmytro Ryzhkov, Sandra C Quinn, David A Bro-
niatowski, and Mark Dredze. 2017. Examining pat-
terns of influenza vaccination in social media. In
Proceedings of the AAAI Joint Workshop on Health
Intelligence (W3PHIAI), San Francisco, CA, USA,
pages 4–5.

Mahesh Joshi, Mark Dredze, William W. Cohen, and
Carolyn P. Rose. 2013. What’s in a domain? multi-
domain learning for multi-attribute data. In North
American Chapter of the Association for Compu-
tational Linguistics (NAACL) (short paper), pages
685–690.

N. Kanhabua and K. Nørvåg. 2008. Improving tem-
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. The Journal of Ma-
chine Learning Research, 12:2825–2830.
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Abstract

Query auto-completion is a search engine
feature whereby the system suggests com-
pleted queries as the user types. Recently,
the use of a recurrent neural network lan-
guage model was suggested as a method of
generating query completions. We show
how an adaptable language model can be
used to generate personalized completions
and how the model can use online updat-
ing to make predictions for users not seen
during training. The personalized predic-
tions are significantly better than a base-
line that uses no user information.

1 Introduction

Query auto-completion (QAC) is a feature used by
search engines that provides a list of suggested
queries for the user as they are typing. For in-
stance, if the user types the prefix “mete” then the
system might suggest “meters” or “meteorite” as
completions. This feature can save the user time
and reduce cognitive load (Cai et al., 2016).

Most approaches to QAC are extensions of the
Most Popular Completion (MPC) algorithm (Bar-
Yossef and Kraus, 2011). MPC suggests com-
pletions based on the most popular queries in the
training data that match the specified prefix. One
way to improve MPC is to consider additional sig-
nals such as temporal information (Shokouhi and
Radinsky, 2012; Whiting and Jose, 2014) or infor-
mation gleaned from a users’ past queries (Shok-
ouhi, 2013). This paper deals with the latter of
those two signals, i.e. personalization. Personal-
ization relies on the fact that query likelihoods are
drastically different among different people de-
pending on their needs and interests.

Recently, Park and Chiba (2017) suggested a
significantly different approach to QAC. In their

Cold Start Warm Start
1 bank of america bank of america
2 barnes and noble basketball
3 babiesrus baseball
4 baby names barnes and noble
5 bank one baltimore

Table 1: Top five completions for the prefix “ba”
for a cold start model with no user knowledge
and a warm model that has seen the queries espn,
sports news, nascar, yankees, and nba.

work, completions are generated from a charac-
ter LSTM language model instead of by ranking
completions retrieved from a database, as in the
MPC algorithm. This approach is able to com-
plete queries whose prefixes were not seen during
training and has significant memory savings over
having to store a large query database.

Building on this work, we consider the task of
personalized QAC, advancing current methods by
combining the obvious advantages of personaliza-
tion with the effectiveness of a language model in
handling rare and previously unseen prefixes. The
model must learn how to extract information from
a user’s past queries and use it to adapt the gen-
erative model for that person’s future queries. To
do this, we leverage recent advances in context-
adaptive neural language modeling. In particular,
we make use of the recently introduced FactorCell
model that uses an embedding vector to additively
transform the weights of the language model’s re-
current layer with a low-rank matrix (Jaech and
Ostendorf, 2017). By allowing a greater fraction
of the weights to change during personalization,
the FactorCell model has advantages over the tra-
ditional approach to adaptation of concatenating a
context vector to the input of the LSTM (Mikolov
and Zweig, 2012).

Table 1 provides an anecdotal example from
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the trained FactorCell model to demonstrate the
intended behavior. The table shows the top five
completions for the prefix “ba” in a cold start sce-
nario and again after the user has completed five
sports related queries. In the warm start scenario,
the “baby names” and “babiesrus” completions no
longer appear in the top five and have been re-
placed with “basketball” and “baseball”.

The novel aspects of this work are the appli-
cation of an adaptive language model to the task
of QAC personalization and the demonstration of
how RNN language models can be adapted to con-
texts (users) not seen during training. An addi-
tional contribution is showing that a richer adapta-
tion framework gives added gains with added data.

2 Model

Adaptation depends on learning an embedding for
each user, which we discuss in Section 2.1, and
then using that embedding to adjust the weights of
the recurrent layer, discussed in Section 2.2.

2.1 Learning User Embeddings

During training, we learn an embedding for each
of the users. We think of these embeddings as
holding latent demographic factors for each user.
Users who have less than 15 queries in the train-
ing data (around half the users but less than 13% of
the queries) are grouped together as a single entity,
user1, leaving k users. The user embeddings ma-
trix Uk×m, wherem is the user embedding size, is
learned via back-propagation as part of the end-to-
end model. The embedding for an individual user
is the ith row of U and is denoted by ui.

It is important to be able to apply the model to
users that are not seen during training. This is
done by online updating of the user embeddings
during evaluation. When a new person, userk+1

is seen, a new row is added to U and initialized to
u1. Each person’s user embedding is updated via
back-propagation every time they select a query.
When doing online updating of the user embed-
dings, the rest of the model parameters (everything
except U) are frozen.

2.2 Recurrent Layer Adaptation

We consider three model architectures which dif-
fer only in the method for adapting the recurrent
layer. First is the unadapted LM, analogous to the
model from Park and Chiba (2017), which does
no personalization. The second architecture was

introduced by Mikolov and Zweig (2012) and has
been used multiple times for LM personalization
(Wen et al., 2013; Huang et al., 2014; Li et al.,
2016). It works by concatenating a user embed-
ding to the character embedding at every step of
the input to the recurrent layer. Jaech and Osten-
dorf (2017) refer to this model as the ConcatCell
and show that it is equivalent to adding a term Vu
to adjust the bias of the recurrent layer. The hidden
state of a ConcatCell with embedding size e and
hidden state size h is given in Equation 1 where
σ is the activation function, wt is the character
embedding, ht−1 is the previous hidden state, and
W ∈ Re+h×h and b ∈ Rh are the recurrent layer
weight matrix and bias vector.

ht = σ([wt, ht−1]W + b+Vu) (1)

Adapting just the bias vector is a significant lim-
itation. The FactorCell model, (Jaech and Os-
tendorf, 2017), remedies this by letting the user
embedding transform the weights of the recurrent
layer via the use of a low-rank adaptation ma-
trix. The FactorCell uses a weight matrix W′ =
W +A that has been additively transformed by a
personalized low-rank matrix A. Because the Fac-
torCell weight matrix W′ is different for each user
(See Equation 2), it allows for a much stronger
adaptation than what is possible using the more
standard ConcatCell model.1

ht = σ([wt, ht−1]W′ + b) (2)

The low-rank adaptation matrix A is generated
by taking the product between a user’s m dimen-
sional embedding and left and right bases tensors,
ZL ∈ Rm×e+h×r and ZR ∈ Rr×h×m as so,

A = (ui ×1 ZL)(ZR ×3 ui) (3)

where ×i denotes the mode-i tensor product. The
above product selects a user specific adaptation
matrix by taking a weighted combination of the
m rank r matrices held between ZL and ZR. The
rank, r, is a hyperparameter which controls the de-
gree of personalization.

3 Data

Our experiments make use of the AOL Query data
collected over three months in 2006 (Pass et al.,
2006). The first six of the ten files were used for

1In the case of an LSTM, W′ is extended to incorporate
all of the gates.
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training. This contains approximately 12 million
queries from 173,000 users for an average of 70
queries per user (median 15). A set of 240,000
queries from those same users (2% of the data)
was reserved for tuning and validation. From the
remaining files, one million queries from 30,000
users are used to test the models on a disjoint set
of users.

4 Experiments

4.1 Implementation Details

The vocabulary consists of 79 characters including
special start and stop tokens. Models were trained
for six epochs. The Adam optimizer is used dur-
ing training with a learning rate of 10−3 (Kingma
and Ba, 2014). When updating the user embed-
dings during evaluation, we found that it is easier
to use an optimizer without momentum. We use
Adadelta (Zeiler, 2012) and tune the online learn-
ing rate to give the best perplexity on a held-out
set of 12,000 queries, having previously verified
that perplexity is a good indicator of performance
on the QAC task.2

The language model is a single-layer character-
level LSTM with coupled input and forget gates
and layer normalization (Melis et al., 2018; Ba
et al., 2016). We do experiments on two model
configurations: small and large. The small mod-
els use an LSTM hidden state size of 300 and 20
dimensional user embeddings. The large models
use a hidden state size of 600 and 40 dimensional
user embeddings. Both sizes use 24 dimensional
character embeddings. For the small sized mod-
els, we experimented with different values of the
FactorCell rank hyperparameter between 30 and
50 dimensions finding that bigger rank is better.
The large sized models used a fixed value of 60 for
the rank hyperparemeter. During training only and
due to limited computational resources, queries
are truncated to a length of 40 characters.

Prefixes are selected uniformly at random with
the constraint that they contain at least two charac-
ters in the prefix and that there is at least one char-
acter in the completion. To generate completions
using beam search, we use a beam width of 100
and a branching factor of 4. Results are reported
using mean reciprocal rank (MRR), the standard
method of evaluating QAC systems. It is the mean
of the reciprocal rank of the true completion in the

2Code at http://github.com/ajaech/query completion

Size Model Seen Unseen All
MPC .292 .000 .203

Unadapted .292 .256 .267
(S) ConcatCell .296 .263 .273

FactorCell .300 .264 .275
Unadapted .324 .286 .297

(B) ConcatCell .330 .298 .308
FactorCell .335 .298 .309

Table 2: MRR reported for seen and unseen pre-
fixes for small (S) and big (B) models.

Figure 1: Relative improvement in MRR over the
unpersonalized model versus queries seen using
the large size models. Plot uses a moving average
of width 9 to reduce noise.

top ten proposed completions. The reciprocal rank
is zero if the true completion is not in the top ten.

Neural models are compared against an MPC
baseline. Following Park and Chiba (2017), we
remove queries seen less than three times from the
MPC training data.

4.2 Results

Table 2 compares the performance of the differ-
ent models against the MPC baseline on a test set
of one million queries from a user population that
is disjoint with the training set. Results are pre-
sented separately for prefixes that are seen or un-
seen in the training data. Consistent with prior
work, the neural models do better than the MPC
baseline. The personalized models are both bet-
ter than the unadapted one. The FactorCell model
is the best overall in both the big and small sized
experiments, but the gain is mainly for the seen
prefixes.

Figure 1 shows the relative improvement in
MRR over an unpersonalized model versus the
number of queries seen per user. Both the Factor-
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Figure 2: MRR by prefix and query lengths for the
large FactorCell and unadapted models with the
first 50 queries per user excluded.

Cell and the ConcatCell show continued improve-
ment as more queries from each user are seen, and
the FactorCell outperforms the ConcatCell by an
increasing margin over time. In the long run, we
expect that the system will have seen many queries
from most users. Therefore, the right side of Fig-
ure 1, where the relative gain of FactorCell is up
to 2% better than that of the ConcatCell, is more
indicative of the potential of these models for ac-
tive users. Since the data was collected over a lim-
ited time frame and half of all users have fifteen or
fewer queries, the results in Table 2 do not reflect
the full benefit of personalization.

Figure 2 shows the MRR for different prefix and
query lengths. We find that longer prefixes help
the model make longer completions and (more ob-
viously) shorter completions have higher MRR.
Comparing the personalized model against the
unpersonalized baseline, we see that the biggest
gains are for short queries and prefixes of length
one or two.

We found that one reason why the FactorCell
outperforms the ConcatCell is that it is able to pick
up sooner on the repetitive search behaviors that
some users have. This commonly happens for nav-
igational queries where someone searches for the
name of their favorite website once or more per
day. At the extreme tail there are users who search
for nothing but free online poker. Both models do
well on these highly predictable users but the Fac-
torCell is generally a bit quicker to adapt.

We conducted case studies to better understand
what information is represented in the user em-
beddings and what makes the FactorCell different
from the ConcatCell. From a cold start user em-
bedding we ran two queries and allowed the model
to update the user embedding. Then, we ranked

FactorCell ConcatCell
1 high school musical horoscope
2 chris brown high school musical
3 funnyjunk.com homes for sale
4 funbrain.com modular homes
5 chat room hair styles

Table 3: The five queries that have the great-
est adapted vs. unadapted likelihood ratio after
searching for “high school softball” and “math
homework help”.

the most frequent 1,500 queries based on the ratio
of their likelihood from before and after updating
the user embeddings.

Tables 3 and 4 show the queries with the high-
est relative likelihood of the adapted vs. unadapted
models after two related search queries: “high
school softball” and “math homework help” for
Table 3, and “Prada handbags” and “Versace eye-
wear” for Table 4. In both cases, the Factor-
Cell model examples are more semantically co-
herent than the ConcatCell examples. In the first
case, the FactorCell model identifies queries that a
high school student might make, including enter-
tainment sources and a celebrity entertainer pop-
ular with that demographic. In the second case,
the FactorCell model chooses retailers that carry
woman’s apparel and those that sell home goods.
While these companies’ brands are not as luxu-
rious as Prada or Versace, most of the top luxury
brand names do not appear in the top 1,500 queries
and our model may not be capable of being that
specific. There is no obvious semantic connec-
tion between the highest likelihood ratio phrases
for the ConcatCell; it seems to be focusing more
on orthography than semantics (e.g. “home” in
the first example).. Not shown are the queries
which experienced the greatest decrease in like-
lihood. For the “high school” case, these included
searches for travel agencies and airline tickets—
websites not targeted towards the high school age
demographic.

5 Related Work

While the standard implementation of MPC can
not handle unseen prefixes, there are variants
which do have that ability. Park and Chiba (2017)
find that the neural LM outperforms MPC even
when MPC has been augmented with the approach
from Mitra and Craswell (2015) for handling rare
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FactorCell ConcatCell
1 neiman marcus craigslist nyc
2 pottery barn myspace layouts
3 jc penney verizon wireless
4 verizon wireless jensen ackles
5 bed bath and beyond webster dictionary

Table 4: The five queries that have the great-
est adapted vs. unadapted likelihood ratio after
searching for “prada handbags” and “versace eye-
wear”.

prefixes. There has also been work on personaliz-
ing MPC (Shokouhi, 2013; Cai et al., 2014). We
did not compare against these specific models be-
cause our goal was to show how personalization
can improve the already-proven generative neural
model approach. RNN’s have also previously been
used for the related task of next query suggestion
(Sordoni et al., 2015).

Our results are not directly comparable to Park
and Chiba (2017) or Mitra and Craswell (2015)
due to differences in the partitioning of the data
and the method for selecting random prefixes.
Prior work partitions the data by time instead of
by user. Splitting by users is necessary in order
to properly test personalization over longer time
ranges.

Wang et al. (2018) show how spelling correction
can be integrated into an RNN language model
query auto-completion system and how the com-
pletions can be generated in real time using a
GPU. Our method of updating the model during
evaluation resembles work on dynamic evaluation
for language modeling (Krause et al., 2017), but
differs in that only the user embeddings (latent de-
mographic factors) are updated.

6 Conclusion and Future Work

Our experiments show that the LSTM model can
be improved using personalization. The method
of adapting the recurrent layer clearly matters and
we obtained an advantage by using the FactorCell
model. The reason the FactorCell does better is
in part attributable to having two to three times as
many parameters in the recurrent layer as either
the ConcatCell or the unadapted models. By de-
sign, the adapted weight matrix W′ only needs to
be computed at most once per query and is reused
many thousands of times during beam search. As
a result, for a given latency budget, the FactorCell

model outperforms the Mikolov and Zweig (2012)
model for LSTM adaptation.

The cost for updating the user embeddings is
similar to the cost of the forward pass and depends
on the size of the user embedding, hidden state
size, FactorCell rank, and query length. In most
cases there will be time between queries for up-
dates, but updates can be less frequent to reduce
computational costs.

We also showed that language model person-
alization can be effective even on users who are
not seen during training. The benefits of person-
alization are immediate and increase over time as
the system continues to leverage the incoming data
to build better user representations. The approach
can easily be extended to include time as an addi-
tional conditioning factor. We leave the question
of whether the results can be improved by com-
bining the language model with MPC for future
work.
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Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. ICLR.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In SLT, pages 234–239.

Bhaskar Mitra and Nick Craswell. 2015. Query auto-
completion for rare prefixes. In CIKM, pages 1755–
1758. ACM.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion. In SIGIR,
pages 1189–1192. ACM.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson.
2006. A picture of search. In InfoScale, volume
152, page 1.

Milad Shokouhi. 2013. Learning to personalize query
auto-completion. In SIGIR, pages 103–112. ACM.

Milad Shokouhi and Kira Radinsky. 2012. Time-
sensitive query auto-completion. In SIGIR, pages
601–610. ACM.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In CIKM, pages 553–562. ACM.

Po-Wei Wang, J. Zico Kolter, Vijai Mohan, and Inder-
jit S. Dhillon. 2018. Realtime query completion via
deep language models. ICLR.

Tsung-Hsien Wen, Aaron Heidel, Hung-yi Lee,
Yu Tsao, and Lin-Shan Lee. 2013. Recurrent neural
network based language model personalization by
social network crowdsourcing. In INTERSPEECH,
pages 2703–2707.

Stewart Whiting and Joemon M Jose. 2014. Recent
and robust query auto-completion. In WWW, pages
971–982. ACM.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

705



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 706–711
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Personalized Review Generation by Expanding Phrases and Attending on
Aspect-Aware Representations

Jianmo Ni
University of California San Diego

jin018@ucsd.edu

Julian McAuley
University of California San Diego

jmcauley@ucsd.edu

Abstract

In this paper, we focus on the problem
of building assistive systems that can help
users to write reviews. We cast this prob-
lem using an encoder-decoder framework
that generates personalized reviews by ex-
panding short phrases (e.g. review sum-
maries, product titles) provided as input to
the system. We incorporate aspect-level
information via an aspect encoder that
learns ‘aspect-aware’ user and item repre-
sentations. An attention fusion layer is ap-
plied to control generation by attending on
the outputs of multiple encoders. Experi-
mental results show that our model is ca-
pable of generating coherent and diverse
reviews that expand the contents of input
phrases. In addition, the learned aspect-
aware representations discover those as-
pects that users are more inclined to dis-
cuss and bias the generated text toward
their personalized aspect preferences.

1 Introduction

Contextual, or ‘data-to-text’ natural language gen-
eration is one of the core tasks in natural lan-
guage processing and has a considerable impact on
various fields (Gatt and Krahmer, 2017). Within
the field of recommender systems, a promising
application is to estimate (or generate) personal-
ized reviews that a user would write about a prod-
uct, i.e., to discover their nuanced opinions about
each of its individual aspects. A successful model
could work (for instance) as (a) a highly-nuanced
recommender system that tells users their likely
reaction to a product in the form of text frag-
ments; (b) a writing tool that helps users ‘brain-
storm’ the review-writing process; or (c) a query-
ing system that facilitates personalized natural lan-

guage queries (i.e., to find items about which a
user would be most likely to write a particular
phrase). Some recent works have explored the re-
view generation task and shown success in gen-
erating cohesive reviews (Dong et al., 2017; Ni
et al., 2017; Zang and Wan, 2017). Most of these
works treat the user and item identity as input; we
seek a system with more nuance and more preci-
sion by allowing users to ‘guide’ the model via
short phrases, or auxiliary data such as item spec-
ifications. For example, a review writing assistant
might allow users to write short phrases and ex-
pand these key points into a plausible review.

Review text has been widely studied in tradi-
tional tasks such as aspect extraction (Mukherjee
and Liu, 2012; He et al., 2017), extraction of sen-
timent lexicons (Zhang et al., 2014), and aspect-
aware sentiment analysis (Wang et al., 2016;
McAuley et al., 2012). These works are related
to review generation since they can provide prior
knowledge to supervise the generative process.
We are interested in exploring how such knowl-
edge (e.g. extracted aspects) can be used in the re-
view generation task.

In this paper, we focus on designing a review
generation model that is able to leverage both user
and item information as well as auxiliary, textual
input and aspect-aware knowledge. Specifically,
we study the task of expanding short phrases into
complete, coherent reviews that accurately reflect
the opinions and knowledge learned from those
phrases.

These short phrases could include snippets pro-
vided by the user, or manifest aspects about
the items themselves (e.g. brand words, techni-
cal specifications, etc.). We propose an encoder-
decoder framework that takes into consideration
three encoders (a sequence encoder, an attribute
encoder, and an aspect encoder), and one decoder.
The sequence encoder uses a gated recurrent unit
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Figure 1: General structure of ExpansionNet.

(GRU) network to encode text information; the
attribute encoder learns a latent representation of
user and item identity; finally, the aspect encoder
finds an aspect-aware representation of users and
items, which reflects user-aspect preferences and
item-aspect relationships. The aspect-aware rep-
resentation is helpful to discover what each user is
likely to discuss about each item. Finally, the out-
put of these encoders is passed to the sequence de-
coder with an attention fusion layer. The decoder
attends on the encoded information and biases the
model to generate words that are consistent with
the input phrases and words belonging to the most
relevant aspects.

2 Related Work

Review generation belongs to a large body of
work on data-to-text natural language generation
(Gatt and Krahmer, 2017), which has applications
including summarization (See et al., 2017), im-
age captioning (Vinyals et al., 2015), and dia-
logue response generation (Xing et al., 2017; Li
et al., 2016; Ghosh et al., 2017), among others.
Among these, review generation is characterized
by the need to generate long sequences and es-
timate high-order interactions between users and
items.

Several approaches have been recently pro-
posed to tackle these problems. Dong et al. (2017)
proposed an attribute-to-sequence (Attr2Seq)
method to encode user and item identities as well
as rating information with a multi-layer perceptron
and a decoder then generates reviews conditioned
on this information. They also used an attention
mechanism to strengthen the alignment between

output and input attributes. Ni et al. (2017) trained
a collaborative-filtering generative concatenative
network to jointly learn the tasks of review gen-
eration and item recommendation. Zang and Wan
(2017) proposed a hierarchical structure to gener-
ate long reviews; they assume each sentence is as-
sociated with an aspect score, and learn the atten-
tion between aspect scores and sentences during
training. Our approach differs from these mainly
in our goal of incorporating auxiliary textual in-
formation (short phrases, product specifications,
etc.) into the generative process, which facilitates
the generation of higher-fidelity reviews.

Another line of work related to review genera-
tion is aspect extraction and opinion mining (Park
et al., 2015; Qiu et al., 2017; He et al., 2017; Chen
et al., 2014). In this paper, we argue that the extra
aspect (opinion) information extracted using these
previous works can effectively improve the qual-
ity of generated reviews. We propose a simple but
effective way to combine aspect information into
the generative model.

3 Approach

We describe the review generation task as fol-
lows. Given a user u, item i, several short phrases
{d1, d2, ..., dM}, and a group of extracted aspects
{A1, A2, ..., Ak}, our goal is to generate a re-
view (w1, w2, ..., wT) that maximizes the proba-
bility P (w1:T|u, i, d1:M). To solve this task, we
propose a method called ExpansionNet which con-
tains two parts: 1) three encoders to leverage the
input phrases and aspect information; and 2) a de-
coder with an attention fusion layer to generate
sequences and align the generation with the input
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sources. The model structure is shown in Figure 1.

3.1 Sequence encoder, attribute encoder and
aspect encoder

Our sequence encoder is a two-layer bi-directional
GRU, as is commonly used in sequence-to-
sequence (Seq2Seq) models (Cho et al., 2014).
Input phrases first pass a word embedding layer,
then go through the GRU one-by-one and finally
yield a sequence of hidden states {e1, e2..., eL}.
In the case of multiple phrases, these share the
same sequence encoder and have different lengths
L. To simplify notation, we only consider one in-
put phrase in this section.

The attribute encoder and aspect encoder both
consist of two embedding layers and a projec-
tion layer. For the attribute encoder, we define
two general embedding layers Eu ∈ R|U|×m and
Ei ∈ R|I|×m to obtain the attribute latent fac-
tors γu and γi; for the aspect encoder, we use two
aspect-aware embedding layers E

′
u ∈ R|U|×k and

E
′
i ∈ R|I|×k to obtain aspect-aware latent fac-

tors βu and βi. Here |U|, |I|, m and k are the
number of users, number of items, the dimension
of attributes, and the number of aspects, respec-
tively. After the embedding layers, the attribute
and aspect-aware latent factors are concatenated
and fed into a projection layer with tanh activa-
tion. The outputs are calculated as:

γu = Eu(u), γi = Ei(i) (1)

βu = E
′
u(u), βi = E

′
i(i) (2)

u = tanh(Wu[γu; γi] + bu) (3)

v = tanh(Wv[βu;βi] + bv) (4)

where Wu ∈ Rn×2m, bu ∈ Rn, Wv ∈ Rn×2k,
bv ∈ Rn are learnable parameters and n is the
dimensionality of the hidden units in the decoder.

3.2 Decoder with attention fusion layer
The decoder is a two-layer GRU that predicts the
target words given the start token. The hidden
state of the decoder is initialized using the sum
of the three encoders’ outputs. The hidden state
at time-step t is updated via the GRU unit based
on the previous hidden state and the input word.
Specifically:

h0 = eL + u+ v (5)

ht = GRU(wt,ht−1), (6)

where h0 ∈ Rn is the decoder’s initial hidden state
and ht ∈ Rn is the hidden state at time-step t.

To fully exploit the encoder-side information,
we apply an attention fusion layer to summarize
the output of each encoder and jointly determine
the final word distribution. For the sequence en-
coder, the attention vector is defined as in many
other applications (Bahdanau et al., 2014; Luong
et al., 2015):

a1t =
L∑

j=1

α1
tjej (7)

α1
tj = exp(tanh(v1

α
>
(W 1

α[ej ;ht] + b1
α)))/Z,

(8)

where a1t ∈ Rn is the attention vector on the se-
quence encoder at time-step t, α1

tj is the attention
score over the encoder hidden state ej and decoder
hidden state ht, and Z is a normalization term.

For the attribute encoder, the attention vector is
calculated as:

a2t =
∑

j∈u,i
α2
tjγj (9)

α2
tj = exp(tanh(v2

α
>
(W 2

α[γj ;ht] + b2
α)))/Z,

(10)

where a2t ∈ Rn is the attention vector on the at-
tribute encoder, and α2

tj is the attention score be-
tween the attribute latent factor γj and decoder
hidden state ht.

Inspired by the copy mechanism (Gu et al.,
2016; See et al., 2017), we design an attention vec-
tor that estimates the probability that each aspect
will be discussed in the next time-step:

sui =Ws[βu;βi] + bs (11)

a3t = tanh(W 3
α[sui; et;ht] + b3

α), (12)

where sui ∈ Rk is the aspect importance consid-
ering the interaction between u and i, et is the de-
coder input after embedding layer at time-step t,
and a3t ∈ Rk is a probability vector to bias each
aspect at time-step t. Finally, the first two atten-
tion vectors are concatenated with the decoder hid-
den state at time-step t and projected to obtain the
output word distribution Pv. The attention scores
from the aspect encoder are then directly added
to the aspect words in the final word distribution.
The output probability for word w at time-step t is
given by:

Pv(wt) = tanh(W [ht;a
1
t ;a

2
t ] + b) (13)

P (wt) = Pv(wt) + a3t [k] · 1wt∈Ak
, (14)

708



Table 1: Parameter settings used in our experiments.

Word
dimension

Attribute
dimension

Aspect di-
mension

GRU
hidden size

Batch Size Learning
Rate

Optimizer

512 64 15 512 16 0.0002 Adam

where wt is the target word at time-step t, a3t [k] is
the probability that aspect k will be discussed at
time-step t, Ak represents all words belonging to
aspect k and 1wt∈Ak

is a binary variable indicating
whether wt belongs to aspect k.

During inference, we use greedy decoding by
choosing the word with maximum probability, de-
noted as yt = argmaxwt

softmax(P (wt)). De-
coding finishes when an end token is encountered.

4 Experiments

We consider a real world dataset from Amazon
Electronics (McAuley et al., 2015) to evaluate our
model. We convert all text into lowercase, add
start and end tokens to each review, and perform
tokenization using NLTK.1 We discard reviews
with length greater than 100 tokens and consider a
vocabulary of 30,000 tokens. After preprocessing,
the dataset contains 182,850 users, 59,043 items,
and 992,172 reviews (sparsity 99.993%), which is
much sparser than the datasets used in previous
works (Dong et al., 2017; Ni et al., 2017). On av-
erage, each review contains 49.32 tokens as well
as a short-text summary of 4.52 tokens. In our
experiments, the basic ExpansionNet uses these
summaries as input phrases. We split the dataset
into training (80%), validation (10%) and test sets
(10%). All results are reported on the test set.

4.1 Aspect Extraction

We use the method2 in (He et al., 2017) to extract
15 aspects and consider the top 100 words from
each aspect. Table 2 shows 10 inferred aspects and
representative words (inferred aspects are manu-
ally labeled). ExpansionNet calculates an atten-
tion score based on the user and item aspect-aware
representation, then determines how much these
representative words are biased in the output word
distribution.

1
https://www.nltk.org/

2
https://github.com/ruidan/

Unsupervised-Aspect-Extraction

Table 2: List of representative words for inferred
aspects on Amazon Electronics dataset.

Aspects Representative Words

Service vendor seller supplier reply refund delivery
shipping exchange contacting promptly

Price price value overall dependable reliable afford-
able practical budget inexpensive bargain

Screen screen touchscreen browse display scrolling
surfing navigate icon menu surfing text blur re-
flection

Case case cover briefcase portfolio padded protective
rubberized padding leather skin

Drive drive disk copying copied fat32 terabyte ntfs
data hdd cache

Sound sound vocal loudness booming bass treble tinny
speaker isolation sennheisers

Vision glossy shiny transparent polish reflective faded
lcd shield glass painted

Laptop lenovo inspiron ibm gateway pentium alienware
xps pavilion thinkpad elite

Time cycle time week day month hour suddenly re-
peated overnight continuously

Stableness unscrew securing mounting drill centered tight-
ening screwed attach tighten loosen

4.2 Experiment Details

We use PyTorch3 to implement our model.4 Pa-
rameter settings are shown in Table 1. For the at-
tribute encoder and aspect encoder, we set the di-
mensionality to 64 and 15 respectively. For both
the sequence encoder and decoder, we use a 2-
layer GRU with hidden size 512. We also add
dropout layers before and after the GRUs. The
dropout rate is set to 0.1. During training, the input
sequences of the same source (e.g. review, sum-
mary) inside each batch are padded to the same
length.

4.3 Performance Evaluation

We evaluate the model on six automatic metrics
(Table 3): Perplexity, BLEU-1/BLEU-4, ROUGE-
L and Distinct-1/2 (percentage of distinct uni-
grams and bi-grams) (Li et al., 2016). We compare

3
http://pytorch.org/docs/master/index.html

4
https://github.com/nijianmo/textExpansion
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Table 3: Results on automatic metrics

Model PPL BLEU-1(%) BLEU-4(%) ROUGE-L Distinct-1(%) Distinct-2(%)

Rand / 20.24 0.45 0.390 1.311 13.681
GRU-LM 35.35 30.79 1.20 / / /
Att2Seq 34.21 26.16 1.23 0.403 0.014 0.051
+aspect 34.26 26.87 1.51 0.397 0.018 0.069
ExpansionNet 34.18 26.05 2.21 0.404 0.096 0.789
+title 30.7 27.90 2.50 0.415 0.099 0.911
+attribute & aspect 31.7 30.33 2.63 0.408 0.133 1.134

User/Item user A3G831BTCLWGVQ and item B007M50PTM
Review summary ”easy to use and nice standard apps”
Item title ”samsung galaxy tab 2 (10.1-Inch, wi-fi) 2012 model”

Real review ”the display is beautiful and the tablet is very easy to use. it comes with some really nice
standard apps.”

AttrsSeq ”i bought this for my wife ’s new ipad air . it fits perfectly and looks great . the only thing i do
n’t like is that the cover is a little too small for the ipad air . ”

ExpansionNet ”i love this tablet . it is fast and easy to use . i have no complaints . i would recommend this
tablet to anyone .”

+title ”i love this tablet . it is fast and easy to use . i have a galaxy tab 2 and i love it .”

+attribute & aspect ”i love this tablet . it is easy to use and the screen is very responsive . i love the fact that it has
a micro sd slot . i have not tried the tablet app yet but i do n’t have any problems with it . i am
very happy with this tablet .”

Figure 2: Examples of a real review and reviews generated by different models given a user, item, review
summary, and item title. Highlights added for emphasis.

against three baselines: Rand (randomly choose a
review from the training set), GRU-LM (the GRU
decoder works alone as a language model) and a
state-of-the-art model Attr2Seq that only consid-
ers user and item attribute (Dong et al., 2017).
ExpansionNet (with summary, item title, attribute
and aspect as input) achieves significant improve-
ments over Attr2Seq on all metrics. As we add
more input information, the model continues to
obtain better results, except for the ROUGE-L
metric. This proves that our model can effectively
learn from short input phrases and aspect informa-
tion and improve the correctness and diversity of
generated results.

Figure 2 presents a sample generation result.
ExpansionNet captures fine-grained item informa-
tion (e.g. that the item is a tablet), which Attr2Seq
fails to recognize. Moreover, given a phrase like
“easy to use” in the summary, ExpansionNet gen-
erates reviews containing the same text. This
demonstrates the possibility of using our model in
an assistive review generation scenario. Finally,
given extra aspect information, the model success-
fully estimates that the screen would be an impor-
tant aspect (i.e., for the current user and item); it
generates phrases such as “screen is very respon-

Table 4: Aspect coverage analysis

# aspects
(real)

# aspects
(generated)

# covered
aspects

Attr2Seq 2.875 2.744 0.686
ExpansionNet 2.875 1.804 0.807
+title 2.875 1.721 0.894
+attribute&aspect 2.875 1.834 0.931

sive” about the aspect “screen” which is also cov-
ered in the real (ground-truth) review (“display is
beautiful”).

We are also interested in seeing how the aspect-
aware representation can find related aspects and
bias the generation to discuss more about those
aspects. We analyze the average number of as-
pects in real and generated reviews and show on
average how many aspects in real reviews are cov-
ered in generated reviews. We consider a review
as covering an aspect if any of the aspect’s rep-
resentative words exists in the review. As shown
in Table 4, Attr2Seq tends to cover more aspects
in generation, many of which are not discussed
in real reviews. On the other hand, ExpansionNet
better captures the distribution of aspects that are
discussed in real reviews.
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Abstract

Text simplification (TS) is a monolingual
text-to-text transformation task where an
original (complex) text is transformed into
a target (simpler) text. Most recent work
is based on sequence-to-sequence neural
models similar to those used for machine
translation (MT). Different from MT, TS
data comprises more elaborate transforma-
tions, such as sentence splitting. It can
also contain multiple simplifications of the
same original text targeting different au-
diences, such as school grade levels. We
explore these two features of TS to build
models tailored for specific grade levels.
Our approach uses a standard sequence-
to-sequence architecture where the origi-
nal sequence is annotated with informa-
tion about the target audience and/or the
(predicted) type of simplification opera-
tion. We show that it outperforms state-
of-the-art TS approaches (up to 3 and 12
BLEU and SARI points, respectively), in-
cluding when training data for the specific
complex-simple combination of grade lev-
els is not available, i.e. zero-shot learning.

1 Introduction

Text simplification (TS) is the task of modifying
an original text into a simpler version of it. One of
the main parameters for defining a suitable simpli-
fication is the target audience. Examples include
elderly, children, cognitively impaired users, non-
native speakers and low-literacy readers.

Traditionally, work on TS has been divided in
lexical simplification (LS) and syntactic simplifi-
cation (SS). LS (Paetzold, 2016) deals with the
identification and replacement of complex words
or phrases. SS (Siddharthan, 2011) performs

structural transformations such as changing a sen-
tence from passive to active voice. However, most
recent approaches learn transformations from cor-
pora, addressing simplification at lexical and syn-
tactic levels altogether. These include either learn-
ing tree-based transformations (Woodsend and La-
pata, 2011; Paetzold and Specia, 2013) or using
machine translation (MT)-based techniques (Zhu
et al., 2010; Coster and Kauchak, 2011a; Wubben
et al., 2012; Narayan and Gardent, 2014; Nisioi
et al., 2017; Zhang and Lapata, 2017). This paper
uses the latter type of technique, which treats TS
as a monolingual MT task, where an original text
is “translated” into its simplified version.

In order to build MT-based models, a parallel
corpus of original texts with their simplified coun-
terparts is needed. For English, two main such cor-
pora are available: Wikipedia-Simple Wikipedia
(W-SW) (Zhu et al., 2010) and the Newsela Arti-
cle Corpus.1 The former is a collection of orig-
inal Wikipedia articles and their simplified ver-
sions created by volunteers. The latter consists
of news articles professionally simplified for var-
ious specific audiences following the US school
grade system. To build simplification models, the
pairs of articles in these corpora have been aligned
at the level of smaller units using standard algo-
rithms (Coster and Kauchak, 2011b; Paetzold and
Specia, 2016; Štajner et al., 2017). Based on the
number of sentences involved in these alignments,
one can categorise alignments into four types of
coarse-grained simplification operations:
• Identical: an original sentence is aligned to

itself, i.e. no simplification is performed.
• Elaboration: an original sentence is aligned

to a single, rewritten simplified sentence.
• One-to-many: splitting – an original sentence

is aligned to 2+ simplified sentences.

1https://newsela.com/data, v.2016-01-29.
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• Many-to-one: joining – 2+ original sentences
are aligned to a single simplified sentence.

We hereafter refer to the unit of simplification, i.e.
one or more original or simplified sentences, as
instances.

The Newsela corpus is seen as having higher
quality than W-SW because its simplifications are
created by professionals, following well defined
guidelines (Xu et al., 2015). It is also larger
which is preferable for training corpus-based mod-
els. More interestingly, the Newsela corpus has a
feature that has been ignored thus far: Each in-
stance in the corpus was created for readers with
a certain school grade level. Each original article
has a label indicating its corresponding grade level
(from 12 to 2), and may have various simplified
versions, each for a different grade level. For ex-
ample, a level 12 article may have simplified coun-
terparts for levels 8 and 4. In other words, the cor-
pus contains instances where the same input leads
to different outputs. Disregarding this factor may
lead to suboptimal models. To avoid this prob-
lem, previous work (Alva-Manchego et al., 2017;
Zhang and Lapata, 2017; Scarton et al., 2018b) has
used subsets of the corpus with only certain com-
binations of complex-simplified article pairs, e.g.
adjacent or non-adjacent pairs. This however re-
duces the amount of data available for training.

We propose a way of making use of this infor-
mation to build more informed TS models that are
aware of different types of target audiences, while
still making use of the full dataset for learning. In-
spired by the work of Johnson et al. (2017) for MT,
we add to each original instance an artificial to-
ken that represents the target grade level of that in-
stance in order to guide a sequence-to-sequence at-
tentional encoder-decoder neural approach (Bah-
danau et al., 2015) (§2). In a similar vein, we
also annotate the coarse-grained type of operation
that should be performed to simplify the original
instance, under the hypothesis that certain opera-
tions are more often used to simplify into certain
grade levels. Deciding on the operation is an easier
problem than performing the actual operation. We
rely on both gold and predicted operation types.

Experiments with models built with these ar-
tificial tokens outperform state-of-the-art neural
models for TS, with the best approach combining
grade level and type of operation (§3). Interest-
ingly, such an approach also enables zero-shot TS,
where a simplification for a grade level pair unseen

at training time can still be generated during test-
ing. We show that our zero-shot learning models
perform virtually as well as our grade/operation-
informed models (§4). To the best of our knowl-
edge, this is the first work to build TS models for
specific target audiences and to explore zero-shot
learning for this application.

2 System architecture

Our approach follows that of Johnson et al. (2017),
a multilingual MT approach that adds an artificial
token to encode the target language to the begin-
ning of each source sentence in the parallel corpus.
With this modified version of the corpus, a single
encoder-decoder architecture is used to deal with
different language pairs. Based on the tokens, the
source sentences are encoded differently accord-
ing to the target language they have been paired
with in the corpus. Such an approach enables zero-
shot MT, where a model is able to provide transla-
tions for language pairs it has not seem at training
time.

We apply three types of data manipulation,
where artificial tokens are added to the beginning
of original side of both training and test instances:
• to-grade: the token corresponds to the grade

level of the target instance,
• operation: the token is one of the four possi-

ble coarse-grained operations that transforms
the original into the simplified instance,
• to-grade-operation: concatenation of the

two above tokens.
Different from the grade level, which can be

available at test time simply by knowing the in-
tended reader of the text, information about the
operations to be performed, which we extracted
from the parallel corpus, will not be available at
test time. We use gold labels extracted from the
parallel corpus for an oracle experiment but also
use a classifier that predicts the operations for the
test set based on those in the training data. We
built a simple Naive Bayes classifier using the
scikit-learn toolkit (Pedregosa et al., 2011)
and nine features (Scarton et al., 2017):
• number of tokens / punctuation / content

words / clauses,
• ratio of the number of verbs / nouns / adjec-

tives / adverbs / connectives to the number of
content words.

Table 1 shows examples of the tokens used
when an original instance is marked to be simpli-
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to grade level 4 to grade level 2
to-grade <4> dusty handprints stood out against the rust of the

fence near Sasabe.
<2> dusty handprints stood out against the rust of the
fence near Sasabe.

operation <identical> dusty handprints stood out against the rust of
the fence near Sasabe.

<elaboration> dusty handprints stood out against the rust
of the fence near Sasabe.

to-grade-operation <4-identical> dusty handprints stood out against the rust
of the fence near Sasabe.

<2-elaboration> dusty handprints stood out against the
rust of the fence near Sasabe.

reference dusty handprints stood out against the rust of the fence near
Sasabe.

dusty handprints could be seen on the fence near Sasabe.

Table 1: Examples of artificial tokens used.

fied to grade level 4 or grade level 2. Since the ref-
erence for grade level 4 is a copy of the original,
the operation token for this case is <identical>.
For level 2 the reference is a rewrite and, there-
fore, the operation token is <elaboration>.

We use OpenNMT2 as our encoder-decoder
architecture. Both encoder and decoder have
two LSTM layers, hidden states of size 500 and
dropout = 0.3. Global attention combined with
input-feeding is used, as describe in (Luong et al.,
2015). A model is trained for each dataset con-
structed with different artificial tokens for 13
epochs. The best model is selected according
to perplexity on the development set. Figure 1
shows the architecture of the neural network, in-
cluding attention and input-feeding. In this exam-
ple, <token> represents the artificial token added
to the pre-processed data.

Figure 1: Neural model architecture.

We evaluate our models with BLEU3 (Papineni
et al., 2002) (a proxy for grammaticality assess-
ment), SARI (Xu et al., 2016)4 (a proxy for sim-
plicity assessment) and Flesch Reading Ease5 (a

2Torch version: http://opennmt.net/OpenNMT/
3The multi-blue.perl script from https://github.

com/moses-smt/mosesdecoder
4https://github.com/cocoxu/

simplification
5https://github.com/mmautner/

readability

proxy for readability assessment). According to
Xu et al. (2016), BLEU shows high correlation
with human scores for grammaticality and mean-
ing preservation, whilst SARI shows high cor-
relation with human scores for simplicity. Al-
though previous work have also relied on human
judgements of grammaticality, meaning preserva-
tion and simplicity, in our case such a type of eval-
uation is infeasible: we would need to involve
judges with specific grade levels or rely on pro-
fessionals who are experts in grade level-specific
simplification to make such assessments.

3 Reader-specific TS models

Our version of the Newsela corpus has 550, 644
instance pairs (11M original tokens and 10M
target tokens), which we randomly divided into
training (440, 516 instances: 80%), development
(55, 064 instances: 10%) and test (55, 064 in-
stances: 10%) sets. Instances were aligned using
the method by Paetzold and Specia (2016). Xu
et al. (2015) report over 56K original sentences
and approximately 305K sentences including the
original ones and all simplification types. Our
number of instance pairs is higher because we al-
lowed alignments from original to all simplified
versions and among simplified versions. An orig-
inal article 0 may be aligned to up to four simpli-
fied versions: 1, 2, 3 and 4. For each article, the
alignments were extracted between 0-{1,2,3,4}, 1-
{2,3,4}, 2-{3,4} and 3-4, where available. Our
corpus is also larger than the ones used in (Alva-
Manchego et al., 2017; Scarton et al., 2018b) and
(Zhang and Lapata, 2017). While the former use
only adjacent levels (e.g. 0-1, 1-2) and the latter
only non-adjacent levels (e.g. 0-2, 1-4), we make
use of the full dataset.

As baseline we trained a model using Open-
NMT and the same hyperparameters as described
in §2 on the entire Newsela corpus but without
artificial tokens (s2s model). The state-of-the-
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art model is represented by NTS, which was also
trained on the entire corpus using a similar Open-
NMT architecture with the same hyperparameters
but additional pre-trained word embeddings as de-
scribed in Nisioi et al. (2017).6

As shown in Table 2 the NTS system performs
slightly worse than the baseline system accord-
ing to BLEU and SARI. Although concatenating
global and local embeddings has led to improve-
ments for the W-SW corpus in (Nisioi et al., 2017),
this does not seem to be the case for the Newsela
corpus. Our models outperform both the baseline
and NTS systems by a large margin. Examples of
outputs from all systems can be found in the Sup-
plementary Material.

BLEU ↑ SARI ↑ Flesch ↑
NTS 61.60 33.40 79.95
s2s 61.78 33.72 79.86
s2s+to-grade 62.91 41.04 82.91
s2s+operation (pred) 59.83 37.36 84.96
s2s+to-grade+operation (pred) 61.48 40.56 83.11
s2s+operation (gold) 63.24 41.81 84.47
s2s+to-grade+operation (gold) 64.78 45.41 85.44

Table 2: Results on the Newsela test set.

The best model is the one built with the <to-
grade+operation> token with gold operations an-
notations (last row). The second best system
uses the gold <operation> token only. There-
fore, knowing the operation type to be performed
for a given instance provides valuable informa-
tion. Even though the models with predicted op-
erations (‘pred’ in Table 2) still outperform the
baseline, they lag behind their counterparts built
using gold operations. The main reason for that
is the very simplistic classifier we used (average
accuracy = 0.51, calculated using 10-fold cross-
validation). In summary, s2s+to-grade is the best
performing model in a real world scenario, given
the low performance of ‘pred’ systems. A more in-
formed classifier should lead to better results, but
this left for future work; our goal was to show the
potential of this information.

The improvements in SARI are substantial: 7
points over the baseline even with the predicted
operations. However, SARI aims to measure
simplicity in general (not for specific grade lev-
els). Since human evaluation of the targeted sim-
plification performed by our models is not fea-
sible, we can only approximate the usefulness
of our models by using readability metrics such

6Equivalent to their best performing “NTS-w2v” version.

as the Flesch-Kincaid Grade Level. This met-
ric maps a text into a US grade level, which is
the same grading provided in the Newsela cor-
pus and, therefore, relevant for our study. Ta-
ble 3 shows the Flesch-Kincaid results for the
test set divided into the appropriate grade levels
considering the outputs of s2s, s2s+to-grade and
s2s+to-grade+operation (gold) models. Simpli-
fications generated by s2s+to-grade and s2s+to-
grade+operation are scored consistently closer to
the appropriate grade, which does not happen with
s2s.

s2s +to-grade +to-grade+operation (gold)
<10> 9.23 11.90 9.93
<9> 8.85 9.82 8.57
<8> 7.47 8.46 7.58
<7> 7.81 7.79 6.89
<6> 6.99 6.48 5.57
<5> 5.58 5.05 4.49
<4> 5.90 3.85 3.28
<3> 5.15 2.44 1.88
<2> 3.94 1.57 1.00
MAE 1.09 0.63 0.63

Table 3: Flesch-Kincaid scores for instances of
each grade level simplified using s2s, s2s+to-grade
and s2s+to-grade+operation (gold) models.

The last row of Table 3 shows the Mean Abso-
lute Error (MAE) considering the Flesch-Kincaid
Grade Level scores for the system outputs as
the hypothesis and the expected grade level as
the gold scores. Our s2s+to-grade and s2s+to-
grade+operation (gold) models show lower error
scores than the baseline system, which supports
our hypothesis that such models produce more ad-
equate outputs for targeted grade levels.

3.1 Usefulness of the s2s+to-grade model

The main advantage of s2s+to-grade is that a user
can inform their grade level and retrieve a person-
alised simplification. Table 4 shows an example
with different simplifications for an out-of-domain
instance from the SimPA corpus (Scarton et al.,
2018a). The same instance was given as input
to the s2s+to-grade model with different artificial
tokens according to the grade level that we want
to achieve. The s2s system (second row) repeats
the original instance (first row). Conversely, our
s2s+to-grade model is capable of distinguishing
among different levels and produces personalised
simplifications for each grade level.
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original We want to reassure you that we take fire safety very seriously and we are doing everything we can to make sure our residents are safe.
s2s We want to reassure you that we take fire safety very seriously and we are doing everything we can to make sure our residents are safe.
<10> We want to reassure you that we take fire safety very seriously and we are doing everything we can to make sure our residents are safe.
<9> We want to reassure you that we take fire safety very seriously and we are doing everything we can to make sure our residents are safe.
<8> We want to reassure you that we take fire safety very seriously and we are doing everything we can to make sure our residents are safe.
<7> We want to reassure you that we take fire safety very seriously and we are doing everything we can to make sure our residents are safe.
<6> We want to reassure you that we take fire safety very seriously. We are doing everything we can to make sure our residents are safe.
<5> We want to reassure you that we take fire safety very seriously. We are doing everything we can to make sure our residents are safe.
<4> We want to make sure we take fire safety very seriously. We are doing everything we can to make sure our people are safe.
<3> We want to make sure people take fire safety very seriously. We are doing everything we can to make sure our people are safe.
<2> We want to make sure people take fire safety very seriously. We are doing everything we can to make sure people are safe.

Table 4: Examples of s2s+to-grade outputs when an original instance is simplified into different levels.

4 Zero-shot TS models

To show that zero-shot TS is possible, we build
models on training data without instances of a cer-
tain grade level pair and test them on instances
of that grade level pair. Consider the grade level
pair < go, gt >, where go is the grade level of an
original instance o, gt of a target instance t, and
t is aligned to o. We test if our “s2s+to-grade”
model can generalise for instances of < ĝo, ĝt >
that have not been seen at training time.

Due to space restrictions, we only show results
for three representative grade level pairs. These
pairs have a large enough number of training and
test instances and cover levels that are closer or
further apart from each other. In addition, after
removing them the training corpus still has enough
instances of the ĝt as target grade level. Instances
of the target but not the original level (or of the
target language in MT) must exist for zero-shot to
be possible. The distributions of the selected grade
level pairs is shown in Table 5.

# training # test # of remaining ĝt
< 12, 7 > 30,246 3,825 34,545
< 12, 4 > 22,709 2,867 104,833
< 6, 5 > 18,122 2,239 79,546

Table 5: Zero-shot data distribution.

In Table 6, the s2s and s2s+to-grade models are
the same as in Section 3, i.e. trained with the entire
dataset without artificial tokens (s2s) or with arti-
ficial tokens (s2s+to-grade). The zero-shot mod-
els (s2s+to-grade+zs) are trained with<to-grade>
data, but after removing instances of the grade
level pair < ĝo, ĝt > under investigation, i.e. on
a smaller dataset. For < 12, 7 > and < 12, 4 >,
the zero-shot models outperform the baseline ac-
cording to all metrics. In terms of SARI, for
< 12, 7 > the zero-shot model is only marginally
worse than the s2s+to-grade model. Conversely,
s2s+to-grade+zs outperforms s2s+to-grade for <

12, 4 >, which is an impressive result. Finally, for
< 6, 5 > all three models perform similarly. This
may be explained by the proximity of ĝo and ĝt,
which means that instances must be considerably
close to each other and therefore simplifications
will be minor and have little impact in the scores.

BLEU ↑ SARI ↑ Flesch ↑
< 12, 7 >

s2s 63.02 38.43 73.83
s2s+to-grade 64.16 40.61 74.43
s2s+to-grade+zs 64.50 39.83 74.09
< 12, 4 >

s2s 44.56 37.56 79.50
s2s+to-grade 49.43 50.76 91.04
s2s+to-grade+zs 50.18 50.85 91.08
< 6, 5 >

s2s 69.71 26.47 84.74
s2s+to-grade 69.39 26.32 87.07
s2s+to-grade+zs 68.78 26.23 86.80

Table 6: Results of zero-shot experiments for TS.

5 Conclusions

We have presented an approach for TS that bene-
fits from corpora built for various target audiences
and allows building better models than general-
purpose ones. We have also shown that zero-shot
learning is possible for TS, where instances of the
original-target audience do not exist. As future
work we intend to investigate (i) better classifiers
to predict operation types and (ii) multi-task learn-
ing as an alternative way of building a single TS
model for various specific target audiences. We
also plan to run experiments with the W-SW cor-
pus and using an improved classifier to train mod-
els with information on operations.
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Sanja Štajner, Marc Franco-Salvador, Simone Paolo
Ponzetto, Paolo Rosso, and Heiner Stuckenschmidt.
2017. Sentence alignment methods for improv-
ing text simplification systems. In Proceed-
ings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Vancouver, Canada, pages 97–102.
http://aclweb.org/anthology/P17-2016.

Kristian Woodsend and Mirella Lapata. 2011.
Learning to Simplify Sentences with Quasi-
Synchronous Grammar and Integer Program-
ming. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language
Processing. Association for Computational Lin-
guistics, Edinburgh, Scotland, UK., pages 409–420.
http://www.aclweb.org/anthology/D11-1038.

Sander Wubben, Antal van den Bosch, and Emiel
Krahmer. 2012. Sentence simplification by mono-
lingual machine translation. In Proceedings of
the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers - Vol-
ume 1. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’12, pages 1015–1024.
http://www.aclweb.org/anthology/P12-1107.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the As-
sociation for Computational Linguistics 3:283–297.
http://www.aclweb.org/anthology/Q15-1021.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Op-
timizing statistical machine translation for text
simplification. Transactions of the Associa-
tion for Computational Linguistics 4:401–415.
http://www.aclweb.org/anthology/Q16-1029.

Xingxing Zhang and Mirella Lapata. 2017. Sen-
tence simplification with deep reinforcement learn-
ing. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Lin-
guistics, Copenhagen, Denmark, pages 595–605.
https://www.aclweb.org/anthology/D17-1063.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation
model for sentence simplification. In Pro-
ceedings of the 23rd International Conference
on Computational Linguistics. Association
for Computational Linguistics, Stroudsburg,
PA, USA, COLING ’10, pages 1353–1361.
http://dl.acm.org/citation.cfm?id=1873781.1873933.

718



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 719–724
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

Split and Rephrase: Better Evaluation and a Stronger Baseline

Roee Aharoni & Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

{roee.aharoni,yoav.goldberg}@gmail.com

Abstract

Splitting and rephrasing a complex sen-
tence into several shorter sentences that
convey the same meaning is a chal-
lenging problem in NLP. We show that
while vanilla seq2seq models can reach
high scores on the proposed benchmark
(Narayan et al., 2017), they suffer from
memorization of the training set which
contains more than 89% of the unique
simple sentences from the validation and
test sets. To aid this, we present a
new train-development-test data split and
neural models augmented with a copy-
mechanism, outperforming the best re-
ported baseline by 8.68 BLEU and foster-
ing further progress on the task.

1 Introduction

Processing long, complex sentences is challeng-
ing. This is true either for humans in various
circumstances (Inui et al., 2003; Watanabe et al.,
2009; De Belder and Moens, 2010) or in NLP
tasks like parsing (Tomita, 1986; McDonald and
Nivre, 2011; Jelı́nek, 2014) and machine trans-
lation (Chandrasekar et al., 1996; Pouget-Abadie
et al., 2014; Koehn and Knowles, 2017). An auto-
matic system capable of breaking a complex sen-
tence into several simple sentences that convey the
same meaning is very appealing.

A recent work by Narayan et al. (2017) in-
troduced a dataset, evaluation method and base-
line systems for the task, naming it “Split-and-
Rephrase”. The dataset includes 1,066,115 in-
stances mapping a single complex sentence to a
sequence of sentences that express the same mean-
ing, together with RDF triples that describe their
semantics. They considered two system setups: a
text-to-text setup that does not use the accompany-

ing RDF information, and a semantics-augmented
setup that does. They report a BLEU score of 48.9
for their best text-to-text system, and of 78.7 for
the best RDF-aware one. We focus on the text-to-
text setup, which we find to be more challenging
and more natural.

We begin with vanilla SEQ2SEQ models with
attention (Bahdanau et al., 2015) and reach an ac-
curacy of 77.5 BLEU, substantially outperforming
the text-to-text baseline of Narayan et al. (2017)
and approaching their best RDF-aware method.
However, manual inspection reveal many cases
of unwanted behaviors in the resulting outputs:
(1) many resulting sentences are unsupported by
the input: they contain correct facts about rele-
vant entities, but these facts were not mentioned
in the input sentence; (2) some facts are re-
peated—the same fact is mentioned in multiple
output sentences; and (3) some facts are missing—
mentioned in the input but omitted in the output.

The model learned to memorize entity-fact pairs
instead of learning to split and rephrase. Indeed,
feeding the model with examples containing enti-
ties alone without any facts about them causes it
to output perfectly phrased but unsupported facts
(Table 3). Digging further, we find that 99%
of the simple sentences (more than 89% of the
unique ones) in the validation and test sets also
appear in the training set, which—coupled with
the good memorization capabilities of SEQ2SEQ

models and the relatively small number of dis-
tinct simple sentences—helps to explain the high
BLEU score.

To aid further research on the task, we pro-
pose a more challenging split of the data. We
also establish a stronger baseline by extending
the SEQ2SEQ approach with a copy mechanism,
which was shown to be helpful in similar tasks (Gu
et al., 2016; Merity et al., 2017; See et al., 2017).
On the original split, our models outperform the
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count unique
RDF entities 32,186 925
RDF relations 16,093 172
complex sentences 1,066,115 5,544
simple sentences 5,320,716 9,552
train complex sentences 886,857 4,438
train simple sentences 4,451,959 8,840
dev complex sentences 97,950 554
dev simple sentences 475,337 3,765
test complex sentences 81,308 554
test simple sentences 393,420 4,015
% dev simple in train 99.69% 90.9%
% test simple in train 99.09% 89.8%
% dev vocab in train 97.24%
% test vocab in train 96.35%

Table 1: Statistics for the WEBSPLIT dataset.

best baseline of Narayan et al. (2017) by up to 8.68
BLEU, without using the RDF triples. On the new
split, the vanilla SEQ2SEQ models break com-
pletely, while the copy-augmented models per-
form better. In parallel to our work, an updated
version of the dataset was released (v1.0), which is
larger and features a train/test split protocol which
is similar to our proposal. We report results on this
dataset as well. The code and data to reproduce
our results are available on Github.1 We encour-
age future work on the split-and-rephrase task to
use our new data split or the v1.0 split instead of
the original one.

2 Preliminary Experiments

Task Definition In the split-and-rephrase task
we are given a complex sentence C, and need to
produce a sequence of simple sentences T1, ..., Tn,
n ≥ 2, such that the output sentences convey all
and only the information in C. As additional su-
pervision, the split-and-rephrase dataset associates
each sentence with a set of RDF triples that de-
scribe the information in the sentence. Note that
the number of simple sentences to generate is not
given as part of the input.

Experimental Details We focus on the task of
splitting a complex sentence into several simple
ones without access to the corresponding RDF
triples in either train or test time. For evaluation
we follow Narayan et al. (2017) and compute the
averaged individual multi-reference BLEU score
for each prediction.2 We split each prediction to

1https://github.com/biu-nlp/
sprp-acl2018

2Note that this differs from ”normal” multi-reference
BLEU (as implemented in multi-bleu.pl) since the
number of references differs among the instances in the test-

Model BLEU #S/C #T/S
SOURCE 55.67 1.0 21.11
REFERENCE – 2.52 10.93
Narayan et al. (2017)
HYBRIDSIMPL 39.97 1.26 17.55
SEQ2SEQ 48.92 2.51 10.32
MULTISEQ2SEQ* 42.18 2.53 10.69
SPLIT-MULTISEQ2SEQ* 77.27 2.84 11.63
SPLIT-SEQ2SEQ* 78.77 2.84 9.28
This work
SEQ2SEQ128 76.56 2.53 10.53
SEQ2SEQ256 77.48 2.57 10.56
SEQ2SEQ512 75.92 2.59 10.59

Table 2: BLEU scores, simple sentences per
complex sentence (#S/C) and tokens per simple
sentence (#T/S), as computed over the test set.
SOURCE are the complex sentences and REFER-
ENCE are the reference rephrasings from the test
set. Models marked with * use the semantic RDF
triples.

sentences3 and report the average number of sim-
ple sentences in each prediction, and the average
number of tokens for each simple sentence. We
train vanilla sequence-to-sequence models with at-
tention (Bahdanau et al., 2015) as implemented
in the OPENNMT-PY toolkit (Klein et al., 2017).4

Our models only differ in the LSTM cell size (128,
256 and 512, respectively). See the supplemen-
tary material for training details and hyperparame-
ters. We compare our models to the baselines pro-
posed in Narayan et al. (2017). HYBRIDSIMPL

and SEQ2SEQ are text-to-text models, while the
other reported baselines additionally use the RDF
information.

Results As shown in Table 2, our 3 models ob-
tain higher BLEU scores then the SEQ2SEQ base-
line, with up to 28.35 BLEU improvement, de-
spite being single-layer models vs. the 3-layer
models used in Narayan et al. (2017). A possible
explanation for this discrepancy is the SEQ2SEQ

baseline using a dropout rate of 0.8, while we
use 0.3 and only apply it on the LSTM out-
puts. Our results are also better than the MUL-
TISEQ2SEQ and SPLIT-MULTISEQ2SEQ mod-
els, which use explicit RDF information. We
also present the macro-average5 number of sim-

set.
3Using NLTK v3.2.5 https://www.nltk.org/
4https://github.com/OpenNMT/OpenNMT-py

commit d4ab35a
5Since the number of references varies greatly from one

complex sentence to another, (min: 1, max: 76,283, median:
16) we avoid bias towards the complex sentences with many
references by performing macro average, i.e. we first average
the number of simple sentences in each reference among the
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Input Prediction
A Fortress of Grey Ice with ISBM 0-7653-
0633-6 has 672 pages .

J.V. Jones authored A Fortress of Grey Ice .
A Fortress of Grey Ice has 672 pages .

The address , 11 Diagonal Street is located
in South Africa where the leader is Cyril
Ramaphosa and some Asian South Africans
live .

The address , 11 Diagonal Street is located in South Africa .
The leader of South Africa is called Cyril Ramaphosa .
The leader of South Africa is called Cyril Ramaphosa .
The leader of South Africa is called Cyril Ramaphosa .

Alan Shepard Alan Shepard Alan Shepard Alan Shepard is dead .
Alan Shepard was a test pilot .

AFC Ajax AFC Ajax AFC Ajax AFC Ajax ’s manager is Jong Ajax .
AFC Ajax N.V. own Sportpark De Toekomst .

Table 3: Predictions from a vanilla SEQ2SEQ model, illustrating unsupported facts, missing facts and
repeated facts. The last two rows show inputs we composed to demonstrate that the models memorize
entity-fact pairs.

ple sentences per complex sentence in the ref-
erence rephrasings (REFERENCE) showing that
the SPLIT-MULTISEQ2SEQ and SPLIT-SEQ2SEQ

baselines may suffer from over-splitting since the
reference splits include 2.52 simple sentences on
average, while the mentioned models produced
2.84 sentences.

Figure 1: SEQ2SEQ512’s attention weights. Hor-
izontal: input. Vertical: predictions.

Analysis We begin analyzing the results by
manually inspecting the model’s predictions on
the validation set. This reveals three common
kinds of mistakes as demonstrated in Table 3: un-
supported facts, repetitions, and missing facts. All
the unsupported facts seem to be related to enti-
ties mentioned in the source sentence. Inspecting
the attention weights (Figure 1) reveals a worry-
ing trend: throughout the prediction, the model
focuses heavily on the first word in of the first en-
tity (“A wizard of Mars”) while paying little atten-
tion to other cues like “hardcover”, “Diane” and

references of a specific complex sentence, and then average
these numbers.

“the ISBN number”. This explains the abundance
of “hallucinated” unsupported facts: rather than
learning to split and rephrase, the model learned
to identify entities, and spit out a list of facts it had
memorized about them. To validate this assump-
tion, we count the number of predicted sentences
which appeared as-is in the training data. We find
that 1645 out of the 1693 (97.16%) predicted sen-
tences appear verbatim in the training set. Table
1 gives more detailed statistics on the WEBSPLIT

dataset.
To further illustrate the model’s recognize-and-

spit strategy, we compose inputs containing an
entity string which is duplicated three times, as
shown in the bottom two rows of Table 3. As
expected, the model predicted perfectly phrased
and correct facts about the given entities, although
these facts are clearly not supported by the input.

3 New Data-split

The original data-split is not suitable for measur-
ing generalization, as it is susceptible to “cheat-
ing” by fact memorization. We construct a
new train-development-test split to better reflect
our expected behavior from a split-and-rephrase
model. We split the data into train, development
and test sets by randomly dividing the 5,554 dis-
tinct complex sentences across the sets, while us-
ing the provided RDF information to ensure that:

1. Every possible RDF relation (e.g., BORNIN,
LOCATEDIN) is represented in the training
set (and may appear also in the other sets).

2. Every RDF triplet (a complete fact) is repre-
sented only in one of the splits.

While the set of complex sentences is still di-
vided roughly to 80%/10%/10% as in the original
split, now there are nearly no simple sentences in
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count unique
train complex sentences 1,039,392 4,506
train simple sentences 5,239,279 7,865
dev complex sentences 13,294 535
dev simple sentences 39,703 812
test complex sentences 13,429 503
test simple sentences 41,734 879
# dev simple in train 35 (0.09%)
# test simple in train 1 (0%)
% dev vocab in train 62.99%
% test vocab in train 61.67%
dev entities in train 26/111 (23.42%)
test entities in train 25/120 (20.83%)
dev relations in train 34/34 (100%)
test relations in train 37/37 (100%)

Table 4: Statistics for the RDF-based data split

the development and test sets that appear verba-
tim in the train-set. Yet, every relation appear-
ing in the development and test sets is supported
by examples in the train set. We believe this split
strikes a good balance between challenge and fea-
sibility: to succeed, a model needs to learn to iden-
tify relations in the complex sentence, link them to
their arguments, and produce a rephrasing of them.
However, it is not required to generalize to unseen
relations. 6

The data split and scripts for creating it are
available on Github.7 Statistics describing the data
split are detailed in Table 4.

4 Copy-augmented Model

To better suit the split-and-rephrase task, we aug-
ment the SEQ2SEQ models with a copy mecha-
nism. Such mechanisms have proven to be benefi-
cial in similar tasks like abstractive summarization
(Gu et al., 2016; See et al., 2017) and language
modeling (Merity et al., 2017). We hypothesize
that biasing the model towards copying will im-
prove performance, as many of the words in the
simple sentences (mostly corresponding to enti-
ties) appear in the complex sentence, as evident by
the relatively high BLEU scores for the SOURCE

baseline in Table 2.
Copying is modeled using a “copy switch”

probability p(z) computed by a sigmoid over a
learned composition of the decoder state, the con-
text vector and the last output embedding. It in-
terpolates the psoftmax distribution over the target
vocabulary and a copy distribution pcopy over the
source sentence tokens. pcopy is simply the com-
puted attention weights. Once the above distribu-

6The updated dataset (v1.0, published by Narayan et al.
after this work was accepted) follows (2) above, but not (1).

7https://github.com/biu-nlp/
sprp-acl2018

BLEU #S/C #T/S

or
ig

in
al

da
ta

sp
lit

SOURCE 55.67 1.0 21.11
REFERENCE – 2.52 10.93
SPLIT-SEQ2SEQ 78.77 2.84 9.28
SEQ2SEQ128 76.56 2.53 10.53
SEQ2SEQ256 77.48 2.57 10.56
SEQ2SEQ512 75.92 2.59 10.59
COPY128 78.55 2.51 10.29
COPY256 83.73 2.49 10.66
COPY512 87.45 2.56 10.50

ne
w

da
ta

sp
lit

SOURCE 55.66 1.0 20.37
REFERENCE – 2.40 10.83
SEQ2SEQ128 5.55 2.27 11.68
SEQ2SEQ256 5.28 2.27 10.54
SEQ2SEQ512 6.68 2.44 10.23
COPY128 16.71 2.0 10.53
COPY256 23.78 2.38 10.55
COPY512 24.97 2.87 10.04

v1
.0

SOURCE 56.1 1.0 20.4
REFERENCE – 2.48 10.69
COPY512 25.47 2.29 11.74

Table 5: Results over the test sets of the original,
our proposed split and the v1.0 split

tions are computed, the final probability for an out-
put word w is:

p(w) = p(z = 1)pcopy(w) + p(z = 0)psoftmax(w)

In case w is not present in the output vocabulary,
we set psoftmax(w) = 0. We refer the reader to
See et al. (2017) for a detailed discussion regard-
ing the copy mechanism.

5 Experiments and Results

Models with larger capacities may have greater
representation power, but also a stronger tendency
to memorize the training data. We therefore per-
form experiments with copy-enhanced models of
varying LSTM widths (128, 256 and 512). We
train the models using the negative log likelihood
of p(w) as the objective. Other than the copy
mechanism, we keep the settings identical to those
in Section 2. We train models on the original split,
our proposed data split and the v1.0 split.

Results Table 5 presents the results. On the orig-
inal data-split, the COPY512 model outperforms
all baselines, improving over the previous best by
8.68 BLEU points. On the new data-split, as ex-
pected, the performance degrades for all models,
as they are required to generalize to sentences not
seen during training. The copy-augmented mod-
els perform better than the baselines in this case as
well, with a larger relative gap which can be ex-
plained by the lower lexical overlap between the
train and the test sets in the new split. On the v1.0
split the results are similar to those on our split,
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Input Prediction
Madeleine L’Engle who is influenced by George
Macdonald wrote “ A Severed Wasp ” .

A Severed Wasp was written by George Macdonald .
A Severed Wasp is from the United States .

The A.C. Lumezzane has 4150 members and play
in the Lega Pro League .

A.C. Lumezzane ’s ground is in the Lega Pro League .
A.C. Lumezzane has 4150 members .

Irish English is the official language of Ireland ,
which is lead by Enda Kenny and home to Adare
Manor .

Adare Manor is located in Ireland .
English is the language of Ireland .
English is the language of Ireland . (repeated x3)

Table 6: Predictions from the COPY512 model, trained on the new data split.

in spite of it being larger (1,331,515 vs. 886,857
examples), indicating that merely adding data will
not solve the task.

Analysis We inspect the models’ predictions for
the first 20 complex sentences of the original and
new validation sets in Table 7. We mark each sim-
ple sentence as being “correct” if it contains all
and only relevant information, “unsupported” if it
contains facts not present in the source, and “re-
peated” if it repeats information from a previous
sentence. We also count missing facts. Figure
2 shows the attention weights of the COPY512
model for the same sentence in Figure 1. Reassur-
ingly, the attention is now distributed more evenly
over the input symbols. On the new splits, all
models perform catastrophically. Table 6 shows
outputs from the COPY512 model when trained
on the new split. On the original split, while
SEQ2SEQ128 mainly suffers from missing infor-
mation, perhaps due to insufficient memorization
capacity, SEQ2SEQ512 generated the most unsup-
ported sentences, due to overfitting or memoriza-
tion. The overall number of issues is clearly re-
duced in the copy-augmented models.

Figure 2: Attention weights from the COPY512
model for the same input as in Figure 1.

Model unsup. repeated correct missing
original split
SEQ2SEQ128 5 4 40/49 (82%) 9
SEQ2SEQ256 2 2 42/46 (91%) 5
SEQ2SEQ512 12 2 36/49 (73%) 5

COPY128 3 4 42/49 (86%) 4
COPY256 3 2 45/50 (90%) 6
COPY512 5 0 46/51 (90%) 3
new split

SEQ2SEQ128 37 8 0 54
SEQ2SEQ256 41 7 0 54
SEQ2SEQ512 43 5 0 54

COPY128 23 3 2/27 (7%) 52
COPY256 35 2 3/40 (7%) 49
COPY512 36 13 11/54 (20%) 43
v1.0 split
COPY512 41 3 3/44 (7%) 51

Table 7: Results of the manual analysis, showing
the number of simple sentences with unsupported
facts (unsup.), repeated facts, missing facts and
correct facts, for 20 complex sentences from the
original and new validation sets.

6 Conclusions
We demonstrated that a SEQ2SEQ model can ob-
tain high scores on the original split-and-rephrase
task while not actually learning to split-and-
rephrase. We propose a new and more challenging
data-split to remedy this, and demonstrate that the
cheating SEQ2SEQ models fail miserably on the
new split. Augmenting the SEQ2SEQ models with
a copy-mechanism improves performance on both
data splits, establishing a new competitive base-
line for the task. Yet, the split-and-rephrase task
(on the new split) is still far from being solved.
We strongly encourage future research to evaluate
on our proposed split or on the recently released
version 1.0 of the dataset, which is larger and also
addresses the overlap issues mentioned here.
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Abstract

Most of the current abstractive text sum-
marization models are based on the
sequence-to-sequence model (Seq2Seq).
The source content of social media is long
and noisy, so it is difficult for Seq2Seq to
learn an accurate semantic representation.
Compared with the source content, the an-
notated summary is short and well writ-
ten. Moreover, it shares the same mean-
ing as the source content. In this work,
we supervise the learning of the represen-
tation of the source content with that of the
summary. In implementation, we regard a
summary autoencoder as an assistant su-
pervisor of Seq2Seq. Following previous
work, we evaluate our model on a popular
Chinese social media dataset. Experimen-
tal results show that our model achieves
the state-of-the-art performances on the
benchmark dataset.1

1 Introduction

Text summarization is to produce a brief summary
of the main ideas of the text. Unlike extractive text
summarization (Radev et al., 2004; Woodsend and
Lapata, 2010; Cheng and Lapata, 2016), which se-
lects words or word phrases from the source texts
as the summary, abstractive text summarization
learns a semantic representation to generate more
human-like summaries. Recently, most models for
abstractive text summarization are based on the
sequence-to-sequence model, which encodes the
source texts into the semantic representation with
an encoder, and generates the summaries from the
representation with a decoder.

1The code is available at https://github.com/
lancopku/superAE

The contents on the social media are long, and
contain many errors, which come from spelling
mistakes, informal expressions, and grammatical
mistakes (Baldwin et al., 2013). Large amount of
errors in the contents cause great difficulties for
text summarization. As for RNN-based Seq2Seq,
it is difficult to compress a long sequence into an
accurate representation (Li et al., 2015), because
of the gradient vanishing and exploding problem.

Compared with the source content, it is easier
to encode the representations of the summaries,
which are short and manually selected. Since the
source content and the summary share the same
points, it is possible to supervise the learning of
the semantic representation of the source content
with that of the summary.

In this paper, we regard a summary autoen-
coder as an assistant supervisor of Seq2Seq. First,
we train an autoencoder, which inputs and recon-
structs the summaries, to obtain a better repre-
sentation to generate the summaries. Then, we
supervise the internal representation of Seq2Seq
with that of autoencoder by minimizing the dis-
tance between two representations. Finally, we
use adversarial learning to enhance the supervi-
sion. Following the previous work (Ma et al.,
2017), We evaluate our proposed model on a Chi-
nese social media dataset. Experimental results
show that our model outperforms the state-of-the-
art baseline models. More specifically, our model
outperforms the Seq2Seq baseline by the score of
7.1 ROUGE-1, 6.1 ROUGE-2, and 7.0 ROUGE-L.

2 Proposed Model

We introduce our proposed model in detail in this
section.

2.1 Notation
Given a summarization dataset that consists of N
data samples, the ith data sample (xi, yi) con-
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(b) Test Stage

Figure 1: The overview of our model. The model
consists of a sequence-to-sequence model and an
autoencoder model. At the training stage, we
use the autoencoder to supervise the sequence-to-
sequence model. At the test stage, we use the
sequence-to-sequence model to generate the sum-
maries.

tains a source content xi = {x1, x2, ..., xM}, and
a summary yi = {y1, y2, ..., yL}, while M is the
number of the source words, and L is the num-
ber of the summary words. At the training stage,
we train the model to generate the summary y
given the source content x. At the test stage, the
model decodes the predicted summary y′ given
the source content x.

2.2 Supervision with Autoencoder

Figure 1 shows the architecture of our model. At
the training stage, the source content encoder com-
presses the input contents x into the internal repre-
sentation zt with a Bi-LSTM encoder. At the same
time, the summary encoder compresses the refer-
ence summary y into the representation zs. Then
both zt and zs are fed into a LSTM decoder to gen-
erate the summary. Finally, the semantic represen-
tation of the source content is supervised by the
summary.

We implement the supervision by minimizing
the distance between the semantic representations
zt and zs, and this term in the loss function can be
written as:

LS =
λ

Nh
d(zt, zs) (1)

where d(zt, zs) is a function which measures the
distance between zs and zt. λ is a tunable hyper-
parameter to balance the loss of the supervision
and the other parts of the loss, and Nh is the num-
ber of the hidden unit to limit the magnitude of the
distance function. We set λ = 0.3 based on the
performance on the validation set. The distance
between two representations can be written as:

d(zt, zs) = ‖zt − zs‖2 (2)

2.3 Adversarial Learning

We further enhance the supervision with the ad-
versarial learning approach. As shown in Eq. 1,
we use a fixed hyper-parameter as a weight to
measure the strength of the supervision of the au-
toencoder. However, in the case when the source
content and summary have high relevance, the
strength of the supervision should be higher, and
when the source content and summary has low
relevance, the strength should be lower. In order
to determine the strength of supervision more dy-
namically, we introduce the adversarial learning.
More specifically, we regard the representation of
the autoencoder as the “gold” representation, and
that of the sequence-to-sequence as the “fake” rep-
resentation. A model is trained to discriminate
between the gold and fake representations, which
is called a discriminator. The discriminator tries
to identify the two representations. On the con-
trary, the supervision, which minimizes the dis-
tance of the representations and makes them sim-
ilar, tries to prevent the discriminator from mak-
ing correct predictions. In this way, when the dis-
criminator can distinguish the two representations
(which means the source content and the summary
has low relevance), the strength of supervision will
be decreased, and when the discriminator fails to
distinguish, the strength of supervision will be im-
proved.

In implementation of the adversarial learning,
the discriminator objective function can be written
as:

LD(θD) =− logPθD(y = 1|zt)
− logPθD(y = 0|zs)

(3)

where PθD(y = 1|z) is the probability that the dis-
criminator identifies the vector z as the “gold” rep-
resentation, while PθD(y = 0|z) is the probability
that the vector z is identified as the “fake” repre-
sentation, and θD is the parameters of the discrim-
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inator. When minimizing the discriminator objec-
tive, we only train the parameters of the discrimi-
nator, while the rest of the parameters remains un-
changed.

The supervision objective to be against the dis-
criminator can be written as:

LG(θE) =− logPθD(y = 0|zt)
− logPθD(y = 1|zs)

(4)

When minimizing the supervision objective, we
only update the parameters of the encoders.

2.4 Loss Function and Training
There are several parts of the objective functions
to optimize in our models. The first part is the
cross entropy losses of the sequence-to-sequence
and the autoencoder:

LSeq2seq = −
N∑

i=1

pSeq2seq(yi|zs) (5)

LAE = −
N∑

i=1

pAE(yi|zt) (6)

The second part is the L2 loss of the supervision,
as written in Equation 1. The last part is the adver-
sarial learning, which are Equation 3 and Equa-
tion 4. The sum of all these parts is the final loss
function to optimize.

We use the Adam (Kingma and Ba, 2014) op-
timization method to train the model. For the
hyper-parameters of Adam optimizer, we set the
learning rate α = 0.001, two momentum param-
eters β1 = 0.9 and β2 = 0.999 respectively, and
ε = 1 × 10−8. We clip the gradients (Pascanu
et al., 2013) to the maximum norm of 10.0.

3 Experiments

Following the previous work (Ma et al., 2017),
we evaluate our model on a popular Chinese
social media dataset. We first introduce the
datasets, evaluation metrics, and experimental de-
tails. Then, we compare our model with several
state-of-the-art systems.

3.1 Dataset
Large Scale Chinese Social Media Text Sum-
marization Dataset (LCSTS) is constructed by
Hu et al. (2015). The dataset consists of more than
2,400,000 text-summary pairs, constructed from a
famous Chinese social media website called Sina
Weibo.2 It is split into three parts, with 2,400,591

2http://weibo.com

pairs in PART I, 10,666 pairs in PART II and 1,106
pairs in PART III. All the text-summary pairs in
PART II and PART III are manually annotated
with relevant scores ranged from 1 to 5. We only
reserve pairs with scores no less than 3, leaving
8,685 pairs in PART II and 725 pairs in PART III.
Following the previous work (Hu et al., 2015), we
use PART I as training set, PART II as validation
set, and PART III as test set.

3.2 Evaluation Metric
Our evaluation metric is ROUGE score (Lin and
Hovy, 2003), which is popular for summariza-
tion evaluation. The metrics compare an automat-
ically produced summary with the reference sum-
maries, by computing overlapping lexical units,
including unigram, bigram, trigram, and longest
common subsequence (LCS). Following previous
work (Rush et al., 2015; Hu et al., 2015), we use
ROUGE-1 (unigram), ROUGE-2 (bi-gram) and
ROUGE-L (LCS) as the evaluation metrics in the
reported experimental results.

3.3 Experimental Details
The vocabularies are extracted from the training
sets, and the source contents and the summaries
share the same vocabularies. In order to alleviate
the risk of word segmentation mistakes, we split
the Chinese sentences into characters. We prune
the vocabulary size to 4,000, which covers most
of the common characters.

We tune the hyper-parameters based on the
ROUGE scores on the validation sets. We set the
word embedding size and the hidden size to 512,
and the number of LSTM layers is 2. The batch
size is 64, and we do not use dropout (Srivastava
et al., 2014) on this dataset. Following the previ-
ous work (Li et al., 2017), we implement the beam
search, and set the beam size to 10.

3.4 Baselines
We compare our model with the following state-
of-the-art baselines.

• RNN and RNN-cont are two sequence-to-
sequence baseline with GRU encoder and de-
coder, provided by Hu et al. (2015). The dif-
ference between them is that RNN-context
has attention mechanism while RNN does
not.

• RNN-dist (Chen et al., 2016) is a distraction-
based neural model, which the attention
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Models R-1 R-2 R-L
RNN-W(Hu et al., 2015) 17.7 8.5 15.8
RNN(Hu et al., 2015) 21.5 8.9 18.6
RNN-cont-W(Hu et al., 2015) 26.8 16.1 24.1
RNN-cont(Hu et al., 2015) 29.9 17.4 27.2
SRB(Ma et al., 2017) 33.3 20.0 30.1
CopyNet-W(Gu et al., 2016) 35.0 22.3 32.0
CopyNet(Gu et al., 2016) 34.4 21.6 31.3
RNN-dist(Chen et al., 2016) 35.2 22.6 32.5
DRGD(Li et al., 2017) 37.0 24.2 34.2
Seq2Seq (our impl.) 32.1 19.9 29.2
+superAE (this paper) 39.2 26.0 36.2
w/o adversarial learning 37.7 25.3 35.2

Table 1: Comparison with state-of-the-art models
on the LCSTS test set. R-1, R-2, and R-L de-
note ROUGE-1, ROUGE-2, and ROUGE-L, re-
spectively. The models with a suffix of ‘W’ in the
table are word-based, while the rest of models are
character-based.

mechanism focuses on the different parts of
the source content.

• CopyNet (Gu et al., 2016) incorporates a
copy mechanism to allow parts of the gen-
erated summary are copied from the source
content.

• SRB (Ma et al., 2017) is a sequence-to-
sequence based neural model with improving
the semantic relevance between the input text
and the output summary.

• DRGD (Li et al., 2017) is a deep recurrent
generative decoder model, combining the de-
coder with a variational autoencoder.

• Seq2seq is our implementation of the
sequence-to-sequence model with the atten-
tion mechanism, which has the same experi-
mental setting as our model for fair compari-
son.

3.5 Results
For the purpose of simplicity, we denote our super-
vision with autoencoder model as superAE. We
report the ROUGE F1 score of our model and the
baseline models on the test sets.

Table 1 summarizes the results of our superAE
model and several baselines. We first compare our
model with Seq2Seq baseline. It shows that our

Models 2-class (%) 5-class (%)
Seq2seq 80.7 65.1
+superAE 88.8 (+8.1) 71.7 (+6.6)

Table 2: Accuracy of the sentiment classifica-
tion on the Amazon dataset. We train a classi-
fier which inputs internal representation provided
by the sequence-to-sequence model, and outputs
a predicted label. We compute the 2-class and 5-
class accuracy of the predicted labels to evaluate
the quality of the text representation.

superAE model has a large improvement over the
Seq2Seq baseline by 7.1 ROUGE-1, 6.1 ROUGE-
2, and 7.0 ROUGE-L, which demonstrates the ef-
ficiency of our model. Moreover, we compare
our model with the recent summarization systems,
which have been evaluated on the same training set
and the test sets as ours. Their results are directly
reported in the referred articles. It shows that our
superAE outperforms all of these models, with a
relative gain of 2.2 ROUGE-1, 1.8 ROUGE-2, and
2.0 ROUGE-L. We also perform ablation study by
removing the adversarial learning component, in
order to show its contribution. It shows that the
adversarial learning improves the performance of
1.5 ROUGE-1, 0.7 ROUGE-2, and 1.0 ROUGE-L.

We also give a summarization examples of our
model. As shown in Table 3, the SeqSeq model
captures the wrong meaning of the source content,
and produces the summary that “China United
Airlines exploded in the airport”. Our superAE
model captures the correct points, so that the gen-
erated summary is close in meaning to the refer-
ence summary.

3.6 Analysis of text representation

We want to analyze whether the internal text rep-
resentation is improved by our superAE model.
Since the text representation is abstractive and
hard to evaluate, we translate the representation
into a sentiment score with a sentiment classifier,
and evaluate the quality of the representation by
means of the sentiment accuracy.

We perform experiments on the Amazon Fine
Foods Reviews Corpus (McAuley and Leskovec,
2013). The Amazon dataset contains users’ rat-
ing labels as well as the summary for the reviews,
making it possible to train a classifier to predict the
sentiment labels and a seq2seq model to generate
summaries. First, we train the superAE model and
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Source: 昨晚，中联航空成都飞北京一架航
班被发现有多人吸烟。后因天气原因，飞
机备降太原机场。有乘客要求重新安检，
机长决定继续飞行，引起机组人员与未吸
烟乘客冲突。
Last night, several people were caught to
smoke on a flight of China United Airlines
from Chendu to Beijing. Later the flight tem-
porarily landed on Taiyuan Airport. Some pas-
sengers asked for a security check but were de-
nied by the captain, which led to a collision be-
tween crew and passengers.
Reference: 航班多人吸烟机组人员与乘客
冲突。
Several people smoked on a flight which led to
a collision between crew and passengers.
Seq2Seq: 中联航空机场发生爆炸致多人死
亡。
China United Airlines exploded in the airport,
leaving several people dead.
+superAE: 成都飞北京航班多人吸烟机组
人员与乘客冲突。
Several people smoked on a flight from Chendu
to Beijing, which led to a collision between
crew and passengers.

Table 3: A summarization example of our model,
compared with Seq2Seq and the reference.

the seq2seq model with the text-summary pairs
until convergence. Then, we transfer the encoders
to a sentiment classifier, and train the classifier
with fixing the parameters of the encoders. The
classifier is a simple feedforward neural network
which maps the representation into the label dis-
tribution. Finally, we compute the accuracy of the
predicted 2-class labels and 5-class labels.

As shown in Table 2, the seq2seq model
achieves 80.7% and 65.1% accuracy of 2-class and
5-class, respectively. Our superAE model outper-
forms the baselines with a large margin of 8.1%
and 6.6%.

4 Related Work

Rush et al. (2015) first propose an abstractive
based summarization model, which uses an atten-
tive CNN encoder to compress texts and a neural
network language model to generate summaries.
Chopra et al. (2016) explore a recurrent struc-
ture for abstractive summarization. To deal with
out-of-vocabulary problem, Nallapati et al. (2016)

propose a generator-pointer model so that the de-
coder is able to generate words in source texts.
Gu et al. (2016) also solved this issue by incorpo-
rating copying mechanism, allowing parts of the
summaries are copied from the source contents.
See et al. (2017) further discuss this problem, and
incorporate the pointer-generator model with the
coverage mechanism. Hu et al. (2015) build a
large corpus of Chinese social media short text
summarization, which is one of our benchmark
datasets. Chen et al. (2016) introduce a distrac-
tion based neural model, which forces the atten-
tion mechanism to focus on the difference parts
of the source inputs. Ma et al. (2017) propose a
neural model to improve the semantic relevance
between the source contents and the summaries.

Our work is also related to the sequence-to-
sequence model (Cho et al., 2014), and the au-
toencoder model (Bengio, 2009; Liou et al., 2008,
2014). Sequence-to-sequence model is one of the
most successful generative neural model, and is
widely applied in machine translation (Sutskever
et al., 2014; Jean et al., 2015; Luong et al., 2015),
text summarization (Rush et al., 2015; Chopra
et al., 2016; Nallapati et al., 2016), and other natu-
ral language processing tasks. Autoencoder (Ben-
gio, 2009) is an artificial neural network used for
unsupervised learning of efficient representation.
Neural attention model is first proposed by Bah-
danau et al. (2014).

5 Conclusion

We propose a novel model, in which the autoen-
coder is a supervisor of the sequence-to-sequence
model, to learn a better internal representation
for abstractive summarization. An adversarial
learning approach is introduced to further improve
the supervision of the autoencoder. Experimen-
tal results show that our model outperforms the
sequence-to-sequence baseline by a large margin,
and achieves the state-of-the-art performances on
a Chinese social media dataset.
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Abstract

LSTMs were introduced to combat van-
ishing gradients in simple RNNs by aug-
menting them with gated additive recur-
rent connections. We present an alterna-
tive view to explain the success of LSTMs:
the gates themselves are versatile recurrent
models that provide more representational
power than previously appreciated. We
do this by decoupling the LSTM’s gates
from the embedded simple RNN, produc-
ing a new class of RNNs where the recur-
rence computes an element-wise weighted
sum of context-independent functions of
the input. Ablations on a range of prob-
lems demonstrate that the gating mecha-
nism alone performs as well as an LSTM
in most settings, strongly suggesting that
the gates are doing much more in practice
than just alleviating vanishing gradients.

1 Introduction

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) has become the de-facto re-
current neural network (RNN) for learning repre-
sentations of sequences in NLP. Like simple re-
current neural networks (S-RNNs) (Elman, 1990),
LSTMs are able to learn non-linear functions of
arbitrary-length input sequences. However, they
also introduce an additional memory cell to mit-
igate the vanishing gradient problem (Hochreiter,
1991; Bengio et al., 1994). This memory is con-
trolled by a mechanism of gates, whose additive
connections allow long-distance dependencies to
be learned more easily during backpropagation.
While this view is mathematically accurate, in this
paper we argue that it does not provide a complete
picture of why LSTMs work in practice.

∗The first two authors contributed equally to this paper.

We present an alternate view to explain the suc-
cess of LSTMs: the gates themselves are power-
ful recurrent models that provide more representa-
tional power than previously realized. To demon-
strate this, we first show that LSTMs can be seen
as a combination of two recurrent models: (1) an
S-RNN, and (2) an element-wise weighted sum of
the S-RNN’s outputs over time, which is implicitly
computed by the gates. We hypothesize that, for
many practical NLP problems, the weighted sum
serves as the main modeling component. The S-
RNN, while theoretically expressive, is in practice
only a minor contributor that clouds the mathemat-
ical clarity of the model. By replacing the S-RNN
with a context-independent function of the input,
we arrive at a much more restricted class of RNNs,
where the main recurrence is via the element-wise
weighted sums that the gates are computing.

We test our hypothesis on NLP problems, where
LSTMs are wildly popular at least in part due
to their ability to model crucial phenomena such
as word order (Adi et al., 2017), syntactic struc-
ture (Linzen et al., 2016), and even long-range se-
mantic dependencies (He et al., 2017). We con-
sider four challenging tasks: language modeling,
question answering, dependency parsing, and ma-
chine translation. Experiments show that while re-
moving the gates from an LSTM can severely hurt
performance, replacing the S-RNN with a simple
linear transformation of the input results in min-
imal or no loss in model performance. We also
show that, in many cases, LSTMs can be further
simplified by removing the output gate, arriving
at an even more transparent architecture, where
the output is a context-independent function of
the weighted sum. Together, these results suggest
that the gates’ ability to compute an element-wise
weighted sum, rather than the non-linear transition
dynamics of S-RNNs, are the driving force behind
LSTM’s success.
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2 What Do Memory Cells Compute?

LSTMs are typically motivated as an augmenta-
tion of simple RNNs (S-RNNs), defined as:

ht = tanh(Whhht−1 +Whxxt + bh) (1)

S-RNNs suffer from the vanishing gradient prob-
lem (Hochreiter, 1991; Bengio et al., 1994) due to
compounding multiplicative updates of the hidden
state. By introducing a memory cell and an output
layer controlled by gates, LSTMs enable shortcuts
through which gradients can flow when learning
with backpropagation. This mechanism enables
learning of long-distance dependencies while pre-
serving the expressive power of recurrent non-
linear transformations provided by S-RNNs.

Rather than viewing the gates as simply an aux-
iliary mechanism to address a learning problem,
we present an alternate view that emphasizes their
modeling strengths. We argue that the LSTM
should be interpreted as a hybrid of two distinct
recurrent architectures: (1) the S-RNN which pro-
vides multiplicative connections across timesteps,
and (2) the memory cell which provides additive
connections across timesteps. On top of these re-
currences, an output layer is included that simply
squashes and filters the memory cell at each step.

Throughout this paper, let {x1, . . . ,xn} be the
sequence of input vectors, {h1, . . . ,hn} be the se-
quence of output vectors, and {c1, . . . , cn} be the
memory cell’s states. Then, given the basic LSTM
definition below, we can formally identify three
sub-components.

c̃t = tanh(Wchht−1 +Wcxxt + bc) (2)

it = σ(Wihht−1 +Wixxt + bi) (3)

ft = σ(Wfhht−1 +Wfxxt + bf ) (4)

ct = it ◦ c̃t + ft ◦ ct−1 (5)

ot = σ(Wohht−1 +Woxxt + bo) (6)

ht = ot ◦ tanh(ct) (7)

Content Layer (Equation 2) We refer to c̃t as
the content layer, which is the output of an S-
RNN. Evaluating the need for multiplicative recur-
rent connections in the content layer is the focus of
this work. The content layer is passed to the mem-
ory cell, which decides which parts of it to store.

Memory Cell (Equations 3-5) The memory cell
ct is controlled by two gates. The input gate it
controls what part of the content (c̃t) is written
to the memory, while the forget gate ft controls

what part of the memory is deleted by filtering the
previous state of the memory (ct−1). Writing to
the memory is done by adding the filtered content
(it ◦ c̃t) to the retained memory (ft ◦ ct−1).

Output Layer (Equations 6-7) The output
layer ht passes the memory cell through a tanh
activation function and uses an output gate ot to
read selectively from the squashed memory cell.

Our goal is to study how much each of these
components contribute to the empirical perfor-
mance of LSTMs. In particular, it is worth consid-
ering the memory cell in more detail to reveal why
it could serve as a standalone powerful model of
long-distance context. It is possible to show that
it implicitly computes an element-wise weighted
sum of all the previous content layers by expand-
ing the recurrence relation in Equation 5:

ct = it ◦ c̃t + ft ◦ ct−1

=

t∑

j=0

(
ij ◦

t∏

k=j+1

fk

)
◦ c̃j

=
t∑

j=0

wt
j ◦ c̃j

(8)

Each weight wt
j is a product of the input gate ij

(when its respective input c̃j was read) and every
subsequent forget gate fk. An interesting property
of these weights is that, like the gates, they are also
soft element-wise binary filters.

3 Standalone Memory Cells are Powerful

The restricted space of element-wise weighted
sums allows for easier mathematical analysis, vi-
sualization, and perhaps even learnability. How-
ever, constrained function spaces are also less ex-
pressive, and a natural question is whether these
models will work well for NLP problems that in-
volve understanding context. We hypothesize that
the memory cell (which computes weighted sums)
can function as a standalone contextualizer. To
test this hypothesis, we present several simplifica-
tions of the LSTM’s architecture (Section 3.1), and
show on a variety of NLP benchmarks that there
is a qualitative performance difference between
models that contain a memory cell and those that
do not (Section 3.2). We conclude that the content
and output layers are relatively minor contributors,
and that the space of element-wise weighted sums
is sufficiently powerful to compete with fully pa-
rameterized LSTMs (Section 3.3).
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3.1 Simplified Models

The modeling power of LSTMs is commonly as-
sumed to derive from the S-RNN in the content
layer, with the rest of the model acting as a learn-
ing aid to bypass the vanishing gradient problem.
We first isolate the S-RNN by ablating the gates
(denoted as LSTM – GATES for consistency).

To test whether the memory cell has enough
modeling power of its own, we take an LSTM
and replace the S-RNN in the content layer from
Equation 2 with a simple linear transformation
(c̃t = Wcxxt) creating the LSTM – S-RNN model.

We further simplify the LSTM by removing the
output gate from Equation 7 (ht = tanh(ct)),
leaving only the activation function in the output
layer (LSTM – S-RNN – OUT). After removing the
S-RNN and the output gate from the LSTM, the
entire ablated model can be written in a modular,
compact form:

ht = OUTPUT
( t∑

j=0

wt
j ◦ CONTENT(xj)

)
(9)

where the content layer CONTENT(·) and the out-
put layer OUTPUT(·) are both context-independent
functions, making the entire model highly con-
strained and mathematically simpler. The com-
plexity of modeling contextual information is
needed only for computing the weights wt

j . As
we will see in Section 3.2, both of these ablations
perform on par with LSTMs on several tasks.

Finally, we ablate the hidden state from the
gates as well, by computing each gate gt via
σ(Wgxxt+bg). In this model, the only recurrence
is the additive connection in the memory cell; it
has no multiplicative recurrent connections at all.
It can be seen as a type of QRNN (Bradbury et al.,
2016) or SRU (Lei et al., 2017b), but for consis-
tency we label it as LSTM – S-RNN – HIDDEN.

3.2 Experiments

We compare model performance on four NLP
tasks, with an experimental setup that is lenient
towards LSTMs and harsh towards its simplifica-
tions. In each case, we use existing implementa-
tions and previously reported hyperparameter set-
tings. Since these settings were tuned for LSTMs,
any simplification that performs equally to (or bet-
ter than) LSTMs under these LSTM-friendly set-
tings provides strong evidence that the ablated
component is not a contributing factor. For each

task we also report the mean and standard devia-
tion of 5 runs of the LSTM settings to demonstrate
the typical variance observed due to training with
different random initializations.

Language Modeling We evaluate the models on
the Penn Treebank (PTB) (Marcus et al., 1993)
language modeling benchmark. We use the im-
plementation of Zaremba et al. (2014) from Ten-
sorFlow’s tutorial while replacing any invocation
of LSTMs with simpler models. We test two of
their configurations: medium and large (Table 1).

Question Answering For question answering,
we use two different QA systems on the Stan-
ford question answering dataset (SQuAD) (Ra-
jpurkar et al., 2016): the Bidirectional Atten-
tion Flow model (BiDAF) (Seo et al., 2016) and
DrQA (Chen et al., 2017). BiDAF contains
3 LSTMs, which are referred to as the phrase
layer, the modeling layer, and the span end en-
coder. Our experiments replace each of these
LSTMs with their simplified counterparts. We di-
rectly use the implementation of BiDAF from Al-
lenNLP (Gardner et al., 2017), and all experiments
reuse the existing hyperparameters that were tuned
for LSTMs. Likewise, we use an open-source
implementation of DrQA1 and replace only the
LSTMs, while leaving everything else intact. Ta-
ble 2 shows the results.

Dependency Parsing For dependency pars-
ing, we use the Deep Biaffine Dependency
Parser (Dozat and Manning, 2016), which relies
on stacked bidirectional LSTMs to learn context-
sensitive word embeddings for determining arcs
between a pair of words. We directly use their re-
leased implementation, which is evaluated on the
Universal Dependencies English Web Treebank
v1.3 (Silveira et al., 2014). In our experiments,
we use the existing hyperparameters and only re-
place the LSTMs with the simplified architectures.
Table 3 shows the results.

Machine Translation For machine translation,
we used OpenNMT (Klein et al., 2017) to train En-
glish to German translation models on the multi-
modal benchmarks from WMT 2016 (used in
OpenNMT’s readme file). We use OpenNMT’s
default model and hyperparameters, replacing the
stacked bidirectional LSTM encoder with the sim-

1https://github.com/hitvoice/DrQA
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Configuration Model Perplexity

PTB
(Medium)

LSTM 83.9 ± 0.3
– S-RNN 80.5
– S-RNN – OUT 81.6
– S-RNN – HIDDEN 83.3
– GATES 140.9

PTB
(Large)

LSTM 78.8 ± 0.2
– S-RNN 76.0
– S-RNN – OUT 78.5
– S-RNN – HIDDEN 82.9
– GATES 126.1

Table 1: Performance on language modeling
benchmarks, measured by perplexity.

System Model EM F1

BiDAF

LSTM 67.9 ± 0.3 77.5 ± 0.2
– S-RNN 68.4 78.2
– S-RNN – OUT 67.4 77.2
– S-RNN – HIDDEN 66.5 76.6
– GATES 62.9 73.3

DrQA

LSTM 68.8 ± 0.2 78.2 ± 0.2
– S-RNN 68.0 77.2
– S-RNN – OUT 68.7 77.9
– S-RNN – HIDDEN 67.9 77.2
– GATES 56.4 66.5

Table 2: Performance on SQuAD, measured by
exact match (EM) and span overlap (F1).

plified architectures.2 Table 4 shows the results.

3.3 Discussion

We showed four major ablations of the LSTM. In
the S-RNN experiments (LSTM – GATES), we ab-
late the memory cell and the output layer. In the
LSTM – S-RNN and LSTM – S-RNN – OUT exper-
iments, we ablate the S-RNN. In the LSTM – S-
RNN – HIDDEN, we remove not only the S-RNN
in the content layer, but also the S-RNNs in the
gates, resulting in a model whose sole recurrence
is in the memory cell’s additive connection.

As consistent with previous literature, removing
the memory cell degrades performance drastically.
In contrast, removing the S-RNN makes little to
no difference in the final performance, suggesting
that the memory cell alone is largely responsible
for the success of LSTMs in NLP.

Even after removing every multiplicative recur-
rence from the memory cell itself, the model’s
performance remains well above the vanilla S-

2For the S-RNN baseline (LSTM – GATES), we had to
tune the learning rate to 0.1 because the default value (1.0)
resulted in exploding gradients. This is the only case where
hyperparameters were modified in all of our experiments.

Model UAS LAS

LSTM 90.60 ± 0.21 88.05 ± 0.33
– S-RNN 90.77 88.49
– S-RNN – OUT 90.70 88.31
– S-RNN – HIDDEN 90.53 87.96
– GATES 87.75 84.61

Table 3: Performance on the universal dependen-
cies parsing benchmark, measured by unlabeled
(UAS) and labeled attachment score (LAS).

Model BLEU

LSTM 38.19 ± 0.1
– S-RNN 37.84
– S-RNN – OUT 38.36
– S-RNN – HIDDEN 36.98
– GATES 26.52

Table 4: Performance on the WMT 2016 multi-
modal English to German benchmark.

RNN’s, and falls within the standard deviation of
an LSTM’s on some tasks (see Table 3). This latter
result indicates that the additive recurrent connec-
tion in the memory cell – and not the multiplicative
recurrent connections in the content layer or in the
gates – is the most important computational ele-
ment in an LSTM. As a corollary, this result also
suggests that a weighted sum of context words,
while mathematically simple, is a powerful model
of contextual information.

4 LSTM as Self-Attention

Attention mechanisms are widely used in the NLP
literature to aggregate over a sequence (Cho et al.,
2014; Bahdanau et al., 2015) or contextualize to-
kens within a sequence (Cheng et al., 2016; Parikh
et al., 2016) by explicitly computing weighted
sums. In the previous sections, we demonstrated
that LSTMs implicitly compute weighted sums as
well, and that this computation is central to their
success. How, then, are these two computations
related, and in what ways do they differ?

After simplifying the content layer and remov-
ing the output gate (LSTM – S-RNN – OUT),
the model’s computation can be expressed as a
weighted sum of context-independent functions of
the inputs (Equation 9 in Section 3.1). This for-
mula abstracts over both the simplified LSTM and
the family of attention mechanisms, and through
this lens, the memory cell’s computation can be
seen as a “cousin” of self-attention. In fact, we
can also leverage this abstraction to visualize the
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simplified LSTM’s weights as is commonly done
with attention (see Appendix A for visualization).

However, there are three major differences in
how the weights wtj are computed.

First, the LSTM’s weights are vectors, while
attention typically computes scalar weights; i.e.
a separate weighted sum is computed for every
dimension of the LSTM’s memory cell. Multi-
headed self-attention (Vaswani et al., 2017) can
be seen as a middle ground between the two ap-
proaches, allocating a scalar weight for different
subsets of the dimensions.

Second, the weighted sum is accumulated with
a dynamic program. This enables a linear rather
than quadratic complexity in comparison to self-
attention, but reduces the amount of parallel com-
putation. This accumulation also creates an induc-
tive bias of attending to nearby words, since the
weights can only decrease over time.

Finally, attention has a probabilistic interpreta-
tion due to the softmax normalization, while the
sum of weights in LSTMs can grow up to the se-
quence length. In variants of the LSTM that tie the
input and forget gate, such as coupled-gate LSTMs
(Greff et al., 2016) and GRUs (Cho et al., 2014),
the memory cell instead computes a weighted av-
erage with a probabilistic interpretation. These
variants compute locally normalized distributions
via a product of sigmoids rather than globally nor-
malized distributions via a single softmax.

5 Related Work

Many variants of LSTMs (Hochreiter and Schmid-
huber, 1997) have been previously explored.
These typically consist of a different parameteri-
zation of the gates, such as LSTMs with peephole
connections (Gers and Schmidhuber, 2000), or a
rewiring of the connections, such as GRUs (Cho
et al., 2014). However, these modifications invari-
ably maintain the recurrent content layer. Even
more systematic explorations (Józefowicz et al.,
2015; Greff et al., 2016; Zoph and Le, 2017) do
not question the importance of the embedded S-
RNN. This is the first study to provide apples-
to-apples comparisons between LSTMs with and
without the recurrent content layer.

Several other recent works have also reported
promising results with recurrent models that
are vastly simpler than LSTMs, such as quasi-
recurrent neural networks (Bradbury et al., 2016),
strongly-typed recurrent neural networks (Bal-

duzzi and Ghifary, 2016), recurrent additive net-
works (Lee et al., 2017), kernel neural net-
works (Lei et al., 2017a), and simple recurrent
units (Lei et al., 2017b), making it increasingly ap-
parent that LSTMs are over-parameterized. While
these works indicate an obvious trend, they do not
focus on explaining what LSTMs are learning. In
our carefully controlled ablation studies, we pro-
pose and evaluate the minimal changes required
to test our hypothesis that LSTMs are powerful
because they dynamically compute element-wise
weighted sums of content layers.

6 Conclusion

We presented an alternate view of LSTMs: they
are a hybrid of S-RNNs and a gated model that dy-
namically computes weighted sums of the S-RNN
outputs. Our experiments investigated whether the
S-RNN is a necessary component of LSTMs. In
other words, are the gates alone as powerful of
a model as an LSTM? Results across four ma-
jor NLP tasks (language modeling, question an-
swering, dependency parsing, and machine trans-
lation) indicate that LSTMs suffer little to no per-
formance loss when removing the S-RNN. This
provides evidence that the gating mechanism is
doing the heavy lifting in modeling context. We
further ablate the recurrence in each gate and find
that this incurs only a modest drop in performance,
indicating that the real modeling power of LSTMs
stems from their ability to compute element-wise
weighted sums of context-independent functions
of their inputs.

This realization allows us to mathemati-
cally relate LSTMs and other gated RNNs to
attention-based models. Casting an LSTM as a
dynamically-computed attention mechanism en-
ables the visualization of how context is used at
every timestep, shedding light on the inner work-
ings of the relatively opaque LSTM.
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A Weight Visualization

Given the empirical evidence that LSTMs are ef-
fectively learning weighted sums of the content
layers, it is natural to investigate what weights the
model learns in practice. Using the more mathe-
matically transparent simplification of LSTMs, we
can visualize the weights wt

j that are placed on ev-
ery input j at every timestep t (see Equation 9).

Unlike attention mechanisms, these weights are
vectors rather than scalar values. Therefore, we
can only provide a coarse-grained visualization of
the weights by rendering their L2-norm, as shown
in Table 5. In the visualization, each column
indicates the word represented by the weighted
sum, and each row indicates the word over which
the weighted sum is computed. Dark horizontal
streaks indicate the duration for which a word was
remembered. Unsurprisingly, the weights on the
diagonal are always the largest since it indicates
the weight of the current word. More interesting
task-specific patterns emerge when inspecting the
off-diagonals that represent the weight on the con-
text words.

The first visualization uses the language model.
Due to the language modeling setup, there are
only non-zero weights on the current or previous
words. We find that the common function words
are quickly forgotten, while infrequent words that

signal the topic are remembered over very long
distances.

The second visualization uses the dependency
parser. In this setting, since the recurrent architec-
tures are bidirectional, there are non-zero weights
on all words in the sentence. The top-right triangle
indicates weights from the forward direction, and
the bottom-left triangle indicates from the back-
ward direction. For syntax, we see a significantly
different pattern. Function words that are useful
for determining syntax are more likely to be re-
membered. Weights on head words are also likely
to persist until the end of a constituent.

This illustration provides only a glimpse into
what the model is capturing, and perhaps future,
more detailed visualizations that take the individ-
ual dimensions into account can provide further
insight into what LSTMs are learning in practice.
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Language model weights Dependency parser weights
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Table 5: Visualization of the weights on context words learned by the memory cell. Each column rep-
resents the current word t, and each row represents a context word j. The gating mechanism implicitly
computes element-wise weighted sums over each column. The darkness of each square indicates the L2-
norm of the vector weights wt

j from Equation 9. Figures on the left show weights learned by a language
model. Figures on the right show weights learned by a dependency parser.
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Abstract

While Recurrent Neural Networks
(RNNs) are famously known to be Turing
complete, this relies on infinite precision
in the states and unbounded computation
time. We consider the case of RNNs with
finite precision whose computation time
is linear in the input length. Under these
limitations, we show that different RNN
variants have different computational
power. In particular, we show that the
LSTM and the Elman-RNN with ReLU
activation are strictly stronger than the
RNN with a squashing activation and the
GRU. This is achieved because LSTMs
and ReLU-RNNs can easily implement
counting behavior. We show empirically
that the LSTM does indeed learn to
effectively use the counting mechanism.

1 Introduction

Recurrent Neural Network (RNNs) emerge as very
strong learners of sequential data. A famous re-
sult by Siegelmann and Sontag (1992; 1994), and
its extension in (Siegelmann, 1999), demonstrates
that an Elman-RNN (Elman, 1990) with a sigmoid
activation function, rational weights and infinite
precision states can simulate a Turing-machine in
real-time, making RNNs Turing-complete. Re-
cently, Chen et al (2017) extended the result to
the ReLU activation function. However, these
constructions (a) assume reading the entire in-
put into the RNN state and only then perform-
ing the computation, using unbounded time; and
(b) rely on having infinite precision in the net-
work states. As argued by Chen et al (2017),
this is not the model of RNN computation used in
NLP applications. Instead, RNNs are often used
by feeding an input sequence into the RNN one

item at a time, each immediately returning a state-
vector that corresponds to a prefix of the sequence
and which can be passed as input for a subse-
quent feed-forward prediction network operating
in constant time. The amount of tape used by a
Turing machine under this restriction is linear in
the input length, reducing its power to recogni-
tion of context-sensitive language. More impor-
tantly, computation is often performed on GPUs
with 32bit floating point computation, and there is
increasing evidence that competitive performance
can be achieved also for quantized networks with
4-bit weights or fixed-point arithmetics (Hubara
et al., 2016). The construction of (Siegelmann,
1999) implements pushing 0 into a binary stack by
the operation g ← g/4 + 1/4. This allows push-
ing roughly 15 zeros before reaching the limit of
the 32bit floating point precision. Finally, RNN
solutions that rely on carefully orchestrated math-
ematical constructions are unlikely to be found us-
ing backpropagation-based training.

In this work we restrict ourselves to input-
bound recurrent neural networks with finite-
precision states (IBFP-RNN), trained using back-
propagation. This class of networks is likely to co-
incide with the networks one can expect to obtain
when training RNNs for NLP applications. An
IBFP Elman-RNN is finite state. But what about
other RNN variants? In particular, we consider the
Elman RNN (SRNN) (Elman, 1990) with squash-
ing and with ReLU activations, the Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) and the Gated Recurrent Unit (GRU)
(Cho et al., 2014; Chung et al., 2014).

The common wisdom is that the LSTM and
GRU introduce additional gating components that
handle the vanishing gradients problem of train-
ing SRNNs, thus stabilizing training and making it
more robust. The LSTM and GRU are often con-
sidered as almost equivalent variants of each other.
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(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations — c for LSTM and h for GRU — for networks trained on anbn and anbncn. The
LSTM has clearly learned to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.1

1Is the ability to perform unbounded counting relevant to
“real world” NLP tasks? In some cases it might be. For ex-
ample, processing linearized parse trees (Vinyals et al., 2015;
Choe and Charniak, 2016; Aharoni and Goldberg, 2017) re-
quires counting brackets and nesting levels. Indeed, previous
works that process linearized parse trees report using LSTMs

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht−1

and returns a state vector ht:

ht = R(xt, ht−1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let Σ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN
acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN
recognizes a language L⊆ Σ∗ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn ∈ L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),

and not GRUs for this purpose. Our work here suggests that
this may not be a coincidence.
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the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht−1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can
be replaced by any other squashing function with-
out sacrificing computational power.

IRNN The IRNN model, explored by (Le et al.,
2015), replaces the tanh activation with a non-
squashing ReLU:

ht = max(0, (Wxt + Uht−1 + b)) (3)

The computational power of such RNNs (given in-
finite precision) is explored in (Chen et al., 2017).

Gated Recurrent Unit (GRU) In the GRU (Cho
et al., 2014), the function R incorporates a gating
mechanism, taking the form:

zt = σ(W zxt + U zht−1 + bz) (4)

rt = σ(W rxt + U rht−1 + br) (5)

h̃t = tanh(W hxt + Uh(rt ◦ ht−1) + bh)(6)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (7)

Where σ is the sigmoid function and ◦ is the
Hadamard product (element-wise product).

Long Short Term Memory (LSTM) In the
LSTM (Hochreiter and Schmidhuber, 1997), R
uses a different gating component configuration:

ft = σ(W fxt + Ufht−1 + bf ) (8)

it = σ(W ixt + U iht−1 + bi) (9)

ot = σ(W oxt + Uoht−1 + bo) (10)

c̃t = tanh(W cxt + U cht−1 + bc) (11)

ct = ft ◦ ct−1 + it ◦ c̃t (12)

ht = ot ◦ g(ct) (13)

where g can be either tanh or the identity.

Equivalences The GRU and LSTM are at least
as strong as the SRNN: by setting the gates of the
GRU to zt = 0 and rt = 1 we obtain the SRNN
computation. Similarly by setting the LSTM gates
to it = 1,ot = 1, and ft = 0. This is easily
achieved by setting the matricesW andU to 0, and
the biases b to the (constant) desired gate values.

Thus, all the above RNNs can recognize finite-
state languages.

3 Power of Counting

Power beyond finite state can be obtained by in-
troducing counters. Counting languages and k-
counter machines are discussed in depth in (Fis-
cher et al., 1968). When unbounded computa-
tion is allowed, a 2-counter machine has Turing
power. However, for computation bound by in-
put length (real-time) there is a more interesting
hierarchy. In particular, real-time counting lan-
guages cut across the traditional Chomsky hierar-
chy: real-time k-counter machines can recognize
at least one context-free language (anbn), and at
least one context-sensitive one (anbncn). How-
ever, they cannot recognize the context free lan-
guage given by the grammar S → x|aSa|bSb
(palindromes).

SKCM For our purposes, we consider a sim-
plified variant of k-counter machines (SKCM). A
counter is a device which can be incremented by
a fixed amount (INC), decremented by a fixed
amount (DEC) or compared to 0 (COMP0). In-
formally,2 an SKCM is a finite-state automaton
extended with k counters, where at each step of
the computation each counter can be incremented,
decremented or ignored in an input-dependent
way, and state-transitions and accept/reject de-
cisions can inspect the counters’ states using
COMP0. The results for the three languages dis-
cussed above hold for the SKCM variant as well,
with proofs provided in the supplementary mate-
rial.

4 RNNs as SKCMs

In what follows, we consider the effect on the
state-update equations on a single dimension,
ht[j]. We omit the index [j] for readability.

LSTM The LSTM acts as an SKCM by des-
ignating k dimensions of the memory cell ct as
counters. In non-counting steps, set it = 0, ft = 1
through equations (8-9). In counting steps, the
counter direction (+1 or -1) is set in c̃t (equation
11) based on the input xt and state ht−1. The
counting itself is performed in equation (12), af-
ter setting it = ft = 1. The counter can be reset
to 0 by setting it = ft = 0.

Finally, the counter values are exposed through
ht = otg(ct), making it trivial to compare the

2Formal definition is given in the supplementary material.
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counter’s value to 0.3

We note that this implementation of the SKCM
operations is achieved by saturating the activations
to their boundaries, making it relatively easy to
reach and maintain in practice.

SRNN The finite-precision SRNN cannot desig-
nate unbounded counting dimensions.

The SRNN update equation is:

ht = tanh(Wx+ Uht−1 + b)

ht[i] = tanh(

dx∑

j=1

Wijx[j]+

dh∑

j=1

Uijht−1[j]+b[i])

By properly setting U and W, one can get cer-
tain dimensions of h to update according to the
value of x, by ht[i] = tanh(ht−1[i] +wix+ b[i]).
However, this counting behavior is within a tanh
activation. Theoretically, this means unbounded
counting cannot be achieved without infinite pre-
cision. Practically, this makes the counting behav-
ior inherently unstable, and bounded to a relatively
narrow region. While the network could adapt to
set w to be small enough such that counting works
for the needed range seen in training without over-
flowing the tanh, attempting to count to larger n
will quickly leave this safe region and diverge.

IRNN Finite-precision IRNNs can perform un-
bounded counting conditioned on input symbols.
This requires representing each counter as two di-
mensions, and implementing INC as incrementing
one dimension, DEC as incrementing the other,
and COMP0 as comparing their difference to 0. In-
deed, Appendix A in (Chen et al., 2017) provides
concrete IRNNs for recognizing the languages
anbn and anbncn. This makes IBFP-RNN with

3Some further remarks on the LSTM: LSTM supports
both increment and decrement in a single dimension. The
counting dimensions in ct are exposed through a function
g. For both g(x) = x and g(x) = tanh(x), it is trivial
to do compare 0. Another operation of interest is compar-
ing two counters (for example, checking the difference be-
tween them). This cannot be reliably achieved with g(x) =
tanh(x), due to the non-linearity and saturation properties
of the tanh function, but is possible in the g(x) = x case.
LSTM can also easily set the value of a counter to 0 in one
step. The ability to set the counter to 0 gives slightly more
power for real-time recognition, as discussed by Fischer et al.
(1968).

Relation to known architectural variants: Adding peep-
hole connections (Gers and Schmidhuber, 2000) essentially
sets g(x) = x and allows comparing counters in a stable
way. Coupling the input and the forget gates (it = 1 − ft)
(Greff et al., 2017) removes the single-dimension unbounded
counting ability, as discussed for the GRU.

ReLU activation more powerful than IBFP-RNN
with a squashing activation. Practically, ReLU-
activated RNNs are known to be notoriously hard
to train because of the exploding gradient problem.

GRU Finite-precision GRUs cannot implement
unbounded counting on a given dimension. The
tanh in equation (6) combined with the interpola-
tion (tying zt and 1 − zt) in equation (7) restricts
the range of values in h to between -1 and 1, pre-
cluding unbounded counting with finite precision.
Practically, the GRU can learn to count up to some
bound m seen in training, but will not generalize
well beyond that.4 Moreover, simulating forms of
counting behavior in equation (7) require consis-
tently setting the gates zt, rt and the proposal h̃t
to precise, non-saturated values, making it much
harder to find and maintain stable solutions.

Summary We show that LSTM and IRNN
can implement unbounded counting in dedicated
counting dimensions, while the GRU and SRNN
cannot. This makes the LSTM and IRNN at least
as strong as SKCMs, and strictly stronger than the
SRNN and the GRU.5

5 Experimental Results

Can the LSTM indeed learn to behave as a k-
counter machine when trained using backpropaga-
tion? We show empirically that:

1. LSTMs can be trained to recognize anbn and
anbncn.

2. These LSTMs generalize to much higher n
than seen in the training set (though not in-
finitely so).

3. The trained LSTM learn to use the per-
dimension counting mechanism.

4. The GRU can also be trained to recognize
anbn and anbncn, but they do not have clear

4One such mechanism could be to divide a given dimen-
sion by k > 1 at each symbol encounter, by setting zt = 1/k

and h̃t = 0. Note that the inverse operation would not be
implementable, and counting down would have to be realized
with a second counter.

5One can argue that other counting mechanisms—
involving several dimensions—are also possible. Intuitively,
such mechanisms cannot be trained to perform unbounded
counting based on a finite sample as the model has no means
of generalizing the counting behavior to dimensions beyond
those seen in training. We discuss this more in depth in the
supplementary material, where we also prove that an SRNN
cannot represent a binary counter.
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counting dimensions, and they generalize to
much smaller n than the LSTMs, often fail-
ing to generalize correctly even for n within
their training domain.

5. Trained LSTM networks outperform trained
GRU networks on random test sets for the
languages anbn and anbncn.

Similar empirical observations regarding the
ability of the LSTM to learn to recognize anbn and
anbncn are described also in (Gers and Schmidhu-
ber, 2001).

We train 10-dimension, 1-layer LSTM and
GRU networks to recognize anbn and anbncn. For
anbn the training samples went up to n = 100 and
for anbncn up to n = 50.6

Results On anbn, the LSTM generalizes well up
to n = 256, after which it accumulates a devia-
tion making it reject anbn but recognize anbn+1

for a while, until the deviation grows.7 The GRU
does not capture the desired concept even within
its training domain: accepting anbn+1 for n > 38,
and also accepting anbn+2 for n > 97. It stops
accepting anbn for n > 198.

On anbncn the LSTM recognizes well until n =
100. It then starts accepting also anbn+1cn. At
n > 120 it stops accepting anbncn and switches
to accepting anbn+1cn, until at some point the de-
viation grows. The GRU accepts already a9b10c12,
and stops accepting anbncn for n > 63.

Figure 1a plots the activations of the 10 dimen-
sions of the anbn-LSTM for the input a1000b1000.
While the LSTM misclassifies this example, the
use of the counting mechanism is clear. Fig-
ure 1b plots the activation for the anbncn LSTM
on a100b100c100. Here, again, the two counting
dimensions are clearly identified—indicating the
LSTM learned the canonical 2-counter solution—
although the slightly-imprecise counting also
starts to show. In contrast, Figures 1c and 1d

6Implementation in DyNet, using the SGD Optimizer.
Positive examples are generated by sampling n in the desired
range. For negative examples we sample 2 or 3 n values in-
dependently, and ensuring at least one of them differs from
the others. We dedicate a portion of the examples as the dev
set, and train up to 100% dev set accuracy.

7These fluctuations occur as the networks do not fully sat-
urate their gates, meaning the LSTM implements an imper-
fect counter that accumulates small deviations during com-
putation, e.g.: increasing the counting dimension by 0.99 but
decreasing only by 0.98. Despite this, we see that the its so-
lution remains much more robust than that found by the GRU
— the LSTM has learned the essence of the counting based
solution, but its implementation is imprecise.

show the state values of the GRU-networks. The
GRU behavior is much less interpretable than the
LSTM. In the anbn case, some dimensions may be
performing counting within a bounded range, but
move to erratic behavior at around t = 1750 (the
network starts to misclassify on sequences much
shorter than that). The anbncn state dynamics are
even less interpretable.

Finally, we created 1000-sample test sets for
each of the languages. For anbn we used words
with the form an+ibn+j where n ∈ rand(0, 200)
and i, j ∈ rand(−2, 2), and for anbncn we use
words of the form an+ibn+jcn+k where n ∈
rand(0, 150) and i, j, k ∈ rand(−2, 2). The
LSTM’s accuracy was 100% and 98.6% on anbn

and anbncn respectively, as opposed to the GRU’s
87.0% and 86.9%, also respectively.

All of this empirically supports our result,
showing that IBFP-LSTMs can not only theoret-
ically implement “unbounded” counters, but also
learn to do so in practice (although not perfectly),
while IBFP-GRUs do not manage to learn proper
counting behavior, even when allowing floating
point computations.

6 Conclusions

We show that the IBFP-LSTM can model a real-
time SKCM, both in theory and in practice. This
makes it more powerful than the IBFP-SRNN
and the IBFP-GRU, which cannot implement un-
bounded counting and are hence restricted to rec-
ognizing regular languages. The IBFP-IRNN can
also perform input-dependent counting, and is
thus more powerful than the IBFP-SRNN.

We note that in addition to theoretical distinc-
tions between architectures, it is important to con-
sider also the practicality of different solutions:
how easy it is for a given architecture to discover
and maintain a stable behavior in practice. We
leave further exploration of this question for future
work.
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Abstract

Multi-choice reading comprehension is
a challenging task, which involves the
matching between a passage and a
question-answer pair. This paper proposes
a new co-matching approach to this prob-
lem, which jointly models whether a pas-
sage can match both a question and a can-
didate answer. Experimental results on
the RACE dataset demonstrate that our
approach achieves state-of-the-art perfor-
mance.

1 Introduction

Enabling machines to understand natural language
text is arguably the ultimate goal of natural lan-
guage processing, and the task of machine read-
ing comprehension is an intermediate step towards
this ultimate goal (Richardson et al., 2013; Her-
mann et al., 2015; Hill et al., 2015; Rajpurkar
et al., 2016; Nguyen et al., 2016). Recently, Lai
et al. (2017) released a new multi-choice machine
comprehension dataset called RACE that was ex-
tracted from middle and high school English ex-
aminations in China. Figure 1 shows an exam-
ple passage and two related questions from RACE.
The key difference between RACE and previ-
ously released machine comprehension datasets
(e.g., the CNN/Daily Mail dataset (Hermann et al.,
2015) and SQuAD (Rajpurkar et al., 2016)) is that
the answers in RACE often cannot be directly ex-
tracted from the given passages, as illustrated by
the two example questions (Q1 & Q2) in Figure 1.
Thus, answering these questions is more challeng-
ing and requires more inferences.

Previous approaches to machine comprehen-
sion are usually based on pairwise sequence
matching, where either the passage is matched
against the sequence that concatenates both the

question and a candidate answer (Yin et al., 2016),
or the passage is matched against the question
alone followed by a second step of selecting an an-
swer using the matching result of the first step (Lai
et al., 2017; Zhou et al., 2018). However, these
approaches may not be suitable for multi-choice
reading comprehension since questions and an-
swers are often equally important. Matching the
passage only against the question may not be
meaningful and may lead to loss of information
from the original passage, as we can see from the
first example question in Figure 1. On the other
hand, concatenating the question and the answer
into a single sequence for matching may not work,
either, due to the loss of interaction information
between a question and an answer. As illustrated
by Q2 in Figure 1, the model may need to recog-
nize what “he” and “it” in candidate answer (c)
refer to in the question, in order to select (c) as
the correct answer. This observation of the RACE
dataset shows that we face a new challenge of
matching sequence triplets (i.e., passage, question
and answer) instead of pairwise matching.

In this paper, we propose a new model to match
a question-answer pair to a given passage. Our co-
matching approach explicitly treats the question
and the candidate answer as two sequences and
jointly matches them to the given passage. Specif-
ically, for each position in the passage, we com-
pute two attention-weighted vectors, where one is
from the question and the other from the candi-
date answer. Then, two matching representations
are constructed: the first one matches the passage
with the question while the second one matches
the passage with the candidate answer. These
two newly constructed matching representations
together form a co-matching state. Intuitively, it
encodes the locational information of the question
and the candidate answer matched to a specific
context of the passage. Finally, we apply a hierar-
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Passage: My father wasn’t a king, he was a taxi driver, but I am a prince-Prince Renato II, of the country
Pontinha , an island fort on Funchal harbour. In 1903, the king of Portugal sold the land to a wealthy
British family, the Blandys, who make Madeira wine. Fourteen years ago the family decided to sell it
for just EUR25,000, but nobody wanted to buy it either. I met Blandy at a party and he asked if I’d like
to buy the island. Of course I said yes, but I had no money-I was just an art teacher. I tried to find
some business partners, who all thought I was crazy. So I sold some of my possessions, put my savings
together and bought it. Of course, my family and my friends-all thought I was mad ... If l want to have a
national flag, it could be blue today, red tomorrow. ... My family sometimes drops by, and other people
come every day because the country is free for tourists to visit ...

Q1: Which statement of the following is true? Q2: How did the author get the island?
a. The author made his living by driving. a. It was a present from Blandy.
b. The author’s wife supported to buy the island. b. The king sold it to him.
c. Blue and red are the main colors of his national flag. c. He bought it from Blandy.
d. People can travel around the island free of charge. d. He inherited from his father.

Table 1: An example passage and two related multi-choice questions. The ground-truth answers are in
bold.

chical LSTM (Tang et al., 2015) over the sequence
of co-matching states at different positions of the
passage. Information is aggregated from word-
level to sentence-level and then from sentence-
level to document-level. In this way, our model
can better deal with the questions that require evi-
dence scattered in different sentences in the pas-
sage. Our model improves the state-of-the-art
model by 3 percentage on the RACE dataset. Our
code will be released under https://github.
com/shuohangwang/comatch.

2 Model

For the task of multi-choice reading comprehen-
sion, the machine is given a passage, a question
and a set of candidate answers. The goal is to se-
lect the correct answer from the candidates. Let
us use P ∈ Rd×P , Q ∈ Rd×Q and A ∈ Rd×A to
represent the passage, the question and a candidate
answer, respectively, where each word in each se-
quence is represented by an embedding vector. d
is the dimensionality of the embeddings, and P ,
Q, and A are the lengths of these sequences.

Overall our model works as follows. For each
candidate answer, our model constructs a vector
that represents the matching of P with both Q and
A. The vectors of all candidate answers are then
used for answer selection. Because we simultane-
ously match P with Q and A, we call this a co-
matching model. In Section 2.1 we introduce the
word-level co-matching mechanism. Then in Sec-
tion 2.2 we introduce a hierarchical aggregation

process. Finally in Section 2.3 we present the ob-
jective function. An overview of our co-matching
model is shown in Figure 2.

2.1 Co-matching
The co-matching part of our model aims to match
the passage with the question and the candidate
answer at the word-level. Inspired by some previ-
ous work (Wang and Jiang, 2016; Trischler et al.,
2016), we first use bi-directional LSTMs (Hochre-
iter and Schmidhuber, 1997) to pre-process the se-
quences as follows:

Hp = Bi-LSTM(P),Hq = Bi-LSTM(Q),

Ha = Bi-LSTM(A), (1)

where Hp ∈ Rl×P , Hq ∈ Rl×Q and Ha ∈ Rl×A
are the sequences of hidden states generated by the
bi-directional LSTMs. We then make use of the at-
tention mechanism to match each state in the pas-
sage to an aggregated representation of the ques-
tion and the candidate answer. The attention vec-
tors are computed as follows:

Gq = SoftMax
(
(WgHq + bg ⊗ eQ)

THp) ,
Ga = SoftMax

(
(WgHa + bg ⊗ eQ)

THp) ,
H

q
= HqGq,

H
a

= HaGa, (2)

where Wg ∈ Rl×l and bg ∈ Rl are the parame-
ters to learn. eQ ∈ RQ is a vector of all 1s and
it is used to repeat the bias vector into the matrix.
Gq ∈ RQ×P and Ga ∈ RA×P are the attention
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Figure 1: An overview of the model that builds a matching representation for a triplet {P,Q,A} (i.e.,
passage, question and candidate answer).

weights assigned to the different hidden states in
the question and the candidate answer sequences,
respectively. H

q ∈ Rl×P is the weighted sum of
all the question hidden states and it represents how
the question can be aligned to each hidden state in
the passage. So is H

a ∈ Rl×P . Finally we can
co-match the passage states with the question and
the candidate answer as follows:

Mq = ReLU
(
Wm

[
H

q 	Hp

H
q ⊗Hp

]
+ bm

)
,

Ma = ReLU
(
Wm

[
H

a 	Hp

H
a ⊗Hp

]
+ bm

)
,

C =

[
Mq

Ma

]
, (3)

where Wg ∈ Rl×2l and bg ∈ Rl are the parame-

ters to learn.
[
·
·

]
is the column-wise concatenation

of two matrices, and ·	 · and ·⊗ · are the element-
wise subtraction and multiplication between two
matrices, which are used to build better match-
ing representations (Tai et al., 2015; Wang and
Jiang, 2017). Mq ∈ Rl×P represents the match-
ing between the hidden states of the passage and
the corresponding attention-weighted representa-
tions of the question. Similarly, we match the
passage with the candidate answer and represent
the matching results using Ma ∈ Rl×P . Finally
C ∈ R2l×P is the concatenation of Mq ∈ Rl×P

and Ma ∈ Rl×P and represents how each pas-
sage state can be matched with the question and
the candidate answer. We refer to c ∈ R2l, which
is a single column of C, as a co-matching state that
concurrently matches a passage state with both the
question and the candidate answer.

2.2 Hierarchical Aggregation
In order to capture the sentence structure of the
passage, we further modify the model presented
earlier and build a hierarchical LSTM (Tang et al.,
2015) on top of the co-matching states. Specifi-
cally, we first split the passage into sentences and
we use P1,P2, . . . ,PN to represent these sen-
tences, where N is the number of sentences in
the passage. For each triplet {Pn,Q,A}, n ∈
[1, N ], we can get the co-matching states Cn

through Eqn. (1-3). Then we build a bi-directional
LSTM followed by max pooling on top of the co-
matching states of each sentence as follows:

hs
n = MaxPooling (Bi-LSTM (Cn)) , (4)

where the function MaxPooling(·) is the row-wise
max pooling operation. hs

n ∈ Rl, n ∈ [1, N ] is
the sentence-level aggregation of the co-matching
states. All these representations will be further
integrated by another Bi-LSTM to get the final
triplet matching representation.

Hs = [hs1;h
s
2; . . . ;h

s
N ],

ht = MaxPooling (Bi-LSTM (Hs)) , (5)
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RACE-M RACE-H RACE

Random 24.6 25.0 24.9
Sliding Window 37.3 30.4 32.2
Stanford AR 44.2 43.0 43.3
GA 43.7 44.2 44.1
ElimiNet - - 44.7
HAF 45.3 47.9 47.2
MUSIC 51.5 45.7 47.4

Hier-Co-Matching 55.8∗ 48.2∗ 50.4∗

- Hier-Aggregation 54.2 46.2 48.5
- Co-Matching 50.7 45.6 46.4

Turkers 85.1 69.4 73.3
Ceiling 95.4 94.2 94.5

Table 2: Experiment Results. ∗ means it’s signifi-
cant to the models ablating either the hierarchical
aggregation or co-matching state.

where Hs ∈ Rl×N is the concatenation of all the
sentence-level representations and it is the input of
a higher level LSTM. ht ∈ Rl is the final output
of the matching between the sequences of the pas-
sage, the question and the candidate answer.

2.3 Objective function

For each candidate answer Ai, we can build its
matching representation hti ∈ Rl with the ques-
tion and the passage through Eqn. (5). Our loss
function is computed as follows:

L(Ai|P,Q) = − log
exp(wThti)∑4
j=1 exp(w

Thtj)
, (6)

where w ∈ Rl is a parameter to learn.

3 Experiment

To evaluate the effectiveness of our hierarchical
co-matching model, we use the RACE dataset (Lai
et al., 2017), which consists of two subsets:
RACE-M comes from middle school examinations
while RACE-H comes from high school examina-
tions. RACE is the combination of the two.

We compare our model with a number of base-
line models. We also compare with two variants
of our model for an ablation study.

Comparison with Baselines We compare our
model with the following baselines:
• Sliding Window based method (Richardson

et al., 2013) computes the matching score based on
the sum of the tf-idf values of the matched words
between the question-answer pair and each sub-
passage with a fixed a window size.

• Stanford Attentive Reader (AR) (Chen
et al., 2016) first builds a question-related passage
representation through attention mechanism and
then compares it with each candidate answer rep-
resentation to get the answer probabilities.
• GA (Dhingra et al., 2017) uses gated atten-

tion mechanism with multiple hops to extract the
question-related information of the passage and
compares it with candidate answers.
• ElimiNet (Soham et al., 2017) tries to first

eliminate the most irrelevant choices and then se-
lect the best answer.
• HAF (Zhou et al., 2018) considers not

only the matching between the three sequences,
namely, passage, question and candidate answer,
but also the matching between the candidate an-
swers.
• MUSIC (Xu et al., 2017) integrates different

sequence matching strategies into the model and
also adds a unit of multi-step reasoning for select-
ing the answer.

Besides, we also report the following two re-
sults as reference points: Turkers is the perfor-
mance of Amazon Turkers on a randomly sampled
subset of the RACE test set. Ceiling is the percent-
age of the unambiguous questions with a correct
answer in a subset of the test set.

The performance of our model together with
the baselines are shown in Table 2. We can
see that our proposed complete model, Hier-Co-
Matching, achieved the best performance among
all the public results. Still, there is a huge gap be-
tween the best machine reading performance and
the human performance, showing the great poten-
tial for further research.

Ablation Study Moreover, we conduct an abla-
tion study of our model architecture. In this study,
we are mainly interested in the contribution of
each component introduced in this work to our fi-
nal results. We studied two key factors: (1) the co-
matching module and (2) the hierarchical aggre-
gation approach. We observed a 4 percentage per-
formance decrease by replacing the co-matching
module with a single matching state (i.e., only Ma

in Eqn (3)) by directly concatenating the question
with each candidate answer (Yin et al., 2016). We
also observe about 2 percentage decrease when we
treat the passage as a plain sequence, and run a
two-layer LSTM (to ensure the numbers of param-
eters are comparable) over the whole passage in-
stead of the hierarchical LSTM.
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Question Type Analysis We also conducted an
analysis on what types of questions our model
can handle better. We find that our model ob-
tains similar performance on the “wh” questions
such as “why,” “what,” “when” and “where” ques-
tions, on which the performance is usually around
50%. We also check statement-justification ques-
tions with the keyword “true” (e.g., “Which of the
following statements is true”), negation questions
with the keyword “not” (e.g., “which of the fol-
lowing is not true”), and summarization questions
with the keyword “title” (e.g., “what is the best
title for the passage?”), and their performance is
51%, 52% and 48%, respectively. We can see that
the performance of our model on different types
of questions in the RACE dataset is quite simi-
lar. However, our model is only based on word-
level matching and may not have the ability of rea-
soning. In order to answer questions that require
summarization, inference or reasoning, we still
need to further explore the dataset and improve the
model. Finally, we further compared our model
to the baseline, which concatenates the question
with each candidate answer, and our model can
achieve better performance on different types of
questions. For example, on the subset of the ques-
tions with pronouns, our model can achieve bet-
ter accuracy of 49.8% than 47.9%. Similarly, on
statement-justification questions with the keyword
“true”, our model could achieve better accuracy of
51% than 47%.

4 Conclusions

In this paper, we proposed a co-matching model
for multi-choice reading comprehension. The
model consists of a co-matching component and a
hierarchical aggregation component. We showed
that our model could achieve state-of-the-art per-
formance on the RACE dataset. In the future, we
will adapt the idea of co-matching and hierarchical
aggregation to the standard open-domain QA set-
ting for answer candidate reranking (Wang et al.,
2017). We will also further study how to explic-
itly model inference and reasoning on the RACE
dataset.
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Abstract

The Story Cloze Test (SCT) is a recent
framework for evaluating story compre-
hension and script learning. There have
been a variety of models tackling the
SCT so far. Although the original goal
behind the SCT was to require systems
to perform deep language understanding
and commonsense reasoning for success-
ful narrative understanding, some recent
models could perform significantly bet-
ter than the initial baselines by leverag-
ing human-authorship biases discovered in
the SCT dataset. In order to shed some
light on this issue, we have performed var-
ious data analysis and analyzed a variety
of top performing models presented for
this task. Given the statistics we have ag-
gregated, we have designed a new crowd-
sourcing scheme that creates a new SCT
dataset, which overcomes some of the bi-
ases. We benchmark a few models on
the new dataset and show that the top-
performing model on the original SCT
dataset fails to keep up its performance.
Our findings further signify the impor-
tance of benchmarking NLP systems on
various evolving test sets.

1 Introduction

Story comprehension has been one of the longest-
running ambitions in artificial intelligence (Dijk,
1980; Charniak, 1972). One of the challenges
in expanding the field had been the lack of a
solid evaluation framework and datasets on which
comprehension models can be trained and tested.
Mostafazadeh et al. (2016) introduced the Story
Cloze Test (SCT) evaluation framework to address

* This work was performed at University of Rochester.

this issue. This test evaluates a story compre-
hension system where the system is given a four-
sentence short story as the ‘context’ and two al-
ternative endings and to the story, labeled ‘right
ending’ and ’wrong ending.’ Then, the system’s
task is to choose the right ending. In order to
support this task, Mostafazadeh et al. also pro-
vide the ROC Stories dataset, which is a collection
of crowd-sourced complete five sentence stories
through Amazon Mechanical Turk (MTurk). Each
story follows a character through a fairly simple
series of events to a conclusion.

Several shallow and neural models, includ-
ing the state-of-the-art script learning approaches,
were presented as baselines (Mostafazadeh et al.,
2016) for tackling the task, where they show that
all their models perform only slightly better than
a random baseline suggesting that richer models
are required for tackling this task. A variety of
new systems were proposed (Mihaylov and Frank,
2017; Schenk and Chiarcos, 2017; Schwartz et al.,
2017b; Roemmele et al., 2017) as a part of the
first shared task on SCT at LSDSem’17 work-
shop (Mostafazadeh et al., 2017). Surprisingly,
one of the models made a staggering improve-
ment of 15% to the accuracy, partially due to us-
ing stylistic features isolated in the ending choices
(Schwartz et al., 2017b), discarding the narrative
context. Clearly, this success does not seem to re-
flect the intent of the original task, where the sys-
tems should leverage narrative understanding as
opposed to the statistical biases in the data. In this
paper, we study the effect of such biases between
the ending choices and present a new scheme to
reduce such stylistic artifacts.

The contribution of this paper is threefold: (1)
we provide an extensive analysis of the SCT
dataset to shed some light on the ending data char-
acteristics (Section 3) (2) we develop a new strong
classifier for tackling the SCT that uses a variety
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Context Right Ending Wrong Ending

Ramona was very unhappy in her job. She asked for a raise,
but was denied. The refusal prompted her to aggressively
comb the want ads. She found an interesting new possibility
and set up an interview.

She was offered the new job
at a higher salary.

Ramona had no reason to
want to change jobs any-
more.

The teacher was walking with a stack of papers. Outside
started to rain. When the teacher tried to walk down a few
steps, she ended up falling. The papers flew out of her hands
and landed on the ground.

A passer-by helped her up
and helped her collect the
papers.

The teacher got up and
walked home leaving the
papers behind.

Table 1: Example Story Cloze Test examples from the SCT-v1.0 corpus.

of features inspired by all the top-performing sys-
tems on the task (Section 4) (3) we design a new
crowd-sourcing scheme that yields a new SCT
dataset; we benchmark various models on the new
dataset (Section 5). The results show that the top-
performing SCT system on the the leaderboard1

(Chaturvedi et al., 2017) fails to keep up the per-
formance on our new dataset. We discuss the
implications of this experiment to the greater re-
search community in terms of data collection and
benchmarking practices in Section 6. All the code
and datasets for this paper will be released to the
public. We hope that the availability of the new
evaluation set can further support the continued re-
search on story understanding.

2 Related Work

This paper mainly extends the work on cre-
ating the Story Cloze Test set (Mostafazadeh
et al., 2016), hereinafter SCT-v1.0. The SCT-v1.0
dataset was created as follows: full five-sentence
stories from the ROC Stories corpus were sam-
pled, then, the initial four sentences were shown
to a set of MTurk2 crowd workers who were
prompted to author ‘right’ and ‘wrong’ endings.
Mostafazadeh et al. (Mostafazadeh et al., 2016)
give special care to make sure there were no
boundary cases for ‘right’ and ‘wrong’ endings by
implementing extra rounds of data filtering. The
resulting SCT-v1.0 dataset had a validation (here-
inafter, SCT-v1.0 Val) and a test set (SCT-v1.0
test), each with 1,871 cases. Table 1 shows two
example story cloze test cases from SCT-v1.0 cor-
pus. As for positive training data, they had pro-
vided a collection of 100K five sentence stories.
Human performance is reported to be 100% on
SCT-v1.0.

Mostafazadeh et al. (2016) provide a variety of
baseline models for SCT-v1.0, with the best model
performing with an accuracy of 59%. The first

1As of 15th February 2018.
2http://mturk.com

shared task on SCT-v1.0 was conducted at the LS-
DSem’17 workshop (Mostafazadeh et al., 2017),
where most of the models performed with 60-
70% accuracy. One of the top-performing models,
msap (Schwartz et al., 2017b,a), built a classifier
using linguistic features that have been previously
useful in authorship style detection, using only
the ending sentences. They used stylistic features
such as sentence length, word, and character level
n-grams for each ending (fully discarding the con-
text), achieving an accuracy of 72%. In conjunc-
tion with their work, Cai et al., (Cai et al., 2017)
reported similar observations separately, expos-
ing that features such as sentiment, negation, and
length are different between the right and wrong
endings. The best model on SCT-v1.0 to this date
is cogcomp, which is a linear model that uses event
sequences, sentiment trajectory, and topical con-
sistency as features, and performs with an accu-
racy of 77.6%.

This paper takes all their analysis further and
introduces a model aggregating all the pinpointed
features to shed more light into the stylistic biases
isolated in SCT-v1.0 endings.

3 Stylistic Feature Analysis

Despite all the efforts made in the original SCT
paper, there was never an extensive analysis of
the features isolated in the endings of the stories.
We explored the differences among stylistic fea-
tures such as word-token count, sentiment, and the
sentence complexity between the endings, to de-
termine a composite score for identifying sources
of bias. For determining the sentiment, we used
Stanford CoreNLP (Manning et al., 2014) and the
VADER sentiment analyzer (Hutto and Gilbert,
2014). For measuring the syntactic complexity,
we used Yngve and Frazier metrics (Yngve, 1960;
Frazier, 1985). Table 2 compares these statistics
between the right and wrong endings in the SCT-
v1.0 dataset. The feature distribution plots can be
found in the supplementary material.
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# of Tokens Stanford Sentiment VADER Sentiment Frazier Yngve
Right ending 8.705 2.04 0.146 1.09 1.15
Wrong ending 8.466 2.02 0.011 1.08 1.17
p-value 6.63× 10−5 0.526 3.48× 10−54 0.135 0.089

Table 2: The mean value for the ‘right endings’ and the ‘wrong endings’ for the two sample T-tests
conducted for each feature.

Furthermore, we conducted an extensive n-
gram analysis, using word tokens, characters, part-
of-speech, and token-POS (similar to Schwartz et
al. (Schwartz et al., 2017b)) as features. We
see char-grams such as “sn’t” and “not” appear
more commonly in the ‘wrong endings’, suggest-
ing heavy negation. In ‘right endings’, pronouns
are used more frequently versus proper nouns used
in ‘wrong endings’. Artifacts such as ‘pizza’ are
common in ’wrong endings,’ which could suggest
that for a given topic, the authors may replace an
object in a right ending with a wrong one and
quickly think up a common item such as pizza
to create a ‘wrong’ one. An extensive analysis of
these features, including the n-gram analysis, can
be found in the supplementary material.

4 Model

Following the analysis above, we developed a
Story Cloze model, hereinafter EndingReg, that
only uses the ending features while disregarding
the story context for choosing the right ending. We
expanded each Story Cloze Test case’s ending op-
tions into a set of two single sentences. Then, for
each sentence, we created the following features:

1. Number of tokens
2. VADER composite sentiment score
3. Yngve complexity score
4. Token-POS n-grams
5. POS n-grams
6. Four length character-grams

All n-gram features needed to appear at least five
times throughout the dataset. The features were
collected for each five-sentence story and then fed
into a logistic regression classifier. As an initial
experiment, we trained this model using the SCT-
v1.0 validation set and tested on the SCT-v1.0 test
set. An L2 regularization penalty was used to en-
force a Gaussian prior on the feature-space, where
a grid search was conducted for hyper-parameter
tuning. This model achieves an accuracy of 71.5%
on the SCT-v1.0 dataset which is on par with the
highest score achieved by any model using only
the endings. Table 3 shows the accuracies ob-

tained by models using only those particular fea-
tures. We achieve minimal but sometimes impor-
tant classification using token count, VADER, and
Yngve in combination alone, better classification
using POS or char-grams alone, and best classifi-
cation using n-grams alone. By combining all of
them we achieve the overall best results.

token-
count+VADER+yngve

ngram pos char-
grams

All

50.3% 69.7% 68.7% 63.4% 71.5%

Table 3: Classification results on SCT-v1.0 using
each of the feature sets designated in the columns.

5 Data Collection

Based on the findings above, a new test set for the
SCT was deemed necessary. The premise of pre-
dicting an ending to a short story, as opposed to
predicting say a middle sentence, enables a more
systematic evaluation where human can agree on
the cases 100%. Hence, our goal was to come up
with a data collection scheme that overcomes the
data collection biases, while keeping the original
evaluation format. As the data analysis revealed,
the token count, sentiment, and the complexity are
not as important features for classification as the
ending n-grams are. We set the following goals
for sourcing the new ‘right’ and ‘wrong’ endings.
They both should:

1. Contain a similar number of tokens
2. Have similar distributions of token n-grams

and char-grams
3. Occur as standalone events with the same

likelihood to occur, with topical, sentimental,
or emotion consistencies when applicable.

First, we crowdsourced 5,000 new five-sentence
stories through Amazon Mechanical Turk. We
prompted the users in the same manner described
in Mostafazadeh et al. (2016). In order to source
new ‘wrong’ endings, we tried two different meth-
ods. In Method #1, we kept the original ending
sourcing format of Mostafazadeh et al., but im-
posed some further restrictions. This was done
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by taking the first four sentences of the newly col-
lected stories and asking an MTurker to write a
‘right’ and ‘wrong’ ending for each. The new re-
strictions were: ‘Each sentence should stay within
the same subject area of the story,’ and ‘The num-
ber of words in the Right and Wrong sentences
should not differ by more than 2 words,’ and
‘When possible, the Right and Wrong sentences
should try to keep a similar tone/sentiment as one
another.’ The motivation behind this technique
was to reduce the statistical differences by asking
the user to be mindful of considerations.

In Method #2, we took the five sentences sto-
ries and prompted a second set of MTurk workers
to modify the fifth sentence in order to make a re-
sulting five-sentence story non-sensible. Here, the
prompt instructs the workers to make sure the new
‘wrong ending’ sentence makes sense standalone,
that it does not differ in the number of words from
the original sentence by more than three words,
and that the changes cannot be as simple as e.g.,
putting the word ‘not’ in front of a description or a
verb. As a result, the workers had much less flexi-
bility for changing the underlying linguistic struc-
tures which can help tackle the authorship style
differences between the ‘right’ and ‘wrong’ end-
ings.

The results in Table 4, which show classifi-
cation accuracy when using EndingReg on the
two new data sources, show that Method #2 is
a slightly better data sourcing scheme in reduc-
ing the bias, since the EndingReg model’s per-
formance is slightly worse. The set was fur-
ther filtered through human verification similar to
Mostafazadeh et al. (2016). The filtering was
done by splitting each SCT-v1.0’s two alternative
endings into two independent five-sentence stories
and asking three different MTurk users to catego-
rize the story as either: one where the story made
complete sense, one where the story made sense
until the last sentence and one where the story
does not make sense for another reason. Stories
were only selected if all the three MTurk users ver-
ified that the story with the ‘right ending’ and the
corresponding story with the ‘wrong ending’ were
verified to be indeed right and wrong respectively.
This ensured a higher quality of data and eliminat-
ing boundary cases. This entire process resulted
in creating the Story Cloze Test v1.5 (SCT-v1.5)
dataset, consisting of 1,571 stories for each vali-
dation and test sets.

Method #1 Method #2
EndingReg 0.709 0.695
cogcomp 0.649 0.641

Table 4: Comparison of initial data sourcing meth-
ods

n− gram char − gram POS
SCT-v1.0 13.9 12.4 16.4
SCT-v1.5 7.0 6.3 7.5

Table 5: Standard deviation of the word and char-
acter n-gram counts, as well as the part of speech
(POS) counts, between the right and wrong end-
ings.

6 Results

In order to test the decrease in n-gram bias, which
was the most salient feature for the classification
task using only the endings, we compare the vari-
ance between the n-gram counts from SCT-v1.0
to SCT-v1.5. The results are presented in Table
5, which indicates the drop in the standard devia-
tions in our new dataset. Table 6 shows the clas-
sification results of various models on SCT-v1.5.
The drop in accuracy of the EndingReg model be-
tween the SCT-v1.0 and SCT-v1.5 shows a signif-
icant improvement on the statistical weight of the
stylistic features generated by the model.

Since the main features used are the token
length and the various n-grams, this suggests that
the new ‘right endings’ and ‘wrong endings’ have
much more similar token n-gram, pos n-gram, pos-
token n-gram and char-gram overlap. Further-
more, the CogComp model’s performance has sig-
nificantly dropped on SCT-v1.5. Although this
model seems to be using story comprehension fea-
tures such as event sequencing, since the endings
are included in the sequences, the biases within the
endings have influenced the predictions and the
weak performance of the model in SCT-v1.5 sug-
gest that this model had picked up on the biases
of SCT-v1.0 as opposed to really understanding
the context. In particular, the posterior probabili-
ties for each ending choice using their features are
quite similar on the SCT-v1.5. These results place
the classification accuracy of this top performing
model on par with or worse than the models that
did not use the ending features of the old SCT-v1.0
dataset (Mostafazadeh et al., 2017), which suggest
that the gap that once was held by models using
the ending biases seems to be corrected for. Al-
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SCT-v1.0
Val

SCT-v1.0
Test

SCT-v1.5
Test

cogcomp 0.751 0.776 0.608
EndingReg N/A 0.715 0.644
average
sentiment

0.489 0.492 0.496

last senti-
ment

0.514 0.522 0.525

word2vec 0.545 0.539 0.594
human 1.0 1.0 1.0

Table 6: Classification accuracy for various mod-
els on the SCT-v1.0 and SCT-v1.5 datasets.

though we did not get to test all the other models
published on SCT-v1.0 directly, we predict similar
trends.

It is important to point out that the 64.4% per-
formance attained by our EndingReg model is still
high for a model which completely discards the
context. This indicates that although we could
correct for some of the stylistic biases, there are
some other hidden patterns in the new endings that
would not have been accounted for without hav-
ing the EndingReg baseline. This showcases the
importance of maintaining benchmarks that evolve
and improve over time, where systems should not
be optimized for particular narrow test sets. We
propose the community to report accuracies on
both SCT-v1.0 and SCT-v1.5, both of which still
have a huge gap between the best system and the
human performance.

7 Conclusion

In this paper, we presented a comprehensive
analysis of the stylistic features isolated in
the endings of the original Story Cloze Test
(SCT-v1.0). Using that analysis, along with a
classifier we developed for testing new data col-
lection schemes, we created a new SCT dataset,
SCT-v1.5, which overcomes some of the biases.
Based on the results presented in this paper, we
believe that our SCT-v1.5 is a better benchmark
for story comprehension. However, as shown in
multiple AI tasks (Ettinger et al., 2017; Antol
et al., 2015; Jabri et al., 2016; Poliak et al., 2018),
no collected dataset is entirely without its inherent
biases and often the biases in datasets go undis-
covered. We believe that evaluation benchmarks
should evolve and improve over time and we
are planning to incrementally update the Story
Cloze Test benchmark. All the new versions,
along with a leader-board showcasing the state-
of-the-art results, will be tracked via CodaLab

https://competitions.codalab.org/
competitions/15333.

The success of our modified data collection
method shows how extreme care must be given
for sourcing new datasets. We suggest the next
SCT challenges to be completely blind, where
the participants cannot deliberately leverage any
particular data biases. Along with this pa-
per, we are releasing the datasets and the de-
veloped models to the community. All the an-
nouncements, new supplementary material, and
datasets can be accessed through http://cs.
rochester.edu/nlp/rocstories/. We
hope that this work ignites further interest in the
community for making progress on story under-
standing.
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Abstract

Deep learning approaches for sentimen-
t classification do not fully exploit senti-
ment linguistic knowledge. In this paper,
we propose a Multi-sentiment-resource
Enhanced Attention Network (MEAN) to
alleviate the problem by integrating three
kinds of sentiment linguistic knowledge
(e.g., sentiment lexicon, negation words,
intensity words) into the deep neural net-
work via attention mechanisms. By us-
ing various types of sentiment resources,
MEAN utilizes sentiment-relevant infor-
mation from different representation sub-
spaces, which makes it more effective to
capture the overall semantics of the sen-
timent, negation and intensity words for
sentiment prediction. The experimental
results demonstrate that MEAN has robust
superiority over strong competitors.

1 Introduction

Sentiment classification is an important task of
natural language processing (NLP), aiming to
classify the sentiment polarity of a given text as
positive, negative, or more fine-grained classes.
It has obtained considerable attention due to it-
s broad applications in natural language process-
ing (Hao et al., 2012; Gui et al., 2017). Most
existing studies set up sentiment classifiers using
supervised machine learning approaches, such as
support vector machine (SVM) (Pang et al., 2002),
convolutional neural network (CNN) (Kim, 2014;
Bonggun et al., 2017), long short-term memo-
ry (LSTM) (Hochreiter and Schmidhuber, 1997;
Qian et al., 2017), Tree-LSTM (Tai et al., 2015),
and attention-based methods (Zhou et al., 2016;
Yang et al., 2016; Lin et al., 2017; Du et al., 2017).

Despite the remarkable progress made by the

previous work, we argue that sentiment analysis
still remains a challenge. Sentiment resources in-
cluding sentiment lexicon, negation words, inten-
sity words play a crucial role in traditional senti-
ment classification approaches (Maks and Vossen,
2012; Duyu et al., 2014). Despite its usefulness, to
date, the sentiment linguistic knowledge has been
underutilized in most recent deep neural network
models (e.g., CNNs and LSTMs).

In this work, we propose a Multi-sentiment-
resource Enhanced Attention Network (MEAN)
for sentence-level sentiment classification to inte-
grate many kinds of sentiment linguistic knowl-
edge into deep neural networks via multi-path
attention mechanism. Specifically, we first de-
sign a coupled word embedding module to model
the word representation from character-level and
word-level semantics. This can help to capture
the morphological information such as prefixes
and suffixes of words. Then, we propose a multi-
sentiment-resource attention module to learn more
comprehensive and meaningful sentiment-specific
sentence representation by using the three types
of sentiment resource words as attention sources
attending to the context words respectively. In
this way, we can attend to different sentiment-
relevant information from different representation
subspaces implied by different types of sentimen-
t sources and capture the overall semantics of the
sentiment, negation and intensity words for senti-
ment prediction.

The main contributions of this paper are sum-
marized as follows. First, we design a coupled
word embedding obtained from character-level
embedding and word-level embedding to capture
both the character-level morphological informa-
tion and word-level semantics. Second, we pro-
pose a multi-sentiment-resource attention module
to learn more comprehensive sentiment-specific
sentence representation from multiply subspaces
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implied by three kinds of sentiment resources in-
cluding sentiment lexicon, intensity words, nega-
tion words. Finally, the experimental results show
that MEAN consistently outperforms competitive
methods.

2 Model

Our proposed MEAN model consists of three key
components: coupled word embedding module,
multi-sentiment-resource attention module, sen-
tence classifier module. In the rest of this section,
we will elaborate these three parts in details.

2.1 Coupled Word Embedding

To exploit the sentiment-related morphological in-
formation implied by some prefixes and suffix-
es of words (such as “Non-”, “In-”, “Im-”), we
design a coupled word embedding learned from
character-level embedding and word-level embed-
ding. We first design a character-level convolution
neural network (Char-CNN) to obtain character-
level embedding (Zhang et al., 2015). Differen-
t from (Zhang et al., 2015), the designed Char-
CNN is a fully convolutional network without
max-pooling layer to capture better semantic in-
formation in character chunk. Specifically, we first
input one-hot-encoding character sequences to a
1 × 1 convolution layer to enhance the seman-
tic nonlinear representation ability of our mod-
el (Long et al., 2015), and the output is then fed
into a multi-gram (i.e. different window sizes)
convolution layer to capture different local charac-
ter chunk information. For word-level embedding,
we use pre-trained word vectors, GloVe (Penning-
ton et al., 2014), to map each word to a low-
dimensional vector space. Finally, each word is
represented as a concatenation of the character-
level embedding and word-level embedding. This
is performed on the context words and the three
types of sentiment resource words 1, resulting in
four final coupled word embedding matrices: the
W c = [wc1, ..., w

c
t ] ∈ Rd×t for context words, the

W s = [ws1, ..., w
s
m] ∈ Rd×m for sentiment words,

the W i = [wi1, ..., w
i
k] ∈ Rd×k for intensity word-

s, the Wn = [wn1 , ..., w
n
p ] ∈ Rd×p for negation

words. Here, t,m, k, p are the length of the corre-
sponding items respectively, and d is the embed-
ding dimension. Each W is normalized to better
calculate the following word correlation.

1To be precise, sentiment resource words include senti-
ment words, negation words and intensity words.

2.2 Multi-sentiment-resource Attention
Module

After obtaining the coupled word embedding,
we propose a multi-sentiment-resource attention
mechanism to help select the crucial sentiment-
resource-relevant context words to build the
sentiment-specific sentence representation. Con-
cretely, we use the three kinds of sentiment re-
source words as attention sources to attend to the
context words respectively, which is beneficial to
capture different sentiment-relevant context word-
s corresponding to different types of sentimen-
t sources. For example, using sentiment words
as attention source attending to the context words
helps form the sentiment-word-enhanced sentence
representation. Then, we combine the three kind-
s of sentiment-resource-enhanced sentence repre-
sentations to learn the final sentiment-specific sen-
tence representation. We design three types of at-
tention mechanisms: sentiment attention, intensi-
ty attention, negation attention to model the three
kinds of sentiment resources, respectively. In the
following, we will elaborate the three types of at-
tention mechanisms in details.

First, inspired by (Xiong et al.), we expect to
establish the word-level relationship between the
context words and different kinds of sentiment re-
source words. To be specific, we define the dot
products among the context words and the three
kinds of sentiment resource words as correlation
matrices. Mathematically, the detailed formula-
tion is described as follows.

M s = (W c)T ·W s ∈ Rt×m (1)

M i = (W c)T ·W i ∈ Rt×k (2)

Mn = (W c)T ·Wn ∈ Rt×p (3)

whereM s,M i,Mn are the correlation matrices to
measure the relationship among the context words
and the three kinds of sentiment resource word-
s, representing the relevance between the context
words and the sentiment resource word.

After obtaining the correlation matrices, we
can compute the sentiment-resource-relevant con-
text word representations Xc

s , X
c
i , X

c
n by the dot

products among the context words and differ-
ent types of corresponding correlation matrices.
Meanwhile, we can also obtain the context-word-
relevant sentiment word representation matrix Xs

by the dot product between the correlation ma-
trix M s and the sentiment words W s, the context-
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word-relevant intensity word representation ma-
trix Xi by the dot product between the intensi-
ty words W i and the correlation matrix M i, the
context-word-relevant negation word representa-
tion matrix Xn by the dot product between the
negation words Wn and the correlation matrix
Mn. The detailed formulas are presented as fol-
lows:

Xc
s = W cM s, Xs = W s(M s)T (4)

Xc
i = W cM i, Xi = W i(M i)T (5)

Xc
n = W cMn, Xn = Wn(Mn)T (6)

The final enhanced context word representation
matrix is computed as:

Xc = Xc
s +Xc

i +Xc
n. (7)

Next, we employ four independent GRU net-
works (Chung et al., 2015) to encode hidden s-
tates of the context words and the three types of
sentiment resource words, respectively. Formally,
given the word embedding Xc, Xs, Xi, Xn, the
hidden state matrices Hc, Hs, H i, Hn can be ob-
tained as follows:

Hc = GRU(Xc) (8)

Hs = GRU(Xs) (9)

H i = GRU(Xi) (10)

Hn = GRU(Xn) (11)

After obtaining the hidden state matrices, the
sentiment-word-enhanced sentence representation
o1 can be computed as:

o1 =
t∑

i=1

αih
c
i , q

s =
m∑

i=1

hsi/m (12)

β([hci ; qs]) = uTs tanh(Ws[h
c
i ; qs]) (13)

αi =
exp(β([hci ; qs]))∑t
i=1 exp(β([hci ; qs]))

(14)

where qs denotes the mean-pooling operation to-
wards Hs, β is the attention function that calcu-
lates the importance of the i-th word hci in the
context and αi indicates the importance of the i-
th word in the context, us and Ws are learnable
parameters.

Similarly, with the hidden states H i and Hn

for the intensity words and the negation words
as attention sources, we can obtain the intensity-
word-enhanced sentence representation o2 and the

negation-word-enhanced sentence representation
o3. The final comprehensive sentiment-specific
sentence representation õ is the composition of the
above three sentiment-resource-specific sentence
representations o1, o2, o3:

õ = [o1, o2, o3] (15)

2.3 Sentence Classifier
After obtaining the final sentence representation õ,
we feed it to a softmax layer to predict the senti-
ment label distribution of a sentence:

ŷ =
exp(W̃o

T
õ + b̃o)

∑C
i=1 exp(W̃o

T
õ + b̃o)

(16)

where ŷ is the predicted sentiment distribution of
the sentence, C is the number of sentiment labels,
W̃o and b̃o are parameters to be learned.

For model training, our goal is to minimize the
cross entropy between the ground truth and pre-
dicted results for all sentences. Meanwhile, in or-
der to avoid overfitting, we use dropout strategy
to randomly omit parts of the parameters on each
training case. Inspired by (Lin et al., 2017), we al-
so design a penalization term to ensure the diversi-
ty of semantics from different sentiment-resource-
specific sentence representations, which reduces
information redundancy from different sentimen-
t resources attention. Specifically, the final loss
function is presented as follows:

L(ŷ, y) =−
N∑

i=1

C∑

j=1

yji log(ŷji ) + λ(
∑

θ∈Θ

θ2)

(17)

+ µ||ÕÕT − ψI||2F
Õ =[o1; o2; o3] (18)

where yji is the target sentiment distribution of the
sentence, ŷji is the prediction probabilities, θ de-
notes each parameter to be regularized, Θ is pa-
rameter set, λ is the coefficient for L2 regulariza-
tion, µ is a hyper-parameter to balance the three
terms, ψ is the weight parameter, I denotes the
the identity matrix and ||.||F denotes the Frobe-
nius norm of a matrix. Here, the first two terms of
the loss function are cross-entropy function of the
predicted and true distributions and L2 regulariza-
tion respectively, and the final term is a penaliza-
tion term to encourage the diversity of sentiment
sources.
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3 Experiments

3.1 Datasets and Sentiment Resources

Movie Review (MR)2 and Stanford Sentimen-
t Treebank (SST)3 are used to evaluate our model.
MR dataset has 5,331 positive samples and 5,331
negative samples. We adopt the same data split as
in (Qian et al., 2017). SST consists of 8,545 train-
ing samples, 1,101 validation samples, 2210 test
samples. Each sample is marked as very negative,
negative, neutral, positive, or very positive. Senti-
ment lexicon combines the sentiment words from
both (Qian et al., 2017) and (Hu and Liu, 2004),
resulting in 10,899 sentiment words in total. We
collect negation and intensity words manually as
the number of these words is limited.

3.2 Baselines

In order to comprehensively evaluate the perfor-
mance of our model, we list several baselines for
sentence-level sentiment classification.

RNTN: Recursive Tensor Neural Network
(Socher et al., 2013) is used to model correlations
between different dimensions of child nodes vec-
tors.

LSTM/Bi-LSTM: Cho et al. (2014) employs
Long Short-Term Memory and the bidirectional
variant to capture sequential information.

Tree-LSTM: Memory cells was introduced by
Tree-Structured Long Short-Term Memory (Tai
et al., 2015) and gates into tree-structured neural
network, which is beneficial to capture semantic
relatedness by parsing syntax trees.

CNN: Convolutional Neural Networks (Kim,
2014) is applied to generate task-specific sentence
representation.

NCSL: Teng et al. (2016) designs a Neural
Context-Sensitive Lexicon (NSCL) to obtain pri-
or sentiment scores of words in the sentence.

LR-Bi-LSTM: Qian et al. (2017) imposes lin-
guistic roles into neural networks by applying lin-
guistic regularization on intermediate outputs with
KL divergence.

Self-attention: Lin et al. (2017) proposes a self-
attention mechanism to learn structured sentence
embedding.

2http://www.cs.cornell.edu/people/
pabo/movie-review-data/

3https://nlp.stanford.edu/sentiment/we
train the model on both phrases and sentences but only test
on sentences

ID-LSTM: (Tianyang et al., 2018) uses rein-
forcement learning to learn structured sentence
representation for sentiment classification.

3.3 Implementation Details
In our experiments, the dimensions of character-
level embedding and word embedding (GloVe) are
both set to 300. Kernel sizes of multi-gram convo-
lution for Char-CNN are set to 2, 3, respectively.
All the weight matrices are initialized as random
orthogonal matrices, and we set all the bias vec-
tors as zero vectors. We optimize the proposed
model with RMSprop algorithm, using mini-batch
training. The size of mini-batch is 60. The dropout
rate is 0.5, and the coefficient λ of L2 normaliza-
tion is set to 10−5. µ is set to 10−4. ψ is set to
0.9. When there are not sentiment resource words
in the sentences, all the context words are treat-
ed as sentiment resource words to implement the
multi-path self-attention strategy.

3.4 Experiment Results
In our experiments, to be consistent with the re-
cent baseline methods, we adopt classification ac-
curacy as evaluation metric. We summarize the
experimental results in Table 1. Our model has
robust superiority over competitors and sets state-
of-the-art on MR and SST datasets. First, our
model brings a substantial improvement over the
methods that do not leverage sentiment linguis-
tic knowledge (e.g., RNTN, LSTM, BiLSTM, C-
NN and ID-LSTM) on both datasets. This veri-
fies the effectiveness of leveraging sentiment lin-
guistic resource with the deep learning algorithms.
Second, our model also consistently outperforms
LR-Bi-LSTM which integrates linguistic roles of
sentiment, negation and intensity words into neu-
ral networks via the linguistic regularization. For
example, our model achieves 2.4% improvements
over the MR dataset and 0.8% improvements over
the SST dataset compared to LR-Bi-LSTM. This
is because that MEAN designs attention mecha-
nisms to leverage sentiment resources efficiently,
which utilizes the interactive information between
context words and sentiment resource words.

In order to analyze the effectiveness of each
component of MEAN, we also report the abla-
tion test in terms of discarding character-level em-
bedding (denoted as MEAN w/o CharCNN) and
sentiment words/negation words/intensity words
(denoted as MEAN w/o sentiment words/negation
words/intensity words). All the tested factors con-
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tribute greatly to the improvement of the MEAN.
In particular, the accuracy decreases sharply when
discarding the sentiment words. This is within our
expectation since sentiment words are vital when
classifying the polarity of the sentences.

Methods MR SST

RNTN 75.9%# 45.7%
LSTM 77.4%# 46.4%

BiLSTM 79.3%# 49.1%
Tree-LSTM 80.7%# 51.0%

CNN 81.5% 48.0%
NSCL 82.9% 51.1%

LR-Bi-LSTM 82.1% 50.6%
Self-attention 81.7%* 48.9%*

ID-LSTM 81.6% 50.0%
MEAN(our model) 84.5% 51.4%
MEAN-CharCNN 83.2% 50.0%

MEAN-sentiment words 82.1% 48.4%
MEAN-negation words 82.9% 49.5%
MEAN-intensity words 83.5% 49.3%

Table 1: Evaluation results. The best result for
each dataset is in bold. The result marked with #
are retrieved from (Qian et al., 2017), and the re-
sults marked with * denote the results are obtained
by our implementation.

4 Conclusion

In this paper, we propose a novel Multi-sentiment-
resource Enhanced Attention Network (MEAN) to
enhance the performance of sentence-level senti-
ment analysis, which integrates the sentiment lin-
guistic knowledge into the deep neural network.
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Abstract

The huge cost of creating labeled train-
ing data is a common problem for su-
pervised learning tasks such as sentiment
classification. Recent studies showed that
pretraining with unlabeled data via a lan-
guage model can improve the performance
of classification models. In this paper, we
take the concept a step further by using
a conditional language model, instead of
a language model. Specifically, we ad-
dress a sentiment classification task for a
tweet analysis service as a case study and
propose a pretraining strategy with unla-
beled dialog data (tweet-reply pairs) via
an encoder-decoder model. Experimen-
tal results show that our strategy can im-
prove the performance of sentiment clas-
sifiers and outperform several state-of-the-
art strategies including language model
pretraining.

1 Introduction

Sentiment classification is a task to predict a sen-
timent label, such as positive/negative, for a given
text and has been applied to many domains such
as movie/product reviews, customer surveys, news
comments, and social media. A common prob-
lem of this task is the lack of labeled training data
due to costly annotation work, especially for social
media without explicit sentiment feedback such as
review scores.

To overcome this problem, Dai and Le (2015)
recently proposed a semi-supervised sequence
learning framework, where a sentiment classifier
based on recurrent neural networks (RNNs) is
trained with labeled data after initializing it with
the parameters of an RNN-based language model
pretrained with a large amount of unlabeled data.

The concept of their framework is simple but ef-
fective, and their work yielded many related stud-
ies of semi-supervised training based on sequence
modeling, as described in Section 4.

In this paper, we take their concept a step further
by using a conditional language model with unla-
beled dialog data (i.e., tweet-reply pairs) instead of
a language model with unpaired data1. An impor-
tant observation of the dialog data that underpins
our strategy is that the sentiment or mood in a mes-
sage often affects messages in reply to it. People
tend to write angry responses to angry messages,
empathetic replies to sad remarks, or congratula-
tory phrases to good news.

Our contributions are listed as follows.

• We propose a pretraining strategy with unla-
beled dialog data (tweet-reply pairs) via an
encoder-decoder model for sentiment classifiers
(Section 2). To the best of our knowledge, our
proposal is the first such proposal, as clarified
in Section 4.

• We report on a case study based on a costly la-
beled sentiment dataset of 99.5K items and a
large-scale unlabeled dialog dataset of 22.3M,
which were provided from a tweet analysis ser-
vice (Section 3.1).

• Experimental results of sentiment classification
show that our method outperforms the current
semi-supervised methods based on a language
model, autoencoder, and distant supervision, as
well as linear classifiers (Section 3.4).

2 Proposed Method

Our pretraining strategy simply consists of the fol-
lowing two steps:

1We use the term “conditional language model” in a nar-
row sense only for a model trained with explicit source-target
pairs, although both RNN-based language and autoencoder
models can generate a text from a real-valued context vector.
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1. Training a dialog (encoder-decoder) model us-
ing unlabeled dialog data (tweet-reply pairs) as
pretraining.

2. Training a sentiment classifier (encoder-
labeler) model using labeled sentiment data
(tweet-label pairs) after initializing its en-
coder part with the encoder parameters of the
encoder-decoder model.

The encoder-decoder model is a conditional lan-
guage model that predicts a correct output se-
quence from an input sequence (Sutskever et al.,
2014). This model consists of two RNNs: an en-
coder and decoder. The encoder extracts a context
of the input sequence as a real-valued vector, and
the decoder predicts the output sequences from the
context individually.

Our classifier forms an encoder-labeler struc-
ture, which consists of the above encoder and a la-
beler that predicts a sentiment label from the con-
text. Note that the encoder of the classifier is fine-
tuned with labeled data, as in (Dai and Le, 2015).
The main difference between their approach and
ours is that we examine paired (dialog) data for
pretraining, while they only showed the usefulness
of pretraining with unpaired data.

3 Experiments

3.1 Datasets

We used two datasets, a dialog dataset for pre-
training the encoder-decoder model and a sen-
timent dataset for training (fine-tuning) the sen-
timent classifier, as shown in Table 1. Those
datasets were provided by Yahoo! JAPAN, which
is the largest portal site in Japan.

The dialog dataset contains about 22.3 million
tweet-reply pairs extracted from Twitter Firehose
data. In its preprocessing, we filtered out spam
and bot posts by using user-level signals such as
the follower count, the friend count, the favorite
count, and whether a profile image is set or not.
Also, we replaced all the URLs in the text with
“[u]” and all the user mentions with “[m]”, consid-
ering them as noise. The rest of the text was used

Train Valid Test
Dialog 22,300,000 10,000 50,000
Sentiment 80,591 4,000 15,000

Table 1: Details of dialog and sentiment datasets

as it was. On average, source and target (or re-
ply) tweets after preprocessing were 31.5 and 27.8
characters long, respectively. While redistribution
of tweets is prohibited, we are planning to publi-
cize tweet IDs of this dataset for reproducibility.2

The sentiment dataset includes about 100K
tweets with manually annotated three-class sen-
timent labels: positive, negative, and
neutral. The breakdown of positive,
negative, and neutral in the training set was
15.0, 18.6, and 66.4%, respectively. Note that the
tweets were sampled separately from those of the
dialog dataset. The procedure for text preprocess-
ing was the same with that of the dialog dataset.
The average length of the tweets after preprocess-
ing was 17 characters. Each tweet was judged
by a majority vote of three experienced editors in
the company providing the sentiment-analysis ser-
vice. The inter-annotator agreement ratio assessed
with Fleiss’ κ was 0.495. The overall annotation
work took roughly 300 person-days. This means
that the cost is at least 24K dollars, 8 hours ×
300 days × legal minimum wage in Japan 10 dol-
lars/hour. Considering that the in-house annota-
tors are well-educated, skilled proper employees,
the actual cost would be much higher than this
rough estimate and much more costly than collect-
ing unlabeled dialog data. In addition, the annota-
tors had gone through a few days of training to
become able to appropriately judge the sentiment
before they got down to actual annotation work,
but the number, 300 person-days, does not include
the time for this training.

3.2 Model and Training

The settings of the dialog (encoder-decoder)
model are as follows. In both the encoder and
decoder, the size of the word-embedding layer is
256 and that of the LSTM-RNN hidden layer is
1024. The size of the output layer is 4000, which
is the same as the (character-based) vocabulary
size.3. The encoder and decoder share these hyper-
parameters as well as the parameters themselves
(that is, with regard to the embedding layer and

2The tweet IDs will be provided from https://research-
lab.yahoo.co.jp/en/software/ .

3We used a character-based model since it performed
better than word-based models in our preliminary experi-
ments. Existing morphological analyzers needed for word-
based models have usually been trained by formal text such
as that of newspapers and seem not suitable to highly collo-
quial text seen in tweets, which often includes emoticons and
emoji.
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recurrent layer). The total number of parameters
is 8.9 million.

The settings of the sentiment classifier
(encoder-labeler) model are as follows. The
encoder part has the same structure and hyper-
parameters as that of the dialog model, making
them compatible for transferring learned param-
eters. We reused the dialog model’s dictionaries
in the classifier model so that the two models
could process tweet texts consistently. The labeler
consists of a fully connected layer and soft max
nonlinearity.

The models were trained with ADADELTA
(Zeiler, 2012) with a mini-batch size of 64. The
dialog model was trained in five epochs, and the
classifier model was tuned with the early-stopping
strategy, which stops training when the validation
accuracy drops. For ADADELTA’s parameters,
we fixed the learning rate to 1.0, decay rate ρ to
0.95, and smoothing constant ϵ to 10−6 for all
training sessions. We evaluated validation costs
ten times per epoch and selected the model with
the lowest validation cost. The training took 15.9
days on 1 GPU with 7 TFLOPS computational
power.

3.3 Compared Models

We compared the following eight models: non-
pretrained (Default), proposed dialog pretrain-
ing (Dial), current pretraining with unpaired data
(Lang, SeqAE) and pseudo labeled data (Emo2M,
Emo6M), and classical linear learners (LogReg,
LinSVM). The details of these models are given
below.

• Default: Trained without pretraining by exe-
cuting only Step 2 in Section 2.

• Dial: Pretrained with the dialog model de-
scribed in Section 2.

• Lang, SeqAE: Pretrained with the language
model and autoencoder model proposed in (Dai
and Le, 2015). The language model is the de-
coder part of the encoder-decoder model using
a zero vector as the initial hidden layer value,
and the autoencoder model is the same structure
of the encoder-decoder model, where input and
output are the same. To make the comparison
as fair as possible, we used the reply-side of the
dialog dataset for pretraining Lang and SeqAE
so that the same supervision information on the

basis of the same tweet-reply pairs would be ap-
plied to Lang, SeqAE, and Dial. The num-
ber of their pretraining epochs was also equal to
that of Dial.

• Emo2M, Emo6M: Pretrained with pseudo la-
beled data (2M, 6M) based on manually col-
lected emoticons, which consist of 120 posi-
tive emoticons and 116 negative ones. This
technique is also known as distant-supervision.
These pseudo labels were annotated by extract-
ing tweets including one of those emoticons
from our dialog data and another 92M tweets.
Pretraining was conducted via a two-class sen-
timent classifier, which is a similar model
to Default, since uncertain tweets without
emoticons are not always neutral. We con-
firmed that this two-class classifier can reach
more than 90% test accuracy on the emoticon-
based test dataset. After pretraining, the param-
eters of the encoder part were transfered to the
final classifier model.

• LogReg, LinSVM: Logistic regression and
linear support vector machine (SVM) models
of LIBLINEAR (Fan et al., 2008) with bag-of-
words features, which consist of 50K unigrams
(w/o stopwords), 50K bigrams, and 233 emoti-
cons. These features are based on a state-of-
the-art system (Mohammad et al., 2013) that
performed best in the SEMEVAL competition
(Nakov et al., 2013) and was actually used in
the tweet analysis service of the data-providing
company. The best parameters were found
through a grid-search on the validation set.

3.4 Results

Table 2 shows the macro-average F-measure re-
sults of the compared models in Section 3.3 on
the sentiment classification task when varying data
size (5K to 80K). Each value is the average of
five trials with different random seeds for each set-
ting, and a value of a trial is the macro-average
of F-measure values of three sentiment classes.
The first row (Default) shows the default sen-
timent classifier model without pretraining. The
second row block (Dial to Emo6M) shows the re-
sults of the same training as Default after pre-
training via different models, while the third block
shows those of linear classifiers (non-RNN mod-
els). The supplemental materials also include the
results measured by accuracy.
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5K 10K 20K 40K 80K
Default 0.517 0.590 0.623 0.653 0.673
Dial 0.665† 0.685† 0.702† 0.717† 0.738†
Lang 0.653 0.674 0.692 0.707 0.726
SeqAE 0.568 0.598 0.626 0.649 0.677
Emo2M 0.482 0.532 0.579 0.626 0.664
Emo6M 0.484 0.517 0.565 0.613 0.650
LogReg 0.577 0.609 0.631 0.648 0.675
LinSVM 0.582 0.610 0.627 0.637 0.648

Table 2: Macro-average F-measure of sentiment
classification of each model versus labeled data
size. Dial is our proposed method, and † in
its row indicates statistically significant difference
from the corresponding value of Lang (p <
0.05).

Comparing Dial with the other models, we
can see that our pretraining strategy with dialog
data consistently outperformed all the other mod-
els: state-of-the-art pretraining strategies with un-
paired unlabeled data (Lang, SeqAE) and pseudo
labeled data (Emo2M, Emo6M), as well as linear
learners (LogReg, LinSVM). This indicates that
unlabeled dialog data (tweet-reply pairs) have use-
ful information for sentiment classifiers, as ex-
pected in Section 1. In fact, we observed that the
pretrained encoder-decoder model seems to gener-
ate an appropriate reply, on which the sentiment on
the input tweet is well reflected. For example, the
reply “:(” was generated for the input tweet “I’m
sorry to hear that” (see supplementary material for
more examples).
Lang also outperformed well but did not over-

take Dial. The differences between Dial and
Lang are statistically significant4 for all five train-
ing dataset sizes. Interestingly, SeqAE was not
so effective like Dial, despite their model struc-
tures are basically the same. This implies that it is
practically important to find appropriate data for
pretraining, such as dialog data for sentiment clas-
sification.

As for the results of distant supervision with
emoticons, both Emo2M and Emo6M performed
worse than Default, and increasing the dataset
size did not change the situation. The reason why
these models did not perform as well as other
pretraining-based models is considered to be noisy
labels, especially in negative ones. We illustrate
two instances in the Emo2M training data that in-
clude an emoticon that is usually negative emoti-

4Under the significance level of 0.05 with two-tailed t-test
assuming unequal variances.

con but can be considered positive:

• 美人すぎるよ可愛い（; ;）, “She is so beautiful,
cute (crying emoticon)”

• うらやましいです。おめでとうございます
orz, “I envy you. Congratulations (bow-the-
knee emoticon)”

Comparing Default with LogReg and
LinSVM, we can see that the linear models per-
formed better than the default RNN model without
pretraining, when the labeled data size is less than
or equal to 20K. However, looking at the results of
Dial, our method improved Default even for
these cases (5K to 20K), and Dial clearly out-
performed the linear models. This means that pre-
training is useful especially on the situation where
the labeled data size is limited.

4 Related Work

After Dai and Le (2015) proposed the framework
of semi-supervised sequence learning, there have
been several attempts to extend sequence learn-
ing models for different tasks to semi-supervised
settings. Cheng et al. (2016) and Ramachandran
et al. (2017) studied semi-supervised training of
machine translation models via an autoencoder
model and language model, respectively. They
also used paired data (parallel corpora), but un-
supervised training was conducted with reason-
able monolingual corpora to compensate for costly
parallel corpora, which is opposite to our set-
ting. Zhou et al. (2016a,b) proposed to use par-
allel corpora for adapting the sentiment resources
in a resource-rich language to a resource-poor lan-
guage. Their purpose was completely different
from ours, since making parallel corpora is also
costly. The other studies include semi-supervised
extensions for predicting the property values of
Wikipedia (Hewlett et al., 2017), detecting medi-
cal conditions from heart rate data (Ballinger et al.,
2018), and morphological reinflection of inflected
words (e.g., “playing” to “played”). They did not
use paired-text data to leverage their tasks.

Our method can be regarded as a general ver-
sion of distant supervision since we assume that
a reply includes the label information of the cor-
responding tweet. There have been many studies
about distant supervision for sentiment analysis
(Read, 2005; Go et al., 2009; Davidov et al., 2010;
Purver and Battersby, 2012; Mohammad et al.,
2013; Tang et al., 2014; dos Santos and Gatti,
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2014; Severyn and Moschitti, 2015; Deriu et al.,
2016; Müller et al., 2017), but they basically fo-
cused on how to use emoticons and hashtags to
leverage performance. One exception is the study
by (Pool and Nissim, 2016), in which Facebook
reactions were used for distant supervision. Their
approach is similar to ours using tweet-reply pairs,
but our method is more general since they only
used six reply categories (i.e., like, love, haha,
wow, sad, and angry), not text replies.

There have been a few studies on sentiment
classification in dialogue data (Bertero and Fung,
2016; Bertero et al., 2016). These studies involved
sentiment classification based on dialog contexts,
which means that they used labeled dialog data,
while we used unlabeled dialog data. For tweet
data, several studies used reply-features for senti-
ment classification of tweets (Barbosa and Feng,
2010; Jiang et al., 2011; Vanzo et al., 2014; Bam-
man and Smith, 2015; Ren et al., 2016; Castellucci
et al., 2016). However, they used replies as la-
beled data for sentiment classification, not unla-
beled data for pretraining.

5 Conclusion

We proposed a pretraining strategy with dialog
data for sentiment classifiers. The experimental
results showed that our strategy clearly outper-
formed the existing pretraining with unpaired un-
labeled data via language modeling and pseudo
labeled data via distant supervision, as well as
linear classifiers. In the future, we will investi-
gate whether or not we can use other paired data
for pretraining of classification tasks. For exam-
ple, we expect that news article-comment pairs are
useful for predicting fake news detection and that
question-answer pairs of Q&A sites are useful for
recommending questions for answering.
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Abstract

The reliability of self-labeled data is an
important issue when the data are regarded
as ground-truth for training and testing
learning-based models. This paper ad-
dresses the issue of false-alarm hashtags
in the self-labeled data for irony detection.
We analyze the ambiguity of hashtag us-
ages and propose a novel neural network-
based model, which incorporates linguis-
tic information from different aspects, to
disambiguate the usage of three hashtags
that are widely used to collect the training
data for irony detection. Furthermore, we
apply our model to prune the self-labeled
training data. Experimental results show
that the irony detection model trained on
the less but cleaner training instances out-
performs the models trained on all data.

1 Introduction

Self-labeled data available on the Internet are pop-
ular research materials in many NLP areas. Meta-
data such as tags and emoticons given by users
are considered as labels for training and testing
learning-based models, which usually benefit from
large amount of data.

One of the sources of self-labeled data widely
used in the research community is Twitter, where
the short-text messages tweets written by the
crowd are publicly shared. In a tweet, the au-
thor can tag the short text with some hashtags
such as #excited, #happy, #UnbornLivesMatter,
and #Hillary4President to express their emotion
or opinion. The tweets with a certain types of
hashtags are collected as self-label data in a va-
riety of research works including sentiment analy-
sis (Qadir and Riloff, 2014), stance detection (Mo-
hammad et al., 2016; Sobhani et al., 2017), fi-

nancial opinion mining (Cortis et al., 2017), and
irony detection (Ghosh et al., 2015; Peled and Re-
ichart, 2017; Hee et al., 2018). In the case of
irony detection, it is impractical to manually an-
notate the ironic sentences from randomly sam-
pled data due to the relatively low occurrences of
irony (Davidov et al., 2010). Collecting the tweets
with the hashtags like #sarcasm, #irony, and #not
becomes the mainstream approach to dataset con-
struction (Sulis et al., 2016). As shown in (S1), the
tweet with the hashtag #not is treated as a positive
(ironic) instance by removing #not from the text.

(S1) @Anonymous doing a great job...
#not What do I pay my extortionate
council taxes for? #Disgrace #Ongo-
ingProblem http://t.co/FQZUUwKSoN

However, the reliability of the self-labeled data
is an important issue. As pointed out in the pio-
neering work, not all tweet writers know the def-
inition of irony (Van Hee et al., 2016b). For in-
stance, (S2) is tagged with #irony by the writer,
but it is just witty and amusing.

(S2) BestProAdvice @Anonymous More
clean OR cleaner, never more cleaner.
#irony

When the false-alarm instances like (S2) are col-
lected and mixed in the training and test data, the
models that learn from the unreliable data may be
misled, and the evaluation is also suspicious.

The other kind of unreliable data comes from
the hashtags not only functioning as metadata.
That is, a hashtag in a tweet may also function as
a content word in its word form. For example, the
hashtag #irony in (S3) is a part of the sentence “the
irony of taking a break...”, in contrast to the hash-
tag #not in (S1), which can be removed without a
change of meaning.
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(S3) The #irony of taking a break from
reading about #socialmedia to check my
social media.

When the hashtag plays as a content word in a
tweet, the tweet is not a good candidate of self-
labeled ironic instances because the sentence will
be incomplete once the hashtag is removed.

In this work, both kinds of unreliable data, the
tweets with a misused hashtag and the tweets
in which the hashtag serves as a content word,
are our targets to remove from the training data.
Manual data cleaning is labor-intensive and in-
efficient (Van Hee et al., 2016a). Compared to
general training data cleaning approaches (Malik
and Bhardwaj, 2011; Esuli and Sebastiani, 2013;
Fukumoto and Suzuki, 2004) such as boosting-
based learning, this work leverages the charac-
teristics of hashtag usages in tweets. With small
amount of golden labeled data, we propose a neu-
ral network classifier for pruning the self-labeled
tweets, and train an ironic detector on the less but
cleaner instances. This approach is easily to apply
to other NLP tasks that rely on self-labeled data.

The contributions of this work are three-fold:
(1) We make an empirically study on an issue that
is potentially inherited in a number of research
topics based on self-labeled data. (2) We pro-
pose a model for hashtag disambiguation. For this
task, the human-verified ground-truth is quite lim-
ited. To address the issue of sparsity, a novel neu-
ral network model for hashtag disambiguation is
proposed. (3) The data pruning method, in which
our model is applied to select reliable self-labeled
data, is capable of improving the performance of
irony detection.

The rest of this paper is organized as follows.
Section 2 describes how we construct a dataset for
disambiguating false-alarm hashtag usages based
on Tweets. In Section 3, our model for hashtag
disambiguation is proposed. Experimental results
of hashtag disambiguation are shown in Section 4.
In addition, we apply our method to prune training
data for irony detection. The results are shown in
Section 5. Section 6 concludes this paper.

2 Dataset

The tweets with indication hashtags such as #irony
are usually collected as a dataset in previous works
on irony detection. As pointed out in Section 1, the
hashtags are treated as ground-truth for training
and testing. To investigate the issue of false-alarm

Hashtag False-Alarm Irony Total
#not 196 346 542
#sarcasm 46 449 495
#irony 34 288 322
Total 276 1,083 1,359

Table 1: Statistics of the Ground-Truth Data.

self-labeled tweets, the tweets with human verifi-
cation are indispensable. In this study, we build
the ground-truth based on the dataset released for
SemEval 2018 Task 3,1 which is targeted for fine-
grained irony detection (Hee et al., 2018).

In the SemEval dataset, the tweets with one of
the three indication hashtags #not, #sarcasm, and
#irony, are collected and human-annotated as one
of four types: verbal irony by means of a polar-
ity contrast, other verbal irony, situational irony,
and non-ironic. In other words, the false-alarm
tweets, i.e., the non-ironic tweets with indication
hashtags, are distinguished from the real ironic
tweets in this dataset. However, the hashtag itself
has been removed in the SemEval dataset. For ex-
ample, the original tweet (S1) has been modified
to (S4), where the hashtag #not disappears. As a
result, the hashtag information, the position and
the word form of the hashtag (i.e., not, irony, or
sarcasm), is missing from the SemEval dataset.

(S4) @Anonymous doing a great job...
What do I pay my extortionate council
taxes for? #Disgrace #OngoingProblem
http://t.co/FQZUUwKSoN

For hashtag disambiguation, the information of
the hashtag in each tweet is mandatory. Thus,
we recover the original tweets by using Twitter
search. As shown in Table 1, a total of 1,359
tweets with hashtags information are adopted as
the ground-truth. Note that more than 20% of self-
labeled data are false-alarm, and this can be an is-
sue when they are adopted as training or test data.
For performing the experiment of irony detection
in Section 5, we reserve the other 1,072 tweets
in the SemEval dataset that are annotated as real
ironic as the test data.

In addition to the issue of hashtag disambigua-
tion, the irony tweets without an indication hash-
tag, which are regarded as non-irony instances in
previous work, are another kind of misleading data
for irony detection. Fortunately, the occurrence of
such “false-negative” instances is insignificant due

1https://competitions.codalab.org/competitions/17468
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Figure 1: Overview of Our Model for Hashtag
Disambiguation.

to the relatively low occurrence of irony (Davidov
et al., 2010).

3 Disambiguation of Hashtags

Figure 1 shows our model for distinguishing the
real ironic tweets from the false-alarm ones. Given
an instance with the hashtag #irony is given, the
preceding and the following word sequences of
the hashtag are encoded by separate sub-networks,
and both embeddings are concatenated with the
handcrafted features and the probabilities of three
kinds of part-of-speech (POS) tag sequences. Fi-
nally, the sigmoid activation function decides
whether the instance is real ironic or false-alarm.
The details of each component will be presented
in the rest of this section.

Word Sequences: The word sequences of
the context preceding and following the targeting
hashtag are separately encoded by neural network
sentence encoders. The Penn Treebank Tokenizer
provided by NLTK (Bird et al., 2009) is used for
tokenization. As a result, each of the left and the
right word sequences is encoded as a embedding
with a length of 50.

We experiments with convolution neural net-
work (CNN) (Kim, 2014), gated recurrent unit
(GRU) (Cho et al., 2014), and attentive-GRU for
sentence encoding. CNN for sentence classifica-
tion has been shown effective in NLP applications
such as sentiment analysis (Kim, 2014). Clas-
sifiers based on recurrent neural network (RNN)

have also been applied to NLP, especially for se-
quential modeling. For irony detection, one of
the state-of-the-art models is based on the atten-
tive RNN (Huang et al., 2017). The first layer of
the CNN, the GRU, and the attenive-GRU model
is the 300-dimensional word embedding that is ini-
tialized by using the vectors pre-trained on Google
News dataset.2

Handcrafted Features: We add the hand-
crafted features of the tweet in the one-hot rep-
resentation. The features taken into account are
listed as follows. (1) Lengths of the tweet in words
and in characters. (2) Type of the target hashtag
(i.e. #not, #sarcasm, or #irony). (3) Number of all
hashtags in the tweet. (4) Whether the targeting
hashtag is the first token in the tweet. (5) Whether
the targeting hashtag is the last token in the tweet.
(6) Whether the targeting hashtag is the first hash-
tag in the tweet since a tweet may contain more
than one hashtag. (7) Whether the targeting hash-
tag is the last hashtag in the tweet. (8) Position of
the targeting hashtag in terms of tokens. If the tar-
geting hashtag is the ith token of the tweet with |w|
tokens, and this feature is i

|w| . (9) Position of the
targeting hashtag in all hashtags in the tweet. It is
computed as j

|h| where the targeting hashtag is the
jth hashtag in the tweet that contains |h| hashtags.

Language Modeling of POS Sequences: As
mentioned in Section 1, a kind of false-alarm hash-
tag usages is the case that the hashtag also func-
tions as a content word. In this paper, we attempt
to measure the grammatical completeness of the
tweet with and without the hashtag. Therefore,
language model on the level of POS tagging is
used. As shown in Figure 1, POS tagging is per-
formed on three versions of the tweet, and based
on that three probabilities are measured and taken
into account: 1) ph̄: the tweet with the whole hash-
tag removed. 2) ps̄: the tweet with the hash sym-
bol # removed only. 3) pt: the original tweet. Our
idea is that a tweet will be more grammatical com-
plete with only the hash symbol removed if the
hashtag is also a content word. On the other hand,
the tweet will be more grammatical complete with
the whole hashtag removed since the hashtag is a
metadata.

To measure the probability of the POS tag se-
quence, we integrate a neural network-based lan-
guage model of POS sequence into our model.
RNN-based language models are reportedly capa-

2https://code.google.com/archive/p/word2vec/
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ble of modeling the longer dependencies among
the sequential tokens (Mikolov et al., 2011). Two
millions of English tweets that are entirely differ-
ent from those in the training and test data de-
scribed in Section 2 are collected and tagged with
POS tags. We train a GRU language model on
the level of POS tags. In this work, all the POS
tagging is performed with the Stanford CoreNLP
toolkit (Manning et al., 2014).

4 Experiments

We compare our model with popular neu-
ral network-based sentence classifiers including
CNN, GRU, and attentive GRU. We also train a
logistic regression (LR) classifier with the hand-
crafted features introduced in Section 3. For the
imbalance data, we assign class-weights inversely
proportional to class frequencies. Five-fold cross-
validation is performed. Early-stop is employed
with a patience of 5 epoches. In each fold, we
further keep 10% of training data for tuning the
model. The hidden dimension is 50, the batch
size is 32, and the Adam optimizer is employed
(Kingma and Ba, 2014).

Table 2 shows the experimental results reported
in Precision (P), Recall (R), and F-score (F). Our
goal is to select the real ironic tweets for training
the irony detection model. Thus, the real ironic
tweets are regarded as positive, and the false-
alarm ones are negative. We apply t-test for sig-
nificance testing. The vanilla GRU and attentive
GRU are slightly superior to the logistic regression
model. The CNN model performs the worst in
this task because it suffers from over-fitting prob-
lem. We explored a number of layouts and hyper-
parameters for the CNN model, and consistent re-
sults are observed.

Our method is evaluated with either CNN,
GRU, or attentive GRU for encoding the con-
text preceding and following the targeting hash-
tag. By integrating various kinds of information,
our method outperforms all baseline models no
matter which encoder is used. The best model
is the one integrating the attentive GRU encoder,
which is significantly superior to all baseline mod-
els (p < 0.05), achieves an F-score of 88.49%,

To confirm the effectiveness of the language
modeling of POS sequence, we also try to exclude
the GRU language model from our best model.
Experimental results show that the addition of lan-
guage model significantly improves the perfor-

Model Encoder P R F
LR N/A 91.43% 75.81% 82.89%
CNN N/A 89.16% 56.97% 69.52%
GRU N/A 90.75% 77.01% 83.32%
Att.GRU N/A 87.97% 79.69% 83.62%
Our Method CNN 90.35% 83.84% 86.97%
Our Method GRU 90.90% 78.39% 84.18%
Our Method Att.GRU 90.86% 86.24% 88.49%
w/o LM Att.GRU 88.17% 80.52% 84.17%

Table 2: Results of Hashtag Disambiguation.

mance (p < 0.05). As shown in the last row of
Table 2, the F-score is dropped to 84.17%.

From the data, we observe that the instances
whose ps̄ � ph̄ usually contain a indication hash-
tag function as a content word, and vice versa. For
instances, (S5) and (S6) show the instances with
the highest and the lowest ps̄ph̄ , respectively.

(S5) when your #sarcasm is so advanced
people actually think you are #stupid ..

(S6) #mtvstars justin bieber #net #not
#fast

5 Irony Detection

We employ our model to prune self-labeled data
for irony detection. As prior work did, we collect
a set of tweets that contain indication hashtags as
(pseudo) positive instances and also collect a set
of tweets that do not contain indication hashtags
as negative instances. For each positive instance,
our model is performed to predict whether it is a
real ironic tweet or false-alarm ones, and the false-
alarm ones are discarded.

After pruning, a set of 14,055 tweets contain-
ing indication hashtags have been reduced to 4,617
reliable positive instances according to our model.
We add an equal amount of negative instances ran-
domly selected from the collection of the tweets
that do not contain indication hashtags. As a re-
sult, the prior- and the post-pruning training data,
in the sizes of 28,110 and 9,234, respectively, are
prepared for experiments. The dataflow of the
training data pruning is shown in Figure 2.

For evaluating the effectiveness of our prun-
ing method, we implement a state-of-the-art irony
detector (Huang et al., 2017), which is based on
attentive-RNN classifier, and train it on the prior-
and the post-pruned training data.

The test data is made by the procedure as fol-
lows. The positive instances in the test data are
taken from the 1,072 human-verified ironic tweets
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Figure 2: Dataflow of the Training Data Pruning
for Irony Detection.

Training Data Size P R F
Prior-Pruning 28,110 79.04% 84.05% 81.46%
Post-Pruning 9,234 80.83% 85.35% 83.03%
Human Verified 2,166 86.35% 66.70% 75.26%

Table 3: Performance of Irony Detection.

that are reserved for irony detection as mentioned
in Section 2. The negative instances in the test data
are obtained from the tweets that do not contain in-
dication hashtags. Note that the negative instances
in the test data are isolated from those in the train-
ing data. Experimental results confirm the benefit
of pruning. As shown in Table 3, the irony de-
tection model trained on the less, but cleaner data
significantly outperforms the model that is trained
on all data (p < 0.05).

We compare our pruning method with an alter-
native approach that trains the irony detector on
the human-verified data directly. Under this cir-
cumstances, the 1,083 ironic instances for training
our hashtag disambiguation model are currently
mixed with an equal amount of randomly sam-
pled negative instances, and employed to train the
irony detector. As shown in the last row of Table
3, the irony detector trained on the small data does
not compete with the models that are trained on
larger amount of self-labeled data. In other words,
our data pruning strategy forms a semi-supervised
learning that benefits from both self-labeled data
and human annotation. Note that this task and the
dataset are different from those of the official eval-
uation of SemEval 2018 Task 3, so the experimen-
tal results cannot be directly compared.

The calibrated confidence output by the sig-
moid layer of our hashtag disambiguation model
can be regarded as a measurement of the relia-
bility of an instance (Niculescu-Mizil and Caru-
ana, 2005; Guo et al., 2017). Thus, we can sort
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Figure 3: Performance of Irony Detection with
Different Threshold Values for Data Pruning.

all self-labeled data by their calibrated confidence
and control the size of training set by adjusting
the threshold. The higher the threshold value is
set, the less the training instances remain. Fig-
ure 3 shows the performances of the irony detector
trained on the data filtered with different threshold
values. For each threshold value, the bullet symbol
(•) indicates the size of training data, and the bar
indicates the F-score achieved by the irony detec-
tor trained on those data. The best result achieved
by the irony detector trained on the 9,234 data fil-
tered by our model with the default threshold value
(0.5). This confirms that our model is able to se-
lect useful training instances in a strict manner.

6 Conclusion

Self-labeled data is an accessible and economical
resource for a variety of learning-based applica-
tions. However, directly using the labels made by
the crowd as ground-truth for training and testing
may lead to inaccurate performance due to the reli-
ability issue. This paper addresses this issue in the
case of irony detection by proposing a model to
remove two kinds of false-alarm tweets from the
training data. Experimental results confirm that
the irony detection model benefits from the less,
but cleaner training data. Our approach can be ap-
plied to other topics that rely on self-labeled data.
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Abstract

In stance classification, the target on which
the stance is made defines the boundary of
the task, and a classifier is usually trained
for prediction on the same target. In this
work, we explore the potential for general-
izing classifiers between different targets,
and propose a neural model that can apply
what has been learned from a source target
to a destination target. We show that our
model can find useful information shared
between relevant targets which improves
generalization in certain scenarios.

1 Introduction

Stance classification is the task of automatically
identifying users’ positions about a specific target
from text (Mohammad et al., 2017). Table 1 shows
an example of this task, where the stance of the
sentence is recognized as favorable on the target
climate change is concern. Traditionally, this task
is approached by learning a target-specific classi-
fier that is trained for prediction on the same tar-
get of interest (Hasan and Ng, 2013; Mohammad
et al., 2016; Ebrahimi et al., 2016). This implies
that a new classifier has to be built from scratch on
a well-prepared set of ground-truth data whenever
predictions are needed for an unseen target.

An alternative to this approach is to conduct
a cross-target classification, where the classifier
is adapted from different but related targets (Au-
genstein et al., 2016), which allows benefiting
from the knowledge of existing targets. For ex-
ample, in our project we are interested in online
users’ stances on the approvals of particular min-
ing projects in the country. It might be useful to
start with a classifier that is adapted from a related
target such as climate change is concern (presum-
ably available and annotated), as in both cases

Sentence: We need to protect our islands and stop the
destruction of coral reef.
Target: Climate Change is Concern Stance: Favor

Table 1: An example of stance classification task.

users could discuss the impacts from the targets
to some common issues, such as the environment
or communities.

Cross-target stance classification is a more chal-
lenging task simply because the language models
may not be compatible between different targets.
However, for some targets that can be recognized
as being related to the same and more general do-
mains, it could be possible to generalize through
certain aspects of the domains that reflect users’
major concerns. For example, from the following
sentence, whose stance is against the approval of a
mining project, “Environmentalists warn the $16
billion coal facility will damage the Great Barrier
Reef”, it can be seen that both this sentence and
the one in Table 1 mention the same aspect “reef
destruction/damage”, which is closely related to
the “environment” domain.

In this paper, we focus on cross-target stance
classification and explore the limits of generaliz-
ing models between different but domain-related
targets1. The basic idea is to learn a set of domain-
specific aspects from a source target, and then
apply them to prediction on a destination target.
To this end, we propose CrossNet, a novel neu-
ral model that implements the above idea based
on the self-attention mechanism. Our preliminary
analysis shows that the proposed model can find
useful domain-specific information from a stance-
bearing sentence and that the classification perfor-
mance is improved in certain domains.

1In this work, the source target is chosen based on com-
mon sense. Exploring more sophisticated source target selec-
tion methods will be our future work.
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Figure 1: The Architecture of CrossNet.

2 Model

In this section, we introduce the proposed model,
CrossNet, for cross-target stance classification.
Figure 1 shows the architecture of CrossNet. It
consists of four layers from the Embedding Layer
(bottom) to the Prediction Layer (top). It works
by taking a stance-bearing sentence and a target
as input and yielding the predicted stance label as
output. In the following, we present the imple-
mentation of each layer in CrossNet.

2.1 Embedding Layer
There are two inputs in CrossNet: a stance-bearing
sentence P and a descriptive target T (e.g, cli-
mate change is concern in Table 1). We use word
embeddings (Mikolov et al., 2013) to represent
each word in the input as a dense vector. The
output of this layer are two sequences of vectors
P = {p1, ...,p|P |} and T = {t1, ..., t|T |}, where
p, t are word vectors.

2.2 Context Encoding Layer
In this layer, we encode the contextual informa-
tion in the input sentence and target. We use a
bi-directional Long Short-Term Memory Network
(BiLSTM) (Hochreiter and Schmidhuber, 1997) to
capture the left and right contexts of each word in
the input. Moreover, to account for the impact of
the target on stance inference, we borrow the idea
of conditional encoding (Augenstein et al., 2016)
to model the dependency of the sentence on the
target. Formally, we first use a BiLSTMT to en-
code the target:

[
−→
h T
i
−→c Ti ] =

−−−−→
LSTMT (ti,

−→
h T
i−1,
−→c Ti−1)

[
←−
h T
i
←−c Ti ] =

←−−−−
LSTMT (ti,

←−
h T
i+1,
←−c Ti+1)

(1)

where h ∈ Rh and c ∈ Rh are the hidden state and
cell state of LSTM. The symbol −→(←−) indicates
the forward (backward) pass. ti is the input word
vector at time step i.

Then, we learn a conditional encoding of the
sentence P , by initializing BiLSTMP (a different
BiLSTM) with the final states of BiLSTMT :

[
−→
h P

1
−→c P1 ] =

−−−−→
LSTMP (p1,

−→
h T
|T |,
−→c T|T |)

[
←−
h P
|P |
←−c P|P |] =

←−−−−
LSTMP (p|P |,

←−
h T

1 ,
←−c T1 )

(2)

It can be seen that the initialization is done by
aligning the forward (backward) pass of the two
BiLSTMs. The output is a contextually-encoded
sequence, HP = {hP1 , ...,hP|P |}, where h =

[
−→
h ;
←−
h ] ∈ R2h with [; ] as the vector concatena-

tion operation.

2.3 Aspect Attention Layer

In this layer, we implement the idea of discover-
ing domain-specific aspects for cross-target stance
inference. In particular, the key observation we
make is that the domain aspects that reflect users’
major concerns are usually the core of understand-
ing their stances, and could be mentioned by mul-
tiple users in a discussion. For example, we find
that many users in our corpus mention the aspect
“reef” to express their concerns about the impact
of a mining project on the Great Barrier Reef.
Based on this observation, the perception of the
domain aspects can be boiled down to finding the
sentence parts that not only carry the core idea of a
stance-bearing sentence but also tend to be recur-
ring in the corpus.

First, to capture the recurrences of the domain
aspects, a simple way is to make every input sen-
tence be consumed by this layer (see Figure 1), so
that the layer parameters are shared across the cor-
pus for being stimulated by all appearances of the
domain aspects.

Then, we utilize self-attention to signal the core
parts of a stance-bearing sentence. Self-attention
is an attention mechanism for selecting specific
parts of a sequence by relating its elements at
different positions (Vaswani et al., 2017; Cheng
et al., 2016). In our case, the self-attention pro-
cess is based on the assumption that the core parts
of a sentence are those that are compatible with
the semantics of the entire sentence. To this end,
we introduce a compatibility function to score the
semantic compatibility between the encoded se-
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quence HP and each of its hidden states hP :

ci = w>2 σ(W1h
P
i + b1) + b2 (3)

where W1 ∈ Rd×2h, w2 ∈ Rd, b1 ∈ Rd, and b2 ∈
R are trainable parameters, and σ is the activation
function. Note that all the above parameters are
shared by every hidden state in HP . Next, we
compute the attention weight ai for each hPi based
on its compatibility score via softmax operation:

ai =
exp(ci)∑|P |
j=1 exp(cj)

(4)

Finally, we can obtain the domain aspect encoded
representation based on the attention weights:

AP =

|P |∑

i=1

aih
P
i (5)

where AP ∈ R2h is the domain aspect encoding
for sentence P and also the output of this layer.

2.4 Prediction Layer

We predict the stance label of the sentence based
on its domain aspect encoding:

ŷ = softmax(MLP(AP )) (6)

where we use a multilayer perceptron (MLP) to
consume the domain aspect encoding AP and ap-
ply the softmax to get the predicted probability for
each of the C classes, ŷ = {y1, ..., yC}.

2.5 Model Training

For model training, we use multi-class cross-
entropy loss,

J (θ) = −
N∑

i

C∑

j

y
(i)
j log ŷ

(i)
j + λ‖Θ‖ (7)

whereN is the size of training set. y is the ground-
truth label indicator for each class, and ŷ is the
predicted probability. λ is the coefficient for L2-
regularization. Θ denotes the set of all trainable
parameters in our model.

3 Experiments

This section reports the results of quantitative and
qualitative evaluations of the proposed model.

Target %Favor %Against %Neither #Total

CC 59.4 4.6 36.0 564
FM 28.2 53.8 18.0 949
HC 16.6 57.4 26.0 984
LA 17.9 58.3 23.8 933
DT 20.9 42.3 36.8 707

Table 2: SemEval-2016 Task 6 Tweet Stance De-
tection dataset used in our evaluation.

3.1 Datasets

SemEval-2016: the first dataset is from SemEval-
2016 Task 6 on Twitter stance detection, which
contains stance-bearing tweets on different targets.
We use the following five targets for our experi-
ments: Climate Change is Concern (CC), Feminist
Movement (FM), Hillary Clinton (HC), Legaliza-
tion of Abortion (LA), and Donald Trump (DT).
The class labels are favor, against, and neither,
and their distributions are shown in Table 2.
Tweets on an Australian mining project (AM):
the second is our collection of tweets on a mining
project in Australia obtained using Twitter API. It
includes 220,067 tweets posted from January 2016
to June 2017 that contain the project name in the
text. We remove all URL-only tweets and dupli-
cate tweets, and obtain a set of 40,852 (unlabeled)
tweets. Due to the lack of annotation, this dataset
is only used for our qualitative evaluation.

To align with our scenario, the above targets
can be categorized into three different domains:
Women’s Rights (FM, LA), American Politics
(HC, DT), and Environments (CC, AM).

3.2 Metric

We use F1-score to measure the classification
performance. Due to the imbalanced class dis-
tributions of the SemEval dataset, we com-
pute both micro-averaged (large classes dominate)
and macro-averaged (small classes dominate) F1-
scores (Manning et al., 2008), and use their aver-
age as the metric, i.e., F = 1

2(Fmicro + Fmacro).
To evaluate the effectiveness of target adapta-

tion, we use the metric transfer ratio (Glorot et al.,
2011) to compare the cross-target and in-target
performance of a model: Q = F (S,D)

Fb(D,D) , where
F (S,D) is the cross-target F1-score of a model
trained on the source target S and tested on the
destination target D, and Fb(D,D) is the in-target
F1-score of a baseline model trained and tested
on the same target D, which serves as the perfor-
mance calibration for target adaptation.
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3.3 Training setup

The word embeddings are initialized with the pre-
trained 200d GloVe word vectors on the 27B Twit-
ter corpus (Pennington et al., 2014), and fixed dur-
ing training. The model is trained (90%) and val-
idated (10%) on a source target, and tested on
a destination target. The following model set-
tings are selected based on a small grid search on
the validation set: the LSTM hidden size of 60,
the MLP layer size of 60, and dropout 0.1. The
L2-regularization coefficient λ in the loss is 0.01.
ADAM (Kingma and Ba, 2014) is used as the op-
timizer, with a learning rate of 10−3. Stratified
10-fold cross-validation is conducted to produce
averaged results.

3.4 Classification Performance

This section reports the results of our model and
two baseline approaches on cross-target stance
classification.
BiLSTM: this is a base model for our task. It has
two BiLSTMs for encoding the sentence and tar-
get separately. Then, the concatenation of the re-
sulting encodings is fed into the final Prediction
Layer to generate predicted stance labels. In our
evaluation, this model is treated as the baseline
model for deriving the in-target performance cali-
bration Fb(D,D).
MITRE (Augenstein et al., 2016): this is the

Domain Target BiLSTM MITRE CrossNet

In-target performance (F1-score)

Women’s FM 51.4(2.6)∗ 53.7(3.9) 55.9(4.6)
Rights LA 59.4(6.4) 61.9(6.3) 61.8(4.7)

American HC 55.5(4.7)∗ 56.0(3.1)∗ 60.0(3.3)
Politics DT 57.9(6.0)∗ 59.6(5.8)∗ 60.2(5.1)

Cross-target performance (F1-score)

Women’s FM→LA 40.1(2.3)∗ 40.3(2.2)∗ 44.2(1.3)
Rights LA→FM 37.9(2.9)∗ 39.2(1.5)∗ 43.1(1.3)

American HC→DT 43.3(2.4)∗ 44.2(3.2) 46.1(3.7)
Politics DT→HC 40.1(2.6) 40.8(2.2) 41.8(3.2)

Transfer ratio

Women’s FM→LA 0.67 0.67 0.74
Rights LA→FM 0.74 0.76 0.83

American HC→DT 0.75 0.76 0.79
Politics DT→HC 0.72 0.73 0.75

(Standard deviation in parentheses)
∗ Improvements over baselines at p <.05 with paired t-test

Table 3: Classification performance of our model
and other baselines on 4 targets: Feminist Move-
ment (FM), Hillary Clinton (HC), Legalization of
Abortion (LA), and Donald Trump (DT).

best system in SemEval-2016 Task 6. It uti-
lizes the conditional encoding to learn a target-
dependent representation for the input sentence.
The conditional encoding is realized in the same
way as the Context Encoding Layer does in
our model, namely by using the hidden states
of the target-encoding BiLSTM to initialize the
sentence-encoding BiLSTM.

Table 3 shows the results (in-target and cross-
target) on the two domains: Women’s Rights
and American Politics. First, it is observed that
MITRE outperforms BiLSTM over all target con-
figurations, suggesting that, compared to simple
concatenation, the conditional encoding of the tar-
get information could be more helpful to capture
the dependency of the sentence on the target.

Second, our model is shown to achieve better
results than the two baselines in almost all cases
(only slightly worse than MITRE on LA under the
in-target setting, and the difference is not statis-
tically significant), which implies that the aspect
attention mechanism adopted in our model could
benefit target-level generalization while it does not
hurt the in-target performance. Moreover, by com-
paring the performance of our model under differ-
ent target configurations, we see that the improve-
ments brought by our model are more significant
on the cross-target task than they are on the in-
target task, with an average improvement of 6.6%
(cross-target) vs. 3.0% (in-target) over MITRE in
F1-score, which demonstrates a greater advantage
of our model in the cross-target task.

Finally, according to the transfer ratio results,
the general drop from the in-target to cross-target
performance (26% averaged over all cases) could
imply that while the target-independent informa-
tion (i.e., the domain-specific aspects) is shown to
benefit generalization, it could be important to also
consider the information that is specific to the des-
tination target for model building (which has not
yet been explored in this work).

3.5 Visualization of Attention

To show that our model can select sentence parts
that are related to domain aspects, we visualize the
self-attention results on some tweet examples that
are correctly classified by our model in Table 4.

We can see that the most highlighted parts in
each example are relevant to the respective do-
main. For example, “feminist”, “rights”, and
“equality” are commonly used when talking about
women’s rights, and “president” and “dreams” of-
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ID Target Tweet

1 FM→LA Abortion has nothing to do with feminism . Its about the BABYS body , not yours. (A)

2 LA→FM All humans , male and female, should have equal political , economic and social rights . Equality . (F)

3 HC→DT Trumps presidential dreams r about as real as KimJonguns unicorns. (A)

4 DT→HC Maybe a woman should be President . (F)

5 CC→AM [N] still will destroy the reef . It is criminal that QLD federal govts are promoting it. (A)

6 CC→AM [N] , who are trying to change our laws , ’forgot’ to tell us about their CEO’s environmental disaster ! (A)

Table 4: The heatmap of the attention weights assigned by the Aspect Attention Layer to the tweets with
stance labels favor (F) and against (A). “[N]” denotes the mining project’s name of interest.

Domain Sample
Women’s
Rights
(FM↔LA)

feminist, victim, fight, equality,
children, women, mom, great, love,
fight, beautiful, girl, housewife,
wrong, fear, safe, good, life, crime

American
Politics
(HC↔DT)

american, winning, welfare, obama,
society, wall, crazy, money, repub-
lican, nation, great, vote, amazing,
stupid, justice, government, future

Environments
(CC→AM)

environment, reverse, needs, bad,
weather, solution, important, rain,
earth, generation, humans, power,
heat, future, strategy, together, idea

Table 5: Samples of the learned domain aspects.

ten appear in text about politics. It is also interest-
ing to note that words that are specific to the des-
tination target may not be captured by the model
learned from the source target, such as “abortion”
in sentence 1 and “trumps” in sentence 3. This
makes sense because those words are rare in the
source target corpus and thus not well noticed by
the model.

Finally, for our project, we can see from the
last two sentences that the model learned from
climate change is concern is able to concentrate
on words that are central to understanding the
authors’ stances on the approval of the mining
project, such as “reef”, “destroy”, “environmen-
tal”, and “disaster”. Overall, the above visual-
ization demonstrates that our model could bene-
fit stance inference across related targets through
capturing domain-specific information.

3.6 Learned Domain-Specific Aspects

Finally, it is also possible to show the learned do-
main aspects by extracting all sentence parts in
a corpus that are highly attended by our model.
Table 5 presents a number of samples from the
intersections between the sets of highly-attended
words on the respective targets in the three do-
mains. Again, we see that these highly-attended
words are specific to the respective domains. We

also notice that besides the domain-aspect words,
our model can find words that carry sentiments
as well, such as “great”, “crazy”, and “beautiful”,
which contribute to stance prediction.

4 Conclusion and Future Work

In this work, we study cross-target stance clas-
sification and propose a novel self-attention neu-
ral model that can extract target-independent in-
formation for model generalization. Experimental
results show that the proposed model can perceive
high-level domain-specific information in a sen-
tence and achieves superior results over a number
of baselines in certain domains. In the future, there
are several ways of extending our model.

First, selecting the effective source targets to
generalize from is crucial for achieving satisfying
results on the destination targets. One possibil-
ity could be to learn certain correlations between
target closeness and generalization performance,
which could further be used for guiding the target
selection process. Second, our current model for
identifying users’ stances on mining projects only
generalizes from one source target (i.e., Climate
Change is Concern). However, a mining project
in general could affect other aspects of our soci-
ety such as community and economics. It could
be useful to also consider other related sources
for knowledge transfer. Finally, it would be in-
teresting to evaluate our model in a multilingual
scenario (Taulé et al., 2017), in order to examine
its generalization ability (whether it can attend to
useful domain-specific information in a new lan-
guage) and multilingual scope.
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Abstract

Extractive reading comprehension sys-
tems can often locate the correct answer to
a question in a context document, but they
also tend to make unreliable guesses on
questions for which the correct answer is
not stated in the context. Existing datasets
either focus exclusively on answerable
questions, or use automatically generated
unanswerable questions that are easy to
identify. To address these weaknesses,
we present SQUADRUN, a new dataset
that combines the existing Stanford Ques-
tion Answering Dataset (SQuAD) with
over 50,000 unanswerable questions writ-
ten adversarially by crowdworkers to look
similar to answerable ones. To do well on
SQUADRUN, systems must not only an-
swer questions when possible, but also de-
termine when no answer is supported by
the paragraph and abstain from answer-
ing. SQUADRUN is a challenging natu-
ral language understanding task for exist-
ing models: a strong neural system that
gets 86% F1 on SQuAD achieves only
66% F1 on SQUADRUN. We release
SQUADRUN to the community as the
successor to SQuAD.

1 Introduction

Machine reading comprehension has become a
central task in natural language understanding, fu-
eled by the creation of many large-scale datasets
(Hermann et al., 2015; Hewlett et al., 2016; Ra-
jpurkar et al., 2016; Nguyen et al., 2016; Trischler
et al., 2017; Joshi et al., 2017). In turn, these
datasets have spurred a diverse array of model
architecture improvements (Seo et al., 2016; Hu

∗ The first two authors contributed equally to this paper.

Article: Endangered Species Act
Paragraph: “ . . . Other legislation followed, including
the Migratory Bird Conservation Act of 1929, a 1937
treaty prohibiting the hunting of right and gray whales,
and the Bald Eagle Protection Act of 1940. These later
laws had a low cost to society—the species were rela-
tively rare—and little opposition was raised.”

Question 1: “Which laws faced significant opposition?”
Plausible Answer: later laws

Question 2: “What was the name of the 1937 treaty?”
Plausible Answer: Bald Eagle Protection Act

Figure 1: Two unanswerable questions written by
crowdworkers, along with plausible (but incorrect) an-
swers. Relevant keywords are shown in blue.

et al., 2017; Wang et al., 2017; Clark and Gard-
ner, 2017; Huang et al., 2018). Recent work has
even produced systems that surpass human-level
exact match accuracy on the Stanford Question
Answering Dataset (SQuAD), one of the most
widely-used reading comprehension benchmarks
(Rajpurkar et al., 2016).

Nonetheless, these systems are still far from
true language understanding. Recent analysis
shows that models can do well at SQuAD by learn-
ing context and type-matching heuristics (Weis-
senborn et al., 2017), and that success on SQuAD
does not ensure robustness to distracting sen-
tences (Jia and Liang, 2017). One root cause of
these problems is SQuAD’s focus on questions for
which a correct answer is guaranteed to exist in the
context document. Therefore, models only need to
select the span that seems most related to the ques-
tion, instead of checking that the answer is actually
entailed by the text.

In this work, we construct SQUADRUN,1 a
new dataset that combines the existing questions
in SQuAD with 53,775 new, unanswerable ques-

1 SQuAD with adveRsarial Unanswerable questions
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tions about the same paragraphs. Crowdworkers
crafted these questions so that (1) they are relevant
to the paragraph, and (2) the paragraph contains a
plausible answer—something of the same type as
what the question asks for. Two such examples are
shown in Figure 1.

We confirm that SQUADRUN is both challeng-
ing and high-quality. A state-of-the-art model
achieves only 66.3% F1 score when trained and
tested on SQUADRUN, whereas human accuracy
is 89.5% F1, a full 23.2 points higher. The same
model architecture trained on SQuAD gets 85.8%
F1, only 5.4 points worse than humans. We also
show that our unanswerable questions are more
challenging than ones created automatically, either
via distant supervision (Clark and Gardner, 2017)
or a rule-based method (Jia and Liang, 2017). We
release SQUADRUN to the public as the succes-
sor to SQuAD, and designate it SQuAD 2.0 on the
official SQuAD leaderboard.2 We are optimistc
that this new dataset will encourage the develop-
ment of reading comprehension systems that know
what they don’t know.

2 Desiderata

We first outline our goals for SQUADRUN. Be-
sides the generic goals of large size, diversity,
and low noise, we posit two desiderata specific to
unanswerable questions:

Relevance. The unanswerable questions should
appear relevant to the topic of the context para-
graph. Otherwise, simple heuristics (e.g., based on
word overlap) could distinguish answerable and
unanswerable questions (Yih et al., 2013).

Existence of plausible answers. There should
be some span in the context whose type matches
the type of answer the question asks for. For ex-
ample, if the question asks, “What company was
founded in 1992?”, then some company should
be mentioned in the context. Otherwise, type-
matching heuristics could distinguish answerable
and unanswerable questions (Weissenborn et al.,
2017).

3 Existing datasets

Next, we survey existing reading comprehension
datasets with these criteria in mind. We use the

2 As with previous versions of SQuAD, we release
SQUADRUN under the CC BY-SA 4.0 license.

term “negative example” to refer to a context pas-
sage paired with an unanswerable question.

3.1 Extractive datasets
In extractive reading comprehension datasets, a
system must extract the correct answer to a ques-
tion from a context document or paragraph. The
Zero-shot Relation Extraction dataset (Levy et al.,
2017) contains negative examples generated with
distant supervision. Levy et al. (2017) found that
65% of these negative examples do not have a
plausible answer, making them easy to identify.

Other distant supervision strategies can also
create negative examples. TriviaQA (Joshi et al.,
2017) retrieves context documents from the web or
Wikipedia for each question. Some documents do
not contain the correct answer, yielding negative
examples; however, these are excluded from the
final dataset. Clark and Gardner (2017) generate
negative examples for SQuAD by pairing existing
questions with other paragraphs from the same ar-
ticle based on TF-IDF overlap; we refer to these as
TFIDF examples. In general, distant supervision
does not ensure the existence of a plausible answer
in the retrieved context, and might also add noise,
as the context might contain a paraphrase of the
correct answer. Moreover, when retrieving from
a small set of possible contexts, as in Clark and
Gardner (2017), we find that the retrieved para-
graphs are often not very relevant to the question,
making these negative examples easy to identify.

The NewsQA data collection process also yields
unanswerable questions, because crowdworkers
write questions given only a summary of an article,
not the full text (Trischler et al., 2017). Only 9.5%
of their questions are unanswerable, making this
strategy hard to scale. Of this fraction, we found
that some are misannotated as unanswerable, and
others are out-of-scope (e.g., summarization ques-
tions). Trischler et al. (2017) also exclude negative
examples from their final dataset.

Jia and Liang (2017) propose a rule-based pro-
cedure for editing SQuAD questions to make them
unanswerable. Their questions are not very di-
verse: they only replace entities and numbers with
similar words, and replace nouns and adjectives
with WordNet antonyms. We refer to these unan-
swerable questions as RULEBASED questions.

3.2 Answer sentence selection datasets
Sentence selection datasets test whether a system
can rank sentences that answer a question higher
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Reasoning Description Example Percentage

Negation Negation word inserted
or removed.

Sentence: “Several hospital pharmacies have decided to
outsource high risk preparations . . . ”
Question: “What types of pharmacy functions have never
been outsourced?”

9%

Antonym Antonym used.
S: “the extinction of the dinosaurs. . . allowed the
tropical rainforest to spread out across the continent.”
Q: “The extinction of what led to the decline of rainforests?”

20%

Entity Swap
Entity, number, or date
replaced with other
entity, number, or date.

S: “These values are much greater than the 9–88 cm
as projected . . . in its Third Assessment Report.”
Q: “What was the projection of sea level increases in the
fourth assessment report?”

21%

Mutual
Exclusion

Word or phrase is
mutually exclusive
with something for which
an answer is present.

S: “BSkyB. . . waiv[ed] the charge for subscribers whose
package included two or more premium channels.”
Q: “What service did BSkyB give away for free
unconditionally?”

15%

Impossible
Condition

Asks for condition that
is not satisfied by
anything in the paragraph.

S: “Union forces left Jacksonville and confronted
a Confederate Army at the Battle of Olustee. . .
Union forces then retreated to Jacksonville
and held the city for the remainder of the war.”
Q: “After what battle did Union forces leave
Jacksonville for good?”

4%

Other
Neutral

Other cases where the
paragraph does not imply
any answer.

S: “Schuenemann et al. concluded in 2011 that the
Black Death. . . was caused by a variant of Y. pestis. . . ”
Q: “Who discovered Y. pestis?”

24%

Answerable Question is answerable
(i.e. dataset noise). 7%

Table 1: Types of negative examples in SQUADRUN exhibiting a wide range of phenomena.

than sentences that do not. Wang et al. (2007)
constructed the QASENT dataset from questions
in the TREC 8-13 QA tracks. Yih et al. (2013)
showed that lexical baselines are highly competi-
tive on this dataset. WikiQA (Yang et al., 2015)
pairs questions from Bing query logs with sen-
tences from Wikipedia. Like TFIDF examples,
these sentences are not guaranteed to have plausi-
ble answers or high relevance to the question. The
dataset is also limited in scale (3,047 questions,
1,473 answers).

3.3 Multiple choice datasets

Finally, some datasets, like MCTest (Richard-
son et al., 2013) and RACE (Lai et al., 2017),
pose multiple choice questions, which can have
a “none of the above” option. In practice, mul-
tiple choice options are often unavailable, making
these datasets less suited for training user-facing
systems. Multiple choice questions also tend to
be quite different from extractive ones, with more
emphasis on fill-in-the-blank, interpretation, and
summarization (Lai et al., 2017).

4 The SQUADRUN dataset

We now describe our new dataset, which we con-
structed to satisfy both the relevance and plausible
answer desiderata from Section 2.

4.1 Dataset creation

We employed crowdworkers on the Daemo crowd-
sourcing platform (Gaikwad et al., 2015) to write
unanswerable questions. Each task consisted of
an entire article from the original SQuAD dataset.
For each paragraph in the article, workers were
asked to pose up to five questions that were im-
possible to answer based on the paragraph alone,
while referencing entities in the paragraph and en-
suring that a plausible answer is present. As in-
spiration, we also showed questions from SQuAD
for each paragraph; this further encouraged unan-
swerable questions to look similar to answerable
ones. Workers were asked to spend 7 minutes per
paragraph, and were paid $10.50 per hour. Screen-
shots of our interface are shown in Appendix A.1.

We removed questions from workers who wrote
25 or fewer questions on that article; this filter
helped remove noise from workers who had trou-
ble understanding the task, and therefore quit be-
fore completing the whole article. We applied this
filter to both our new data and the existing answer-
able questions in SQuAD. To generate train, de-
velopment, and test splits, we used the same parti-
tion of articles as SQuAD, and combined the exist-
ing SQuAD data with our new data for each split.
For the SQUADRUN development and test sets,
we removed articles for which we did not col-
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SQuAD SQUADRUN
Train
Total examples 87,599 130,319
Negative examples 0 43,498
Total articles 442 442
Articles with negatives 0 285
Development
Total examples 10,570 11,873
Negative examples 0 5,945
Total articles 48 35
Articles with negatives 0 35
Test
Total examples 9,533 8,862
Negative examples 0 4,332
Total articles 46 28
Articles with negatives 0 28

Table 2: Dataset statistics of SQUADRUN, compared
to the original SQuAD dataset.

lect unanswerable questions. This resulted in a
roughly one-to-one ratio of answerable to unan-
swerable questions in these splits, whereas the
train data has roughly twice as many answerable
questions as unanswerable ones. Table 2 summa-
rizes overall statistics of SQUADRUN.

4.2 Human accuracy
To confirm that our dataset is clean, we hired addi-
tional crowdworkers to answer all questions in the
SQUADRUN development and test sets. In each
task, we showed workers an entire article from the
dataset. For each paragraph, we showed all as-
sociated questions; unanswerable and answerable
questions were shuffled together. For each ques-
tion, workers were told to either highlight the an-
swer in the paragraph, or mark it as unanswer-
able. Workers were told to expect every paragraph
to have some answerable and some unanswerable
questions. They were asked to spend one minute
per question, and were paid $10.50 per hour.

To reduce crowdworker noise, we collected
multiple human answers for each question and se-
lected the final answer by majority vote, breaking
ties in favor of answering questions and preferring
shorter answers to longer ones. On average, we
collected 4.8 answers per question. We note that
for the original SQuAD, Rajpurkar et al. (2016)
evaluated a single human’s performance; there-
fore, they likely underestimate human accuracy.

4.3 Analysis
We manually inspected 100 randomly chosen neg-
ative examples from our development set to under-
stand the challenges these examples present. In
Table 1, we define different categories of nega-

tive examples, and give examples and their fre-
quency in SQUADRUN. We observe a wide
range of phenomena, extending beyond expected
phenomena like negation, antonymy, and entity
changes. In particular, SQUADRUN is much
more diverse than RULEBASED, which creates
unanswerable questions by applying entity, num-
ber, and antonym swaps to existing SQuAD ques-
tions. We also found that 93% of the sampled neg-
ative examples are indeed unanswerable.

5 Experiments

5.1 Models

We evaluated three existing model architectures:
the BiDAF-No-Answer (BNA) model proposed by
Levy et al. (2017), and two versions of the Docu-
mentQA No-Answer (DocQA) model from Clark
and Gardner (2017), namely versions with and
without ELMo (Peters et al., 2018). These mod-
els all learn to predict the probability that a ques-
tion is unanswerable, in addition to a distribution
over answer choices. At test time, models abstain
whenever their predicted probability that a ques-
tion is unanswerable exceeds some threshold. We
tune this threshold separately for each model on
the development set. When evaluating on the test
set, we use the threshold that maximizes F1 score
on the development set. We find this strategy does
slightly better than simply taking the argmax pre-
diction, possibly due to the different proportions
of negative examples at training and test time.

5.2 Main results

First, we trained and tested all three models on
SQUADRUN, as shown in Table 3. Following
Rajpurkar et al. (2016), we report average exact
match and F1 scores.3 The best model, DocQA +
ELMo, achieves only 66.3 F1 on the test set, 23.2
points lower than the human accuracy of 89.5 F1.
Note that a baseline that always abstains gets 48.9
test F1; existing models are closer to this base-
line than they are to human performance. There-
fore, we see significant room for model improve-
ment on this task. We also compare with reported
test numbers for analogous model architectures on
SQuAD. There is a much larger gap between hu-
mans and machines on SQUADRUN compared to
SQuAD, which confirms that SQUADRUN is a
much harder dataset for existing models.

3 For negative examples, abstaining receives a score of 1,
and any other response gets 0, for both exact match and F1.
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System SQuAD test SQUADRUN dev SQUADRUN test
EM F1 EM F1 EM F1

BNA 68.0 77.3 59.8 62.6 59.2 62.1
DocQA 72.1 81.0 61.9 64.8 59.3 62.3
DocQA + ELMo 78.6 85.8 65.1 67.6 63.4 66.3
Human 82.3 91.2 86.3 89.0 86.9 89.5
Human–Machine Gap 3.7 5.4 21.2 21.4 23.5 23.2

Table 3: Exact Match (EM) and F1 scores on SQUADRUN and SQuAD. The gap between humans and the best
tested model is much larger on SQUADRUN, suggesting there is a great deal of room for model improvement.

System SQuAD + TFIDF SQuAD + RULEBASED SQUADRUN dev
EM F1 EM F1 EM F1

BNA 72.7 76.6 80.1 84.8 59.8 62.6
DocQA 75.6 79.2 80.8 84.8 61.9 64.8
DocQA + ELMo 79.4 83.0 85.7 89.6 65.1 67.6

Table 4: Exact Match (EM) and F1 scores on the SQUADRUN development set, compared with SQuAD with
two types of automatically generated negative examples. SQUADRUN is more challenging for current models.

5.3 Automatically generated negatives
Next, we investigated whether automatic ways
of generating negative examples can also yield
a challenging dataset. We trained and tested all
three model architectures on SQuAD augmented
with either TFIDF or RULEBASED examples. To
ensure a fair comparison with SQUADRUN, we
generated training data by applying TFIDF or
RULEBASED only to the 285 articles for which
SQUADRUN has unanswerable questions. We
tested on the articles and answerable questions in
the SQUADRUN development set, adding unan-
swerable questions in a roughly one-to-one ratio
with answerable ones. These results are shown
in Table 4. The highest score on SQUADRUN

is 15.4 F1 points lower than the highest score on
either of the other two datasets, suggesting that au-
tomatically generated negative examples are much
easier for existing models to detect.

5.4 Plausible answers as distractors
Finally, we measured how often systems were
fooled into answering the plausible but incorrect
answers provided by crowdworkers for our unan-
swerable questions. For both computer systems
and humans, roughly half of all wrong answers on
unanswerable questions exactly matched the plau-
sible answers. This suggests that the plausible an-
swers do indeed serve as effective distractors. Full
results are shown in Appendix A.2.

6 Discussion

SQUADRUN forces models to understand
whether a paragraph entails that a certain span is
the answer to a question. Similarly, recognizing

textual entailment (RTE) requires systems to
decide whether a hypothesis is entailed by, con-
tradicted by, or neutral with respect to a premise
(Marelli et al., 2014; Bowman et al., 2015).
Relation extraction systems must understand
when a possible relationship between two entities
is not entailed by the text (Zhang et al., 2017).

Jia and Liang (2017) created adversarial exam-
ples that fool pre-trained SQuAD models at test
time. However, models that train on similar exam-
ples are not easily fooled by their method. In con-
trast, the adversarial examples in SQUADRUN

are difficult even for models trained on examples
from the same distribution.

In conclusion, we have presented
SQUADRUN, a challenging, diverse, and
large-scale dataset that forces models to under-
stand when a question cannot be answered given
the context. We are optimistic that SQUADRUN

will encourage the development of new reading
comprehension models that know what they don’t
know, and therefore understand language at a
deeper level.

Reproducibility. All code, data, experiments
are available on the Codalab platform at https:
//bit.ly/2rDHBgY.
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Abstract

We propose a novel paradigm of ground-
ing comparative adjectives within the
realm of color descriptions. Given a ref-
erence RGB color and a comparative term
(e.g., ‘lighter’, ‘darker’), our model
learns to ground the comparative as a di-
rection in the RGB space such that the col-
ors along the vector, rooted at the refer-
ence color, satisfy the comparison. Our
model generates grounded representations
of comparative adjectives with an average
accuracy of 0.65 cosine similarity to the
desired direction of change. These vec-
tors approach colors with Delta-E scores
of under 7 compared to the target colors,
indicating the differences are very small
with respect to human perception. Our
approach makes use of a newly created
dataset for this task derived from existing
labeled color data.

1 Introduction

Multimodal approaches to object recognition have
achieved a degree of success by grounding adjec-
tives and nouns from descriptive text in image fea-
tures (Farhadi et al., 2009; Lampert et al., 2009;
Russakovsky and Fei-Fei, 2010; Lazaridou et al.,
2015). One limitation of this approach, particu-
larly for fine-grained object recognition, is when
objects are differentiated not by having unique sets
of attributes but by a difference in the strengths
of their shared attributes (Wang et al., 2009; Duan
et al., 2012; Maji et al., 2013; Vedaldi et al., 2014).
In text, this difference is described using compar-
ative adjectives. For example, the sexual dimor-
phism of the American black duck is described
with the phrase “females tend to be slightly paler

(a) The grounding of ‘darker’ trained on teal data, applied to a teal sample

(b) The grounding of ‘darker’ trained on pink data, applied to a teal sample

Figure 1: Grounding ‘darker’

than males, with duller olive bills”.1

In a recent study of pragmatic referring expres-
sion interpretation in the context of color selection,
Monroe et al. (2017) found that speakers almost
always used comparative adjectives when the tar-
get color was very similar to a distractor, rather
than using multiple positive form adjectives to cre-
ate a highly specific description of the color in-
dependent of its surroundings. Though color has
been studied in terms of its contextual dependence
and vagueness in grounding (Egré et al., 2013;
McMahan and Stone, 2015; Monroe et al., 2016,
2017), no approaches have focused explicitly on
learning to ground comparative adjective; in this
work we focus on comparative color descriptions.

The presence of distractors in the Monroe et al.
(2017) study is important - comparatives describe
a change in a feature with respect to a reference
point. While the description light blue can be un-
derstood to represent a particular subset of col-
ors in RGB, for example, neither ‘lighter’ nor
‘lighter blue’ have explicit representations; it
is only with a reference that we can image what
color either might refer to. If the reference color is
a deep navy blue, then we imagine the target to be
much closer to navy than, for example, a sky blue.

We propose a new paradigm of learning to
ground comparative adjectives within the realm of
color descriptions: given a reference RGB color
and a comparative term (e.g. ‘lighter’, ‘paler’),

1https://www.allaboutbirds.org/guide/
American_Black_Duck/id
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our deep learning model learns to ground the com-
parative as a direction in RB space such that the
colors along the vector, rooted at the reference
color, satisfy the comparison (Section 3). The ref-
erence color does more than quantify the specific
RGB values to apply the comparative to: it also
affects the grounding of the comparative. For ex-
ample, ‘darker’ might seem like a simple change
- simply reduce the values of all color channels
equally towards 0. But as Fig 1 shows, ‘darker’
refers to a different direction in RGB space de-
pending on the reference color, and thus we need
a reference-dependent approach.

Our approach makes use of a newly created
dataset for this task derived from an existing la-
beled color dataset (McMahan and Stone, 2015)
(Section 2). Our results in Section 5 show that
our model generates grounded representations of
comparative adjectives with an average accuracy
of 0.65 cosine similarity to the desired direction
of change. These learned vectors approach colors
with Delta-E scores of under 7 compared to the
target colors, indicating the differences are very
small with respect to human perception.

2 Data

We utilize the labeled RGB color data originally
collected by Munroe (2010), through an online
survey asking participants to provide free-form la-
bels to various RGB samples. This data was then
cleaned by McMahan and Stone (2015)2. The
cleaned data contains 821 color labels, averaging
600 RGB datapoints per label. These labels do
not contain comparative adjectives, but many start
with adjectives in the positive form (e.g., dusty,
bright). As Lassiter and Goodman (2017) write,
“Vague terms . . . are generally thought in linguis-
tic semantics to rely on a free threshold vari-
able: ‘heavy’ is interpreted as ‘heaver than θ’.”
Coming back to the example of light blue, im-
plicit in the term is the assumption that there is
a reference blue, such that light blue is under-
stood as ‘lighter’ than this reference. By rep-
resenting this referential blue with the blue RGB
samples from the data, we can assume the light
blue RGB samples are ‘lighter’ than these ref-
erences, giving us a quantitative θ in which to
ground ‘lighter’. Applying this process to the

2A few of the labels (such as ‘horrible’) were manually
discarded, as the corresponding set of colors were too widely
spread across RGB space for the label to be considered as
describing a distinct color.

rest of the labels, we convert the original dataset
into 415 tuples (reference color label, comparative
adjective, and target color label), such as ( blue,
‘lighter’, light blue), where each color label
is a set of RGB datapoints as in McMahan and
Stone (2015). Note that not all labels containing
quantifiers could be utilized in this manner; one
does not consider cobalt blue to be ‘more cobalt’
than the average blue. The new dataset of 415 tu-
ples contains 79 unique reference color labels and
81 unique comparatives and is made available on-
line.3

While it is reasonable to believe that the com-
parative adjective describes the relationship be-
tween the colors in general, individual pairs of col-
ors from the data may not display the appropriate
θ. Thus, we make the assumption that the compar-
ison holds true for the average of the target light
blue samples, and use the average as our ground
truth given the blue reference colors and the com-
parative adjective ‘lighter’.

3 Method

We have chosen to represent comparative adjec-
tives in RGB space as directions, such that given
ain input RGB reference color rc and a compar-
ative adjective w our model outputs a vector ~wg
pointing from rc in the direction of change in
RGB, which in training is measured against the di-
rection towars a target color tc. Fig 1 is a good
indication for why this representation is appro-
priate; our output ~wg corresponds to the rate of
change across the color bar, indicating the direc-
tion along with the degree of the compared prop-
erty increases. All points along this line are repre-
sentations of w in respect to rc.

The network architecture consists of two fully
connected layers, shown in Fig 2. The com-
parative is represented as a bi-gram to account
for comparatives which necessitate using ‘more’
(e.g. “more electric”); single-word compara-
tives are preceded by the zero vector. We used the
Google pre-trained word embeddings4 with d=300
(Mikolov et al., 2013a,b). As these vectors are two
orders of magnitude larger than the reference RGB
color, we input the reference directly into both lay-
ers of the network, helping to mitigate the loss of

3https://bitbucket.org/o_winn/
comparative_colors

4https://code.google.com/archive/p/
word2vec/
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Figure 2: Network Architecture

Data # Tuples # Dtpts
Training 271 15.3M
Test (Seen Pairings) 271 2.4M
Test (Unseen Pairings) 29 0.29M
Test (Unseen Ref. Color) 63 2.4M
Test(Unseen Comparative) 41 0.38M
Test (Fully Unseen) 11 58k

Table 1: Data Split

information this dichotomy in size would other-
wise produce (an empirical study of various input
configurations determined inputting the color into
only one of the layers to be insufficient). The out-
put of the first hidden layer has d=30; each layer
reduces the dimension of the output by an order of
magnitude.

The loss function of the model has two metrics.
The first is the cosine similarity between ~wg and
the vector from rc to tc. To restrain the length
of ~wg, the second metric is the distance between
tc and the result of ~wg + rc. Training the length
of ~wg to roughly match the distance between rc
and tc helps it to capture that the difference should
be small enough to warrant a comparison rather
than separate descriptors, while still representing
enough of a difference to be comparable.

4 Experimental Setup

Table 1 shows the data split between training and
testing both in terms of tuples (#Tuples column)
and in terms of the actual datapoint instances
(#Dtpts column) for our experiments. To properly
measure the accuracy of our model, our test set
covers five input conditions:

• Seen Pairings. The reference color label, the

comparative adjective and their pairing have
been seen in the training data.

• Unseen Pairings. The reference color label
and the comparative adjective have been seen
in the training data, but not their pairing.

• Unseen Ref. Color. The reference color la-
bel, and thus all the corresponding RGB color
datapoints, have not be seen in training, while
the comparative has been seen in the training
data.

• Unseen Comparative. The comparative ad-
jective has not been seen in training, but the
reference color label has been seen.

• Fully Unseen. Neither the comparative adjec-
tive nor the reference color have been seen in
the training.

For the conditions where the reference color la-
bel has been seen in training, the actual RGB
reference color datapoints associated with the la-
bels were different from the ones used in training:
15% of the datapoints from each training reference
color label were set aside for testing, providing
RGB values close but not equivalent to those seen
in training. 10% of the reference color labels were
set aside for testing, as were 10% of the compar-
ative words; this amounted to 8 reference colors
and 8 comparatives. The number of tuples and ac-
tual datapoints instances for each test condition is
given in Table 1.

The network was trained at a 0.001 learning rate
for 800 epochs, with the output of the first layer of
dimension d=30.
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Figure 3: Examples of learned comparatives for each test condition

5 Results

Figure 3 shows examples of learned groundings of
comparatives for each of the five test conditions
(Test Type column). It shows the reference RGB
color datapoint r

′
c (always unseen), the compara-

tive word w, the learned grounding vector ~wg, the
target color tc, and two scores: cosine similarity
and Delta-E. The upper sample for each test type
is an example of a highly accurate result, while the
lower sample exemplifies failure.

Delta-E is a metric for understanding how the
human eye perceives color differences (Table 2).
This is a useful metric as distances in RGB space
are not perceived linearly. Figure 4 shows two
example pairs of colors which are spaced equally
in terms of distance in RGB, but in terms of the
Delta-E metric the green colors are closer together.

As seen in Figure 3, grounding comparatives in
directional vectors over RGB allows them to cap-
ture a full range of modification of the reference
color. Even for some of the error cases the re-
sulting outputs tend to capture directions which
are reasonable illustrations of the color the com-
parative described. Though the ‘darker’ ground-
ing example from unseen pairings is incorrectly
de-saturating the reference color, it is also in fact
making the color darker. Most impressive is the
‘paler’ example at the bottom, which is able to
capture the direction of the comparative almost
perfectly. Regarding failures, we see that they tend

Delta-E Perception
≤ 1.0 Imperceptible
1 - 2 Requires close observation
2 - 10 Perceivable
11 - 49 More similar than opposite
100 Exact opposites

Table 2: Delta-E Ranges

to be of comparatives words that relate to a differ-
ent color, such as ‘more greenish’ and ‘bluer’,
rather than comparatives such as ‘lighter’.

Table 3 provides quantitative results in terms
of average cosine similarity and average Delta-E.
Overall, the average cosine similarity is 0.65, with
an average Delta-E of 6.8. Separating the perfor-
mance by test condition, we see that the conditions
where the reference and comparatives were both
seen perform the best (independent of whether the
pairing was seen in training); again ‘seen refer-
ence’ refers only to the label being seen and not the
reference color datapoint itself. The fully unseen
case performs the worst by far with respect to co-
sine similarity, though it is not as deviant in Delta-
E. It is again apparent that the performance of the
model drops when given comparatives which refer
to another color.

Figure 5 shows the comparative ‘electric’ ap-
plied to colors outside of our dataset. With no
known tcs we cannot quantitatively measure the
accuracy, but we can qualitatively assess the re-
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Figure 4: Same RGB distance, different Delta-E

Test Condition Avg Cos Avg Delta-E
Seen Pairings 0.68 6.1
Unseen Pairings 0.68 7.9
Unseen Ref. Color 0.40 11.4
Unseen Comparative 0.41 10.5
Fully Unseen -0.21 15.9
Overall 0.65 6.8

Table 3: Results

sults as plausible.
We also examined whether the model could

generate plausible comparative terms given a rc
and tc. All of the comparatives in the model’s vo-
cabulary were applied to rc, and the correspond-
ing ~wg were sorted by cosine similarity to given
reference-target direction. When given a green
reference and a dark green target (both sampled
from the test data), the model outputs ‘truer’,
‘deeper’, and ‘darker’ as the closest compara-
tives.

In Figure 6, given a reference sampled from
‘purple’ and a target sampled from ‘soft
purple’, the model outputs the 5 most plausible
comparatives - ‘softer’ was the 9th closest. They
are presented in descending order by distance be-
tween the target color and its projection on the
modifying vector. We see that the comparatives
the model returns are semantically very similar, as
are their corresponding ~wg vectors.

6 Related Work

Though color has been studied in terms of its con-
textual dependence and vagueness in grounding

Figure 5: Groundings for ‘more electric’

Figure 6: Top comparatives generated by the
model

(Egré et al., 2013; McMahan and Stone, 2015;
Monroe et al., 2016, 2017), no approaches have
focused explicitly on learning to ground compar-
atives. Related to this work is that of image
ranking, which is inherently a form of compar-
ison (Parikh and Grauman, 2011; Yu and Grau-
man, 2014). However, ranking methods do not
ground the comparatives themselves in image fea-
tures. Besides the fact that no ranked color data
exists, ranking methods are not flexible enough to
handle the high dependence of color comparatives
on the individual reference color.

7 Conclusion

We propose a new paradigm of grounding com-
parative adjectives describing colors as directions
in RGB space such that the colors along the vector,
rooted at the reference color, satisfy the compari-
son. We introduce a new methodology for trans-
forming labeled color data into comparative color
data, and propose a simple but effective learning
model that is able to accurately modify unseen col-
ors and comparatives. With respect to the desired
output, the representations have an average accu-
racy of 0.65 cosine similarity, and average Delta-
E scores of under 7. Our model can also pro-
vide plausible descriptions of the difference be-
tween a given reference and target pair, as well as
the grounded representations of the comparatives
generated, providing an explanation for the model
decision. This model is the first step towards
fine-grained object recognition through compar-
ative descriptions, providing a way to utilize re-
lational descriptive text. This approach could be
extended to other properties such as size, tex-
ture, or curvature. It could also be used to aid
in zero-shot learning from text sources, generat-
ing human-understandable explanations for cate-
gorization of similar objects, or providing descrip-
tions of new, unknown objects with respect to
known ones.
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