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Abstract

We analyze state-of-the-art deep learning
models for three tasks: question answer-
ing on (1) images, (2) tables, and (3) pas-
sages of text. Using the notion of at-

tribution (word importance), we find that
these deep networks often ignore impor-
tant question terms. Leveraging such be-
havior, we perturb questions to craft a vari-
ety of adversarial examples. Our strongest
attacks drop the accuracy of a visual ques-
tion answering model from 61.1% to 19%,
and that of a tabular question answering
model from 33.5% to 3.3%. Additionally,
we show how attributions can strengthen
attacks proposed by Jia and Liang (2017)
on paragraph comprehension models. Our
results demonstrate that attributions can
augment standard measures of accuracy
and empower investigation of model per-
formance. When a model is accurate but
for the wrong reasons, attributions can sur-
face erroneous logic in the model that in-
dicates inadequacies in the test data.

1 Introduction

Recently, deep learning has been applied to a va-
riety of question answering tasks. For instance,
to answer questions about images (e.g. (Kazemi
and Elqursh, 2017)), tabular data (e.g. (Neelakan-
tan et al., 2017)), and passages of text (e.g. (Yu
et al., 2018)). Developers, end-users, and review-
ers (in academia) would all like to understand the
capabilities of these models.

The standard way of measuring the goodness
of a system is to evaluate its error on a test set.
High accuracy is indicative of a good model only if
the test set is representative of the underlying real-
world task. Most tasks have large test and training
sets, and it is hard to manually check that they are
representative of the real world.

In this paper, we propose techniques to analyze
the sensitivity of a deep learning model to ques-
tion words. We do this by applying attribution (as
discussed in section 3), and generating adversar-
ial questions. Here is an illustrative example: re-
call Visual Question Answering (Agrawal et al.,
2015) where the task is to answer questions about
images. Consider the question “how symmetrical

are the white bricks on either side of the build-

ing?” (corresponding image in Figure 1). The sys-
tem that we study gets the answer right (“very”).
But, we find (using an attribution approach) that
the system relies on only a few of the words like
“how” and “bricks”. Indeed, we can construct ad-
versarial questions about the same image that the
system gets wrong. For instance, “how spherical

are the white bricks on either side of the build-

ing?” returns the same answer (“very”). A key
premise of our work is that most humans have ex-
pertise in question answering. Even if they cannot
manually check that a dataset is representative of
the real world, they can identify important ques-
tion words, and anticipate their function in ques-
tion answering.

1.1 Our Contributions

We follow an analysis workflow to understand
three question answering models. There are two
steps. First, we apply Integrated Gradients (hence-
forth, IG) (Sundararajan et al., 2017) to attribute
the systems’ predictions to words in the questions.
We propose visualizations of attributions to make
analysis easy. Second, we identify weaknesses
(e.g., relying on unimportant words) in the net-
works’ logic as exposed by the attributions, and
leverage them to craft adversarial questions.

A key contribution of this work is an overstabil-

ity test for question answering networks. Jia and
Liang (2017) showed that reading comprehension
networks are overly stable to semantics-altering
edits to the passage. In this work, we find that



1897

such overstability also applies to questions. Fur-
thermore, this behavior can be seen in visual and
tabular question answering networks as well. We
use attributions to a define a general-purpose test
for measuring the extent of the overstability (sec-
tions 4.3 and 5.3). It involves measuring how a
network’s accuracy changes as words are system-
atically dropped from questions.

We emphasize that, in contrast to model-
independent adversarial techniques such as that
of Jia and Liang (2017), our method exploits the
strengths and weaknesses of the model(s) at hand.
This allows our attacks to have a high success rate.
Additionally, using insights derived from attribu-
tions we were able to improve the attack success
rate of Jia and Liang (2017) (section 6.2). Such
extensive use of attributions in crafting adversarial
examples is novel to the best of our knowledge.

Next, we provide an overview of our results. In
each case, we evaluate a pre-trained model on new
inputs. We keep the networks’ parameters intact.

Visual QA (section 4): The task is to answer
questions about images. We analyze the deep net-
work in Kazemi and Elqursh (2017). We find that
the network ignores many question words, rely-
ing largely on the image to produce answers. For
instance, we show that the model retains more
than 50% of its original accuracy even when ev-
ery word that is not “color” is deleted from all
questions in the validation set. We also show
that the model under-relies on important ques-
tion words (e.g. nouns) and attaching content-
free prefixes (e.g., “in not many words, . . .”) to
questions drops the accuracy from 61.1% to 19%.

QA on tables (section 5): We analyze a sys-
tem called Neural Programmer (henceforth,
NP) (Neelakantan et al., 2017) that answers ques-
tions on tabular data. NP determines the answer
to a question by selecting a sequence of opera-
tions to apply on the accompanying table (akin to
an SQL query; details in section 5). We find that
these operation selections are more influenced by
content-free words (e.g., “in”, “at”, “the”, etc.)
in questions than important words such as nouns
or adjectives. Dropping all content-free words
reduces the validation accuracy of the network
from 33.5%1 to 28.5%. Similar to Visual QA, we

1This is the single-model accuracy that we obtained on
training the Neural Programmer network. The accuracy re-
ported in the paper is 34.1%.

show that attaching content-free phrases (e.g., “in
not a lot of words”) to the question drops the net-
work’s accuracy from 33.5% to 3.3%. We also
find that NP often gets the answer right for the
wrong reasons. For instance, for the question
“which nation earned the most gold medals?”,
one of the operations selected by NP is “first”
(pick the first row of the table). Its answer is right
only because the table happens to be arranged in
order of rank. We quantify this weakness by eval-
uating NP on the set of perturbed tables generated
by Pasupat and Liang (2016) and find that its ac-
curacy drops from 33.5% to 23%. Finally, we
show an extreme form of overstability where the
table itself induces a large bias in the network re-
gardless of the question. For instance, we found
that in tables about Olympic medal counts, NP
was predisposed to selecting the “prev” operator.

Reading comprehension (Section 6): The task
is to answer questions about paragraphs of text.
We analyze the network by Yu et al. (2018).
Again, we find that the network often ignores
words that should be important. Jia and Liang
(2017) proposed attacks wherein sentences are
added to paragraphs that ought not to change the
network’s answers, but sometimes do. Our main
finding is that these attacks are more likely to
succeed when an added sentence includes all the
question words that the model found important
(for the original paragraph). For instance, we
find that attacks are 50% more likely to be
successful when the added sentence includes
top-attributed nouns in the question. This insight
should allow the construction of more successful
attacks and better training data sets.

In summary, we find that all networks ignore
important parts of questions. One can fix this by
either improving training data, or introducing an
inductive bias. Our analysis workflow is helpful
in both cases. It would also make sense to expose
end-users to attribution visualizations. Knowing
which words were ignored, or which operations
the words were mapped to, can help the user de-
cide whether to trust a system’s response.

2 Related Work

We are motivated by Jia and Liang (2017). As they
discuss, “the extent to which [reading comprehen-

sion systems] truly understand language remains

unclear”. The contrast between Jia and Liang
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(2017) and our work is instructive. Their main
contribution is to fix the evaluation of reading
comprehension systems by augmenting the test set
with adversarially constructed examples. (As they
point out in Section 4.6 of their paper, this does not
necessarily fix the model; the model may simply
learn to circumvent the specific attack underlying
the adversarial examples.) Their method is inde-
pendent of the specification of the model at hand.
They use crowdsourcing to craft passage perturba-
tions intended to fool the network, and then query
the network to test their effectiveness.

In contrast, we propose improving the analy-
sis of question answering systems. Our method
peeks into the logic of a network to identify high-
attribution question terms. Often there are sev-
eral important question terms (e.g., nouns, adjec-
tives) that receive tiny attribution. We leverage this
weakness and perturb questions to craft targeted
attacks. While Jia and Liang (2017) focus exclu-
sively on systems for the reading comprehension
task, we analyze one system each for three differ-
ent tasks. Our method also helps improve the ef-
ficacy Jia and Liang (2017)’s attacks; see table 4
for examples. Our analysis technique is specific
to deep-learning-based systems, whereas theirs is
not.

We could use many other methods instead of
Integrated Gradients (IG) to attribute a deep net-
work’s prediction to its input features (Baehrens
et al., 2010; Simonyan et al., 2013; Shrikumar
et al., 2016; Binder et al., 2016; Springenberg
et al., 2014). One could also use model agnos-
tic techniques like Ribeiro et al. (2016b). We
choose IG for its ease and efficiency of imple-
mentation (requires just a few gradient-calls) and
its axiomatic justification (see Sundararajan et al.
(2017) for a detailed comparison with other attri-
bution methods).

Recently, there have been a number of tech-
niques for crafting and defending against adver-
sarial attacks on image-based deep learning mod-
els (cf. Goodfellow et al. (2015)). They are based
on oversensitivity of models, i.e., tiny, impercepti-
ble perturbations of the image to change a model’s
response. In contrast, our attacks are based on
models’ over-reliance on few question words even
when other words should matter.

We discuss task-specific related work in corre-
sponding sections (sections 4 to 6).

3 Integrated Gradients (IG)

We employ an attribution technique called Inte-
grated Gradients (IG) (Sundararajan et al., 2017)
to isolate question words that a deep learning sys-
tem uses to produce an answer.

Formally, suppose a function F : Rn ! [0, 1]
represents a deep network, and an input x =
(x1, . . . , xn) 2 Rn. An attribution of the predic-
tion at input x relative to a baseline input x0 is a
vector AF (x, x0) = (a1, . . . , an) 2 Rn where ai
is the contribution of xi to the prediction F (x).
One can think of F as the probability of a specific
response. x1, . . . , xn are the question words; to
be precise, they are going to be vector represen-
tations of these terms. The attributions a1, . . . , an
are the influences/blame-assignments to the vari-
ables x1, . . . , xn on the probability F .

Notice that attributions are defined relative to a
special, uninformative input called the baseline. In
this paper, we use an empty question as the base-
line, that is, a sequence of word embeddings cor-
responding to padding value. Note that the context
(image, table, or passage) of the baseline x0 is set
to be that of x; only the question is set to empty.
We now describe how IG produces attributions.

Intuitively, as we interpolate between the base-
line and the input, the prediction moves along a
trajectory, from uncertainty to certainty (the final
probability). At each point on this trajectory, one
can use the gradient of the function F with respect
to the input to attribute the change in probability
back to the input variables. IG simply aggregates
the gradients of the probability with respect to the
input along this trajectory using a path integral.

Definition 1 (Integrated Gradients) Given an

input x and baseline x0, the integrated gradient

along the ith dimension is defined as follows.

IGi(x, x
0) ::= (xi�x0i)⇥

Z 1

↵=0

@F (x0+↵⇥(x�x0))
@xi

d↵

(here
@F (x)
@xi

is the gradient of F along the ith di-

mension at x).

Sundararajan et al. (2017) discuss several prop-
erties of IG. Here, we informally mention a few
desirable ones, deferring the reader to Sundarara-
jan et al. (2017) for formal definitions.

IG satisfies the condition that the attributions
sum to the difference between the probabilities at
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the input and the baseline. We call a variable unin-
fluential if all else fixed, varying it does not change
the output probability. IG satisfies the property
that uninfluential variables do not get any attribu-
tion. Conversely, influential variables always get
some attribution. Attributions for a linear com-
bination of two functions F1 and F2 are a lin-
ear combination of the attributions for F1 and F2.
Finally, IG satisfies the condition that symmetric
variables get equal attributions.

In this work, we validate the use of IG em-
pirically via question perturbations. We observe
that perturbing high-attribution terms changes the
networks’ response (sections 4.4 and 5.5). Con-
versely, perturbing terms that receive a low attribu-
tion does not change the network’s response (sec-
tions 4.3 and 5.3). We use these observations to
craft attacks against the network by perturbing in-
stances where generic words (e.g., “a”, “the”) re-
ceive high attribution or contentful words receive
low attribution.

4 Visual Question Answering

4.1 Task, model, and data

The Visual Question Answering Task (Agrawal
et al., 2015; Teney et al., 2017; Kazemi and
Elqursh, 2017; Ben-younes et al., 2017; Zhu et al.,
2016) requires a system to answer questions about
images (fig. 1). We analyze the deep network
from Kazemi and Elqursh (2017). It achieves
61.1% accuracy on the validation set (the state of
the art (Fukui et al., 2016) achieves 66.7%). We
chose this model for its easy reproducibility.

The VQA 1.0 dataset (Agrawal et al., 2015)
consists of 614,163 questions posed over 204,721
images (3 questions per image). The images were
taken from COCO (Lin et al., 2014), and the ques-
tions and answers were crowdsourced.

The network in Kazemi and Elqursh (2017)
treats question answering as a classification task
wherein the classes are 3000 most frequent an-
swers in the training data. The input question
is tokenized, embedded and fed to a multi-layer
LSTM. The states of the LSTM attend to a featur-
ized version of the image, and ultimately produce
a probability distribution over the answer classes.

4.2 Observations

We applied IG and attributed the top selected an-
swer class to input question words. The base-
line for a given input instance is the image and an

Question: how symmetrical are the
white bricks on either side of the
building
Prediction: very
Ground truth: very

Figure 1: Visual QA (Kazemi and Elqursh, 2017): Visual-
ization of attributions (word importances) for a question that
the network gets right. Red indicates high attribution, blue
negative attribution, and gray near-zero attribution. The col-
ors are determined by attributions normalized w.r.t the maxi-
mum magnitude of attributions among the question’s words.

empty question2. We omit instances where the top
answer class predicted by the network remains the
same even when the question is emptied (i.e., the
baseline input). This is because IG attributions are
not informative when the input and the baseline
have the same prediction.

A visualization of the attributions is shown in
fig. 1. Notice that very few words have high at-
tribution. We verified that altering the low at-
tribution words in the question does not change
the network’s answer. For instance, the following
questions still return “very” as the answer: “how

spherical are the white bricks on either side of the

building”, “how soon are the bricks fading on ei-

ther side of the building”, “how fast are the bricks

speaking on either side of the building”.
On analyzing attributions across examples, we

find that most of the highly attributed words are
words such as “there”, “what”, “how”, “doing”–
they are usually the less important words in ques-
tions. In section 4.3 we describe a test to measure
the extent to which the network depends on such
words. We also find that informative words in the
question (e.g., nouns) often receive very low attri-
bution, indicating a weakness on part of the net-
work. In Section 4.4, we describe various attacks
that exploit this weakness.

4.3 Overstability test

To determine the set of question words that the net-
work finds most important, we isolate words that
most frequently occur as top attributed words in
questions. We then drop all words except these
and compute the accuracy.

Figure 2 shows how the accuracy changes as the
size of this isolated set is varied from 0 to 5305.

2We do not black out the image in our baseline as our
objective is to study the influence of just the question words
for a given image
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We find that just one word is enough for the model
to achieve more than 50% of its final accuracy.
That word is “color”.

Figure 2: VQA network (Kazemi and Elqursh, 2017): Ac-
curacy as a function of vocabulary size, relative to its original
accuracy. Words are chosen in the descending order of how
frequently they appear as top attributions. The X-axis is on
logscale, except near zero where it is linear.

Note that even when empty questions are passed
as input to the network, its accuracy remains at
about 44.3% of its original accuracy. This shows
that the model is largely reliant on the image for
producing the answer.

The accuracy increases (almost) monotonically
with the size of the isolated set. The top 6 words in
the isolated set are “color”, “many”, “what”, “is”,
“there”, and “how”. We suspect that generic words
like these are used to determine the type of the an-
swer. The network then uses the type to choose
between a few answers it can give for the image.

4.4 Attacks

Attributions reveal that the network relies largely
on generic words in answering questions (sec-
tion 4.3). This is a weakness in the network’s
logic. We now describe a few attacks against the
network that exploit this weakness.

Subject ablation attack

In this attack, we replace the subject of a ques-
tion with a specific noun that consistently receives
low attribution across questions. We then deter-
mine, among the questions that the network orig-
inally answered correctly, what percentage result
in the same answer after the ablation. We repeat
this process for different nouns; specifically, “fits”,
“childhood”, “copyrights”, “mornings”, “disor-
der”, “importance”, “topless”, “critter”, “jumper”,
“tweet”, and average the result.

Prefix Accuracy

in not a lot of words 35.5%
in not many words 32.5%
what is the answer to 31.7%

Union of all three 19%

Baseline prefix

tell me 51.3%
answer this 55.7%
answer this for me 49.8%

Union of baseline prefixes 46.9%

Table 1: VQA network (Kazemi and Elqursh, 2017): Ac-
curacy for prefix attacks; original accuracy is 61.1%.

We find that, among the set of questions that the
network originally answered correctly, 75.6% of
the questions return the same answer despite the
subject replacement.

Prefix attack

In this attack, we attach content-free phrases to
questions. The phrases are manually crafted us-
ing generic words that the network finds impor-
tant (section 4.3). Table 1 (top half) shows the
resulting accuracy for three prefixes —“in not a

lot of words”, “what is the answer to”, and “in not

many words”. All of these phrases nearly halve the
model’s accuracy. The union of the three attacks
drops the model’s accuracy from 61.1% to 19%.

We note that the attributions computed for the
network were crucial in crafting the prefixes. For
instance, we find that other prefixes like “tell me”,
“answer this” and “answer this for me” do not
drop the accuracy by much; see table 1 (bottom
half). The union of these three ineffective prefixes
drops the accuracy from 61.1% to only 46.9%. Per
attributions, words present in these prefixes are not
deemed important by the network.

4.5 Related work

Agrawal et al. (2016) analyze several VQA mod-
els. Among other attacks, they test the models
on question fragments of telescopically increas-
ing length. They observe that VQA models often
arrive at the same answer by looking at a small
fragment of the question. Our stability analysis
in section 4.3 explains, and intuitively subsumes
this; indeed, several of the top attributed words
appear in the prefix, while important words like
“color” often occur in the middle of the ques-
tion. Our analysis enables additional attacks, for
instance, replacing question subject with low attri-
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bution nouns. Ribeiro et al. (2016a) use a model
explanation technique to illustrate overstability for
two examples. They do not quantify their anal-
ysis at scale. Kafle and Kanan (2017); Zhang
et al. (2016) examine the VQA data, identify de-
ficiencies, and propose data augmentation to re-
duce over-representation of certain question/an-
swer types. Goyal et al. (2016) propose the VQA
2.0 dataset, which has pairs of similar images that
have different answers on the same question. We
note that our method can be used to improve these
datasets by identifying inputs where models ig-
nore several words. Huang et al. (2017) evalu-
ate robustness of VQA models by appending ques-

tions with semantically similar questions. Our pre-
fix attacks in section 4.4 are in a similar vein and
perhaps a more natural and targeted approach. Fi-
nally, Fong and Vedaldi (2017) use saliency meth-
ods to produce image perturbations as adversarial
examples; our attacks are on the question.

5 Question Answering over Tables

5.1 Task, model, and data

We now analyze question answering over ta-
bles based on the WikiTableQuestions benchmark
dataset (Pasupat and Liang, 2015). The dataset has
22033 questions posed over 2108 tables scraped
from Wikipedia. Answers are either contents of ta-
ble cells or some table aggregations. Models per-
forming QA on tables translate the question into a
structured program (akin to an SQL query) which
is then executed on the table to produce the an-
swer. We analyze a model called Neural Program-
mer (NP) (Neelakantan et al., 2017). NP is the
state of the art among models that are weakly su-
pervised, i.e., supervised using the final answer in-
stead of the correct structured program. It achieves
33.5% accuracy on the validation set.

NP translates the input into a structured pro-
gram consisting of four operator and table column
selections. An example of such a program is “reset
(score), reset (score), min (score), print (name)”,
where the output is the name of the person who
has the lowest score.

5.2 Observations

We applied IG to attribute operator and column
selection to question words. NP preprocesses
inputs and whenever applicable, appends sym-
bols tm token, cm token to questions that sig-
nify matches between a question and the accom-

panying table. These symbols are treated the same
as question words. NP also computes priors for
column selection using question-table matches.
These vectors, tm and cm , are passed as addi-
tional inputs to the neural network. In the baseline
for IG, we use an empty question, and zero vectors
for column selection priors3.

Figure 3: Visualization of attributions. Question words,
preprocessing tokens and column selection priors on the Y-
axis. Along the X-axis are operator and column selections
with their baseline counterparts in parentheses. Operators and
columns not affecting the final answer, and those which are
same as their baseline counterparts, are given zero attribution.

We visualize the attributions using an alignment
matrix; they are commonly used in the analysis of
translation models (fig. 3). Observe that the oper-
ator “first” is used when the question is asking for
a superlative. Further, we see that the word “gold”
is a trigger for this operator. We investigate impli-
cations of this behavior in the following sections.

5.3 Overstability test

Similar to the test we did for Visual QA (sec-
tion 4.3), we check for overstability in NP by look-
ing at accuracy as a function of the vocabulary
size. We treat table match annotations tm token ,
cm token and the out-of-vocab token (unk ) as
part of the vocabulary. The results are in fig. 4. We
see that the curve is similar to that of Visual QA
(fig. 2). Just 5 words (along with the column se-
lection priors) are sufficient for the model to reach
more than 50% of its final accuracy on the valida-
tion set. These five words are: “many”, “number”,
“tm token”, “after”, and “total”.

5.4 Table-specific default programs

We saw in the previous section that the model re-
lies on only a few words in producing correct an-
swers. An extreme case of overstability is when

3Note that the table is left intact in the baseline
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Operator sequence # Triggers Insights

reset, reset, max, print 109 [unk, date, position, points, name, competition, notes, no, year, venue] sports
reset, prev, max, print 68 [unk, rank, total, bronze, gold, silver, nation, name, date, no] medal tallies
reset, reset, first, print 29 [name, unk, notes, year, nationality, rank, location, date, comments, hometown] player rankings
reset, mfe, first, print 25 [notes, date, title, unk, role, genre, year, score, opponent, event] awards
reset, reset, min, print 17 [year, height, unk, name, position, floors, notes, jan, jun, may] building info.
reset, mfe, max, print 14 [opponent, date, result, location, rank, site, attendance, notes, city, listing] politics
reset, next, first, print 10 [unk, name, year, edition, birth, death, men, time, women, type] census

Table 2: Attributions to column names for table-specific default programs (programs returned by NP on empty input ques-
tions). See supplementary material, table 6 for the full list. These results are indication that the network is predisposed towards
picking certain operators solely based on the table.

Figure 4: Accuracy as a function of vocabulary size. The
words are chosen in the descending order of their frequency
appearance as top attributions to question terms. The X-axis
is on logscale, except near zero where it is linear. Note that
just 5 words are necessary for the network to reach more than
50% of its final accuracy.

the operator sequences produced by the model are
independent of the question. We find that if we
supply an empty question as an input, i.e., the out-
put is a function only of the table, then the dis-
tribution over programs is quite skewed. We call
these programs table-specific default programs.
On average, about 36.9% of the selected operators
match their table-default counterparts, indicating
that the model relies significantly on the table for
producing an answer.

For each default program, we used IG to at-
tribute operator and column selections to column
names and show ten most frequently occurring
ones across tables in the validation set (table 2).

Here is an insight from this analysis: NP uses
the combination “reset, prev” to exclude the last
row of the table from answer computation. The de-
fault program corresponding to “reset, prev, max,
print” has attributions to column names such as
“rank”, “gold”, “silver”, “bronze”, “nation”,

“year”. These column names indicate medal tal-
lies and usually have a “total” row. If the table
happens not to have a “total” row, the model may

‘

Attack phrase Prefix Suffix

in not a lot of words 20.6% 10.0%
if its all the same 21.8% 18.7%
in not many words 15.6% 11.2%
one way or another 23.5% 20.0%

Union of above attacks 3.3%

Baseline

please answer 32.3% 30.7%
do you know 31.2% 29.5%

Union of baseline prefixes 27.1%

Table 3: Neural Programmer (Neelakantan et al., 2017):
Left: Validation accuracy when attack phrases are concate-
nated to the question. (Original: 33.5%)

produce an incorrect answer.
We now describe attacks that add or drop

content-free words from the question, and cause
NP to produce the wrong answer. These attacks
leverage the attribution analysis.

5.5 Attacks

Question concatenation attacks

In these attacks, we either suffix or prefix content-
free phrases to questions. The phrases are crafted
using irrelevant trigger words for operator selec-
tions (supplementary material, table 5). We man-
ually ensure that the phrases are content-free.

Table 3 describes our results. The first 4 phrases
use irrelevant trigger words and result in a large
drop in accuracy. For instance, the first phrase
uses “not” which is a trigger for “next”, “last”, and
“min”, and the second uses “same” which is a trig-
ger for “next” and “mfe”. The four phrases com-
bined results in the model’s accuracy going down
from 33.5% to 3.3%. The first two phrases alone
drop the accuracy to 5.6%.

The next set of phrases use words that receive
low attribution across questions, and are hence
non-triggers for any operator. The resulting drop
in accuracy on using these phrases is relatively
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low. Combined, they result in the model’s accu-
racy dropping from 33.5% to 27.1%.

Stop word deletion attacks

We find that sometimes an operator is selected
based on stop words like: “a”, “at”, “the”, etc. For
instance, in the question, “what ethnicity is at the
top?”, the operator “next” is triggered on the word
“at”. Dropping the word “at” from the question
changes the operator selection and causes NP to
return the wrong answer.

We drop stop words from questions in the val-
idation dataset that were originally answered cor-
rectly and test NP on them. The stop words to be
dropped were manually selected4 and are shown
in Figure 5 in the supplementary material.

By dropping stop words, the accuracy drops
from 33.5% to 28.5%. Selecting operators based
on stop words is not robust. In real world search
queries, users often phrase questions without stop
words, trading grammatical correctness for con-
ciseness. For instance, the user may simply say
“top ethnicity”. It may be possible to defend
against such examples by generating synthetic
training data, and re-training the network on it.

Row reordering attacks

We found that NP often got the question right by
leveraging artifacts of the table. For instance, the
operators for the question “which nation earned
the most gold medals” are “reset”, “prev”, “first”
and “print”. The “prev” operator essentially ex-
cludes the last row from the answer computation.
It gets the answer right for two reasons: (1) the an-
swer is not in the last row, and (2) rows are sorted
by the values in the column “gold”.

In general, a question answering system should
not rely on row ordering in tables. To quantify
the extent of such biases, we used a perturbed ver-
sion of WikiTableQuestions validation dataset as
described in Pasupat and Liang (2016)5 and eval-
uated the existing NP model on it (there was no
re-training involved here). We found that NP has
only 23% accuracy on it, in constrast to an accu-
racy of 33.5% on the original validation dataset.

One approach to making the network robust to
row-reordering attacks is to train against perturbed
tables. This may also help the model generalize

4We avoided standard stop word lists (e.g. NLTK) as they
contain contentful words (e.g “after”) which may be impor-
tant in some questions (e.g. “who ranked right after turkey?”)

5based on data at https://nlp.stanford.edu/
software/sempre/wikitable/dpd/

better. Indeed, Mudrakarta et al. (2018) note that
the state-of-the-art strongly supervised6 model on
WikiTableQuestions (Krishnamurthy et al., 2017)
enjoys a 7% gain in its final accuracy by leverag-
ing perturbed tables during training.

6 Reading Comprehension

6.1 Task, model, and data

The reading comprehension task involves identi-
fying a span from a context paragraph as an an-
swer to a question. The SQuAD dataset (Ra-
jpurkar et al., 2016) for machine reading com-
prehension contains 107.7K query-answer pairs,
with 87.5K for training, 10.1K for validation, and
another 10.1K for testing. Deep learning meth-
ods are quite successful on this problem, with the
state-of-the-art F1 score at 84.6 achieved by Yu
et al. (2018); we analyze their model.

6.2 Analyzing adversarial examples

Recall the adversarial attacks proposed by Jia and
Liang (2017) for reading comprehension systems.
Their attack ADDSENT appends sentences to the
paragraph that resemble an answer to the question
without changing the ground truth. See the second
column of table 4 for a few examples.

We investigate the effectiveness of their attacks
using attributions. We analyze 100 examples gen-
erated by the ADDSENT method in Jia and Liang
(2017), and find that an adversarial sentence is
successful in fooling the model in two cases:

First, a contentful word in the question gets
low/zero attribution and the adversarially added
sentence modifies that word. E.g. in the question,
“Who did Kubiak take the place of after Super
Bowl XXIV?”, the word “Super” gets low attribu-
tion. Adding “After Champ Bowl XXV, Crowton
took the place of Jeff Dean” changes the prediction
for the model. Second, a contentful word in the
question that is not present in the context. For e.g.
in the question “Where hotel did the Panthers stay
at?”, “hotel”, is not present in the context. Adding
“The Vikings stayed at Chicago hotel.” changes
the prediction for the model.

On the flip side, an adversarial sentence is un-
successful when a contentful word in the question
having high attribution is not present in the added
sentence. E.g. for “Where according to gross state
product does Victoria rank in Australia?”, “Aus-
tralia” receives high attribution. Adding “Accord-

6supervised on the structured program

https://nlp.stanford.edu/software/sempre/wikitable/dpd/
https://nlp.stanford.edu/software/sempre/wikitable/dpd/
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Question ADDSENT attack that does not work Attack that works

Who was Count of Melfi
Jeff Dean was the mayor of Bracco. Jeff Dean was the mayor of Melfi.

What country was Abhisit Vejjajiva
prime minister of , despite having been
born in Newcastle ?

Samak Samak was prime minister of
the country of Chicago, despite hav-
ing been born in Leeds.

Abhisit Vejjajiva was chief minister
of the country of Chicago, despite
having been born in Leeds.

Where according to gross state product
does Victoria rank in Australia ?

According to net state product, Ade-
laide ranks 7 in New Zealand

According to net state product,
Adelaide ranked 7 in Australia. (as
a prefix)

When did the Methodist Protestant
Church split from the Methodist Episco-
pal Church ?

The Presbyterian Catholics split from
the Presbyterian Anglican in 1805.

The Methodist Protestant Church
split from the Presbyterian Angli-
can in 1805. (as a prefix)

What period was 2.5 million years ago ?
The period of Plasticean era was 2.5
billion years ago.

The period of Plasticean era was 1.5
billion years ago. (as a prefix)

Table 4: ADDSENT attacks that failed to fool the model. With modifications to preserve nouns with high attributions, these
are successful in fooling the model. Question words that receive high attribution are colored red (intensity indicates magnitude).

ing to net state product, Adelaide ranks 7 in New
Zealand.” does not fool the model. However,
retaining “Australia” in the adversarial sentence
does change the model’s prediction.

6.3 Predicting the effectiveness of attacks

Next we correlate attributions with efficacy of the
ADDSENT attacks. We analyzed 1000 (question,
attack phrase) instances7 where Yu et al. (2018)
model has the correct baseline prediction. Of
the 1000 cases, 508 are able to fool the model,
while 492 are not. We split the examples into
two groups. The first group has examples where a
noun or adjective in the question has high attribu-
tion, but is missing from the adversarial sentence
and the rest are in the second group. Our attri-
bution analysis suggests that we should find more
failed examples in the first group. That is indeed
the case. The first group has 63% failed examples,
while the second has only 40%.

Recall that the attack sentences were con-
structed by (a) generating a sentence that answers
the question, (b) replacing all the adjectives and
nouns with antonyms, and named entities by the
nearest word in GloVe word vector space (Pen-
nington et al., 2014) and (c) crowdsourcing to
check that the new sentence is grammatically cor-
rect. This suggests a use of attributions to improve
the effectiveness of the attacks, namely ensuring
that question words that the model thinks are im-
portant are left untouched in step (b) (we note that
other changes in should be carried out). In table 4,

7data sourced from https://
worksheets.codalab.org/worksheets/
0xc86d3ebe69a3427d91f9aaa63f7d1e7d/

we show a few examples where an original attack
did not fool the model, but preserving a noun with
high attribution did.

7 Conclusion

We analyzed three question answering models us-
ing an attribution technique. Attributions helped
us identify weaknesses of these models more ef-
fectively than conventional methods (based on val-
idation sets). We believe that a workflow that uses
attributions can aid the developer in iterating on
model quality more effectively.

While the attacks in this paper may seem un-
realistic, they do expose real weaknesses that af-
fect the usage of a QA product. Under-reliance on
important question terms is not safe. We also be-
lieve that other QA models may share these weak-
nesses. Our attribution-based methods can be di-
rectly used to gauge the extent of such problems.
Additionally, our perturbation attacks (sections 4.4
and 5.5) serve as empirical validation of attribu-
tions.

Reproducibility

Code to generate attributions and reproduce our
results is freely available at https://github.
com/pramodkaushik/acl18_results.
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